Bug Summary

File:lib/IR/Verifier.cpp
Warning:line 2332, column 7
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name Verifier.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn360410/build-llvm/lib/IR -I /build/llvm-toolchain-snapshot-9~svn360410/lib/IR -I /build/llvm-toolchain-snapshot-9~svn360410/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn360410/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn360410/build-llvm/lib/IR -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn360410=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-05-11-053245-11877-1 -x c++ /build/llvm-toolchain-snapshot-9~svn360410/lib/IR/Verifier.cpp -faddrsig
1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the function verifier interface, that can be used for some
10// sanity checking of input to the system.
11//
12// Note that this does not provide full `Java style' security and verifications,
13// instead it just tries to ensure that code is well-formed.
14//
15// * Both of a binary operator's parameters are of the same type
16// * Verify that the indices of mem access instructions match other operands
17// * Verify that arithmetic and other things are only performed on first-class
18// types. Verify that shifts & logicals only happen on integrals f.e.
19// * All of the constants in a switch statement are of the correct type
20// * The code is in valid SSA form
21// * It should be illegal to put a label into any other type (like a structure)
22// or to return one. [except constant arrays!]
23// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24// * PHI nodes must have an entry for each predecessor, with no extras.
25// * PHI nodes must be the first thing in a basic block, all grouped together
26// * PHI nodes must have at least one entry
27// * All basic blocks should only end with terminator insts, not contain them
28// * The entry node to a function must not have predecessors
29// * All Instructions must be embedded into a basic block
30// * Functions cannot take a void-typed parameter
31// * Verify that a function's argument list agrees with it's declared type.
32// * It is illegal to specify a name for a void value.
33// * It is illegal to have a internal global value with no initializer
34// * It is illegal to have a ret instruction that returns a value that does not
35// agree with the function return value type.
36// * Function call argument types match the function prototype
37// * A landing pad is defined by a landingpad instruction, and can be jumped to
38// only by the unwind edge of an invoke instruction.
39// * A landingpad instruction must be the first non-PHI instruction in the
40// block.
41// * Landingpad instructions must be in a function with a personality function.
42// * All other things that are tested by asserts spread about the code...
43//
44//===----------------------------------------------------------------------===//
45
46#include "llvm/IR/Verifier.h"
47#include "llvm/ADT/APFloat.h"
48#include "llvm/ADT/APInt.h"
49#include "llvm/ADT/ArrayRef.h"
50#include "llvm/ADT/DenseMap.h"
51#include "llvm/ADT/MapVector.h"
52#include "llvm/ADT/Optional.h"
53#include "llvm/ADT/STLExtras.h"
54#include "llvm/ADT/SmallPtrSet.h"
55#include "llvm/ADT/SmallSet.h"
56#include "llvm/ADT/SmallVector.h"
57#include "llvm/ADT/StringExtras.h"
58#include "llvm/ADT/StringMap.h"
59#include "llvm/ADT/StringRef.h"
60#include "llvm/ADT/Twine.h"
61#include "llvm/ADT/ilist.h"
62#include "llvm/BinaryFormat/Dwarf.h"
63#include "llvm/IR/Argument.h"
64#include "llvm/IR/Attributes.h"
65#include "llvm/IR/BasicBlock.h"
66#include "llvm/IR/CFG.h"
67#include "llvm/IR/CallingConv.h"
68#include "llvm/IR/Comdat.h"
69#include "llvm/IR/Constant.h"
70#include "llvm/IR/ConstantRange.h"
71#include "llvm/IR/Constants.h"
72#include "llvm/IR/DataLayout.h"
73#include "llvm/IR/DebugInfo.h"
74#include "llvm/IR/DebugInfoMetadata.h"
75#include "llvm/IR/DebugLoc.h"
76#include "llvm/IR/DerivedTypes.h"
77#include "llvm/IR/Dominators.h"
78#include "llvm/IR/Function.h"
79#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalValue.h"
81#include "llvm/IR/GlobalVariable.h"
82#include "llvm/IR/InlineAsm.h"
83#include "llvm/IR/InstVisitor.h"
84#include "llvm/IR/InstrTypes.h"
85#include "llvm/IR/Instruction.h"
86#include "llvm/IR/Instructions.h"
87#include "llvm/IR/IntrinsicInst.h"
88#include "llvm/IR/Intrinsics.h"
89#include "llvm/IR/LLVMContext.h"
90#include "llvm/IR/Metadata.h"
91#include "llvm/IR/Module.h"
92#include "llvm/IR/ModuleSlotTracker.h"
93#include "llvm/IR/PassManager.h"
94#include "llvm/IR/Statepoint.h"
95#include "llvm/IR/Type.h"
96#include "llvm/IR/Use.h"
97#include "llvm/IR/User.h"
98#include "llvm/IR/Value.h"
99#include "llvm/Pass.h"
100#include "llvm/Support/AtomicOrdering.h"
101#include "llvm/Support/Casting.h"
102#include "llvm/Support/CommandLine.h"
103#include "llvm/Support/Debug.h"
104#include "llvm/Support/ErrorHandling.h"
105#include "llvm/Support/MathExtras.h"
106#include "llvm/Support/raw_ostream.h"
107#include <algorithm>
108#include <cassert>
109#include <cstdint>
110#include <memory>
111#include <string>
112#include <utility>
113
114using namespace llvm;
115
116namespace llvm {
117
118struct VerifierSupport {
119 raw_ostream *OS;
120 const Module &M;
121 ModuleSlotTracker MST;
122 const DataLayout &DL;
123 LLVMContext &Context;
124
125 /// Track the brokenness of the module while recursively visiting.
126 bool Broken = false;
127 /// Broken debug info can be "recovered" from by stripping the debug info.
128 bool BrokenDebugInfo = false;
129 /// Whether to treat broken debug info as an error.
130 bool TreatBrokenDebugInfoAsError = true;
131
132 explicit VerifierSupport(raw_ostream *OS, const Module &M)
133 : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
134
135private:
136 void Write(const Module *M) {
137 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
138 }
139
140 void Write(const Value *V) {
141 if (V)
142 Write(*V);
143 }
144
145 void Write(const Value &V) {
146 if (isa<Instruction>(V)) {
147 V.print(*OS, MST);
148 *OS << '\n';
149 } else {
150 V.printAsOperand(*OS, true, MST);
151 *OS << '\n';
152 }
153 }
154
155 void Write(const Metadata *MD) {
156 if (!MD)
157 return;
158 MD->print(*OS, MST, &M);
159 *OS << '\n';
160 }
161
162 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
163 Write(MD.get());
164 }
165
166 void Write(const NamedMDNode *NMD) {
167 if (!NMD)
168 return;
169 NMD->print(*OS, MST);
170 *OS << '\n';
171 }
172
173 void Write(Type *T) {
174 if (!T)
175 return;
176 *OS << ' ' << *T;
177 }
178
179 void Write(const Comdat *C) {
180 if (!C)
181 return;
182 *OS << *C;
183 }
184
185 void Write(const APInt *AI) {
186 if (!AI)
187 return;
188 *OS << *AI << '\n';
189 }
190
191 void Write(const unsigned i) { *OS << i << '\n'; }
192
193 template <typename T> void Write(ArrayRef<T> Vs) {
194 for (const T &V : Vs)
195 Write(V);
196 }
197
198 template <typename T1, typename... Ts>
199 void WriteTs(const T1 &V1, const Ts &... Vs) {
200 Write(V1);
201 WriteTs(Vs...);
202 }
203
204 template <typename... Ts> void WriteTs() {}
205
206public:
207 /// A check failed, so printout out the condition and the message.
208 ///
209 /// This provides a nice place to put a breakpoint if you want to see why
210 /// something is not correct.
211 void CheckFailed(const Twine &Message) {
212 if (OS)
213 *OS << Message << '\n';
214 Broken = true;
215 }
216
217 /// A check failed (with values to print).
218 ///
219 /// This calls the Message-only version so that the above is easier to set a
220 /// breakpoint on.
221 template <typename T1, typename... Ts>
222 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
223 CheckFailed(Message);
224 if (OS)
225 WriteTs(V1, Vs...);
226 }
227
228 /// A debug info check failed.
229 void DebugInfoCheckFailed(const Twine &Message) {
230 if (OS)
231 *OS << Message << '\n';
232 Broken |= TreatBrokenDebugInfoAsError;
233 BrokenDebugInfo = true;
234 }
235
236 /// A debug info check failed (with values to print).
237 template <typename T1, typename... Ts>
238 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
239 const Ts &... Vs) {
240 DebugInfoCheckFailed(Message);
241 if (OS)
242 WriteTs(V1, Vs...);
243 }
244};
245
246} // namespace llvm
247
248namespace {
249
250class Verifier : public InstVisitor<Verifier>, VerifierSupport {
251 friend class InstVisitor<Verifier>;
252
253 DominatorTree DT;
254
255 /// When verifying a basic block, keep track of all of the
256 /// instructions we have seen so far.
257 ///
258 /// This allows us to do efficient dominance checks for the case when an
259 /// instruction has an operand that is an instruction in the same block.
260 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
261
262 /// Keep track of the metadata nodes that have been checked already.
263 SmallPtrSet<const Metadata *, 32> MDNodes;
264
265 /// Keep track which DISubprogram is attached to which function.
266 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
267
268 /// Track all DICompileUnits visited.
269 SmallPtrSet<const Metadata *, 2> CUVisited;
270
271 /// The result type for a landingpad.
272 Type *LandingPadResultTy;
273
274 /// Whether we've seen a call to @llvm.localescape in this function
275 /// already.
276 bool SawFrameEscape;
277
278 /// Whether the current function has a DISubprogram attached to it.
279 bool HasDebugInfo = false;
280
281 /// Whether source was present on the first DIFile encountered in each CU.
282 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
283
284 /// Stores the count of how many objects were passed to llvm.localescape for a
285 /// given function and the largest index passed to llvm.localrecover.
286 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
287
288 // Maps catchswitches and cleanuppads that unwind to siblings to the
289 // terminators that indicate the unwind, used to detect cycles therein.
290 MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
291
292 /// Cache of constants visited in search of ConstantExprs.
293 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
294
295 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
296 SmallVector<const Function *, 4> DeoptimizeDeclarations;
297
298 // Verify that this GlobalValue is only used in this module.
299 // This map is used to avoid visiting uses twice. We can arrive at a user
300 // twice, if they have multiple operands. In particular for very large
301 // constant expressions, we can arrive at a particular user many times.
302 SmallPtrSet<const Value *, 32> GlobalValueVisited;
303
304 // Keeps track of duplicate function argument debug info.
305 SmallVector<const DILocalVariable *, 16> DebugFnArgs;
306
307 TBAAVerifier TBAAVerifyHelper;
308
309 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
310
311public:
312 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
313 const Module &M)
314 : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
315 SawFrameEscape(false), TBAAVerifyHelper(this) {
316 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
317 }
318
319 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
320
321 bool verify(const Function &F) {
322 assert(F.getParent() == &M &&((F.getParent() == &M && "An instance of this class only works with a specific module!"
) ? static_cast<void> (0) : __assert_fail ("F.getParent() == &M && \"An instance of this class only works with a specific module!\""
, "/build/llvm-toolchain-snapshot-9~svn360410/lib/IR/Verifier.cpp"
, 323, __PRETTY_FUNCTION__))
323 "An instance of this class only works with a specific module!")((F.getParent() == &M && "An instance of this class only works with a specific module!"
) ? static_cast<void> (0) : __assert_fail ("F.getParent() == &M && \"An instance of this class only works with a specific module!\""
, "/build/llvm-toolchain-snapshot-9~svn360410/lib/IR/Verifier.cpp"
, 323, __PRETTY_FUNCTION__))
;
324
325 // First ensure the function is well-enough formed to compute dominance
326 // information, and directly compute a dominance tree. We don't rely on the
327 // pass manager to provide this as it isolates us from a potentially
328 // out-of-date dominator tree and makes it significantly more complex to run
329 // this code outside of a pass manager.
330 // FIXME: It's really gross that we have to cast away constness here.
331 if (!F.empty())
332 DT.recalculate(const_cast<Function &>(F));
333
334 for (const BasicBlock &BB : F) {
335 if (!BB.empty() && BB.back().isTerminator())
336 continue;
337
338 if (OS) {
339 *OS << "Basic Block in function '" << F.getName()
340 << "' does not have terminator!\n";
341 BB.printAsOperand(*OS, true, MST);
342 *OS << "\n";
343 }
344 return false;
345 }
346
347 Broken = false;
348 // FIXME: We strip const here because the inst visitor strips const.
349 visit(const_cast<Function &>(F));
350 verifySiblingFuncletUnwinds();
351 InstsInThisBlock.clear();
352 DebugFnArgs.clear();
353 LandingPadResultTy = nullptr;
354 SawFrameEscape = false;
355 SiblingFuncletInfo.clear();
356
357 return !Broken;
358 }
359
360 /// Verify the module that this instance of \c Verifier was initialized with.
361 bool verify() {
362 Broken = false;
363
364 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
365 for (const Function &F : M)
366 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
367 DeoptimizeDeclarations.push_back(&F);
368
369 // Now that we've visited every function, verify that we never asked to
370 // recover a frame index that wasn't escaped.
371 verifyFrameRecoverIndices();
372 for (const GlobalVariable &GV : M.globals())
373 visitGlobalVariable(GV);
374
375 for (const GlobalAlias &GA : M.aliases())
376 visitGlobalAlias(GA);
377
378 for (const NamedMDNode &NMD : M.named_metadata())
379 visitNamedMDNode(NMD);
380
381 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
382 visitComdat(SMEC.getValue());
383
384 visitModuleFlags(M);
385 visitModuleIdents(M);
386 visitModuleCommandLines(M);
387
388 verifyCompileUnits();
389
390 verifyDeoptimizeCallingConvs();
391 DISubprogramAttachments.clear();
392 return !Broken;
393 }
394
395private:
396 // Verification methods...
397 void visitGlobalValue(const GlobalValue &GV);
398 void visitGlobalVariable(const GlobalVariable &GV);
399 void visitGlobalAlias(const GlobalAlias &GA);
400 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
401 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
402 const GlobalAlias &A, const Constant &C);
403 void visitNamedMDNode(const NamedMDNode &NMD);
404 void visitMDNode(const MDNode &MD);
405 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
406 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
407 void visitComdat(const Comdat &C);
408 void visitModuleIdents(const Module &M);
409 void visitModuleCommandLines(const Module &M);
410 void visitModuleFlags(const Module &M);
411 void visitModuleFlag(const MDNode *Op,
412 DenseMap<const MDString *, const MDNode *> &SeenIDs,
413 SmallVectorImpl<const MDNode *> &Requirements);
414 void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
415 void visitFunction(const Function &F);
416 void visitBasicBlock(BasicBlock &BB);
417 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
418 void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
419
420 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
421#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
422#include "llvm/IR/Metadata.def"
423 void visitDIScope(const DIScope &N);
424 void visitDIVariable(const DIVariable &N);
425 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
426 void visitDITemplateParameter(const DITemplateParameter &N);
427
428 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
429
430 // InstVisitor overrides...
431 using InstVisitor<Verifier>::visit;
432 void visit(Instruction &I);
433
434 void visitTruncInst(TruncInst &I);
435 void visitZExtInst(ZExtInst &I);
436 void visitSExtInst(SExtInst &I);
437 void visitFPTruncInst(FPTruncInst &I);
438 void visitFPExtInst(FPExtInst &I);
439 void visitFPToUIInst(FPToUIInst &I);
440 void visitFPToSIInst(FPToSIInst &I);
441 void visitUIToFPInst(UIToFPInst &I);
442 void visitSIToFPInst(SIToFPInst &I);
443 void visitIntToPtrInst(IntToPtrInst &I);
444 void visitPtrToIntInst(PtrToIntInst &I);
445 void visitBitCastInst(BitCastInst &I);
446 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
447 void visitPHINode(PHINode &PN);
448 void visitCallBase(CallBase &Call);
449 void visitUnaryOperator(UnaryOperator &U);
450 void visitBinaryOperator(BinaryOperator &B);
451 void visitICmpInst(ICmpInst &IC);
452 void visitFCmpInst(FCmpInst &FC);
453 void visitExtractElementInst(ExtractElementInst &EI);
454 void visitInsertElementInst(InsertElementInst &EI);
455 void visitShuffleVectorInst(ShuffleVectorInst &EI);
456 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
457 void visitCallInst(CallInst &CI);
458 void visitInvokeInst(InvokeInst &II);
459 void visitGetElementPtrInst(GetElementPtrInst &GEP);
460 void visitLoadInst(LoadInst &LI);
461 void visitStoreInst(StoreInst &SI);
462 void verifyDominatesUse(Instruction &I, unsigned i);
463 void visitInstruction(Instruction &I);
464 void visitTerminator(Instruction &I);
465 void visitBranchInst(BranchInst &BI);
466 void visitReturnInst(ReturnInst &RI);
467 void visitSwitchInst(SwitchInst &SI);
468 void visitIndirectBrInst(IndirectBrInst &BI);
469 void visitCallBrInst(CallBrInst &CBI);
470 void visitSelectInst(SelectInst &SI);
471 void visitUserOp1(Instruction &I);
472 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
473 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
474 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
475 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
476 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
477 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
478 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
479 void visitFenceInst(FenceInst &FI);
480 void visitAllocaInst(AllocaInst &AI);
481 void visitExtractValueInst(ExtractValueInst &EVI);
482 void visitInsertValueInst(InsertValueInst &IVI);
483 void visitEHPadPredecessors(Instruction &I);
484 void visitLandingPadInst(LandingPadInst &LPI);
485 void visitResumeInst(ResumeInst &RI);
486 void visitCatchPadInst(CatchPadInst &CPI);
487 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
488 void visitCleanupPadInst(CleanupPadInst &CPI);
489 void visitFuncletPadInst(FuncletPadInst &FPI);
490 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
491 void visitCleanupReturnInst(CleanupReturnInst &CRI);
492
493 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
494 void verifySwiftErrorValue(const Value *SwiftErrorVal);
495 void verifyMustTailCall(CallInst &CI);
496 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
497 unsigned ArgNo, std::string &Suffix);
498 bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
499 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
500 const Value *V);
501 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
502 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
503 const Value *V, bool IsIntrinsic);
504 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
505
506 void visitConstantExprsRecursively(const Constant *EntryC);
507 void visitConstantExpr(const ConstantExpr *CE);
508 void verifyStatepoint(const CallBase &Call);
509 void verifyFrameRecoverIndices();
510 void verifySiblingFuncletUnwinds();
511
512 void verifyFragmentExpression(const DbgVariableIntrinsic &I);
513 template <typename ValueOrMetadata>
514 void verifyFragmentExpression(const DIVariable &V,
515 DIExpression::FragmentInfo Fragment,
516 ValueOrMetadata *Desc);
517 void verifyFnArgs(const DbgVariableIntrinsic &I);
518
519 /// Module-level debug info verification...
520 void verifyCompileUnits();
521
522 /// Module-level verification that all @llvm.experimental.deoptimize
523 /// declarations share the same calling convention.
524 void verifyDeoptimizeCallingConvs();
525
526 /// Verify all-or-nothing property of DIFile source attribute within a CU.
527 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
528};
529
530} // end anonymous namespace
531
532/// We know that cond should be true, if not print an error message.
533#define Assert(C, ...)do { if (!(C)) { CheckFailed(...); return; } } while (false) \
534 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
535
536/// We know that a debug info condition should be true, if not print
537/// an error message.
538#define AssertDI(C, ...)do { if (!(C)) { DebugInfoCheckFailed(...); return; } } while
(false)
\
539 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
540
541void Verifier::visit(Instruction &I) {
542 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
543 Assert(I.getOperand(i) != nullptr, "Operand is null", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Operand is null"
, &I); return; } } while (false)
;
544 InstVisitor<Verifier>::visit(I);
545}
546
547// Helper to recursively iterate over indirect users. By
548// returning false, the callback can ask to stop recursing
549// further.
550static void forEachUser(const Value *User,
551 SmallPtrSet<const Value *, 32> &Visited,
552 llvm::function_ref<bool(const Value *)> Callback) {
553 if (!Visited.insert(User).second)
554 return;
555 for (const Value *TheNextUser : User->materialized_users())
556 if (Callback(TheNextUser))
557 forEachUser(TheNextUser, Visited, Callback);
558}
559
560void Verifier::visitGlobalValue(const GlobalValue &GV) {
561 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),do { if (!(!GV.isDeclaration() || GV.hasValidDeclarationLinkage
())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (false)
562 "Global is external, but doesn't have external or weak linkage!", &GV)do { if (!(!GV.isDeclaration() || GV.hasValidDeclarationLinkage
())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (false)
;
563
564 Assert(GV.getAlignment() <= Value::MaximumAlignment,do { if (!(GV.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &GV
); return; } } while (false)
565 "huge alignment values are unsupported", &GV)do { if (!(GV.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &GV
); return; } } while (false)
;
566 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (false)
567 "Only global variables can have appending linkage!", &GV)do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (false)
;
568
569 if (GV.hasAppendingLinkage()) {
570 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
571 Assert(GVar && GVar->getValueType()->isArrayTy(),do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (false)
572 "Only global arrays can have appending linkage!", GVar)do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (false)
;
573 }
574
575 if (GV.isDeclarationForLinker())
576 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("Declaration may not be in a Comdat!"
, &GV); return; } } while (false)
;
577
578 if (GV.hasDLLImportStorageClass()) {
579 Assert(!GV.isDSOLocal(),do { if (!(!GV.isDSOLocal())) { CheckFailed("GlobalValue with DLLImport Storage is dso_local!"
, &GV); return; } } while (false)
580 "GlobalValue with DLLImport Storage is dso_local!", &GV)do { if (!(!GV.isDSOLocal())) { CheckFailed("GlobalValue with DLLImport Storage is dso_local!"
, &GV); return; } } while (false)
;
581
582 Assert((GV.isDeclaration() && GV.hasExternalLinkage()) ||do { if (!((GV.isDeclaration() && GV.hasExternalLinkage
()) || GV.hasAvailableExternallyLinkage())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
583 GV.hasAvailableExternallyLinkage(),do { if (!((GV.isDeclaration() && GV.hasExternalLinkage
()) || GV.hasAvailableExternallyLinkage())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
584 "Global is marked as dllimport, but not external", &GV)do { if (!((GV.isDeclaration() && GV.hasExternalLinkage
()) || GV.hasAvailableExternallyLinkage())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
;
585 }
586
587 if (GV.hasLocalLinkage())
588 Assert(GV.isDSOLocal(),do { if (!(GV.isDSOLocal())) { CheckFailed("GlobalValue with private or internal linkage must be dso_local!"
, &GV); return; } } while (false)
589 "GlobalValue with private or internal linkage must be dso_local!",do { if (!(GV.isDSOLocal())) { CheckFailed("GlobalValue with private or internal linkage must be dso_local!"
, &GV); return; } } while (false)
590 &GV)do { if (!(GV.isDSOLocal())) { CheckFailed("GlobalValue with private or internal linkage must be dso_local!"
, &GV); return; } } while (false)
;
591
592 if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage())
593 Assert(GV.isDSOLocal(),do { if (!(GV.isDSOLocal())) { CheckFailed("GlobalValue with non default visibility must be dso_local!"
, &GV); return; } } while (false)
594 "GlobalValue with non default visibility must be dso_local!", &GV)do { if (!(GV.isDSOLocal())) { CheckFailed("GlobalValue with non default visibility must be dso_local!"
, &GV); return; } } while (false)
;
595
596 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
597 if (const Instruction *I = dyn_cast<Instruction>(V)) {
598 if (!I->getParent() || !I->getParent()->getParent())
599 CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
600 I);
601 else if (I->getParent()->getParent()->getParent() != &M)
602 CheckFailed("Global is referenced in a different module!", &GV, &M, I,
603 I->getParent()->getParent(),
604 I->getParent()->getParent()->getParent());
605 return false;
606 } else if (const Function *F = dyn_cast<Function>(V)) {
607 if (F->getParent() != &M)
608 CheckFailed("Global is used by function in a different module", &GV, &M,
609 F, F->getParent());
610 return false;
611 }
612 return true;
613 });
614}
615
616void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
617 if (GV.hasInitializer()) {
618 Assert(GV.getInitializer()->getType() == GV.getValueType(),do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
619 "Global variable initializer type does not match global "do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
620 "variable type!",do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
621 &GV)do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
;
622 // If the global has common linkage, it must have a zero initializer and
623 // cannot be constant.
624 if (GV.hasCommonLinkage()) {
625 Assert(GV.getInitializer()->isNullValue(),do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (false)
626 "'common' global must have a zero initializer!", &GV)do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (false)
;
627 Assert(!GV.isConstant(), "'common' global may not be marked constant!",do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (false)
628 &GV)do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (false)
;
629 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("'common' global may not be in a Comdat!"
, &GV); return; } } while (false)
;
630 }
631 }
632
633 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
634 GV.getName() == "llvm.global_dtors")) {
635 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
636 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
;
637 // Don't worry about emitting an error for it not being an array,
638 // visitGlobalValue will complain on appending non-array.
639 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
640 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
641 PointerType *FuncPtrTy =
642 FunctionType::get(Type::getVoidTy(Context), false)->
643 getPointerTo(DL.getProgramAddressSpace());
644 // FIXME: Reject the 2-field form in LLVM 4.0.
645 Assert(STy &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
646 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
647 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
648 STy->getTypeAtIndex(1) == FuncPtrTy,do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
649 "wrong type for intrinsic global variable", &GV)do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
;
650 if (STy->getNumElements() == 3) {
651 Type *ETy = STy->getTypeAtIndex(2);
652 Assert(ETy->isPointerTy() &&do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
653 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
654 "wrong type for intrinsic global variable", &GV)do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
;
655 }
656 }
657 }
658
659 if (GV.hasName() && (GV.getName() == "llvm.used" ||
660 GV.getName() == "llvm.compiler.used")) {
661 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
662 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
;
663 Type *GVType = GV.getValueType();
664 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
665 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
666 Assert(PTy, "wrong type for intrinsic global variable", &GV)do { if (!(PTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
;
667 if (GV.hasInitializer()) {
668 const Constant *Init = GV.getInitializer();
669 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
670 Assert(InitArray, "wrong initalizer for intrinsic global variable",do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (false)
671 Init)do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (false)
;
672 for (Value *Op : InitArray->operands()) {
673 Value *V = Op->stripPointerCastsNoFollowAliases();
674 Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
675 isa<GlobalAlias>(V),do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
676 "invalid llvm.used member", V)do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
;
677 Assert(V->hasName(), "members of llvm.used must be named", V)do { if (!(V->hasName())) { CheckFailed("members of llvm.used must be named"
, V); return; } } while (false)
;
678 }
679 }
680 }
681 }
682
683 // Visit any debug info attachments.
684 SmallVector<MDNode *, 1> MDs;
685 GV.getMetadata(LLVMContext::MD_dbg, MDs);
686 for (auto *MD : MDs) {
687 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
688 visitDIGlobalVariableExpression(*GVE);
689 else
690 AssertDI(false, "!dbg attachment of global variable must be a "do { if (!(false)) { DebugInfoCheckFailed("!dbg attachment of global variable must be a "
"DIGlobalVariableExpression"); return; } } while (false)
691 "DIGlobalVariableExpression")do { if (!(false)) { DebugInfoCheckFailed("!dbg attachment of global variable must be a "
"DIGlobalVariableExpression"); return; } } while (false)
;
692 }
693
694 if (!GV.hasInitializer()) {
695 visitGlobalValue(GV);
696 return;
697 }
698
699 // Walk any aggregate initializers looking for bitcasts between address spaces
700 visitConstantExprsRecursively(GV.getInitializer());
701
702 visitGlobalValue(GV);
703}
704
705void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
706 SmallPtrSet<const GlobalAlias*, 4> Visited;
707 Visited.insert(&GA);
708 visitAliaseeSubExpr(Visited, GA, C);
709}
710
711void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
712 const GlobalAlias &GA, const Constant &C) {
713 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
714 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (false)
715 &GA)do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (false)
;
716
717 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
718 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA)do { if (!(Visited.insert(GA2).second)) { CheckFailed("Aliases cannot form a cycle"
, &GA); return; } } while (false)
;
719
720 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias"
, &GA); return; } } while (false)
721 &GA)do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias"
, &GA); return; } } while (false)
;
722 } else {
723 // Only continue verifying subexpressions of GlobalAliases.
724 // Do not recurse into global initializers.
725 return;
726 }
727 }
728
729 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
730 visitConstantExprsRecursively(CE);
731
732 for (const Use &U : C.operands()) {
733 Value *V = &*U;
734 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
735 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
736 else if (const auto *C2 = dyn_cast<Constant>(V))
737 visitAliaseeSubExpr(Visited, GA, *C2);
738 }
739}
740
741void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
742 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
743 "Alias should have private, internal, linkonce, weak, linkonce_odr, "do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
744 "weak_odr, or external linkage!",do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
745 &GA)do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
;
746 const Constant *Aliasee = GA.getAliasee();
747 Assert(Aliasee, "Aliasee cannot be NULL!", &GA)do { if (!(Aliasee)) { CheckFailed("Aliasee cannot be NULL!",
&GA); return; } } while (false)
;
748 Assert(GA.getType() == Aliasee->getType(),do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (false)
749 "Alias and aliasee types should match!", &GA)do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (false)
;
750
751 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (false)
752 "Aliasee should be either GlobalValue or ConstantExpr", &GA)do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (false)
;
753
754 visitAliaseeSubExpr(GA, *Aliasee);
755
756 visitGlobalValue(GA);
757}
758
759void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
760 // There used to be various other llvm.dbg.* nodes, but we don't support
761 // upgrading them and we want to reserve the namespace for future uses.
762 if (NMD.getName().startswith("llvm.dbg."))
763 AssertDI(NMD.getName() == "llvm.dbg.cu",do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
764 "unrecognized named metadata node in the llvm.dbg namespace",do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
765 &NMD)do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
;
766 for (const MDNode *MD : NMD.operands()) {
767 if (NMD.getName() == "llvm.dbg.cu")
768 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD)do { if (!(MD && isa<DICompileUnit>(MD))) { DebugInfoCheckFailed
("invalid compile unit", &NMD, MD); return; } } while (false
)
;
769
770 if (!MD)
771 continue;
772
773 visitMDNode(*MD);
774 }
775}
776
777void Verifier::visitMDNode(const MDNode &MD) {
778 // Only visit each node once. Metadata can be mutually recursive, so this
779 // avoids infinite recursion here, as well as being an optimization.
780 if (!MDNodes.insert(&MD).second)
781 return;
782
783 switch (MD.getMetadataID()) {
784 default:
785 llvm_unreachable("Invalid MDNode subclass")::llvm::llvm_unreachable_internal("Invalid MDNode subclass", "/build/llvm-toolchain-snapshot-9~svn360410/lib/IR/Verifier.cpp"
, 785)
;
786 case Metadata::MDTupleKind:
787 break;
788#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
789 case Metadata::CLASS##Kind: \
790 visit##CLASS(cast<CLASS>(MD)); \
791 break;
792#include "llvm/IR/Metadata.def"
793 }
794
795 for (const Metadata *Op : MD.operands()) {
796 if (!Op)
797 continue;
798 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (false)
799 &MD, Op)do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (false)
;
800 if (auto *N = dyn_cast<MDNode>(Op)) {
801 visitMDNode(*N);
802 continue;
803 }
804 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
805 visitValueAsMetadata(*V, nullptr);
806 continue;
807 }
808 }
809
810 // Check these last, so we diagnose problems in operands first.
811 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD)do { if (!(!MD.isTemporary())) { CheckFailed("Expected no forward declarations!"
, &MD); return; } } while (false)
;
812 Assert(MD.isResolved(), "All nodes should be resolved!", &MD)do { if (!(MD.isResolved())) { CheckFailed("All nodes should be resolved!"
, &MD); return; } } while (false)
;
813}
814
815void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
816 Assert(MD.getValue(), "Expected valid value", &MD)do { if (!(MD.getValue())) { CheckFailed("Expected valid value"
, &MD); return; } } while (false)
;
817 Assert(!MD.getValue()->getType()->isMetadataTy(),do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (false)
818 "Unexpected metadata round-trip through values", &MD, MD.getValue())do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (false)
;
819
820 auto *L = dyn_cast<LocalAsMetadata>(&MD);
821 if (!L)
822 return;
823
824 Assert(F, "function-local metadata used outside a function", L)do { if (!(F)) { CheckFailed("function-local metadata used outside a function"
, L); return; } } while (false)
;
825
826 // If this was an instruction, bb, or argument, verify that it is in the
827 // function that we expect.
828 Function *ActualF = nullptr;
829 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
830 Assert(I->getParent(), "function-local metadata not in basic block", L, I)do { if (!(I->getParent())) { CheckFailed("function-local metadata not in basic block"
, L, I); return; } } while (false)
;
831 ActualF = I->getParent()->getParent();
832 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
833 ActualF = BB->getParent();
834 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
835 ActualF = A->getParent();
836 assert(ActualF && "Unimplemented function local metadata case!")((ActualF && "Unimplemented function local metadata case!"
) ? static_cast<void> (0) : __assert_fail ("ActualF && \"Unimplemented function local metadata case!\""
, "/build/llvm-toolchain-snapshot-9~svn360410/lib/IR/Verifier.cpp"
, 836, __PRETTY_FUNCTION__))
;
837
838 Assert(ActualF == F, "function-local metadata used in wrong function", L)do { if (!(ActualF == F)) { CheckFailed("function-local metadata used in wrong function"
, L); return; } } while (false)
;
839}
840
841void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
842 Metadata *MD = MDV.getMetadata();
843 if (auto *N = dyn_cast<MDNode>(MD)) {
844 visitMDNode(*N);
845 return;
846 }
847
848 // Only visit each node once. Metadata can be mutually recursive, so this
849 // avoids infinite recursion here, as well as being an optimization.
850 if (!MDNodes.insert(MD).second)
851 return;
852
853 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
854 visitValueAsMetadata(*V, F);
855}
856
857static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
858static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
859static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
860
861void Verifier::visitDILocation(const DILocation &N) {
862 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
863 "location requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
864 if (auto *IA = N.getRawInlinedAt())
865 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA)do { if (!(isa<DILocation>(IA))) { DebugInfoCheckFailed
("inlined-at should be a location", &N, IA); return; } } while
(false)
;
866 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
867 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N)do { if (!(SP->isDefinition())) { DebugInfoCheckFailed("scope points into the type hierarchy"
, &N); return; } } while (false)
;
868}
869
870void Verifier::visitGenericDINode(const GenericDINode &N) {
871 AssertDI(N.getTag(), "invalid tag", &N)do { if (!(N.getTag())) { DebugInfoCheckFailed("invalid tag",
&N); return; } } while (false)
;
872}
873
874void Verifier::visitDIScope(const DIScope &N) {
875 if (auto *F = N.getRawFile())
876 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
877}
878
879void Verifier::visitDISubrange(const DISubrange &N) {
880 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
881 auto Count = N.getCount();
882 AssertDI(Count, "Count must either be a signed constant or a DIVariable",do { if (!(Count)) { DebugInfoCheckFailed("Count must either be a signed constant or a DIVariable"
, &N); return; } } while (false)
883 &N)do { if (!(Count)) { DebugInfoCheckFailed("Count must either be a signed constant or a DIVariable"
, &N); return; } } while (false)
;
884 AssertDI(!Count.is<ConstantInt*>() ||do { if (!(!Count.is<ConstantInt*>() || Count.get<ConstantInt
*>()->getSExtValue() >= -1)) { DebugInfoCheckFailed(
"invalid subrange count", &N); return; } } while (false)
885 Count.get<ConstantInt*>()->getSExtValue() >= -1,do { if (!(!Count.is<ConstantInt*>() || Count.get<ConstantInt
*>()->getSExtValue() >= -1)) { DebugInfoCheckFailed(
"invalid subrange count", &N); return; } } while (false)
886 "invalid subrange count", &N)do { if (!(!Count.is<ConstantInt*>() || Count.get<ConstantInt
*>()->getSExtValue() >= -1)) { DebugInfoCheckFailed(
"invalid subrange count", &N); return; } } while (false)
;
887}
888
889void Verifier::visitDIEnumerator(const DIEnumerator &N) {
890 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_enumerator)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
891}
892
893void Verifier::visitDIBasicType(const DIBasicType &N) {
894 AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
895 N.getTag() == dwarf::DW_TAG_unspecified_type,do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
896 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
;
897 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,do { if (!(!(N.isBigEndian() && N.isLittleEndian())))
{ DebugInfoCheckFailed("has conflicting flags", &N); return
; } } while (false)
898 "has conflicting flags", &N)do { if (!(!(N.isBigEndian() && N.isLittleEndian())))
{ DebugInfoCheckFailed("has conflicting flags", &N); return
; } } while (false)
;
899}
900
901void Verifier::visitDIDerivedType(const DIDerivedType &N) {
902 // Common scope checks.
903 visitDIScope(N);
904
905 AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
906 N.getTag() == dwarf::DW_TAG_pointer_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
907 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
908 N.getTag() == dwarf::DW_TAG_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
909 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
910 N.getTag() == dwarf::DW_TAG_const_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
911 N.getTag() == dwarf::DW_TAG_volatile_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
912 N.getTag() == dwarf::DW_TAG_restrict_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
913 N.getTag() == dwarf::DW_TAG_atomic_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
914 N.getTag() == dwarf::DW_TAG_member ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
915 N.getTag() == dwarf::DW_TAG_inheritance ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
916 N.getTag() == dwarf::DW_TAG_friend,do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
917 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
;
918 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
919 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,do { if (!(isType(N.getRawExtraData()))) { DebugInfoCheckFailed
("invalid pointer to member type", &N, N.getRawExtraData(
)); return; } } while (false)
920 N.getRawExtraData())do { if (!(isType(N.getRawExtraData()))) { DebugInfoCheckFailed
("invalid pointer to member type", &N, N.getRawExtraData(
)); return; } } while (false)
;
921 }
922
923 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
924 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
925 N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
;
926
927 if (N.getDWARFAddressSpace()) {
928 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type
)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
929 N.getTag() == dwarf::DW_TAG_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type
)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
930 N.getTag() == dwarf::DW_TAG_rvalue_reference_type,do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type
)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
931 "DWARF address space only applies to pointer or reference types",do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type
)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
932 &N)do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type
)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
;
933 }
934}
935
936/// Detect mutually exclusive flags.
937static bool hasConflictingReferenceFlags(unsigned Flags) {
938 return ((Flags & DINode::FlagLValueReference) &&
939 (Flags & DINode::FlagRValueReference)) ||
940 ((Flags & DINode::FlagTypePassByValue) &&
941 (Flags & DINode::FlagTypePassByReference));
942}
943
944void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
945 auto *Params = dyn_cast<MDTuple>(&RawParams);
946 AssertDI(Params, "invalid template params", &N, &RawParams)do { if (!(Params)) { DebugInfoCheckFailed("invalid template params"
, &N, &RawParams); return; } } while (false)
;
947 for (Metadata *Op : Params->operands()) {
948 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",do { if (!(Op && isa<DITemplateParameter>(Op)))
{ DebugInfoCheckFailed("invalid template parameter", &N,
Params, Op); return; } } while (false)
949 &N, Params, Op)do { if (!(Op && isa<DITemplateParameter>(Op)))
{ DebugInfoCheckFailed("invalid template parameter", &N,
Params, Op); return; } } while (false)
;
950 }
951}
952
953void Verifier::visitDICompositeType(const DICompositeType &N) {
954 // Common scope checks.
955 visitDIScope(N);
956
957 AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
958 N.getTag() == dwarf::DW_TAG_structure_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
959 N.getTag() == dwarf::DW_TAG_union_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
960 N.getTag() == dwarf::DW_TAG_enumeration_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
961 N.getTag() == dwarf::DW_TAG_class_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
962 N.getTag() == dwarf::DW_TAG_variant_part,do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
963 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
;
964
965 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
966 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
967 N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
;
968
969 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { DebugInfoCheckFailed("invalid composite elements", &
N, N.getRawElements()); return; } } while (false)
970 "invalid composite elements", &N, N.getRawElements())do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { DebugInfoCheckFailed("invalid composite elements", &
N, N.getRawElements()); return; } } while (false)
;
971 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,do { if (!(isType(N.getRawVTableHolder()))) { DebugInfoCheckFailed
("invalid vtable holder", &N, N.getRawVTableHolder()); return
; } } while (false)
972 N.getRawVTableHolder())do { if (!(isType(N.getRawVTableHolder()))) { DebugInfoCheckFailed
("invalid vtable holder", &N, N.getRawVTableHolder()); return
; } } while (false)
;
973 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
974 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
975
976 if (N.isVector()) {
977 const DINodeArray Elements = N.getElements();
978 AssertDI(Elements.size() == 1 &&do { if (!(Elements.size() == 1 && Elements[0]->getTag
() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed("invalid vector, expected one element of type subrange"
, &N); return; } } while (false)
979 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,do { if (!(Elements.size() == 1 && Elements[0]->getTag
() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed("invalid vector, expected one element of type subrange"
, &N); return; } } while (false)
980 "invalid vector, expected one element of type subrange", &N)do { if (!(Elements.size() == 1 && Elements[0]->getTag
() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed("invalid vector, expected one element of type subrange"
, &N); return; } } while (false)
;
981 }
982
983 if (auto *Params = N.getRawTemplateParams())
984 visitTemplateParams(N, *Params);
985
986 if (N.getTag() == dwarf::DW_TAG_class_type ||
987 N.getTag() == dwarf::DW_TAG_union_type) {
988 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),do { if (!(N.getFile() && !N.getFile()->getFilename
().empty())) { DebugInfoCheckFailed("class/union requires a filename"
, &N, N.getFile()); return; } } while (false)
989 "class/union requires a filename", &N, N.getFile())do { if (!(N.getFile() && !N.getFile()->getFilename
().empty())) { DebugInfoCheckFailed("class/union requires a filename"
, &N, N.getFile()); return; } } while (false)
;
990 }
991
992 if (auto *D = N.getRawDiscriminator()) {
993 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,do { if (!(isa<DIDerivedType>(D) && N.getTag() ==
dwarf::DW_TAG_variant_part)) { DebugInfoCheckFailed("discriminator can only appear on variant part"
); return; } } while (false)
994 "discriminator can only appear on variant part")do { if (!(isa<DIDerivedType>(D) && N.getTag() ==
dwarf::DW_TAG_variant_part)) { DebugInfoCheckFailed("discriminator can only appear on variant part"
); return; } } while (false)
;
995 }
996}
997
998void Verifier::visitDISubroutineType(const DISubroutineType &N) {
999 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subroutine_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1000 if (auto *Types = N.getRawTypeArray()) {
1001 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types)do { if (!(isa<MDTuple>(Types))) { DebugInfoCheckFailed
("invalid composite elements", &N, Types); return; } } while
(false)
;
1002 for (Metadata *Ty : N.getTypeArray()->operands()) {
1003 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty)do { if (!(isType(Ty))) { DebugInfoCheckFailed("invalid subroutine type ref"
, &N, Types, Ty); return; } } while (false)
;
1004 }
1005 }
1006 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
1007 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
1008}
1009
1010void Verifier::visitDIFile(const DIFile &N) {
1011 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_file_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1012 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1013 if (Checksum) {
1014 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,do { if (!(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last
)) { DebugInfoCheckFailed("invalid checksum kind", &N); return
; } } while (false)
1015 "invalid checksum kind", &N)do { if (!(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last
)) { DebugInfoCheckFailed("invalid checksum kind", &N); return
; } } while (false)
;
1016 size_t Size;
1017 switch (Checksum->Kind) {
1018 case DIFile::CSK_MD5:
1019 Size = 32;
1020 break;
1021 case DIFile::CSK_SHA1:
1022 Size = 40;
1023 break;
1024 }
1025 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N)do { if (!(Checksum->Value.size() == Size)) { DebugInfoCheckFailed
("invalid checksum length", &N); return; } } while (false
)
;
1026 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,do { if (!(Checksum->Value.find_if_not(llvm::isHexDigit) ==
StringRef::npos)) { DebugInfoCheckFailed("invalid checksum",
&N); return; } } while (false)
1027 "invalid checksum", &N)do { if (!(Checksum->Value.find_if_not(llvm::isHexDigit) ==
StringRef::npos)) { DebugInfoCheckFailed("invalid checksum",
&N); return; } } while (false)
;
1028 }
1029}
1030
1031void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1032 AssertDI(N.isDistinct(), "compile units must be distinct", &N)do { if (!(N.isDistinct())) { DebugInfoCheckFailed("compile units must be distinct"
, &N); return; } } while (false)
;
1033 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_compile_unit)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1034
1035 // Don't bother verifying the compilation directory or producer string
1036 // as those could be empty.
1037 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { DebugInfoCheckFailed("invalid file", &N, N.getRawFile
()); return; } } while (false)
1038 N.getRawFile())do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { DebugInfoCheckFailed("invalid file", &N, N.getRawFile
()); return; } } while (false)
;
1039 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,do { if (!(!N.getFile()->getFilename().empty())) { DebugInfoCheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
false)
1040 N.getFile())do { if (!(!N.getFile()->getFilename().empty())) { DebugInfoCheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
false)
;
1041
1042 verifySourceDebugInfo(N, *N.getFile());
1043
1044 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind
))) { DebugInfoCheckFailed("invalid emission kind", &N); return
; } } while (false)
1045 "invalid emission kind", &N)do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind
))) { DebugInfoCheckFailed("invalid emission kind", &N); return
; } } while (false)
;
1046
1047 if (auto *Array = N.getRawEnumTypes()) {
1048 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid enum list", &N, Array); return; } } while (false
)
;
1049 for (Metadata *Op : N.getEnumTypes()->operands()) {
1050 auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1051 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { DebugInfoCheckFailed("invalid enum type", &N, N.getEnumTypes
(), Op); return; } } while (false)
1052 "invalid enum type", &N, N.getEnumTypes(), Op)do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { DebugInfoCheckFailed("invalid enum type", &N, N.getEnumTypes
(), Op); return; } } while (false)
;
1053 }
1054 }
1055 if (auto *Array = N.getRawRetainedTypes()) {
1056 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid retained type list", &N, Array); return; } } while
(false)
;
1057 for (Metadata *Op : N.getRetainedTypes()->operands()) {
1058 AssertDI(Op && (isa<DIType>(Op) ||do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
1059 (isa<DISubprogram>(Op) &&do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
1060 !cast<DISubprogram>(Op)->isDefinition())),do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
1061 "invalid retained type", &N, Op)do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
;
1062 }
1063 }
1064 if (auto *Array = N.getRawGlobalVariables()) {
1065 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid global variable list", &N, Array); return; } } while
(false)
;
1066 for (Metadata *Op : N.getGlobalVariables()->operands()) {
1067 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),do { if (!(Op && (isa<DIGlobalVariableExpression>
(Op)))) { DebugInfoCheckFailed("invalid global variable ref",
&N, Op); return; } } while (false)
1068 "invalid global variable ref", &N, Op)do { if (!(Op && (isa<DIGlobalVariableExpression>
(Op)))) { DebugInfoCheckFailed("invalid global variable ref",
&N, Op); return; } } while (false)
;
1069 }
1070 }
1071 if (auto *Array = N.getRawImportedEntities()) {
1072 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid imported entity list", &N, Array); return; } } while
(false)
;
1073 for (Metadata *Op : N.getImportedEntities()->operands()) {
1074 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",do { if (!(Op && isa<DIImportedEntity>(Op))) { DebugInfoCheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(false)
1075 &N, Op)do { if (!(Op && isa<DIImportedEntity>(Op))) { DebugInfoCheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(false)
;
1076 }
1077 }
1078 if (auto *Array = N.getRawMacros()) {
1079 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid macro list", &N, Array); return; } } while (false
)
;
1080 for (Metadata *Op : N.getMacros()->operands()) {
1081 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { DebugInfoCheckFailed
("invalid macro ref", &N, Op); return; } } while (false)
;
1082 }
1083 }
1084 CUVisited.insert(&N);
1085}
1086
1087void Verifier::visitDISubprogram(const DISubprogram &N) {
1088 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subprogram)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1089 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
1090 if (auto *F = N.getRawFile())
1091 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1092 else
1093 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine())do { if (!(N.getLine() == 0)) { DebugInfoCheckFailed("line specified with no file"
, &N, N.getLine()); return; } } while (false)
;
1094 if (auto *T = N.getRawType())
1095 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T)do { if (!(isa<DISubroutineType>(T))) { DebugInfoCheckFailed
("invalid subroutine type", &N, T); return; } } while (false
)
;
1096 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,do { if (!(isType(N.getRawContainingType()))) { DebugInfoCheckFailed
("invalid containing type", &N, N.getRawContainingType())
; return; } } while (false)
1097 N.getRawContainingType())do { if (!(isType(N.getRawContainingType()))) { DebugInfoCheckFailed
("invalid containing type", &N, N.getRawContainingType())
; return; } } while (false)
;
1098 if (auto *Params = N.getRawTemplateParams())
1099 visitTemplateParams(N, *Params);
1100 if (auto *S = N.getRawDeclaration())
1101 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { DebugInfoCheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (false)
1102 "invalid subprogram declaration", &N, S)do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { DebugInfoCheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (false)
;
1103 if (auto *RawNode = N.getRawRetainedNodes()) {
1104 auto *Node = dyn_cast<MDTuple>(RawNode);
1105 AssertDI(Node, "invalid retained nodes list", &N, RawNode)do { if (!(Node)) { DebugInfoCheckFailed("invalid retained nodes list"
, &N, RawNode); return; } } while (false)
;
1106 for (Metadata *Op : Node->operands()) {
1107 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),do { if (!(Op && (isa<DILocalVariable>(Op) || isa
<DILabel>(Op)))) { DebugInfoCheckFailed("invalid retained nodes, expected DILocalVariable or DILabel"
, &N, Node, Op); return; } } while (false)
1108 "invalid retained nodes, expected DILocalVariable or DILabel",do { if (!(Op && (isa<DILocalVariable>(Op) || isa
<DILabel>(Op)))) { DebugInfoCheckFailed("invalid retained nodes, expected DILocalVariable or DILabel"
, &N, Node, Op); return; } } while (false)
1109 &N, Node, Op)do { if (!(Op && (isa<DILocalVariable>(Op) || isa
<DILabel>(Op)))) { DebugInfoCheckFailed("invalid retained nodes, expected DILocalVariable or DILabel"
, &N, Node, Op); return; } } while (false)
;
1110 }
1111 }
1112 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
1113 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
1114
1115 auto *Unit = N.getRawUnit();
1116 if (N.isDefinition()) {
1117 // Subprogram definitions (not part of the type hierarchy).
1118 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N)do { if (!(N.isDistinct())) { DebugInfoCheckFailed("subprogram definitions must be distinct"
, &N); return; } } while (false)
;
1119 AssertDI(Unit, "subprogram definitions must have a compile unit", &N)do { if (!(Unit)) { DebugInfoCheckFailed("subprogram definitions must have a compile unit"
, &N); return; } } while (false)
;
1120 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit)do { if (!(isa<DICompileUnit>(Unit))) { DebugInfoCheckFailed
("invalid unit type", &N, Unit); return; } } while (false
)
;
1121 if (N.getFile())
1122 verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1123 } else {
1124 // Subprogram declarations (part of the type hierarchy).
1125 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N)do { if (!(!Unit)) { DebugInfoCheckFailed("subprogram declarations must not have a compile unit"
, &N); return; } } while (false)
;
1126 }
1127
1128 if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1129 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1130 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes)do { if (!(ThrownTypes)) { DebugInfoCheckFailed("invalid thrown types list"
, &N, RawThrownTypes); return; } } while (false)
;
1131 for (Metadata *Op : ThrownTypes->operands())
1132 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,do { if (!(Op && isa<DIType>(Op))) { DebugInfoCheckFailed
("invalid thrown type", &N, ThrownTypes, Op); return; } }
while (false)
1133 Op)do { if (!(Op && isa<DIType>(Op))) { DebugInfoCheckFailed
("invalid thrown type", &N, ThrownTypes, Op); return; } }
while (false)
;
1134 }
1135
1136 if (N.areAllCallsDescribed())
1137 AssertDI(N.isDefinition(),do { if (!(N.isDefinition())) { DebugInfoCheckFailed("DIFlagAllCallsDescribed must be attached to a definition"
); return; } } while (false)
1138 "DIFlagAllCallsDescribed must be attached to a definition")do { if (!(N.isDefinition())) { DebugInfoCheckFailed("DIFlagAllCallsDescribed must be attached to a definition"
); return; } } while (false)
;
1139}
1140
1141void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1142 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_lexical_block)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1143 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("invalid local scope"
, &N, N.getRawScope()); return; } } while (false)
1144 "invalid local scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("invalid local scope"
, &N, N.getRawScope()); return; } } while (false)
;
1145 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1146 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N)do { if (!(SP->isDefinition())) { DebugInfoCheckFailed("scope points into the type hierarchy"
, &N); return; } } while (false)
;
1147}
1148
1149void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1150 visitDILexicalBlockBase(N);
1151
1152 AssertDI(N.getLine() || !N.getColumn(),do { if (!(N.getLine() || !N.getColumn())) { DebugInfoCheckFailed
("cannot have column info without line info", &N); return
; } } while (false)
1153 "cannot have column info without line info", &N)do { if (!(N.getLine() || !N.getColumn())) { DebugInfoCheckFailed
("cannot have column info without line info", &N); return
; } } while (false)
;
1154}
1155
1156void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1157 visitDILexicalBlockBase(N);
1158}
1159
1160void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1161 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_common_block)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1162 if (auto *S = N.getRawScope())
1163 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope ref"
, &N, S); return; } } while (false)
;
1164 if (auto *S = N.getRawDecl())
1165 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S)do { if (!(isa<DIGlobalVariable>(S))) { DebugInfoCheckFailed
("invalid declaration", &N, S); return; } } while (false)
;
1166}
1167
1168void Verifier::visitDINamespace(const DINamespace &N) {
1169 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_namespace)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1170 if (auto *S = N.getRawScope())
1171 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope ref"
, &N, S); return; } } while (false)
;
1172}
1173
1174void Verifier::visitDIMacro(const DIMacro &N) {
1175 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
1176 N.getMacinfoType() == dwarf::DW_MACINFO_undef,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
1177 "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
;
1178 AssertDI(!N.getName().empty(), "anonymous macro", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("anonymous macro"
, &N); return; } } while (false)
;
1179 if (!N.getValue().empty()) {
1180 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix")((N.getValue().data()[0] != ' ' && "Macro value has a space prefix"
) ? static_cast<void> (0) : __assert_fail ("N.getValue().data()[0] != ' ' && \"Macro value has a space prefix\""
, "/build/llvm-toolchain-snapshot-9~svn360410/lib/IR/Verifier.cpp"
, 1180, __PRETTY_FUNCTION__))
;
1181 }
1182}
1183
1184void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1185 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file
)) { DebugInfoCheckFailed("invalid macinfo type", &N); return
; } } while (false)
1186 "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file
)) { DebugInfoCheckFailed("invalid macinfo type", &N); return
; } } while (false)
;
1187 if (auto *F = N.getRawFile())
1188 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1189
1190 if (auto *Array = N.getRawElements()) {
1191 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid macro list", &N, Array); return; } } while (false
)
;
1192 for (Metadata *Op : N.getElements()->operands()) {
1193 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { DebugInfoCheckFailed
("invalid macro ref", &N, Op); return; } } while (false)
;
1194 }
1195 }
1196}
1197
1198void Verifier::visitDIModule(const DIModule &N) {
1199 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_module)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1200 AssertDI(!N.getName().empty(), "anonymous module", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("anonymous module"
, &N); return; } } while (false)
;
1201}
1202
1203void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1204 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1205}
1206
1207void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1208 visitDITemplateParameter(N);
1209
1210 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1211 &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
;
1212}
1213
1214void Verifier::visitDITemplateValueParameter(
1215 const DITemplateValueParameter &N) {
1216 visitDITemplateParameter(N);
1217
1218 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1219 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1220 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1221 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1222}
1223
1224void Verifier::visitDIVariable(const DIVariable &N) {
1225 if (auto *S = N.getRawScope())
1226 AssertDI(isa<DIScope>(S), "invalid scope", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope"
, &N, S); return; } } while (false)
;
1227 if (auto *F = N.getRawFile())
1228 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1229}
1230
1231void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1232 // Checks common to all variables.
1233 visitDIVariable(N);
1234
1235 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1236 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1237 AssertDI(N.getType(), "missing global variable type", &N)do { if (!(N.getType())) { DebugInfoCheckFailed("missing global variable type"
, &N); return; } } while (false)
;
1238 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1239 AssertDI(isa<DIDerivedType>(Member),do { if (!(isa<DIDerivedType>(Member))) { DebugInfoCheckFailed
("invalid static data member declaration", &N, Member); return
; } } while (false)
1240 "invalid static data member declaration", &N, Member)do { if (!(isa<DIDerivedType>(Member))) { DebugInfoCheckFailed
("invalid static data member declaration", &N, Member); return
; } } while (false)
;
1241 }
1242}
1243
1244void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1245 // Checks common to all variables.
1246 visitDIVariable(N);
1247
1248 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1249 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1250 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
1251 "local variable requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
1252 if (auto Ty = N.getType())
1253 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType())do { if (!(!isa<DISubroutineType>(Ty))) { DebugInfoCheckFailed
("invalid type", &N, N.getType()); return; } } while (false
)
;
1254}
1255
1256void Verifier::visitDILabel(const DILabel &N) {
1257 if (auto *S = N.getRawScope())
1258 AssertDI(isa<DIScope>(S), "invalid scope", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope"
, &N, S); return; } } while (false)
;
1259 if (auto *F = N.getRawFile())
1260 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1261
1262 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_label)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1263 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("label requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
1264 "label requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("label requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
1265}
1266
1267void Verifier::visitDIExpression(const DIExpression &N) {
1268 AssertDI(N.isValid(), "invalid expression", &N)do { if (!(N.isValid())) { DebugInfoCheckFailed("invalid expression"
, &N); return; } } while (false)
;
1269}
1270
1271void Verifier::visitDIGlobalVariableExpression(
1272 const DIGlobalVariableExpression &GVE) {
1273 AssertDI(GVE.getVariable(), "missing variable")do { if (!(GVE.getVariable())) { DebugInfoCheckFailed("missing variable"
); return; } } while (false)
;
1274 if (auto *Var = GVE.getVariable())
1275 visitDIGlobalVariable(*Var);
1276 if (auto *Expr = GVE.getExpression()) {
1277 visitDIExpression(*Expr);
1278 if (auto Fragment = Expr->getFragmentInfo())
1279 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1280 }
1281}
1282
1283void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1284 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_APPLE_property)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1285 if (auto *T = N.getRawType())
1286 AssertDI(isType(T), "invalid type ref", &N, T)do { if (!(isType(T))) { DebugInfoCheckFailed("invalid type ref"
, &N, T); return; } } while (false)
;
1287 if (auto *F = N.getRawFile())
1288 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1289}
1290
1291void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1292 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1293 N.getTag() == dwarf::DW_TAG_imported_declaration,do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1294 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1295 if (auto *S = N.getRawScope())
1296 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope for imported entity"
, &N, S); return; } } while (false)
;
1297 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,do { if (!(isDINode(N.getRawEntity()))) { DebugInfoCheckFailed
("invalid imported entity", &N, N.getRawEntity()); return
; } } while (false)
1298 N.getRawEntity())do { if (!(isDINode(N.getRawEntity()))) { DebugInfoCheckFailed
("invalid imported entity", &N, N.getRawEntity()); return
; } } while (false)
;
1299}
1300
1301void Verifier::visitComdat(const Comdat &C) {
1302 // The Module is invalid if the GlobalValue has private linkage. Entities
1303 // with private linkage don't have entries in the symbol table.
1304 if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1305 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (false)
1306 GV)do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (false)
;
1307}
1308
1309void Verifier::visitModuleIdents(const Module &M) {
1310 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1311 if (!Idents)
1312 return;
1313
1314 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1315 // Scan each llvm.ident entry and make sure that this requirement is met.
1316 for (const MDNode *N : Idents->operands()) {
1317 Assert(N->getNumOperands() == 1,do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (false)
1318 "incorrect number of operands in llvm.ident metadata", N)do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (false)
;
1319 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1320 ("invalid value for llvm.ident metadata entry operand"do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1321 "(the operand should be a string)"),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1322 N->getOperand(0))do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
;
1323 }
1324}
1325
1326void Verifier::visitModuleCommandLines(const Module &M) {
1327 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1328 if (!CommandLines)
1329 return;
1330
1331 // llvm.commandline takes a list of metadata entry. Each entry has only one
1332 // string. Scan each llvm.commandline entry and make sure that this
1333 // requirement is met.
1334 for (const MDNode *N : CommandLines->operands()) {
1335 Assert(N->getNumOperands() == 1,do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.commandline metadata"
, N); return; } } while (false)
1336 "incorrect number of operands in llvm.commandline metadata", N)do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.commandline metadata"
, N); return; } } while (false)
;
1337 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.commandline metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1338 ("invalid value for llvm.commandline metadata entry operand"do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.commandline metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1339 "(the operand should be a string)"),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.commandline metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1340 N->getOperand(0))do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.commandline metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
;
1341 }
1342}
1343
1344void Verifier::visitModuleFlags(const Module &M) {
1345 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1346 if (!Flags) return;
1347
1348 // Scan each flag, and track the flags and requirements.
1349 DenseMap<const MDString*, const MDNode*> SeenIDs;
1350 SmallVector<const MDNode*, 16> Requirements;
1351 for (const MDNode *MDN : Flags->operands())
1352 visitModuleFlag(MDN, SeenIDs, Requirements);
1353
1354 // Validate that the requirements in the module are valid.
1355 for (const MDNode *Requirement : Requirements) {
1356 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1357 const Metadata *ReqValue = Requirement->getOperand(1);
1358
1359 const MDNode *Op = SeenIDs.lookup(Flag);
1360 if (!Op) {
1361 CheckFailed("invalid requirement on flag, flag is not present in module",
1362 Flag);
1363 continue;
1364 }
1365
1366 if (Op->getOperand(2) != ReqValue) {
1367 CheckFailed(("invalid requirement on flag, "
1368 "flag does not have the required value"),
1369 Flag);
1370 continue;
1371 }
1372 }
1373}
1374
1375void
1376Verifier::visitModuleFlag(const MDNode *Op,
1377 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1378 SmallVectorImpl<const MDNode *> &Requirements) {
1379 // Each module flag should have three arguments, the merge behavior (a
1380 // constant int), the flag ID (an MDString), and the value.
1381 Assert(Op->getNumOperands() == 3,do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (false)
1382 "incorrect number of operands in module flag", Op)do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (false)
;
1383 Module::ModFlagBehavior MFB;
1384 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1385 Assert(do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1386 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1387 "invalid behavior operand in module flag (expected constant integer)",do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1388 Op->getOperand(0))do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
;
1389 Assert(false,do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
1390 "invalid behavior operand in module flag (unexpected constant)",do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
1391 Op->getOperand(0))do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
;
1392 }
1393 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1394 Assert(ID, "invalid ID operand in module flag (expected metadata string)",do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (false)
1395 Op->getOperand(1))do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (false)
;
1396
1397 // Sanity check the values for behaviors with additional requirements.
1398 switch (MFB) {
1399 case Module::Error:
1400 case Module::Warning:
1401 case Module::Override:
1402 // These behavior types accept any value.
1403 break;
1404
1405 case Module::Max: {
1406 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(2)))) { CheckFailed("invalid value for 'max' module flag (expected constant integer)"
, Op->getOperand(2)); return; } } while (false)
1407 "invalid value for 'max' module flag (expected constant integer)",do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(2)))) { CheckFailed("invalid value for 'max' module flag (expected constant integer)"
, Op->getOperand(2)); return; } } while (false)
1408 Op->getOperand(2))do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(2)))) { CheckFailed("invalid value for 'max' module flag (expected constant integer)"
, Op->getOperand(2)); return; } } while (false)
;
1409 break;
1410 }
1411
1412 case Module::Require: {
1413 // The value should itself be an MDNode with two operands, a flag ID (an
1414 // MDString), and a value.
1415 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1416 Assert(Value && Value->getNumOperands() == 2,do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
1417 "invalid value for 'require' module flag (expected metadata pair)",do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
1418 Op->getOperand(2))do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
;
1419 Assert(isa<MDString>(Value->getOperand(0)),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1420 ("invalid value for 'require' module flag "do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1421 "(first value operand should be a string)"),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1422 Value->getOperand(0))do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
;
1423
1424 // Append it to the list of requirements, to check once all module flags are
1425 // scanned.
1426 Requirements.push_back(Value);
1427 break;
1428 }
1429
1430 case Module::Append:
1431 case Module::AppendUnique: {
1432 // These behavior types require the operand be an MDNode.
1433 Assert(isa<MDNode>(Op->getOperand(2)),do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1434 "invalid value for 'append'-type module flag "do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1435 "(expected a metadata node)",do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1436 Op->getOperand(2))do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
;
1437 break;
1438 }
1439 }
1440
1441 // Unless this is a "requires" flag, check the ID is unique.
1442 if (MFB != Module::Require) {
1443 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1444 Assert(Inserted,do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (false)
1445 "module flag identifiers must be unique (or of 'require' type)", ID)do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (false)
;
1446 }
1447
1448 if (ID->getString() == "wchar_size") {
1449 ConstantInt *Value
1450 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1451 Assert(Value, "wchar_size metadata requires constant integer argument")do { if (!(Value)) { CheckFailed("wchar_size metadata requires constant integer argument"
); return; } } while (false)
;
1452 }
1453
1454 if (ID->getString() == "Linker Options") {
1455 // If the llvm.linker.options named metadata exists, we assume that the
1456 // bitcode reader has upgraded the module flag. Otherwise the flag might
1457 // have been created by a client directly.
1458 Assert(M.getNamedMetadata("llvm.linker.options"),do { if (!(M.getNamedMetadata("llvm.linker.options"))) { CheckFailed
("'Linker Options' named metadata no longer supported"); return
; } } while (false)
1459 "'Linker Options' named metadata no longer supported")do { if (!(M.getNamedMetadata("llvm.linker.options"))) { CheckFailed
("'Linker Options' named metadata no longer supported"); return
; } } while (false)
;
1460 }
1461
1462 if (ID->getString() == "CG Profile") {
1463 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1464 visitModuleFlagCGProfileEntry(MDO);
1465 }
1466}
1467
1468void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1469 auto CheckFunction = [&](const MDOperand &FuncMDO) {
1470 if (!FuncMDO)
1471 return;
1472 auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1473 Assert(F && isa<Function>(F->getValue()), "expected a Function or null",do { if (!(F && isa<Function>(F->getValue())
)) { CheckFailed("expected a Function or null", FuncMDO); return
; } } while (false)
1474 FuncMDO)do { if (!(F && isa<Function>(F->getValue())
)) { CheckFailed("expected a Function or null", FuncMDO); return
; } } while (false)
;
1475 };
1476 auto Node = dyn_cast_or_null<MDNode>(MDO);
1477 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO)do { if (!(Node && Node->getNumOperands() == 3)) {
CheckFailed("expected a MDNode triple", MDO); return; } } while
(false)
;
1478 CheckFunction(Node->getOperand(0));
1479 CheckFunction(Node->getOperand(1));
1480 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1481 Assert(Count && Count->getType()->isIntegerTy(),do { if (!(Count && Count->getType()->isIntegerTy
())) { CheckFailed("expected an integer constant", Node->getOperand
(2)); return; } } while (false)
1482 "expected an integer constant", Node->getOperand(2))do { if (!(Count && Count->getType()->isIntegerTy
())) { CheckFailed("expected an integer constant", Node->getOperand
(2)); return; } } while (false)
;
1483}
1484
1485/// Return true if this attribute kind only applies to functions.
1486static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
1487 switch (Kind) {
1488 case Attribute::NoReturn:
1489 case Attribute::NoCfCheck:
1490 case Attribute::NoUnwind:
1491 case Attribute::NoInline:
1492 case Attribute::AlwaysInline:
1493 case Attribute::OptimizeForSize:
1494 case Attribute::StackProtect:
1495 case Attribute::StackProtectReq:
1496 case Attribute::StackProtectStrong:
1497 case Attribute::SafeStack:
1498 case Attribute::ShadowCallStack:
1499 case Attribute::NoRedZone:
1500 case Attribute::NoImplicitFloat:
1501 case Attribute::Naked:
1502 case Attribute::InlineHint:
1503 case Attribute::StackAlignment:
1504 case Attribute::UWTable:
1505 case Attribute::NonLazyBind:
1506 case Attribute::ReturnsTwice:
1507 case Attribute::SanitizeAddress:
1508 case Attribute::SanitizeHWAddress:
1509 case Attribute::SanitizeThread:
1510 case Attribute::SanitizeMemory:
1511 case Attribute::MinSize:
1512 case Attribute::NoDuplicate:
1513 case Attribute::Builtin:
1514 case Attribute::NoBuiltin:
1515 case Attribute::Cold:
1516 case Attribute::OptForFuzzing:
1517 case Attribute::OptimizeNone:
1518 case Attribute::JumpTable:
1519 case Attribute::Convergent:
1520 case Attribute::ArgMemOnly:
1521 case Attribute::NoRecurse:
1522 case Attribute::InaccessibleMemOnly:
1523 case Attribute::InaccessibleMemOrArgMemOnly:
1524 case Attribute::AllocSize:
1525 case Attribute::SpeculativeLoadHardening:
1526 case Attribute::Speculatable:
1527 case Attribute::StrictFP:
1528 return true;
1529 default:
1530 break;
1531 }
1532 return false;
1533}
1534
1535/// Return true if this is a function attribute that can also appear on
1536/// arguments.
1537static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
1538 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1539 Kind == Attribute::ReadNone;
1540}
1541
1542void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1543 const Value *V) {
1544 for (Attribute A : Attrs) {
1545 if (A.isStringAttribute())
1546 continue;
1547
1548 if (isFuncOnlyAttr(A.getKindAsEnum())) {
1549 if (!IsFunction) {
1550 CheckFailed("Attribute '" + A.getAsString() +
1551 "' only applies to functions!",
1552 V);
1553 return;
1554 }
1555 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1556 CheckFailed("Attribute '" + A.getAsString() +
1557 "' does not apply to functions!",
1558 V);
1559 return;
1560 }
1561 }
1562}
1563
1564// VerifyParameterAttrs - Check the given attributes for an argument or return
1565// value of the specified type. The value V is printed in error messages.
1566void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1567 const Value *V) {
1568 if (!Attrs.hasAttributes())
1569 return;
1570
1571 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1572
1573 if (Attrs.hasAttribute(Attribute::ImmArg)) {
1574 Assert(Attrs.getNumAttributes() == 1,do { if (!(Attrs.getNumAttributes() == 1)) { CheckFailed("Attribute 'immarg' is incompatible with other attributes"
, V); return; } } while (false)
1575 "Attribute 'immarg' is incompatible with other attributes", V)do { if (!(Attrs.getNumAttributes() == 1)) { CheckFailed("Attribute 'immarg' is incompatible with other attributes"
, V); return; } } while (false)
;
1576 }
1577
1578 // Check for mutually incompatible attributes. Only inreg is compatible with
1579 // sret.
1580 unsigned AttrCount = 0;
1581 AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1582 AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1583 AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1584 Attrs.hasAttribute(Attribute::InReg);
1585 AttrCount += Attrs.hasAttribute(Attribute::Nest);
1586 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
1587 "and 'sret' are incompatible!",do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
1588 V)do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
;
1589
1590 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1591 Attrs.hasAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1592 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1593 "'inalloca and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1594 V)do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
;
1595
1596 Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1597 Attrs.hasAttribute(Attribute::Returned)),do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1598 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1599 "'sret and returned' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1600 V)do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
;
1601
1602 Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1603 Attrs.hasAttribute(Attribute::SExt)),do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1604 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1605 "'zeroext and signext' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1606 V)do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
;
1607
1608 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1609 Attrs.hasAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1610 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1611 "'readnone and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1612 V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
;
1613
1614 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1615 Attrs.hasAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1616 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1617 "'readnone and writeonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1618 V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
;
1619
1620 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1621 Attrs.hasAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1622 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1623 "'readonly and writeonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1624 V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
;
1625
1626 Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1627 Attrs.hasAttribute(Attribute::AlwaysInline)),do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1628 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1629 "'noinline and alwaysinline' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1630 V)do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
;
1631
1632 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1633 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
1634 "Wrong types for attribute: " +do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
1635 AttributeSet::get(Context, IncompatibleAttrs).getAsString(),do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
1636 V)do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
;
1637
1638 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1639 SmallPtrSet<Type*, 4> Visited;
1640 if (!PTy->getElementType()->isSized(&Visited)) {
1641 Assert(!Attrs.hasAttribute(Attribute::ByVal) &&do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::InAlloca))) { CheckFailed("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1642 !Attrs.hasAttribute(Attribute::InAlloca),do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::InAlloca))) { CheckFailed("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1643 "Attributes 'byval' and 'inalloca' do not support unsized types!",do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::InAlloca))) { CheckFailed("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1644 V)do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::InAlloca))) { CheckFailed("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
;
1645 }
1646 if (!isa<PointerType>(PTy->getElementType()))
1647 Assert(!Attrs.hasAttribute(Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
1648 "Attribute 'swifterror' only applies to parameters "do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
1649 "with pointer to pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
1650 V)do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
;
1651 } else {
1652 Assert(!Attrs.hasAttribute(Attribute::ByVal),do { if (!(!Attrs.hasAttribute(Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
1653 "Attribute 'byval' only applies to parameters with pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
1654 V)do { if (!(!Attrs.hasAttribute(Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
;
1655 Assert(!Attrs.hasAttribute(Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
1656 "Attribute 'swifterror' only applies to parameters "do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
1657 "with pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
1658 V)do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
;
1659 }
1660}
1661
1662// Check parameter attributes against a function type.
1663// The value V is printed in error messages.
1664void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1665 const Value *V, bool IsIntrinsic) {
1666 if (Attrs.isEmpty())
1667 return;
1668
1669 bool SawNest = false;
1670 bool SawReturned = false;
1671 bool SawSRet = false;
1672 bool SawSwiftSelf = false;
1673 bool SawSwiftError = false;
1674
1675 // Verify return value attributes.
1676 AttributeSet RetAttrs = Attrs.getRetAttributes();
1677 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1678 !RetAttrs.hasAttribute(Attribute::Nest) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1679 !RetAttrs.hasAttribute(Attribute::StructRet) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1680 !RetAttrs.hasAttribute(Attribute::NoCapture) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1681 !RetAttrs.hasAttribute(Attribute::Returned) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1682 !RetAttrs.hasAttribute(Attribute::InAlloca) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1683 !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1684 !RetAttrs.hasAttribute(Attribute::SwiftError)),do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1685 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1686 "'returned', 'swiftself', and 'swifterror' do not apply to return "do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1687 "values!",do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1688 V)do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
;
1689 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1690 !RetAttrs.hasAttribute(Attribute::WriteOnly) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1691 !RetAttrs.hasAttribute(Attribute::ReadNone)),do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1692 "Attribute '" + RetAttrs.getAsString() +do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1693 "' does not apply to function returns",do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1694 V)do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
;
1695 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1696
1697 // Verify parameter attributes.
1698 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1699 Type *Ty = FT->getParamType(i);
1700 AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1701
1702 if (!IsIntrinsic) {
1703 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),do { if (!(!ArgAttrs.hasAttribute(Attribute::ImmArg))) { CheckFailed
("immarg attribute only applies to intrinsics",V); return; } }
while (false)
1704 "immarg attribute only applies to intrinsics",V)do { if (!(!ArgAttrs.hasAttribute(Attribute::ImmArg))) { CheckFailed
("immarg attribute only applies to intrinsics",V); return; } }
while (false)
;
1705 }
1706
1707 verifyParameterAttrs(ArgAttrs, Ty, V);
1708
1709 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1710 Assert(!SawNest, "More than one parameter has attribute nest!", V)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, V); return; } } while (false)
;
1711 SawNest = true;
1712 }
1713
1714 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1715 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (false)
1716 V)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (false)
;
1717 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute"
, V); return; } } while (false)
1718 "Incompatible argument and return types for 'returned' attribute",do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute"
, V); return; } } while (false)
1719 V)do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute"
, V); return; } } while (false)
;
1720 SawReturned = true;
1721 }
1722
1723 if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1724 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V)do { if (!(!SawSRet)) { CheckFailed("Cannot have multiple 'sret' parameters!"
, V); return; } } while (false)
;
1725 Assert(i == 0 || i == 1,do { if (!(i == 0 || i == 1)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (false)
1726 "Attribute 'sret' is not on first or second parameter!", V)do { if (!(i == 0 || i == 1)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (false)
;
1727 SawSRet = true;
1728 }
1729
1730 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1731 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V)do { if (!(!SawSwiftSelf)) { CheckFailed("Cannot have multiple 'swiftself' parameters!"
, V); return; } } while (false)
;
1732 SawSwiftSelf = true;
1733 }
1734
1735 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1736 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!"
, V); return; } } while (false)
1737 V)do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!"
, V); return; } } while (false)
;
1738 SawSwiftError = true;
1739 }
1740
1741 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1742 Assert(i == FT->getNumParams() - 1,do { if (!(i == FT->getNumParams() - 1)) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (false)
1743 "inalloca isn't on the last parameter!", V)do { if (!(i == FT->getNumParams() - 1)) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (false)
;
1744 }
1745 }
1746
1747 if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1748 return;
1749
1750 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1751
1752 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1753 Attrs.hasFnAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1754 "Attributes 'readnone and readonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
;
1755
1756 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readnone and writeonly' are incompatible!", V); return
; } } while (false)
1757 Attrs.hasFnAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readnone and writeonly' are incompatible!", V); return
; } } while (false)
1758 "Attributes 'readnone and writeonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readnone and writeonly' are incompatible!", V); return
; } } while (false)
;
1759
1760 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readonly and writeonly' are incompatible!", V); return
; } } while (false)
1761 Attrs.hasFnAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readonly and writeonly' are incompatible!", V); return
; } } while (false)
1762 "Attributes 'readonly and writeonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readonly and writeonly' are incompatible!", V); return
; } } while (false)
;
1763
1764 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1765 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1766 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1767 "incompatible!",do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1768 V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
;
1769
1770 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1771 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1772 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
;
1773
1774 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes 'noinline and alwaysinline' are incompatible!", V
); return; } } while (false)
1775 Attrs.hasFnAttribute(Attribute::AlwaysInline)),do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes 'noinline and alwaysinline' are incompatible!", V
); return; } } while (false)
1776 "Attributes 'noinline and alwaysinline' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes 'noinline and alwaysinline' are incompatible!", V
); return; } } while (false)
;
1777
1778 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1779 Assert(Attrs.hasFnAttribute(Attribute::NoInline),do { if (!(Attrs.hasFnAttribute(Attribute::NoInline))) { CheckFailed
("Attribute 'optnone' requires 'noinline'!", V); return; } } while
(false)
1780 "Attribute 'optnone' requires 'noinline'!", V)do { if (!(Attrs.hasFnAttribute(Attribute::NoInline))) { CheckFailed
("Attribute 'optnone' requires 'noinline'!", V); return; } } while
(false)
;
1781
1782 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),do { if (!(!Attrs.hasFnAttribute(Attribute::OptimizeForSize))
) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
1783 "Attributes 'optsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasFnAttribute(Attribute::OptimizeForSize))
) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
;
1784
1785 Assert(!Attrs.hasFnAttribute(Attribute::MinSize),do { if (!(!Attrs.hasFnAttribute(Attribute::MinSize))) { CheckFailed
("Attributes 'minsize and optnone' are incompatible!", V); return
; } } while (false)
1786 "Attributes 'minsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasFnAttribute(Attribute::MinSize))) { CheckFailed
("Attributes 'minsize and optnone' are incompatible!", V); return
; } } while (false)
;
1787 }
1788
1789 if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1790 const GlobalValue *GV = cast<GlobalValue>(V);
1791 Assert(GV->hasGlobalUnnamedAddr(),do { if (!(GV->hasGlobalUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (false)
1792 "Attribute 'jumptable' requires 'unnamed_addr'", V)do { if (!(GV->hasGlobalUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (false)
;
1793 }
1794
1795 if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1796 std::pair<unsigned, Optional<unsigned>> Args =
1797 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
1798
1799 auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1800 if (ParamNo >= FT->getNumParams()) {
1801 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1802 return false;
1803 }
1804
1805 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1806 CheckFailed("'allocsize' " + Name +
1807 " argument must refer to an integer parameter",
1808 V);
1809 return false;
1810 }
1811
1812 return true;
1813 };
1814
1815 if (!CheckParam("element size", Args.first))
1816 return;
1817
1818 if (Args.second && !CheckParam("number of elements", *Args.second))
1819 return;
1820 }
1821}
1822
1823void Verifier::verifyFunctionMetadata(
1824 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1825 for (const auto &Pair : MDs) {
1826 if (Pair.first == LLVMContext::MD_prof) {
1827 MDNode *MD = Pair.second;
1828 Assert(MD->getNumOperands() >= 2,do { if (!(MD->getNumOperands() >= 2)) { CheckFailed("!prof annotations should have no less than 2 operands"
, MD); return; } } while (false)
1829 "!prof annotations should have no less than 2 operands", MD)do { if (!(MD->getNumOperands() >= 2)) { CheckFailed("!prof annotations should have no less than 2 operands"
, MD); return; } } while (false)
;
1830
1831 // Check first operand.
1832 Assert(MD->getOperand(0) != nullptr, "first operand should not be null",do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (false)
1833 MD)do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (false)
;
1834 Assert(isa<MDString>(MD->getOperand(0)),do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (false)
1835 "expected string with name of the !prof annotation", MD)do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (false)
;
1836 MDString *MDS = cast<MDString>(MD->getOperand(0));
1837 StringRef ProfName = MDS->getString();
1838 Assert(ProfName.equals("function_entry_count") ||do { if (!(ProfName.equals("function_entry_count") || ProfName
.equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'", MD); return; } } while
(false)
1839 ProfName.equals("synthetic_function_entry_count"),do { if (!(ProfName.equals("function_entry_count") || ProfName
.equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'", MD); return; } } while
(false)
1840 "first operand should be 'function_entry_count'"do { if (!(ProfName.equals("function_entry_count") || ProfName
.equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'", MD); return; } } while
(false)
1841 " or 'synthetic_function_entry_count'",do { if (!(ProfName.equals("function_entry_count") || ProfName
.equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'", MD); return; } } while
(false)
1842 MD)do { if (!(ProfName.equals("function_entry_count") || ProfName
.equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'", MD); return; } } while
(false)
;
1843
1844 // Check second operand.
1845 Assert(MD->getOperand(1) != nullptr, "second operand should not be null",do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (false)
1846 MD)do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (false)
;
1847 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (false)
1848 "expected integer argument to function_entry_count", MD)do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (false)
;
1849 }
1850 }
1851}
1852
1853void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1854 if (!ConstantExprVisited.insert(EntryC).second)
1855 return;
1856
1857 SmallVector<const Constant *, 16> Stack;
1858 Stack.push_back(EntryC);
1859
1860 while (!Stack.empty()) {
1861 const Constant *C = Stack.pop_back_val();
1862
1863 // Check this constant expression.
1864 if (const auto *CE = dyn_cast<ConstantExpr>(C))
1865 visitConstantExpr(CE);
1866
1867 if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1868 // Global Values get visited separately, but we do need to make sure
1869 // that the global value is in the correct module
1870 Assert(GV->getParent() == &M, "Referencing global in another module!",do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, EntryC, &M, GV, GV->getParent()); return; } } while (
false)
1871 EntryC, &M, GV, GV->getParent())do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, EntryC, &M, GV, GV->getParent()); return; } } while (
false)
;
1872 continue;
1873 }
1874
1875 // Visit all sub-expressions.
1876 for (const Use &U : C->operands()) {
1877 const auto *OpC = dyn_cast<Constant>(U);
1878 if (!OpC)
1879 continue;
1880 if (!ConstantExprVisited.insert(OpC).second)
1881 continue;
1882 Stack.push_back(OpC);
1883 }
1884 }
1885}
1886
1887void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1888 if (CE->getOpcode() == Instruction::BitCast)
1889 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
1890 CE->getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
1891 "Invalid bitcast", CE)do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
;
1892
1893 if (CE->getOpcode() == Instruction::IntToPtr ||
1894 CE->getOpcode() == Instruction::PtrToInt) {
1895 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1896 ? CE->getType()
1897 : CE->getOperand(0)->getType();
1898 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1899 ? "inttoptr not supported for non-integral pointers"
1900 : "ptrtoint not supported for non-integral pointers";
1901 Assert(do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
1902 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
1903 Msg)do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
;
1904 }
1905}
1906
1907bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
1908 // There shouldn't be more attribute sets than there are parameters plus the
1909 // function and return value.
1910 return Attrs.getNumAttrSets() <= Params + 2;
1911}
1912
1913/// Verify that statepoint intrinsic is well formed.
1914void Verifier::verifyStatepoint(const CallBase &Call) {
1915 assert(Call.getCalledFunction() &&((Call.getCalledFunction() && Call.getCalledFunction(
)->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
) ? static_cast<void> (0) : __assert_fail ("Call.getCalledFunction() && Call.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/build/llvm-toolchain-snapshot-9~svn360410/lib/IR/Verifier.cpp"
, 1917, __PRETTY_FUNCTION__))
1916 Call.getCalledFunction()->getIntrinsicID() ==((Call.getCalledFunction() && Call.getCalledFunction(
)->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
) ? static_cast<void> (0) : __assert_fail ("Call.getCalledFunction() && Call.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/build/llvm-toolchain-snapshot-9~svn360410/lib/IR/Verifier.cpp"
, 1917, __PRETTY_FUNCTION__))
1917 Intrinsic::experimental_gc_statepoint)((Call.getCalledFunction() && Call.getCalledFunction(
)->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
) ? static_cast<void> (0) : __assert_fail ("Call.getCalledFunction() && Call.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/build/llvm-toolchain-snapshot-9~svn360410/lib/IR/Verifier.cpp"
, 1917, __PRETTY_FUNCTION__))
;
1918
1919 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&do { if (!(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory
() && !Call.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", Call
); return; } } while (false)
1920 !Call.onlyAccessesArgMemory(),do { if (!(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory
() && !Call.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", Call
); return; } } while (false)
1921 "gc.statepoint must read and write all memory to preserve "do { if (!(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory
() && !Call.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", Call
); return; } } while (false)
1922 "reordering restrictions required by safepoint semantics",do { if (!(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory
() && !Call.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", Call
); return; } } while (false)
1923 Call)do { if (!(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory
() && !Call.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", Call
); return; } } while (false)
;
1924
1925 const int64_t NumPatchBytes =
1926 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
1927 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!")((isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"
) ? static_cast<void> (0) : __assert_fail ("isInt<32>(NumPatchBytes) && \"NumPatchBytesV is an i32!\""
, "/build/llvm-toolchain-snapshot-9~svn360410/lib/IR/Verifier.cpp"
, 1927, __PRETTY_FUNCTION__))
;
1928 Assert(NumPatchBytes >= 0,do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", Call); return; } } while (false)
1929 "gc.statepoint number of patchable bytes must be "do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", Call); return; } } while (false)
1930 "positive",do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", Call); return; } } while (false)
1931 Call)do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", Call); return; } } while (false)
;
1932
1933 const Value *Target = Call.getArgOperand(2);
1934 auto *PT = dyn_cast<PointerType>(Target->getType());
1935 Assert(PT && PT->getElementType()->isFunctionTy(),do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, Call, Target); return; } } while (false)
1936 "gc.statepoint callee must be of function pointer type", Call, Target)do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, Call, Target); return; } } while (false)
;
1937 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1938
1939 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
1940 Assert(NumCallArgs >= 0,do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", Call); return; } } while (false)
1941 "gc.statepoint number of arguments to underlying call "do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", Call); return; } } while (false)
1942 "must be positive",do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", Call); return; } } while (false)
1943 Call)do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", Call); return; } } while (false)
;
1944 const int NumParams = (int)TargetFuncType->getNumParams();
1945 if (TargetFuncType->isVarArg()) {
1946 Assert(NumCallArgs >= NumParams,do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, Call); return; } } while (false)
1947 "gc.statepoint mismatch in number of vararg call args", Call)do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, Call); return; } } while (false)
;
1948
1949 // TODO: Remove this limitation
1950 Assert(TargetFuncType->getReturnType()->isVoidTy(),do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", Call); return; } } while (false)
1951 "gc.statepoint doesn't support wrapping non-void "do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", Call); return; } } while (false)
1952 "vararg functions yet",do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", Call); return; } } while (false)
1953 Call)do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", Call); return; } } while (false)
;
1954 } else
1955 Assert(NumCallArgs == NumParams,do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, Call); return; } } while (false)
1956 "gc.statepoint mismatch in number of call args", Call)do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, Call); return; } } while (false)
;
1957
1958 const uint64_t Flags
1959 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
1960 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, Call); return; } } while (false)
1961 "unknown flag used in gc.statepoint flags argument", Call)do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, Call); return; } } while (false)
;
1962
1963 // Verify that the types of the call parameter arguments match
1964 // the type of the wrapped callee.
1965 AttributeList Attrs = Call.getAttributes();
1966 for (int i = 0; i < NumParams; i++) {
1967 Type *ParamType = TargetFuncType->getParamType(i);
1968 Type *ArgType = Call.getArgOperand(5 + i)->getType();
1969 Assert(ArgType == ParamType,do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", Call); return; } } while (false)
1970 "gc.statepoint call argument does not match wrapped "do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", Call); return; } } while (false)
1971 "function type",do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", Call); return; } } while (false)
1972 Call)do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", Call); return; } } while (false)
;
1973
1974 if (TargetFuncType->isVarArg()) {
1975 AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i);
1976 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, Call); return; } } while (false)
1977 "Attribute 'sret' cannot be used for vararg call arguments!",do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, Call); return; } } while (false)
1978 Call)do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, Call); return; } } while (false)
;
1979 }
1980 }
1981
1982 const int EndCallArgsInx = 4 + NumCallArgs;
1983
1984 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
1985 Assert(isa<ConstantInt>(NumTransitionArgsV),do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, Call); return; } } while (false)
1986 "gc.statepoint number of transition arguments "do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, Call); return; } } while (false)
1987 "must be constant integer",do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, Call); return; } } while (false)
1988 Call)do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, Call); return; } } while (false)
;
1989 const int NumTransitionArgs =
1990 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1991 Assert(NumTransitionArgs >= 0,do { if (!(NumTransitionArgs >= 0)) { CheckFailed("gc.statepoint number of transition arguments must be positive"
, Call); return; } } while (false)
1992 "gc.statepoint number of transition arguments must be positive", Call)do { if (!(NumTransitionArgs >= 0)) { CheckFailed("gc.statepoint number of transition arguments must be positive"
, Call); return; } } while (false)
;
1993 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1994
1995 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
1996 Assert(isa<ConstantInt>(NumDeoptArgsV),do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, Call); return; } } while (false)
1997 "gc.statepoint number of deoptimization arguments "do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, Call); return; } } while (false)
1998 "must be constant integer",do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, Call); return; } } while (false)
1999 Call)do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, Call); return; } } while (false)
;
2000 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2001 Assert(NumDeoptArgs >= 0,do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", Call); return; } } while (false)
2002 "gc.statepoint number of deoptimization arguments "do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", Call); return; } } while (false)
2003 "must be positive",do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", Call); return; } } while (false)
2004 Call)do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", Call); return; } } while (false)
;
2005
2006 const int ExpectedNumArgs =
2007 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
2008 Assert(ExpectedNumArgs <= (int)Call.arg_size(),do { if (!(ExpectedNumArgs <= (int)Call.arg_size())) { CheckFailed
("gc.statepoint too few arguments according to length fields"
, Call); return; } } while (false)
2009 "gc.statepoint too few arguments according to length fields", Call)do { if (!(ExpectedNumArgs <= (int)Call.arg_size())) { CheckFailed
("gc.statepoint too few arguments according to length fields"
, Call); return; } } while (false)
;
2010
2011 // Check that the only uses of this gc.statepoint are gc.result or
2012 // gc.relocate calls which are tied to this statepoint and thus part
2013 // of the same statepoint sequence
2014 for (const User *U : Call.users()) {
2015 const CallInst *UserCall = dyn_cast<const CallInst>(U);
2016 Assert(UserCall, "illegal use of statepoint token", Call, U)do { if (!(UserCall)) { CheckFailed("illegal use of statepoint token"
, Call, U); return; } } while (false)
;
2017 if (!UserCall)
2018 continue;
2019 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),do { if (!(isa<GCRelocateInst>(UserCall) || isa<GCResultInst
>(UserCall))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", Call, U); return; } } while (false)
2020 "gc.result or gc.relocate are the only value uses "do { if (!(isa<GCRelocateInst>(UserCall) || isa<GCResultInst
>(UserCall))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", Call, U); return; } } while (false)
2021 "of a gc.statepoint",do { if (!(isa<GCRelocateInst>(UserCall) || isa<GCResultInst
>(UserCall))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", Call, U); return; } } while (false)
2022 Call, U)do { if (!(isa<GCRelocateInst>(UserCall) || isa<GCResultInst
>(UserCall))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", Call, U); return; } } while (false)
;
2023 if (isa<GCResultInst>(UserCall)) {
2024 Assert(UserCall->getArgOperand(0) == &Call,do { if (!(UserCall->getArgOperand(0) == &Call)) { CheckFailed
("gc.result connected to wrong gc.statepoint", Call, UserCall
); return; } } while (false)
2025 "gc.result connected to wrong gc.statepoint", Call, UserCall)do { if (!(UserCall->getArgOperand(0) == &Call)) { CheckFailed
("gc.result connected to wrong gc.statepoint", Call, UserCall
); return; } } while (false)
;
2026 } else if (isa<GCRelocateInst>(Call)) {
2027 Assert(UserCall->getArgOperand(0) == &Call,do { if (!(UserCall->getArgOperand(0) == &Call)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", Call, UserCall
); return; } } while (false)
2028 "gc.relocate connected to wrong gc.statepoint", Call, UserCall)do { if (!(UserCall->getArgOperand(0) == &Call)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", Call, UserCall
); return; } } while (false)
;
2029 }
2030 }
2031
2032 // Note: It is legal for a single derived pointer to be listed multiple
2033 // times. It's non-optimal, but it is legal. It can also happen after
2034 // insertion if we strip a bitcast away.
2035 // Note: It is really tempting to check that each base is relocated and
2036 // that a derived pointer is never reused as a base pointer. This turns
2037 // out to be problematic since optimizations run after safepoint insertion
2038 // can recognize equality properties that the insertion logic doesn't know
2039 // about. See example statepoint.ll in the verifier subdirectory
2040}
2041
2042void Verifier::verifyFrameRecoverIndices() {
2043 for (auto &Counts : FrameEscapeInfo) {
2044 Function *F = Counts.first;
2045 unsigned EscapedObjectCount = Counts.second.first;
2046 unsigned MaxRecoveredIndex = Counts.second.second;
2047 Assert(MaxRecoveredIndex <= EscapedObjectCount,do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed to llvm.localescape in the parent "
"function", F); return; } } while (false)
2048 "all indices passed to llvm.localrecover must be less than the "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed to llvm.localescape in the parent "
"function", F); return; } } while (false)
2049 "number of arguments passed to llvm.localescape in the parent "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed to llvm.localescape in the parent "
"function", F); return; } } while (false)
2050 "function",do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed to llvm.localescape in the parent "
"function", F); return; } } while (false)
2051 F)do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed to llvm.localescape in the parent "
"function", F); return; } } while (false)
;
2052 }
2053}
2054
2055static Instruction *getSuccPad(Instruction *Terminator) {
2056 BasicBlock *UnwindDest;
2057 if (auto *II = dyn_cast<InvokeInst>(Terminator))
2058 UnwindDest = II->getUnwindDest();
2059 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2060 UnwindDest = CSI->getUnwindDest();
2061 else
2062 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2063 return UnwindDest->getFirstNonPHI();
2064}
2065
2066void Verifier::verifySiblingFuncletUnwinds() {
2067 SmallPtrSet<Instruction *, 8> Visited;
2068 SmallPtrSet<Instruction *, 8> Active;
2069 for (const auto &Pair : SiblingFuncletInfo) {
2070 Instruction *PredPad = Pair.first;
2071 if (Visited.count(PredPad))
2072 continue;
2073 Active.insert(PredPad);
2074 Instruction *Terminator = Pair.second;
2075 do {
2076 Instruction *SuccPad = getSuccPad(Terminator);
2077 if (Active.count(SuccPad)) {
2078 // Found a cycle; report error
2079 Instruction *CyclePad = SuccPad;
2080 SmallVector<Instruction *, 8> CycleNodes;
2081 do {
2082 CycleNodes.push_back(CyclePad);
2083 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2084 if (CycleTerminator != CyclePad)
2085 CycleNodes.push_back(CycleTerminator);
2086 CyclePad = getSuccPad(CycleTerminator);
2087 } while (CyclePad != SuccPad);
2088 Assert(false, "EH pads can't handle each other's exceptions",do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions"
, ArrayRef<Instruction *>(CycleNodes)); return; } } while
(false)
2089 ArrayRef<Instruction *>(CycleNodes))do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions"
, ArrayRef<Instruction *>(CycleNodes)); return; } } while
(false)
;
2090 }
2091 // Don't re-walk a node we've already checked
2092 if (!Visited.insert(SuccPad).second)
2093 break;
2094 // Walk to this successor if it has a map entry.
2095 PredPad = SuccPad;
2096 auto TermI = SiblingFuncletInfo.find(PredPad);
2097 if (TermI == SiblingFuncletInfo.end())
2098 break;
2099 Terminator = TermI->second;
2100 Active.insert(PredPad);
2101 } while (true);
2102 // Each node only has one successor, so we've walked all the active
2103 // nodes' successors.
2104 Active.clear();
2105 }
2106}
2107
2108// visitFunction - Verify that a function is ok.
2109//
2110void Verifier::visitFunction(const Function &F) {
2111 visitGlobalValue(F);
2112
2113 // Check function arguments.
2114 FunctionType *FT = F.getFunctionType();
2115 unsigned NumArgs = F.arg_size();
2116
2117 Assert(&Context == &F.getContext(),do { if (!(&Context == &F.getContext())) { CheckFailed
("Function context does not match Module context!", &F); return
; } } while (false)
1
Assuming the condition is true
2
Taking false branch
3
Loop condition is false. Exiting loop
2118 "Function context does not match Module context!", &F)do { if (!(&Context == &F.getContext())) { CheckFailed
("Function context does not match Module context!", &F); return
; } } while (false)
;
2119
2120 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F)do { if (!(!F.hasCommonLinkage())) { CheckFailed("Functions may not have common linkage"
, &F); return; } } while (false)
;
4
Taking false branch
5
Loop condition is false. Exiting loop
2121 Assert(FT->getNumParams() == NumArgs,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
6
Assuming the condition is true
7
Taking false branch
8
Loop condition is false. Exiting loop
2122 "# formal arguments must match # of arguments for function type!", &F,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
2123 FT)do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
;
2124 Assert(F.getReturnType()->isFirstClassType() ||do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
9
Taking false branch
10
Loop condition is false. Exiting loop
2125 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
2126 "Functions cannot return aggregate values!", &F)do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
;
2127
2128 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (false)
11
Assuming the condition is false
12
Taking false branch
13
Loop condition is false. Exiting loop
2129 "Invalid struct return type!", &F)do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (false)
;
2130
2131 AttributeList Attrs = F.getAttributes();
2132
2133 Assert(verifyAttributeCount(Attrs, FT->getNumParams()),do { if (!(verifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (false)
14
Taking false branch
15
Loop condition is false. Exiting loop
2134 "Attribute after last parameter!", &F)do { if (!(verifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (false)
;
2135
2136 bool isLLVMdotName = F.getName().size() >= 5 &&
16
Assuming the condition is false
2137 F.getName().substr(0, 5) == "llvm.";
2138
2139 // Check function attributes.
2140 verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName);
2141
2142 // On function declarations/definitions, we do not support the builtin
2143 // attribute. We do not check this in VerifyFunctionAttrs since that is
2144 // checking for Attributes that can/can not ever be on functions.
2145 Assert(!Attrs.hasFnAttribute(Attribute::Builtin),do { if (!(!Attrs.hasFnAttribute(Attribute::Builtin))) { CheckFailed
("Attribute 'builtin' can only be applied to a callsite.", &
F); return; } } while (false)
17
Assuming the condition is true
18
Taking false branch
19
Loop condition is false. Exiting loop
2146 "Attribute 'builtin' can only be applied to a callsite.", &F)do { if (!(!Attrs.hasFnAttribute(Attribute::Builtin))) { CheckFailed
("Attribute 'builtin' can only be applied to a callsite.", &
F); return; } } while (false)
;
2147
2148 // Check that this function meets the restrictions on this calling convention.
2149 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2150 // restrictions can be lifted.
2151 switch (F.getCallingConv()) {
20
Control jumps to the 'default' case at line 2152
2152 default:
2153 case CallingConv::C:
2154 break;
21
Execution continues on line 2180
2155 case CallingConv::AMDGPU_KERNEL:
2156 case CallingConv::SPIR_KERNEL:
2157 Assert(F.getReturnType()->isVoidTy(),do { if (!(F.getReturnType()->isVoidTy())) { CheckFailed("Calling convention requires void return type"
, &F); return; } } while (false)
2158 "Calling convention requires void return type", &F)do { if (!(F.getReturnType()->isVoidTy())) { CheckFailed("Calling convention requires void return type"
, &F); return; } } while (false)
;
2159 LLVM_FALLTHROUGH[[clang::fallthrough]];
2160 case CallingConv::AMDGPU_VS:
2161 case CallingConv::AMDGPU_HS:
2162 case CallingConv::AMDGPU_GS:
2163 case CallingConv::AMDGPU_PS:
2164 case CallingConv::AMDGPU_CS:
2165 Assert(!F.hasStructRetAttr(),do { if (!(!F.hasStructRetAttr())) { CheckFailed("Calling convention does not allow sret"
, &F); return; } } while (false)
2166 "Calling convention does not allow sret", &F)do { if (!(!F.hasStructRetAttr())) { CheckFailed("Calling convention does not allow sret"
, &F); return; } } while (false)
;
2167 LLVM_FALLTHROUGH[[clang::fallthrough]];
2168 case CallingConv::Fast:
2169 case CallingConv::Cold:
2170 case CallingConv::Intel_OCL_BI:
2171 case CallingConv::PTX_Kernel:
2172 case CallingConv::PTX_Device:
2173 Assert(!F.isVarArg(), "Calling convention does not support varargs or "do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
2174 "perfect forwarding!",do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
2175 &F)do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
;
2176 break;
2177 }
2178
2179 // Check that the argument values match the function type for this function...
2180 unsigned i = 0;
2181 for (const Argument &Arg : F.args()) {
22
Assuming '__begin1' is equal to '__end1'
2182 Assert(Arg.getType() == FT->getParamType(i),do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
2183 "Argument value does not match function argument type!", &Arg,do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
2184 FT->getParamType(i))do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
;
2185 Assert(Arg.getType()->isFirstClassType(),do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", &Arg)
; return; } } while (false)
2186 "Function arguments must have first-class types!", &Arg)do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", &Arg)
; return; } } while (false)
;
2187 if (!isLLVMdotName) {
2188 Assert(!Arg.getType()->isMetadataTy(),do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed(
"Function takes metadata but isn't an intrinsic", &Arg, &
F); return; } } while (false)
2189 "Function takes metadata but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed(
"Function takes metadata but isn't an intrinsic", &Arg, &
F); return; } } while (false)
;
2190 Assert(!Arg.getType()->isTokenTy(),do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, &Arg, &F); return; } } while (false)
2191 "Function takes token but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, &Arg, &F); return; } } while (false)
;
2192 }
2193
2194 // Check that swifterror argument is only used by loads and stores.
2195 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2196 verifySwiftErrorValue(&Arg);
2197 }
2198 ++i;
2199 }
2200
2201 if (!isLLVMdotName)
23
Taking true branch
2202 Assert(!F.getReturnType()->isTokenTy(),do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Functions returns a token but isn't an intrinsic", &F);
return; } } while (false)
24
Taking false branch
25
Loop condition is false. Exiting loop
2203 "Functions returns a token but isn't an intrinsic", &F)do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Functions returns a token but isn't an intrinsic", &F);
return; } } while (false)
;
2204
2205 // Get the function metadata attachments.
2206 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2207 F.getAllMetadata(MDs);
2208 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync")((F.hasMetadata() != MDs.empty() && "Bit out-of-sync"
) ? static_cast<void> (0) : __assert_fail ("F.hasMetadata() != MDs.empty() && \"Bit out-of-sync\""
, "/build/llvm-toolchain-snapshot-9~svn360410/lib/IR/Verifier.cpp"
, 2208, __PRETTY_FUNCTION__))
;
26
Assuming the condition is true
27
'?' condition is true
2209 verifyFunctionMetadata(MDs);
2210
2211 // Check validity of the personality function
2212 if (F.hasPersonalityFn()) {
28
Assuming the condition is false
29
Taking false branch
2213 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2214 if (Per)
2215 Assert(Per->getParent() == F.getParent(),do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
2216 "Referencing personality function in another module!",do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
2217 &F, F.getParent(), Per, Per->getParent())do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
;
2218 }
2219
2220 if (F.isMaterializable()) {
30
Assuming the condition is false
31
Taking false branch
2221 // Function has a body somewhere we can't see.
2222 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (false)
2223 MDs.empty() ? nullptr : MDs.front().second)do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (false)
;
2224 } else if (F.isDeclaration()) {
32
Assuming the condition is false
33
Taking false branch
2225 for (const auto &I : MDs) {
2226 AssertDI(I.first != LLVMContext::MD_dbg,do { if (!(I.first != LLVMContext::MD_dbg)) { DebugInfoCheckFailed
("function declaration may not have a !dbg attachment", &
F); return; } } while (false)
2227 "function declaration may not have a !dbg attachment", &F)do { if (!(I.first != LLVMContext::MD_dbg)) { DebugInfoCheckFailed
("function declaration may not have a !dbg attachment", &
F); return; } } while (false)
;
2228 Assert(I.first != LLVMContext::MD_prof,do { if (!(I.first != LLVMContext::MD_prof)) { CheckFailed("function declaration may not have a !prof attachment"
, &F); return; } } while (false)
2229 "function declaration may not have a !prof attachment", &F)do { if (!(I.first != LLVMContext::MD_prof)) { CheckFailed("function declaration may not have a !prof attachment"
, &F); return; } } while (false)
;
2230
2231 // Verify the metadata itself.
2232 visitMDNode(*I.second);
2233 }
2234 Assert(!F.hasPersonalityFn(),do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (false)
2235 "Function declaration shouldn't have a personality routine", &F)do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (false)
;
2236 } else {
2237 // Verify that this function (which has a body) is not named "llvm.*". It
2238 // is not legal to define intrinsics.
2239 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F)do { if (!(!isLLVMdotName)) { CheckFailed("llvm intrinsics cannot be defined!"
, &F); return; } } while (false)
;
34
Taking false branch
35
Loop condition is false. Exiting loop
2240
2241 // Check the entry node
2242 const BasicBlock *Entry = &F.getEntryBlock();
2243 Assert(pred_empty(Entry),do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (false)
36
Assuming the condition is false
37
Taking false branch
38
Loop condition is false. Exiting loop
2244 "Entry block to function must not have predecessors!", Entry)do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (false)
;
2245
2246 // The address of the entry block cannot be taken, unless it is dead.
2247 if (Entry->hasAddressTaken()) {
39
Assuming the condition is false
40
Taking false branch
2248 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (false)
2249 "blockaddress may not be used with the entry block!", Entry)do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (false)
;
2250 }
2251
2252 unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2253 // Visit metadata attachments.
2254 for (const auto &I : MDs) {
41
Assuming '__begin3' is equal to '__end3'
2255 // Verify that the attachment is legal.
2256 switch (I.first) {
2257 default:
2258 break;
2259 case LLVMContext::MD_dbg: {
2260 ++NumDebugAttachments;
2261 AssertDI(NumDebugAttachments == 1,do { if (!(NumDebugAttachments == 1)) { DebugInfoCheckFailed(
"function must have a single !dbg attachment", &F, I.second
); return; } } while (false)
2262 "function must have a single !dbg attachment", &F, I.second)do { if (!(NumDebugAttachments == 1)) { DebugInfoCheckFailed(
"function must have a single !dbg attachment", &F, I.second
); return; } } while (false)
;
2263 AssertDI(isa<DISubprogram>(I.second),do { if (!(isa<DISubprogram>(I.second))) { DebugInfoCheckFailed
("function !dbg attachment must be a subprogram", &F, I.second
); return; } } while (false)
2264 "function !dbg attachment must be a subprogram", &F, I.second)do { if (!(isa<DISubprogram>(I.second))) { DebugInfoCheckFailed
("function !dbg attachment must be a subprogram", &F, I.second
); return; } } while (false)
;
2265 auto *SP = cast<DISubprogram>(I.second);
2266 const Function *&AttachedTo = DISubprogramAttachments[SP];
2267 AssertDI(!AttachedTo || AttachedTo == &F,do { if (!(!AttachedTo || AttachedTo == &F)) { DebugInfoCheckFailed
("DISubprogram attached to more than one function", SP, &
F); return; } } while (false)
2268 "DISubprogram attached to more than one function", SP, &F)do { if (!(!AttachedTo || AttachedTo == &F)) { DebugInfoCheckFailed
("DISubprogram attached to more than one function", SP, &
F); return; } } while (false)
;
2269 AttachedTo = &F;
2270 break;
2271 }
2272 case LLVMContext::MD_prof:
2273 ++NumProfAttachments;
2274 Assert(NumProfAttachments == 1,do { if (!(NumProfAttachments == 1)) { CheckFailed("function must have a single !prof attachment"
, &F, I.second); return; } } while (false)
2275 "function must have a single !prof attachment", &F, I.second)do { if (!(NumProfAttachments == 1)) { CheckFailed("function must have a single !prof attachment"
, &F, I.second); return; } } while (false)
;
2276 break;
2277 }
2278
2279 // Verify the metadata itself.
2280 visitMDNode(*I.second);
2281 }
2282 }
2283
2284 // If this function is actually an intrinsic, verify that it is only used in
2285 // direct call/invokes, never having its "address taken".
2286 // Only do this if the module is materialized, otherwise we don't have all the
2287 // uses.
2288 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
42
Assuming the condition is false
2289 const User *U;
2290 if (F.hasAddressTaken(&U))
2291 Assert(false, "Invalid user of intrinsic instruction!", U)do { if (!(false)) { CheckFailed("Invalid user of intrinsic instruction!"
, U); return; } } while (false)
;
2292 }
2293
2294 auto *N = F.getSubprogram();
2295 HasDebugInfo = (N != nullptr);
43
Assuming the condition is true
2296 if (!HasDebugInfo)
44
Taking false branch
2297 return;
2298
2299 // Check that all !dbg attachments lead to back to N (or, at least, another
2300 // subprogram that describes the same function).
2301 //
2302 // FIXME: Check this incrementally while visiting !dbg attachments.
2303 // FIXME: Only check when N is the canonical subprogram for F.
2304 SmallPtrSet<const MDNode *, 32> Seen;
2305 for (auto &BB : F)
2306 for (auto &I : BB) {
2307 // Be careful about using DILocation here since we might be dealing with
2308 // broken code (this is the Verifier after all).
2309 DILocation *DL =
2310 dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
2311 if (!DL)
45
Assuming 'DL' is non-null
46
Taking false branch
2312 continue;
2313 if (!Seen.insert(DL).second)
47
Assuming the condition is false
48
Taking false branch
2314 continue;
2315
2316 Metadata *Parent = DL->getRawScope();
2317 AssertDI(Parent && isa<DILocalScope>(Parent),do { if (!(Parent && isa<DILocalScope>(Parent))
) { DebugInfoCheckFailed("DILocation's scope must be a DILocalScope"
, N, &F, &I, DL, Parent); return; } } while (false)
49
Assuming 'Parent' is non-null
50
Taking false branch
51
Loop condition is false. Exiting loop
2318 "DILocation's scope must be a DILocalScope", N, &F, &I, DL,do { if (!(Parent && isa<DILocalScope>(Parent))
) { DebugInfoCheckFailed("DILocation's scope must be a DILocalScope"
, N, &F, &I, DL, Parent); return; } } while (false)
2319 Parent)do { if (!(Parent && isa<DILocalScope>(Parent))
) { DebugInfoCheckFailed("DILocation's scope must be a DILocalScope"
, N, &F, &I, DL, Parent); return; } } while (false)
;
2320 DILocalScope *Scope = DL->getInlinedAtScope();
2321 if (Scope && !Seen.insert(Scope).second)
52
Assuming the condition is false
53
Taking false branch
2322 continue;
2323
2324 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
54
'?' condition is true
55
'SP' initialized here
2325
2326 // Scope and SP could be the same MDNode and we don't want to skip
2327 // validation in that case
2328 if (SP && ((Scope != SP) && !Seen.insert(SP).second))
56
Assuming 'SP' is null
57
Taking false branch
2329 continue;
2330
2331 // FIXME: Once N is canonical, check "SP == &N".
2332 AssertDI(SP->describes(&F),do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
58
Called C++ object pointer is null
2333 "!dbg attachment points at wrong subprogram for function", N, &F,do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
2334 &I, DL, Scope, SP)do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
;
2335 }
2336}
2337
2338// verifyBasicBlock - Verify that a basic block is well formed...
2339//
2340void Verifier::visitBasicBlock(BasicBlock &BB) {
2341 InstsInThisBlock.clear();
2342
2343 // Ensure that basic blocks have terminators!
2344 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB)do { if (!(BB.getTerminator())) { CheckFailed("Basic Block does not have terminator!"
, &BB); return; } } while (false)
;
2345
2346 // Check constraints that this basic block imposes on all of the PHI nodes in
2347 // it.
2348 if (isa<PHINode>(BB.front())) {
2349 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2350 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2351 llvm::sort(Preds);
2352 for (const PHINode &PN : BB.phis()) {
2353 // Ensure that PHI nodes have at least one entry!
2354 Assert(PN.getNumIncomingValues() != 0,do { if (!(PN.getNumIncomingValues() != 0)) { CheckFailed("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", &PN); return; } } while (false
)
2355 "PHI nodes must have at least one entry. If the block is dead, "do { if (!(PN.getNumIncomingValues() != 0)) { CheckFailed("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", &PN); return; } } while (false
)
2356 "the PHI should be removed!",do { if (!(PN.getNumIncomingValues() != 0)) { CheckFailed("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", &PN); return; } } while (false
)
2357 &PN)do { if (!(PN.getNumIncomingValues() != 0)) { CheckFailed("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", &PN); return; } } while (false
)
;
2358 Assert(PN.getNumIncomingValues() == Preds.size(),do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", &PN); return; } } while (false)
2359 "PHINode should have one entry for each predecessor of its "do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", &PN); return; } } while (false)
2360 "parent basic block!",do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", &PN); return; } } while (false)
2361 &PN)do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", &PN); return; } } while (false)
;
2362
2363 // Get and sort all incoming values in the PHI node...
2364 Values.clear();
2365 Values.reserve(PN.getNumIncomingValues());
2366 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2367 Values.push_back(
2368 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2369 llvm::sort(Values);
2370
2371 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2372 // Check to make sure that if there is more than one entry for a
2373 // particular basic block in this PHI node, that the incoming values are
2374 // all identical.
2375 //
2376 Assert(i == 0 || Values[i].first != Values[i - 1].first ||do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
2377 Values[i].second == Values[i - 1].second,do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
2378 "PHI node has multiple entries for the same basic block with "do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
2379 "different incoming values!",do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
2380 &PN, Values[i].first, Values[i].second, Values[i - 1].second)do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
;
2381
2382 // Check to make sure that the predecessors and PHI node entries are
2383 // matched up.
2384 Assert(Values[i].first == Preds[i],do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, &PN, Values[i].first, Preds[i]); return; } } while (false
)
2385 "PHI node entries do not match predecessors!", &PN,do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, &PN, Values[i].first, Preds[i]); return; } } while (false
)
2386 Values[i].first, Preds[i])do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, &PN, Values[i].first, Preds[i]); return; } } while (false
)
;
2387 }
2388 }
2389 }
2390
2391 // Check that all instructions have their parent pointers set up correctly.
2392 for (auto &I : BB)
2393 {
2394 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!")do { if (!(I.getParent() == &BB)) { CheckFailed("Instruction has bogus parent pointer!"
); return; } } while (false)
;
2395 }
2396}
2397
2398void Verifier::visitTerminator(Instruction &I) {
2399 // Ensure that terminators only exist at the end of the basic block.
2400 Assert(&I == I.getParent()->getTerminator(),do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (false)
2401 "Terminator found in the middle of a basic block!", I.getParent())do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (false)
;
2402 visitInstruction(I);
2403}
2404
2405void Verifier::visitBranchInst(BranchInst &BI) {
2406 if (BI.isConditional()) {
2407 Assert(BI.getCondition()->getType()->isIntegerTy(1),do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (false)
2408 "Branch condition is not 'i1' type!", &BI, BI.getCondition())do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (false)
;
2409 }
2410 visitTerminator(BI);
2411}
2412
2413void Verifier::visitReturnInst(ReturnInst &RI) {
2414 Function *F = RI.getParent()->getParent();
2415 unsigned N = RI.getNumOperands();
2416 if (F->getReturnType()->isVoidTy())
2417 Assert(N == 0,do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2418 "Found return instr that returns non-void in Function of void "do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2419 "return type!",do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2420 &RI, F->getReturnType())do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
;
2421 else
2422 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2423 "Function return type does not match operand "do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2424 "type of return inst!",do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2425 &RI, F->getReturnType())do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
;
2426
2427 // Check to make sure that the return value has necessary properties for
2428 // terminators...
2429 visitTerminator(RI);
2430}
2431
2432void Verifier::visitSwitchInst(SwitchInst &SI) {
2433 // Check to make sure that all of the constants in the switch instruction
2434 // have the same type as the switched-on value.
2435 Type *SwitchTy = SI.getCondition()->getType();
2436 SmallPtrSet<ConstantInt*, 32> Constants;
2437 for (auto &Case : SI.cases()) {
2438 Assert(Case.getCaseValue()->getType() == SwitchTy,do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (false)
2439 "Switch constants must all be same type as switch value!", &SI)do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (false)
;
2440 Assert(Constants.insert(Case.getCaseValue()).second,do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, Case.getCaseValue
()); return; } } while (false)
2441 "Duplicate integer as switch case", &SI, Case.getCaseValue())do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, Case.getCaseValue
()); return; } } while (false)
;
2442 }
2443
2444 visitTerminator(SI);
2445}
2446
2447void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2448 Assert(BI.getAddress()->getType()->isPointerTy(),do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (false)
2449 "Indirectbr operand must have pointer type!", &BI)do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (false)
;
2450 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2451 Assert(BI.getDestination(i)->getType()->isLabelTy(),do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (false)
2452 "Indirectbr destinations must all have pointer type!", &BI)do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (false)
;
2453
2454 visitTerminator(BI);
2455}
2456
2457void Verifier::visitCallBrInst(CallBrInst &CBI) {
2458 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",do { if (!(CBI.isInlineAsm())) { CheckFailed("Callbr is currently only used for asm-goto!"
, &CBI); return; } } while (false)
2459 &CBI)do { if (!(CBI.isInlineAsm())) { CheckFailed("Callbr is currently only used for asm-goto!"
, &CBI); return; } } while (false)
;
2460 Assert(CBI.getType()->isVoidTy(), "Callbr return value is not supported!",do { if (!(CBI.getType()->isVoidTy())) { CheckFailed("Callbr return value is not supported!"
, &CBI); return; } } while (false)
2461 &CBI)do { if (!(CBI.getType()->isVoidTy())) { CheckFailed("Callbr return value is not supported!"
, &CBI); return; } } while (false)
;
2462 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
2463 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),do { if (!(CBI.getSuccessor(i)->getType()->isLabelTy())
) { CheckFailed("Callbr successors must all have pointer type!"
, &CBI); return; } } while (false)
2464 "Callbr successors must all have pointer type!", &CBI)do { if (!(CBI.getSuccessor(i)->getType()->isLabelTy())
) { CheckFailed("Callbr successors must all have pointer type!"
, &CBI); return; } } while (false)
;
2465 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
2466 Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)),do { if (!(i >= CBI.getNumArgOperands() || !isa<BasicBlock
>(CBI.getOperand(i)))) { CheckFailed("Using an unescaped label as a callbr argument!"
, &CBI); return; } } while (false)
2467 "Using an unescaped label as a callbr argument!", &CBI)do { if (!(i >= CBI.getNumArgOperands() || !isa<BasicBlock
>(CBI.getOperand(i)))) { CheckFailed("Using an unescaped label as a callbr argument!"
, &CBI); return; } } while (false)
;
2468 if (isa<BasicBlock>(CBI.getOperand(i)))
2469 for (unsigned j = i + 1; j != e; ++j)
2470 Assert(CBI.getOperand(i) != CBI.getOperand(j),do { if (!(CBI.getOperand(i) != CBI.getOperand(j))) { CheckFailed
("Duplicate callbr destination!", &CBI); return; } } while
(false)
2471 "Duplicate callbr destination!", &CBI)do { if (!(CBI.getOperand(i) != CBI.getOperand(j))) { CheckFailed
("Duplicate callbr destination!", &CBI); return; } } while
(false)
;
2472 }
2473
2474 visitTerminator(CBI);
2475}
2476
2477void Verifier::visitSelectInst(SelectInst &SI) {
2478 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
2479 SI.getOperand(2)),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
2480 "Invalid operands for select instruction!", &SI)do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
;
2481
2482 Assert(SI.getTrueValue()->getType() == SI.getType(),do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (false)
2483 "Select values must have same type as select instruction!", &SI)do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (false)
;
2484 visitInstruction(SI);
2485}
2486
2487/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2488/// a pass, if any exist, it's an error.
2489///
2490void Verifier::visitUserOp1(Instruction &I) {
2491 Assert(false, "User-defined operators should not live outside of a pass!", &I)do { if (!(false)) { CheckFailed("User-defined operators should not live outside of a pass!"
, &I); return; } } while (false)
;
2492}
2493
2494void Verifier::visitTruncInst(TruncInst &I) {
2495 // Get the source and destination types
2496 Type *SrcTy = I.getOperand(0)->getType();
2497 Type *DestTy = I.getType();
2498
2499 // Get the size of the types in bits, we'll need this later
2500 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2501 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2502
2503 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only operates on integer"
, &I); return; } } while (false)
;
2504 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only produces integer"
, &I); return; } } while (false)
;
2505 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
2506 "trunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2507 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for Trunc"
, &I); return; } } while (false)
;
2508
2509 visitInstruction(I);
2510}
2511
2512void Verifier::visitZExtInst(ZExtInst &I) {
2513 // Get the source and destination types
2514 Type *SrcTy = I.getOperand(0)->getType();
2515 Type *DestTy = I.getType();
2516
2517 // Get the size of the types in bits, we'll need this later
2518 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only operates on integer"
, &I); return; } } while (false)
;
2519 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only produces an integer"
, &I); return; } } while (false)
;
2520 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2521 "zext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2522 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2523 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2524
2525 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for ZExt"
, &I); return; } } while (false)
;
2526
2527 visitInstruction(I);
2528}
2529
2530void Verifier::visitSExtInst(SExtInst &I) {
2531 // Get the source and destination types
2532 Type *SrcTy = I.getOperand(0)->getType();
2533 Type *DestTy = I.getType();
2534
2535 // Get the size of the types in bits, we'll need this later
2536 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2537 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2538
2539 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SExt only operates on integer"
, &I); return; } } while (false)
;
2540 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("SExt only produces an integer"
, &I); return; } } while (false)
;
2541 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2542 "sext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2543 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for SExt"
, &I); return; } } while (false)
;
2544
2545 visitInstruction(I);
2546}
2547
2548void Verifier::visitFPTruncInst(FPTruncInst &I) {
2549 // Get the source and destination types
2550 Type *SrcTy = I.getOperand(0)->getType();
2551 Type *DestTy = I.getType();
2552 // Get the size of the types in bits, we'll need this later
2553 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2554 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2555
2556 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only operates on FP"
, &I); return; } } while (false)
;
2557 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only produces an FP"
, &I); return; } } while (false)
;
2558 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
2559 "fptrunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2560 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for FPTrunc"
, &I); return; } } while (false)
;
2561
2562 visitInstruction(I);
2563}
2564
2565void Verifier::visitFPExtInst(FPExtInst &I) {
2566 // Get the source and destination types
2567 Type *SrcTy = I.getOperand(0)->getType();
2568 Type *DestTy = I.getType();
2569
2570 // Get the size of the types in bits, we'll need this later
2571 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2572 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2573
2574 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only operates on FP"
, &I); return; } } while (false)
;
2575 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only produces an FP"
, &I); return; } } while (false)
;
2576 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2577 "fpext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2578 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("DestTy too small for FPExt"
, &I); return; } } while (false)
;
2579
2580 visitInstruction(I);
2581}
2582
2583void Verifier::visitUIToFPInst(UIToFPInst &I) {
2584 // Get the source and destination types
2585 Type *SrcTy = I.getOperand(0)->getType();
2586 Type *DestTy = I.getType();
2587
2588 bool SrcVec = SrcTy->isVectorTy();
2589 bool DstVec = DestTy->isVectorTy();
2590
2591 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
2592 "UIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2593 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (false)
2594 "UIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (false)
;
2595 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (false)
2596 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (false)
;
2597
2598 if (SrcVec && DstVec)
2599 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2600 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2601 "UIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
;
2602
2603 visitInstruction(I);
2604}
2605
2606void Verifier::visitSIToFPInst(SIToFPInst &I) {
2607 // Get the source and destination types
2608 Type *SrcTy = I.getOperand(0)->getType();
2609 Type *DestTy = I.getType();
2610
2611 bool SrcVec = SrcTy->isVectorTy();
2612 bool DstVec = DestTy->isVectorTy();
2613
2614 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
2615 "SIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2616 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (false)
2617 "SIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (false)
;
2618 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (false)
2619 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (false)
;
2620
2621 if (SrcVec && DstVec)
2622 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2623 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2624 "SIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
;
2625
2626 visitInstruction(I);
2627}
2628
2629void Verifier::visitFPToUIInst(FPToUIInst &I) {
2630 // Get the source and destination types
2631 Type *SrcTy = I.getOperand(0)->getType();
2632 Type *DestTy = I.getType();
2633
2634 bool SrcVec = SrcTy->isVectorTy();
2635 bool DstVec = DestTy->isVectorTy();
2636
2637 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (false)
2638 "FPToUI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2639 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (false)
2640 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (false)
;
2641 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (false)
2642 "FPToUI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (false)
;
2643
2644 if (SrcVec && DstVec)
2645 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
2646 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
2647 "FPToUI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
;
2648
2649 visitInstruction(I);
2650}
2651
2652void Verifier::visitFPToSIInst(FPToSIInst &I) {
2653 // Get the source and destination types
2654 Type *SrcTy = I.getOperand(0)->getType();
2655 Type *DestTy = I.getType();
2656
2657 bool SrcVec = SrcTy->isVectorTy();
2658 bool DstVec = DestTy->isVectorTy();
2659
2660 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (false)
2661 "FPToSI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2662 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (false)
2663 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (false)
;
2664 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (false)
2665 "FPToSI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (false)
;
2666
2667 if (SrcVec && DstVec)
2668 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
2669 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
2670 "FPToSI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
;
2671
2672 visitInstruction(I);
2673}
2674
2675void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2676 // Get the source and destination types
2677 Type *SrcTy = I.getOperand(0)->getType();
2678 Type *DestTy = I.getType();
2679
2680 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I)do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("PtrToInt source must be pointer"
, &I); return; } } while (false)
;
2681
2682 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2683 Assert(!DL.isNonIntegralPointerType(PTy),do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"ptrtoint not supported for non-integral pointers"); return; }
} while (false)
2684 "ptrtoint not supported for non-integral pointers")do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"ptrtoint not supported for non-integral pointers"); return; }
} while (false)
;
2685
2686 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("PtrToInt result must be integral"
, &I); return; } } while (false)
;
2687 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (false)
2688 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (false)
;
2689
2690 if (SrcTy->isVectorTy()) {
2691 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2692 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2693 Assert(VSrc->getNumElements() == VDest->getNumElements(),do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (false)
2694 "PtrToInt Vector width mismatch", &I)do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (false)
;
2695 }
2696
2697 visitInstruction(I);
2698}
2699
2700void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2701 // Get the source and destination types
2702 Type *SrcTy = I.getOperand(0)->getType();
2703 Type *DestTy = I.getType();
2704
2705 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("IntToPtr source must be an integral"
, &I); return; } } while (false)
2706 "IntToPtr source must be an integral", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("IntToPtr source must be an integral"
, &I); return; } } while (false)
;
2707 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I)do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("IntToPtr result must be a pointer"
, &I); return; } } while (false)
;
2708
2709 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2710 Assert(!DL.isNonIntegralPointerType(PTy),do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"inttoptr not supported for non-integral pointers"); return; }
} while (false)
2711 "inttoptr not supported for non-integral pointers")do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"inttoptr not supported for non-integral pointers"); return; }
} while (false)
;
2712
2713 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (false)
2714 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (false)
;
2715 if (SrcTy->isVectorTy()) {
2716 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2717 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2718 Assert(VSrc->getNumElements() == VDest->getNumElements(),do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (false)
2719 "IntToPtr Vector width mismatch", &I)do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (false)
;
2720 }
2721 visitInstruction(I);
2722}
2723
2724void Verifier::visitBitCastInst(BitCastInst &I) {
2725 Assert(do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
2726 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
2727 "Invalid bitcast", &I)do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
;
2728 visitInstruction(I);
2729}
2730
2731void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2732 Type *SrcTy = I.getOperand(0)->getType();
2733 Type *DestTy = I.getType();
2734
2735 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (false)
2736 &I)do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (false)
;
2737 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (false)
2738 &I)do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (false)
;
2739 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (false)
2740 "AddrSpaceCast must be between different address spaces", &I)do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (false)
;
2741 if (SrcTy->isVectorTy())
2742 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),do { if (!(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements
())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
2743 "AddrSpaceCast vector pointer number of elements mismatch", &I)do { if (!(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements
())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
;
2744 visitInstruction(I);
2745}
2746
2747/// visitPHINode - Ensure that a PHI node is well formed.
2748///
2749void Verifier::visitPHINode(PHINode &PN) {
2750 // Ensure that the PHI nodes are all grouped together at the top of the block.
2751 // This can be tested by checking whether the instruction before this is
2752 // either nonexistent (because this is begin()) or is a PHI node. If not,
2753 // then there is some other instruction before a PHI.
2754 Assert(&PN == &PN.getParent()->front() ||do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
2755 isa<PHINode>(--BasicBlock::iterator(&PN)),do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
2756 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent())do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
;
2757
2758 // Check that a PHI doesn't yield a Token.
2759 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!")do { if (!(!PN.getType()->isTokenTy())) { CheckFailed("PHI nodes cannot have token type!"
); return; } } while (false)
;
2760
2761 // Check that all of the values of the PHI node have the same type as the
2762 // result, and that the incoming blocks are really basic blocks.
2763 for (Value *IncValue : PN.incoming_values()) {
2764 Assert(PN.getType() == IncValue->getType(),do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (false)
2765 "PHI node operands are not the same type as the result!", &PN)do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (false)
;
2766 }
2767
2768 // All other PHI node constraints are checked in the visitBasicBlock method.
2769
2770 visitInstruction(PN);
2771}
2772
2773void Verifier::visitCallBase(CallBase &Call) {
2774 Assert(Call.getCalledValue()->getType()->isPointerTy(),do { if (!(Call.getCalledValue()->getType()->isPointerTy
())) { CheckFailed("Called function must be a pointer!", Call
); return; } } while (false)
2775 "Called function must be a pointer!", Call)do { if (!(Call.getCalledValue()->getType()->isPointerTy
())) { CheckFailed("Called function must be a pointer!", Call
); return; } } while (false)
;
2776 PointerType *FPTy = cast<PointerType>(Call.getCalledValue()->getType());
2777
2778 Assert(FPTy->getElementType()->isFunctionTy(),do { if (!(FPTy->getElementType()->isFunctionTy())) { CheckFailed
("Called function is not pointer to function type!", Call); return
; } } while (false)
2779 "Called function is not pointer to function type!", Call)do { if (!(FPTy->getElementType()->isFunctionTy())) { CheckFailed
("Called function is not pointer to function type!", Call); return
; } } while (false)
;
2780
2781 Assert(FPTy->getElementType() == Call.getFunctionType(),do { if (!(FPTy->getElementType() == Call.getFunctionType(
))) { CheckFailed("Called function is not the same type as the call!"
, Call); return; } } while (false)
2782 "Called function is not the same type as the call!", Call)do { if (!(FPTy->getElementType() == Call.getFunctionType(
))) { CheckFailed("Called function is not the same type as the call!"
, Call); return; } } while (false)
;
2783
2784 FunctionType *FTy = Call.getFunctionType();
2785
2786 // Verify that the correct number of arguments are being passed
2787 if (FTy->isVarArg())
2788 Assert(Call.arg_size() >= FTy->getNumParams(),do { if (!(Call.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, Call); return; } } while (false)
2789 "Called function requires more parameters than were provided!",do { if (!(Call.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, Call); return; } } while (false)
2790 Call)do { if (!(Call.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, Call); return; } } while (false)
;
2791 else
2792 Assert(Call.arg_size() == FTy->getNumParams(),do { if (!(Call.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", Call
); return; } } while (false)
2793 "Incorrect number of arguments passed to called function!", Call)do { if (!(Call.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", Call
); return; } } while (false)
;
2794
2795 // Verify that all arguments to the call match the function type.
2796 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2797 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),do { if (!(Call.getArgOperand(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, Call.getArgOperand(i), FTy->getParamType(i), Call); return
; } } while (false)
2798 "Call parameter type does not match function signature!",do { if (!(Call.getArgOperand(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, Call.getArgOperand(i), FTy->getParamType(i), Call); return
; } } while (false)
2799 Call.getArgOperand(i), FTy->getParamType(i), Call)do { if (!(Call.getArgOperand(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, Call.getArgOperand(i), FTy->getParamType(i), Call); return
; } } while (false)
;
2800
2801 AttributeList Attrs = Call.getAttributes();
2802
2803 Assert(verifyAttributeCount(Attrs, Call.arg_size()),do { if (!(verifyAttributeCount(Attrs, Call.arg_size()))) { CheckFailed
("Attribute after last parameter!", Call); return; } } while (
false)
2804 "Attribute after last parameter!", Call)do { if (!(verifyAttributeCount(Attrs, Call.arg_size()))) { CheckFailed
("Attribute after last parameter!", Call); return; } } while (
false)
;
2805
2806 bool IsIntrinsic = Call.getCalledFunction() &&
2807 Call.getCalledFunction()->getName().startswith("llvm.");
2808
2809 Function *Callee
2810 = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts());
2811
2812 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
2813 // Don't allow speculatable on call sites, unless the underlying function
2814 // declaration is also speculatable.
2815 Assert(Callee && Callee->isSpeculatable(),do { if (!(Callee && Callee->isSpeculatable())) { CheckFailed
("speculatable attribute may not apply to call sites", Call);
return; } } while (false)
2816 "speculatable attribute may not apply to call sites", Call)do { if (!(Callee && Callee->isSpeculatable())) { CheckFailed
("speculatable attribute may not apply to call sites", Call);
return; } } while (false)
;
2817 }
2818
2819 // Verify call attributes.
2820 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);
2821
2822 // Conservatively check the inalloca argument.
2823 // We have a bug if we can find that there is an underlying alloca without
2824 // inalloca.
2825 if (Call.hasInAllocaArgument()) {
2826 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
2827 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2828 Assert(AI->isUsedWithInAlloca(),do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, Call); return; } } while (false)
2829 "inalloca argument for call has mismatched alloca", AI, Call)do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, Call); return; } } while (false)
;
2830 }
2831
2832 // For each argument of the callsite, if it has the swifterror argument,
2833 // make sure the underlying alloca/parameter it comes from has a swifterror as
2834 // well.
2835 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2836 if (Call.paramHasAttr(i, Attribute::SwiftError)) {
2837 Value *SwiftErrorArg = Call.getArgOperand(i);
2838 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2839 Assert(AI->isSwiftError(),do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca"
, AI, Call); return; } } while (false)
2840 "swifterror argument for call has mismatched alloca", AI, Call)do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca"
, AI, Call); return; } } while (false)
;
2841 continue;
2842 }
2843 auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2844 Assert(ArgI,do { if (!(ArgI)) { CheckFailed("swifterror argument should come from an alloca or parameter"
, SwiftErrorArg, Call); return; } } while (false)
2845 "swifterror argument should come from an alloca or parameter",do { if (!(ArgI)) { CheckFailed("swifterror argument should come from an alloca or parameter"
, SwiftErrorArg, Call); return; } } while (false)
2846 SwiftErrorArg, Call)do { if (!(ArgI)) { CheckFailed("swifterror argument should come from an alloca or parameter"
, SwiftErrorArg, Call); return; } } while (false)
;
2847 Assert(ArgI->hasSwiftErrorAttr(),do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, Call); return; } } while (false)
2848 "swifterror argument for call has mismatched parameter", ArgI,do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, Call); return; } } while (false)
2849 Call)do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, Call); return; } } while (false)
;
2850 }
2851
2852 if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) {
2853 // Don't allow immarg on call sites, unless the underlying declaration
2854 // also has the matching immarg.
2855 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),do { if (!(Callee && Callee->hasParamAttribute(i, Attribute
::ImmArg))) { CheckFailed("immarg may not apply only to call sites"
, Call.getArgOperand(i), Call); return; } } while (false)
2856 "immarg may not apply only to call sites",do { if (!(Callee && Callee->hasParamAttribute(i, Attribute
::ImmArg))) { CheckFailed("immarg may not apply only to call sites"
, Call.getArgOperand(i), Call); return; } } while (false)
2857 Call.getArgOperand(i), Call)do { if (!(Callee && Callee->hasParamAttribute(i, Attribute
::ImmArg))) { CheckFailed("immarg may not apply only to call sites"
, Call.getArgOperand(i), Call); return; } } while (false)
;
2858 }
2859
2860 if (Call.paramHasAttr(i, Attribute::ImmArg)) {
2861 Value *ArgVal = Call.getArgOperand(i);
2862 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),do { if (!(isa<ConstantInt>(ArgVal) || isa<ConstantFP
>(ArgVal))) { CheckFailed("immarg operand has non-immediate parameter"
, ArgVal, Call); return; } } while (false)
2863 "immarg operand has non-immediate parameter", ArgVal, Call)do { if (!(isa<ConstantInt>(ArgVal) || isa<ConstantFP
>(ArgVal))) { CheckFailed("immarg operand has non-immediate parameter"
, ArgVal, Call); return; } } while (false)
;
2864 }
2865 }
2866
2867 if (FTy->isVarArg()) {
2868 // FIXME? is 'nest' even legal here?
2869 bool SawNest = false;
2870 bool SawReturned = false;
2871
2872 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
2873 if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
2874 SawNest = true;
2875 if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
2876 SawReturned = true;
2877 }
2878
2879 // Check attributes on the varargs part.
2880 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
2881 Type *Ty = Call.getArgOperand(Idx)->getType();
2882 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
2883 verifyParameterAttrs(ArgAttrs, Ty, &Call);
2884
2885 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2886 Assert(!SawNest, "More than one parameter has attribute nest!", Call)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, Call); return; } } while (false)
;
2887 SawNest = true;
2888 }
2889
2890 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2891 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, Call); return; } } while (false)
2892 Call)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, Call); return; } } while (false)
;
2893 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", Call); return; } } while (false)
2894 "Incompatible argument and return types for 'returned' "do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", Call); return; } } while (false)
2895 "attribute",do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", Call); return; } } while (false)
2896 Call)do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", Call); return; } } while (false)
;
2897 SawReturned = true;
2898 }
2899
2900 // Statepoint intrinsic is vararg but the wrapped function may be not.
2901 // Allow sret here and check the wrapped function in verifyStatepoint.
2902 if (!Call.getCalledFunction() ||
2903 Call.getCalledFunction()->getIntrinsicID() !=
2904 Intrinsic::experimental_gc_statepoint)
2905 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, Call); return; } } while (false)
2906 "Attribute 'sret' cannot be used for vararg call arguments!",do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, Call); return; } } while (false)
2907 Call)do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, Call); return; } } while (false)
;
2908
2909 if (ArgAttrs.hasAttribute(Attribute::InAlloca))
2910 Assert(Idx == Call.arg_size() - 1,do { if (!(Idx == Call.arg_size() - 1)) { CheckFailed("inalloca isn't on the last argument!"
, Call); return; } } while (false)
2911 "inalloca isn't on the last argument!", Call)do { if (!(Idx == Call.arg_size() - 1)) { CheckFailed("inalloca isn't on the last argument!"
, Call); return; } } while (false)
;
2912 }
2913 }
2914
2915 // Verify that there's no metadata unless it's a direct call to an intrinsic.
2916 if (!IsIntrinsic) {
2917 for (Type *ParamTy : FTy->params()) {
2918 Assert(!ParamTy->isMetadataTy(),do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, Call); return; } } while (false)
2919 "Function has metadata parameter but isn't an intrinsic", Call)do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, Call); return; } } while (false)
;
2920 Assert(!ParamTy->isTokenTy(),do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, Call); return; } } while (false)
2921 "Function has token parameter but isn't an intrinsic", Call)do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, Call); return; } } while (false)
;
2922 }
2923 }
2924
2925 // Verify that indirect calls don't return tokens.
2926 if (!Call.getCalledFunction())
2927 Assert(!FTy->getReturnType()->isTokenTy(),do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (false)
2928 "Return type cannot be token for indirect call!")do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (false)
;
2929
2930 if (Function *F = Call.getCalledFunction())
2931 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2932 visitIntrinsicCall(ID, Call);
2933
2934 // Verify that a callsite has at most one "deopt", at most one "funclet" and
2935 // at most one "gc-transition" operand bundle.
2936 bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2937 FoundGCTransitionBundle = false;
2938 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
2939 OperandBundleUse BU = Call.getOperandBundleAt(i);
2940 uint32_t Tag = BU.getTagID();
2941 if (Tag == LLVMContext::OB_deopt) {
2942 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call)do { if (!(!FoundDeoptBundle)) { CheckFailed("Multiple deopt operand bundles"
, Call); return; } } while (false)
;
2943 FoundDeoptBundle = true;
2944 } else if (Tag == LLVMContext::OB_gc_transition) {
2945 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles"
, Call); return; } } while (false)
2946 Call)do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles"
, Call); return; } } while (false)
;
2947 FoundGCTransitionBundle = true;
2948 } else if (Tag == LLVMContext::OB_funclet) {
2949 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call)do { if (!(!FoundFuncletBundle)) { CheckFailed("Multiple funclet operand bundles"
, Call); return; } } while (false)
;
2950 FoundFuncletBundle = true;
2951 Assert(BU.Inputs.size() == 1,do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand"
, Call); return; } } while (false)
2952 "Expected exactly one funclet bundle operand", Call)do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand"
, Call); return; } } while (false)
;
2953 Assert(isa<FuncletPadInst>(BU.Inputs.front()),do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, Call); return; } } while (false)
2954 "Funclet bundle operands should correspond to a FuncletPadInst",do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, Call); return; } } while (false)
2955 Call)do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, Call); return; } } while (false)
;
2956 }
2957 }
2958
2959 // Verify that each inlinable callsite of a debug-info-bearing function in a
2960 // debug-info-bearing function has a debug location attached to it. Failure to
2961 // do so causes assertion failures when the inliner sets up inline scope info.
2962 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
2963 Call.getCalledFunction()->getSubprogram())
2964 AssertDI(Call.getDebugLoc(),do { if (!(Call.getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", Call); return; } } while
(false)
2965 "inlinable function call in a function with "do { if (!(Call.getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", Call); return; } } while
(false)
2966 "debug info must have a !dbg location",do { if (!(Call.getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", Call); return; } } while
(false)
2967 Call)do { if (!(Call.getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", Call); return; } } while
(false)
;
2968
2969 visitInstruction(Call);
2970}
2971
2972/// Two types are "congruent" if they are identical, or if they are both pointer
2973/// types with different pointee types and the same address space.
2974static bool isTypeCongruent(Type *L, Type *R) {
2975 if (L == R)
2976 return true;
2977 PointerType *PL = dyn_cast<PointerType>(L);
2978 PointerType *PR = dyn_cast<PointerType>(R);
2979 if (!PL || !PR)
2980 return false;
2981 return PL->getAddressSpace() == PR->getAddressSpace();
2982}
2983
2984static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
2985 static const Attribute::AttrKind ABIAttrs[] = {
2986 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2987 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
2988 Attribute::SwiftError};
2989 AttrBuilder Copy;
2990 for (auto AK : ABIAttrs) {
2991 if (Attrs.hasParamAttribute(I, AK))
2992 Copy.addAttribute(AK);
2993 }
2994 if (Attrs.hasParamAttribute(I, Attribute::Alignment))
2995 Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
2996 return Copy;
2997}
2998
2999void Verifier::verifyMustTailCall(CallInst &CI) {
3000 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI)do { if (!(!CI.isInlineAsm())) { CheckFailed("cannot use musttail call with inline asm"
, &CI); return; } } while (false)
;
3001
3002 // - The caller and callee prototypes must match. Pointer types of
3003 // parameters or return types may differ in pointee type, but not
3004 // address space.
3005 Function *F = CI.getParent()->getParent();
3006 FunctionType *CallerTy = F->getFunctionType();
3007 FunctionType *CalleeTy = CI.getFunctionType();
3008 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3009 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
3010 "cannot guarantee tail call due to mismatched parameter counts",do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
3011 &CI)do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
;
3012 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3013 Assert(do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
3014 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
3015 "cannot guarantee tail call due to mismatched parameter types", &CI)do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
;
3016 }
3017 }
3018 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (false)
3019 "cannot guarantee tail call due to mismatched varargs", &CI)do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (false)
;
3020 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (false)
3021 "cannot guarantee tail call due to mismatched return types", &CI)do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (false)
;
3022
3023 // - The calling conventions of the caller and callee must match.
3024 Assert(F->getCallingConv() == CI.getCallingConv(),do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (false)
3025 "cannot guarantee tail call due to mismatched calling conv", &CI)do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (false)
;
3026
3027 // - All ABI-impacting function attributes, such as sret, byval, inreg,
3028 // returned, and inalloca, must match.
3029 AttributeList CallerAttrs = F->getAttributes();
3030 AttributeList CalleeAttrs = CI.getAttributes();
3031 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3032 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3033 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3034 Assert(CallerABIAttrs == CalleeABIAttrs,do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
3035 "cannot guarantee tail call due to mismatched ABI impacting "do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
3036 "function attributes",do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
3037 &CI, CI.getOperand(I))do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
;
3038 }
3039
3040 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3041 // or a pointer bitcast followed by a ret instruction.
3042 // - The ret instruction must return the (possibly bitcasted) value
3043 // produced by the call or void.
3044 Value *RetVal = &CI;
3045 Instruction *Next = CI.getNextNode();
3046
3047 // Handle the optional bitcast.
3048 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3049 Assert(BI->getOperand(0) == RetVal,do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (false)
3050 "bitcast following musttail call must use the call", BI)do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (false)
;
3051 RetVal = BI;
3052 Next = BI->getNextNode();
3053 }
3054
3055 // Check the return.
3056 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3057 Assert(Ret, "musttail call must precede a ret with an optional bitcast",do { if (!(Ret)) { CheckFailed("musttail call must precede a ret with an optional bitcast"
, &CI); return; } } while (false)
3058 &CI)do { if (!(Ret)) { CheckFailed("musttail call must precede a ret with an optional bitcast"
, &CI); return; } } while (false)
;
3059 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal)) { CheckFailed("musttail call result must be returned"
, Ret); return; } } while (false)
3060 "musttail call result must be returned", Ret)do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal)) { CheckFailed("musttail call result must be returned"
, Ret); return; } } while (false)
;
3061}
3062
3063void Verifier::visitCallInst(CallInst &CI) {
3064 visitCallBase(CI);
3065
3066 if (CI.isMustTailCall())
3067 verifyMustTailCall(CI);
3068}
3069
3070void Verifier::visitInvokeInst(InvokeInst &II) {
3071 visitCallBase(II);
3072
3073 // Verify that the first non-PHI instruction of the unwind destination is an
3074 // exception handling instruction.
3075 Assert(do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
3076 II.getUnwindDest()->isEHPad(),do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
3077 "The unwind destination does not have an exception handling instruction!",do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
3078 &II)do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
;
3079
3080 visitTerminator(II);
3081}
3082
3083/// visitUnaryOperator - Check the argument to the unary operator.
3084///
3085void Verifier::visitUnaryOperator(UnaryOperator &U) {
3086 Assert(U.getType() == U.getOperand(0)->getType(),do { if (!(U.getType() == U.getOperand(0)->getType())) { CheckFailed
("Unary operators must have same type for" "operands and result!"
, &U); return; } } while (false)
3087 "Unary operators must have same type for"do { if (!(U.getType() == U.getOperand(0)->getType())) { CheckFailed
("Unary operators must have same type for" "operands and result!"
, &U); return; } } while (false)
3088 "operands and result!",do { if (!(U.getType() == U.getOperand(0)->getType())) { CheckFailed
("Unary operators must have same type for" "operands and result!"
, &U); return; } } while (false)
3089 &U)do { if (!(U.getType() == U.getOperand(0)->getType())) { CheckFailed
("Unary operators must have same type for" "operands and result!"
, &U); return; } } while (false)
;
3090
3091 switch (U.getOpcode()) {
3092 // Check that floating-point arithmetic operators are only used with
3093 // floating-point operands.
3094 case Instruction::FNeg:
3095 Assert(U.getType()->isFPOrFPVectorTy(),do { if (!(U.getType()->isFPOrFPVectorTy())) { CheckFailed
("FNeg operator only works with float types!", &U); return
; } } while (false)
3096 "FNeg operator only works with float types!", &U)do { if (!(U.getType()->isFPOrFPVectorTy())) { CheckFailed
("FNeg operator only works with float types!", &U); return
; } } while (false)
;
3097 break;
3098 default:
3099 llvm_unreachable("Unknown UnaryOperator opcode!")::llvm::llvm_unreachable_internal("Unknown UnaryOperator opcode!"
, "/build/llvm-toolchain-snapshot-9~svn360410/lib/IR/Verifier.cpp"
, 3099)
;
3100 }
3101
3102 visitInstruction(U);
3103}
3104
3105/// visitBinaryOperator - Check that both arguments to the binary operator are
3106/// of the same type!
3107///
3108void Verifier::visitBinaryOperator(BinaryOperator &B) {
3109 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (false)
3110 "Both operands to a binary operator are not of the same type!", &B)do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (false)
;
3111
3112 switch (B.getOpcode()) {
3113 // Check that integer arithmetic operators are only used with
3114 // integral operands.
3115 case Instruction::Add:
3116 case Instruction::Sub:
3117 case Instruction::Mul:
3118 case Instruction::SDiv:
3119 case Instruction::UDiv:
3120 case Instruction::SRem:
3121 case Instruction::URem:
3122 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (false)
3123 "Integer arithmetic operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (false)
;
3124 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3125 "Integer arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3126 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3127 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
;
3128 break;
3129 // Check that floating-point arithmetic operators are only used with
3130 // floating-point operands.
3131 case Instruction::FAdd:
3132 case Instruction::FSub:
3133 case Instruction::FMul:
3134 case Instruction::FDiv:
3135 case Instruction::FRem:
3136 Assert(B.getType()->isFPOrFPVectorTy(),do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
3137 "Floating-point arithmetic operators only work with "do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
3138 "floating-point types!",do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
3139 &B)do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
;
3140 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3141 "Floating-point arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3142 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3143 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
;
3144 break;
3145 // Check that logical operators are only used with integral operands.
3146 case Instruction::And:
3147 case Instruction::Or:
3148 case Instruction::Xor:
3149 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (false)
3150 "Logical operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (false)
;
3151 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
3152 "Logical operators must have same type for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
3153 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
;
3154 break;
3155 case Instruction::Shl:
3156 case Instruction::LShr:
3157 case Instruction::AShr:
3158 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (false)
3159 "Shifts only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (false)
;
3160 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (false)
3161 "Shift return type must be same as operands!", &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (false)
;
3162 break;
3163 default:
3164 llvm_unreachable("Unknown BinaryOperator opcode!")::llvm::llvm_unreachable_internal("Unknown BinaryOperator opcode!"
, "/build/llvm-toolchain-snapshot-9~svn360410/lib/IR/Verifier.cpp"
, 3164)
;
3165 }
3166
3167 visitInstruction(B);
3168}
3169
3170void Verifier::visitICmpInst(ICmpInst &IC) {
3171 // Check that the operands are the same type
3172 Type *Op0Ty = IC.getOperand(0)->getType();
3173 Type *Op1Ty = IC.getOperand(1)->getType();
3174 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (false)
3175 "Both operands to ICmp instruction are not of the same type!", &IC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (false)
;
3176 // Check that the operands are the right type
3177 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy
())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (false)
3178 "Invalid operand types for ICmp instruction", &IC)do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy
())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (false)
;
3179 // Check that the predicate is valid.
3180 Assert(IC.isIntPredicate(),do { if (!(IC.isIntPredicate())) { CheckFailed("Invalid predicate in ICmp instruction!"
, &IC); return; } } while (false)
3181 "Invalid predicate in ICmp instruction!", &IC)do { if (!(IC.isIntPredicate())) { CheckFailed("Invalid predicate in ICmp instruction!"
, &IC); return; } } while (false)
;
3182
3183 visitInstruction(IC);
3184}
3185
3186void Verifier::visitFCmpInst(FCmpInst &FC) {
3187 // Check that the operands are the same type
3188 Type *Op0Ty = FC.getOperand(0)->getType();
3189 Type *Op1Ty = FC.getOperand(1)->getType();
3190 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (false)
3191 "Both operands to FCmp instruction are not of the same type!", &FC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (false)
;
3192 // Check that the operands are the right type
3193 Assert(Op0Ty->isFPOrFPVectorTy(),do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (false)
3194 "Invalid operand types for FCmp instruction", &FC)do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (false)
;
3195 // Check that the predicate is valid.
3196 Assert(FC.isFPPredicate(),do { if (!(FC.isFPPredicate())) { CheckFailed("Invalid predicate in FCmp instruction!"
, &FC); return; } } while (false)
3197 "Invalid predicate in FCmp instruction!", &FC)do { if (!(FC.isFPPredicate())) { CheckFailed("Invalid predicate in FCmp instruction!"
, &FC); return; } } while (false)
;
3198
3199 visitInstruction(FC);
3200}
3201
3202void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3203 Assert(do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
3204 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
3205 "Invalid extractelement operands!", &EI)do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
;
3206 visitInstruction(EI);
3207}
3208
3209void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3210 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
3211 IE.getOperand(2)),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
3212 "Invalid insertelement operands!", &IE)do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
;
3213 visitInstruction(IE);
3214}
3215
3216void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3217 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
3218 SV.getOperand(2)),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
3219 "Invalid shufflevector operands!", &SV)do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
;
3220 visitInstruction(SV);
3221}
3222
3223void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3224 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3225
3226 Assert(isa<PointerType>(TargetTy),do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (false)
3227 "GEP base pointer is not a vector or a vector of pointers", &GEP)do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (false)
;
3228 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP)do { if (!(GEP.getSourceElementType()->isSized())) { CheckFailed
("GEP into unsized type!", &GEP); return; } } while (false
)
;
3229
3230 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3231 Assert(all_of(do { if (!(all_of( Idxs, [](Value* V) { return V->getType(
)->isIntOrIntVectorTy(); }))) { CheckFailed("GEP indexes must be integers"
, &GEP); return; } } while (false)
3232 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),do { if (!(all_of( Idxs, [](Value* V) { return V->getType(
)->isIntOrIntVectorTy(); }))) { CheckFailed("GEP indexes must be integers"
, &GEP); return; } } while (false)
3233 "GEP indexes must be integers", &GEP)do { if (!(all_of( Idxs, [](Value* V) { return V->getType(
)->isIntOrIntVectorTy(); }))) { CheckFailed("GEP indexes must be integers"
, &GEP); return; } } while (false)
;
3234 Type *ElTy =
3235 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3236 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP)do { if (!(ElTy)) { CheckFailed("Invalid indices for GEP pointer type!"
, &GEP); return; } } while (false)
;
3237
3238 Assert(GEP.getType()->isPtrOrPtrVectorTy() &&do { if (!(GEP.getType()->isPtrOrPtrVectorTy() && GEP
.getResultElementType() == ElTy)) { CheckFailed("GEP is not of right type for indices!"
, &GEP, ElTy); return; } } while (false)
3239 GEP.getResultElementType() == ElTy,do { if (!(GEP.getType()->isPtrOrPtrVectorTy() && GEP
.getResultElementType() == ElTy)) { CheckFailed("GEP is not of right type for indices!"
, &GEP, ElTy); return; } } while (false)
3240 "GEP is not of right type for indices!", &GEP, ElTy)do { if (!(GEP.getType()->isPtrOrPtrVectorTy() && GEP
.getResultElementType() == ElTy)) { CheckFailed("GEP is not of right type for indices!"
, &GEP, ElTy); return; } } while (false)
;
3241
3242 if (GEP.getType()->isVectorTy()) {
3243 // Additional checks for vector GEPs.
3244 unsigned GEPWidth = GEP.getType()->getVectorNumElements();
3245 if (GEP.getPointerOperandType()->isVectorTy())
3246 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),do { if (!(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements
())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
3247 "Vector GEP result width doesn't match operand's", &GEP)do { if (!(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements
())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
;
3248 for (Value *Idx : Idxs) {
3249 Type *IndexTy = Idx->getType();
3250 if (IndexTy->isVectorTy()) {
3251 unsigned IndexWidth = IndexTy->getVectorNumElements();
3252 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP)do { if (!(IndexWidth == GEPWidth)) { CheckFailed("Invalid GEP index vector width"
, &GEP); return; } } while (false)
;
3253 }
3254 Assert(IndexTy->isIntOrIntVectorTy(),do { if (!(IndexTy->isIntOrIntVectorTy())) { CheckFailed("All GEP indices should be of integer type"
); return; } } while (false)
3255 "All GEP indices should be of integer type")do { if (!(IndexTy->isIntOrIntVectorTy())) { CheckFailed("All GEP indices should be of integer type"
); return; } } while (false)
;
3256 }
3257 }
3258
3259 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3260 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),do { if (!(GEP.getAddressSpace() == PTy->getAddressSpace()
)) { CheckFailed("GEP address space doesn't match type", &
GEP); return; } } while (false)
3261 "GEP address space doesn't match type", &GEP)do { if (!(GEP.getAddressSpace() == PTy->getAddressSpace()
)) { CheckFailed("GEP address space doesn't match type", &
GEP); return; } } while (false)
;
3262 }
3263
3264 visitInstruction(GEP);
3265}
3266
3267static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3268 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3269}
3270
3271void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3272 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&((Range && Range == I.getMetadata(LLVMContext::MD_range
) && "precondition violation") ? static_cast<void>
(0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/build/llvm-toolchain-snapshot-9~svn360410/lib/IR/Verifier.cpp"
, 3273, __PRETTY_FUNCTION__))
3273 "precondition violation")((Range && Range == I.getMetadata(LLVMContext::MD_range
) && "precondition violation") ? static_cast<void>
(0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/build/llvm-toolchain-snapshot-9~svn360410/lib/IR/Verifier.cpp"
, 3273, __PRETTY_FUNCTION__))
;
3274
3275 unsigned NumOperands = Range->getNumOperands();
3276 Assert(NumOperands % 2 == 0, "Unfinished range!", Range)do { if (!(NumOperands % 2 == 0)) { CheckFailed("Unfinished range!"
, Range); return; } } while (false)
;
3277 unsigned NumRanges = NumOperands / 2;
3278 Assert(NumRanges >= 1, "It should have at least one range!", Range)do { if (!(NumRanges >= 1)) { CheckFailed("It should have at least one range!"
, Range); return; } } while (false)
;
3279
3280 ConstantRange LastRange(1, true); // Dummy initial value
3281 for (unsigned i = 0; i < NumRanges; ++i) {
3282 ConstantInt *Low =
3283 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3284 Assert(Low, "The lower limit must be an integer!", Low)do { if (!(Low)) { CheckFailed("The lower limit must be an integer!"
, Low); return; } } while (false)
;
3285 ConstantInt *High =
3286 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3287 Assert(High, "The upper limit must be an integer!", High)do { if (!(High)) { CheckFailed("The upper limit must be an integer!"
, High); return; } } while (false)
;
3288 Assert(High->getType() == Low->getType() && High->getType() == Ty,do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (false)
3289 "Range types must match instruction type!", &I)do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (false)
;
3290
3291 APInt HighV = High->getValue();
3292 APInt LowV = Low->getValue();
3293 ConstantRange CurRange(LowV, HighV);
3294 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (false)
3295 "Range must not be empty!", Range)do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (false)
;
3296 if (i != 0) {
3297 Assert(CurRange.intersectWith(LastRange).isEmptySet(),do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (false)
3298 "Intervals are overlapping", Range)do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (false)
;
3299 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (false)
3300 Range)do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (false)
;
3301 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
3302 Range)do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
;
3303 }
3304 LastRange = ConstantRange(LowV, HighV);
3305 }
3306 if (NumRanges > 2) {
3307 APInt FirstLow =
3308 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3309 APInt FirstHigh =
3310 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3311 ConstantRange FirstRange(FirstLow, FirstHigh);
3312 Assert(FirstRange.intersectWith(LastRange).isEmptySet(),do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (false)
3313 "Intervals are overlapping", Range)do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (false)
;
3314 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
3315 Range)do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
;
3316 }
3317}
3318
3319void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3320 unsigned Size = DL.getTypeSizeInBits(Ty);
3321 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I)do { if (!(Size >= 8)) { CheckFailed("atomic memory access' size must be byte-sized"
, Ty, I); return; } } while (false)
;
3322 Assert(!(Size & (Size - 1)),do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size"
, Ty, I); return; } } while (false)
3323 "atomic memory access' operand must have a power-of-two size", Ty, I)do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size"
, Ty, I); return; } } while (false)
;
3324}
3325
3326void Verifier::visitLoadInst(LoadInst &LI) {
3327 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3328 Assert(PTy, "Load operand must be a pointer.", &LI)do { if (!(PTy)) { CheckFailed("Load operand must be a pointer."
, &LI); return; } } while (false)
;
3329 Type *ElTy = LI.getType();
3330 Assert(LI.getAlignment() <= Value::MaximumAlignment,do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (false)
3331 "huge alignment values are unsupported", &LI)do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (false)
;
3332 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI)do { if (!(ElTy->isSized())) { CheckFailed("loading unsized types is not allowed"
, &LI); return; } } while (false)
;
3333 if (LI.isAtomic()) {
3334 Assert(LI.getOrdering() != AtomicOrdering::Release &&do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
3335 LI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
3336 "Load cannot have Release ordering", &LI)do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
;
3337 Assert(LI.getAlignment() != 0,do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (false)
3338 "Atomic load must specify explicit alignment", &LI)do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (false)
;
3339 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3340 "atomic load operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3341 "type!",do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3342 ElTy, &LI)do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
;
3343 checkAtomicMemAccessSize(ElTy, &LI);
3344 } else {
3345 Assert(LI.getSyncScopeID() == SyncScope::System,do { if (!(LI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic load cannot have SynchronizationScope specified"
, &LI); return; } } while (false)
3346 "Non-atomic load cannot have SynchronizationScope specified", &LI)do { if (!(LI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic load cannot have SynchronizationScope specified"
, &LI); return; } } while (false)
;
3347 }
3348
3349 visitInstruction(LI);
3350}
3351
3352void Verifier::visitStoreInst(StoreInst &SI) {
3353 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3354 Assert(PTy, "Store operand must be a pointer.", &SI)do { if (!(PTy)) { CheckFailed("Store operand must be a pointer."
, &SI); return; } } while (false)
;
3355 Type *ElTy = PTy->getElementType();
3356 Assert(ElTy == SI.getOperand(0)->getType(),do { if (!(ElTy == SI.getOperand(0)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (false)
3357 "Stored value type does not match pointer operand type!", &SI, ElTy)do { if (!(ElTy == SI.getOperand(0)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (false)
;
3358 Assert(SI.getAlignment() <= Value::MaximumAlignment,do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (false)
3359 "huge alignment values are unsupported", &SI)do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (false)
;
3360 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI)do { if (!(ElTy->isSized())) { CheckFailed("storing unsized types is not allowed"
, &SI); return; } } while (false)
;
3361 if (SI.isAtomic()) {
3362 Assert(SI.getOrdering() != AtomicOrdering::Acquire &&do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
3363 SI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
3364 "Store cannot have Acquire ordering", &SI)do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
;
3365 Assert(SI.getAlignment() != 0,do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (false)
3366 "Atomic store must specify explicit alignment", &SI)do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (false)
;
3367 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3368 "atomic store operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3369 "type!",do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3370 ElTy, &SI)do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
;
3371 checkAtomicMemAccessSize(ElTy, &SI);
3372 } else {
3373 Assert(SI.getSyncScopeID() == SyncScope::System,do { if (!(SI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (false)
3374 "Non-atomic store cannot have SynchronizationScope specified", &SI)do { if (!(SI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (false)
;
3375 }
3376 visitInstruction(SI);
3377}
3378
3379/// Check that SwiftErrorVal is used as a swifterror argument in CS.
3380void Verifier::verifySwiftErrorCall(CallBase &Call,
3381 const Value *SwiftErrorVal) {
3382 unsigned Idx = 0;
3383 for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) {
3384 if (*I == SwiftErrorVal) {
3385 Assert(Call.paramHasAttr(Idx, Attribute::SwiftError),do { if (!(Call.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, Call); return; }
} while (false)
3386 "swifterror value when used in a callsite should be marked "do { if (!(Call.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, Call); return; }
} while (false)
3387 "with swifterror attribute",do { if (!(Call.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, Call); return; }
} while (false)
3388 SwiftErrorVal, Call)do { if (!(Call.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, Call); return; }
} while (false)
;
3389 }
3390 }
3391}
3392
3393void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3394 // Check that swifterror value is only used by loads, stores, or as
3395 // a swifterror argument.
3396 for (const User *U : SwiftErrorVal->users()) {
3397 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3398 isa<InvokeInst>(U),do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3399 "swifterror value can only be loaded and stored from, or "do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3400 "as a swifterror argument!",do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3401 SwiftErrorVal, U)do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
;
3402 // If it is used by a store, check it is the second operand.
3403 if (auto StoreI = dyn_cast<StoreInst>(U))
3404 Assert(StoreI->getOperand(1) == SwiftErrorVal,do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
3405 "swifterror value should be the second operand when used "do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
3406 "by stores", SwiftErrorVal, U)do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
;
3407 if (auto *Call = dyn_cast<CallBase>(U))
3408 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3409 }
3410}
3411
3412void Verifier::visitAllocaInst(AllocaInst &AI) {
3413 SmallPtrSet<Type*, 4> Visited;
3414 PointerType *PTy = AI.getType();
3415 // TODO: Relax this restriction?
3416 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),do { if (!(PTy->getAddressSpace() == DL.getAllocaAddrSpace
())) { CheckFailed("Allocation instruction pointer not in the stack address space!"
, &AI); return; } } while (false)
3417 "Allocation instruction pointer not in the stack address space!",do { if (!(PTy->getAddressSpace() == DL.getAllocaAddrSpace
())) { CheckFailed("Allocation instruction pointer not in the stack address space!"
, &AI); return; } } while (false)
3418 &AI)do { if (!(PTy->getAddressSpace() == DL.getAllocaAddrSpace
())) { CheckFailed("Allocation instruction pointer not in the stack address space!"
, &AI); return; } } while (false)
;
3419 Assert(AI.getAllocatedType()->isSized(&Visited),do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (false)
3420 "Cannot allocate unsized type", &AI)do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (false)
;
3421 Assert(AI.getArraySize()->getType()->isIntegerTy(),do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (false)
3422 "Alloca array size must have integer type", &AI)do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (false)
;
3423 Assert(AI.getAlignment() <= Value::MaximumAlignment,do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (false)
3424 "huge alignment values are unsupported", &AI)do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (false)
;
3425
3426 if (AI.isSwiftError()) {
3427 verifySwiftErrorValue(&AI);
3428 }
3429
3430 visitInstruction(AI);
3431}
3432
3433void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3434
3435 // FIXME: more conditions???
3436 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
3437 "cmpxchg instructions must be atomic.", &CXI)do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
;
3438 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
3439 "cmpxchg instructions must be atomic.", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
;
3440 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
3441 "cmpxchg instructions cannot be unordered.", &CXI)do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
;
3442 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
3443 "cmpxchg instructions cannot be unordered.", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
;
3444 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3445 "cmpxchg instructions failure argument shall be no stronger than the "do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3446 "success argument",do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3447 &CXI)do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
;
3448 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
3449 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
3450 "cmpxchg failure ordering cannot include release semantics", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
;
3451
3452 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3453 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI)do { if (!(PTy)) { CheckFailed("First cmpxchg operand must be a pointer."
, &CXI); return; } } while (false)
;
3454 Type *ElTy = PTy->getElementType();
3455 Assert(ElTy->isIntOrPtrTy(),do { if (!(ElTy->isIntOrPtrTy())) { CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
3456 "cmpxchg operand must have integer or pointer type", ElTy, &CXI)do { if (!(ElTy->isIntOrPtrTy())) { CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
;
3457 checkAtomicMemAccessSize(ElTy, &CXI);
3458 Assert(ElTy == CXI.getOperand(1)->getType(),do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3459 "Expected value type does not match pointer operand type!", &CXI,do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3460 ElTy)do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
;
3461 Assert(ElTy == CXI.getOperand(2)->getType(),do { if (!(ElTy == CXI.getOperand(2)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3462 "Stored value type does not match pointer operand type!", &CXI, ElTy)do { if (!(ElTy == CXI.getOperand(2)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
;
3463 visitInstruction(CXI);
3464}
3465
3466void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3467 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,do { if (!(RMWI.getOrdering() != AtomicOrdering::NotAtomic)) {
CheckFailed("atomicrmw instructions must be atomic.", &RMWI
); return; } } while (false)
3468 "atomicrmw instructions must be atomic.", &RMWI)do { if (!(RMWI.getOrdering() != AtomicOrdering::NotAtomic)) {
CheckFailed("atomicrmw instructions must be atomic.", &RMWI
); return; } } while (false)
;
3469 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) {
CheckFailed("atomicrmw instructions cannot be unordered.", &
RMWI); return; } } while (false)
3470 "atomicrmw instructions cannot be unordered.", &RMWI)do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) {
CheckFailed("atomicrmw instructions cannot be unordered.", &
RMWI); return; } } while (false)
;
3471 auto Op = RMWI.getOperation();
3472 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3473 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI)do { if (!(PTy)) { CheckFailed("First atomicrmw operand must be a pointer."
, &RMWI); return; } } while (false)
;
3474 Type *ElTy = PTy->getElementType();
3475 if (Op == AtomicRMWInst::Xchg) {
3476 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +do { if (!(ElTy->isIntegerTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName
(Op) + " operand must have integer or floating point type!", &
RMWI, ElTy); return; } } while (false)
3477 AtomicRMWInst::getOperationName(Op) +do { if (!(ElTy->isIntegerTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName
(Op) + " operand must have integer or floating point type!", &
RMWI, ElTy); return; } } while (false)
3478 " operand must have integer or floating point type!",do { if (!(ElTy->isIntegerTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName
(Op) + " operand must have integer or floating point type!", &
RMWI, ElTy); return; } } while (false)
3479 &RMWI, ElTy)do { if (!(ElTy->isIntegerTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName
(Op) + " operand must have integer or floating point type!", &
RMWI, ElTy); return; } } while (false)
;
3480 } else if (AtomicRMWInst::isFPOperation(Op)) {
3481 Assert(ElTy->isFloatingPointTy(), "atomicrmw " +do { if (!(ElTy->isFloatingPointTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have floating point type!"
, &RMWI, ElTy); return; } } while (false)
3482 AtomicRMWInst::getOperationName(Op) +do { if (!(ElTy->isFloatingPointTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have floating point type!"
, &RMWI, ElTy); return; } } while (false)
3483 " operand must have floating point type!",do { if (!(ElTy->isFloatingPointTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have floating point type!"
, &RMWI, ElTy); return; } } while (false)
3484 &RMWI, ElTy)do { if (!(ElTy->isFloatingPointTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have floating point type!"
, &RMWI, ElTy); return; } } while (false)
;
3485 } else {
3486 Assert(ElTy->isIntegerTy(), "atomicrmw " +do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
3487 AtomicRMWInst::getOperationName(Op) +do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
3488 " operand must have integer type!",do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
3489 &RMWI, ElTy)do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw "
+ AtomicRMWInst::getOperationName(Op) + " operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
;
3490 }
3491 checkAtomicMemAccessSize(ElTy, &RMWI);
3492 Assert(ElTy == RMWI.getOperand(1)->getType(),do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
3493 "Argument value type does not match pointer operand type!", &RMWI,do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
3494 ElTy)do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
;
3495 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,do { if (!(AtomicRMWInst::FIRST_BINOP <= Op && Op <=
AtomicRMWInst::LAST_BINOP)) { CheckFailed("Invalid binary operation!"
, &RMWI); return; } } while (false)
3496 "Invalid binary operation!", &RMWI)do { if (!(AtomicRMWInst::FIRST_BINOP <= Op && Op <=
AtomicRMWInst::LAST_BINOP)) { CheckFailed("Invalid binary operation!"
, &RMWI); return; } } while (false)
;
3497 visitInstruction(RMWI);
3498}
3499
3500void Verifier::visitFenceInst(FenceInst &FI) {
3501 const AtomicOrdering Ordering = FI.getOrdering();
3502 Assert(Ordering == AtomicOrdering::Acquire ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3503 Ordering == AtomicOrdering::Release ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3504 Ordering == AtomicOrdering::AcquireRelease ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3505 Ordering == AtomicOrdering::SequentiallyConsistent,do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3506 "fence instructions may only have acquire, release, acq_rel, or "do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3507 "seq_cst ordering.",do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3508 &FI)do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
;
3509 visitInstruction(FI);
3510}
3511
3512void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3513 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
3514 EVI.getIndices()) == EVI.getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
3515 "Invalid ExtractValueInst operands!", &EVI)do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
;
3516
3517 visitInstruction(EVI);
3518}
3519
3520void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3521 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3522 IVI.getIndices()) ==do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3523 IVI.getOperand(1)->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3524 "Invalid InsertValueInst operands!", &IVI)do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
;
3525
3526 visitInstruction(IVI);
3527}
3528
3529static Value *getParentPad(Value *EHPad) {
3530 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3531 return FPI->getParentPad();
3532
3533 return cast<CatchSwitchInst>(EHPad)->getParentPad();
3534}
3535
3536void Verifier::visitEHPadPredecessors(Instruction &I) {
3537 assert(I.isEHPad())((I.isEHPad()) ? static_cast<void> (0) : __assert_fail (
"I.isEHPad()", "/build/llvm-toolchain-snapshot-9~svn360410/lib/IR/Verifier.cpp"
, 3537, __PRETTY_FUNCTION__))
;
3538
3539 BasicBlock *BB = I.getParent();
3540 Function *F = BB->getParent();
3541
3542 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I)do { if (!(BB != &F->getEntryBlock())) { CheckFailed("EH pad cannot be in entry block."
, &I); return; } } while (false)
;
3543
3544 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3545 // The landingpad instruction defines its parent as a landing pad block. The
3546 // landing pad block may be branched to only by the unwind edge of an
3547 // invoke.
3548 for (BasicBlock *PredBB : predecessors(BB)) {
3549 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3550 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3551 "Block containing LandingPadInst must be jumped to "do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3552 "only by the unwind edge of an invoke.",do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3553 LPI)do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
;
3554 }
3555 return;
3556 }
3557 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3558 if (!pred_empty(BB))
3559 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3560 "Block containg CatchPadInst must be jumped to "do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3561 "only by its catchswitch.",do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3562 CPI)do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
;
3563 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
3564 "Catchswitch cannot unwind to one of its catchpads",do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
3565 CPI->getCatchSwitch(), CPI)do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
;
3566 return;
3567 }
3568
3569 // Verify that each pred has a legal terminator with a legal to/from EH
3570 // pad relationship.
3571 Instruction *ToPad = &I;
3572 Value *ToPadParent = getParentPad(ToPad);
3573 for (BasicBlock *PredBB : predecessors(BB)) {
3574 Instruction *TI = PredBB->getTerminator();
3575 Value *FromPad;
3576 if (auto *II = dyn_cast<InvokeInst>(TI)) {
3577 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, II); return; } } while (false)
3578 "EH pad must be jumped to via an unwind edge", ToPad, II)do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, II); return; } } while (false)
;
3579 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3580 FromPad = Bundle->Inputs[0];
3581 else
3582 FromPad = ConstantTokenNone::get(II->getContext());
3583 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3584 FromPad = CRI->getOperand(0);
3585 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI)do { if (!(FromPad != ToPadParent)) { CheckFailed("A cleanupret must exit its cleanup"
, CRI); return; } } while (false)
;
3586 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3587 FromPad = CSI;
3588 } else {
3589 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI)do { if (!(false)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, TI); return; } } while (false)
;
3590 }
3591
3592 // The edge may exit from zero or more nested pads.
3593 SmallSet<Value *, 8> Seen;
3594 for (;; FromPad = getParentPad(FromPad)) {
3595 Assert(FromPad != ToPad,do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it"
, FromPad, TI); return; } } while (false)
3596 "EH pad cannot handle exceptions raised within it", FromPad, TI)do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it"
, FromPad, TI); return; } } while (false)
;
3597 if (FromPad == ToPadParent) {
3598 // This is a legal unwind edge.
3599 break;
3600 }
3601 Assert(!isa<ConstantTokenNone>(FromPad),do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed
("A single unwind edge may only enter one EH pad", TI); return
; } } while (false)
3602 "A single unwind edge may only enter one EH pad", TI)do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed
("A single unwind edge may only enter one EH pad", TI); return
; } } while (false)
;
3603 Assert(Seen.insert(FromPad).second,do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads"
, FromPad); return; } } while (false)
3604 "EH pad jumps through a cycle of pads", FromPad)do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads"
, FromPad); return; } } while (false)
;
3605 }
3606 }
3607}
3608
3609void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3610 // The landingpad instruction is ill-formed if it doesn't have any clauses and
3611 // isn't a cleanup.
3612 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (false)
3613 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI)do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (false)
;
3614
3615 visitEHPadPredecessors(LPI);
3616
3617 if (!LandingPadResultTy)
3618 LandingPadResultTy = LPI.getType();
3619 else
3620 Assert(LandingPadResultTy == LPI.getType(),do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3621 "The landingpad instruction should have a consistent result type "do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3622 "inside a function.",do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3623 &LPI)do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
;
3624
3625 Function *F = LPI.getParent()->getParent();
3626 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (false)
3627 "LandingPadInst needs to be in a function with a personality.", &LPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (false)
;
3628
3629 // The landingpad instruction must be the first non-PHI instruction in the
3630 // block.
3631 Assert(LPI.getParent()->getLandingPadInst() == &LPI,do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
3632 "LandingPadInst not the first non-PHI instruction in the block.",do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
3633 &LPI)do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
;
3634
3635 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3636 Constant *Clause = LPI.getClause(i);
3637 if (LPI.isCatch(i)) {
3638 Assert(isa<PointerType>(Clause->getType()),do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (false)
3639 "Catch operand does not have pointer type!", &LPI)do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (false)
;
3640 } else {
3641 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI)do { if (!(LPI.isFilter(i))) { CheckFailed("Clause is neither catch nor filter!"
, &LPI); return; } } while (false)
;
3642 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (false)
3643 "Filter operand is not an array of constants!", &LPI)do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (false)
;
3644 }
3645 }
3646
3647 visitInstruction(LPI);
3648}
3649
3650void Verifier::visitResumeInst(ResumeInst &RI) {
3651 Assert(RI.getFunction()->hasPersonalityFn(),do { if (!(RI.getFunction()->hasPersonalityFn())) { CheckFailed
("ResumeInst needs to be in a function with a personality.", &
RI); return; } } while (false)
3652 "ResumeInst needs to be in a function with a personality.", &RI)do { if (!(RI.getFunction()->hasPersonalityFn())) { CheckFailed
("ResumeInst needs to be in a function with a personality.", &
RI); return; } } while (false)
;
3653
3654 if (!LandingPadResultTy)
3655 LandingPadResultTy = RI.getValue()->getType();
3656 else
3657 Assert(LandingPadResultTy == RI.getValue()->getType(),do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3658 "The resume instruction should have a consistent result type "do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3659 "inside a function.",do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3660 &RI)do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
;
3661
3662 visitTerminator(RI);
3663}
3664
3665void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3666 BasicBlock *BB = CPI.getParent();
3667
3668 Function *F = BB->getParent();
3669 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
3670 "CatchPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
;
3671
3672 Assert(isa<CatchSwitchInst>(CPI.getParentPad()),do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
3673 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
3674 CPI.getParentPad())do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
;
3675
3676 // The catchpad instruction must be the first non-PHI instruction in the
3677 // block.
3678 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3679 "CatchPadInst not the first non-PHI instruction in the block.", &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
;
3680
3681 visitEHPadPredecessors(CPI);
3682 visitFuncletPadInst(CPI);
3683}
3684
3685void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3686 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
3687 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
3688 CatchReturn.getOperand(0))do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
;
3689
3690 visitTerminator(CatchReturn);
3691}
3692
3693void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3694 BasicBlock *BB = CPI.getParent();
3695
3696 Function *F = BB->getParent();
3697 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
3698 "CleanupPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
;
3699
3700 // The cleanuppad instruction must be the first non-PHI instruction in the
3701 // block.
3702 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3703 "CleanupPadInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3704 &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
;
3705
3706 auto *ParentPad = CPI.getParentPad();
3707 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent."
, &CPI); return; } } while (false)
3708 "CleanupPadInst has an invalid parent.", &CPI)do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent."
, &CPI); return; } } while (false)
;
3709
3710 visitEHPadPredecessors(CPI);
3711 visitFuncletPadInst(CPI);
3712}
3713
3714void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3715 User *FirstUser = nullptr;
3716 Value *FirstUnwindPad = nullptr;
3717 SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3718 SmallSet<FuncletPadInst *, 8> Seen;
3719
3720 while (!Worklist.empty()) {
3721 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3722 Assert(Seen.insert(CurrentPad).second,do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself"
, CurrentPad); return; } } while (false)
3723 "FuncletPadInst must not be nested within itself", CurrentPad)do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself"
, CurrentPad); return; } } while (false)
;
3724 Value *UnresolvedAncestorPad = nullptr;
3725 for (User *U : CurrentPad->users()) {
3726 BasicBlock *UnwindDest;
3727 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3728 UnwindDest = CRI->getUnwindDest();
3729 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3730 // We allow catchswitch unwind to caller to nest
3731 // within an outer pad that unwinds somewhere else,
3732 // because catchswitch doesn't have a nounwind variant.
3733 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3734 if (CSI->unwindsToCaller())
3735 continue;
3736 UnwindDest = CSI->getUnwindDest();
3737 } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3738 UnwindDest = II->getUnwindDest();
3739 } else if (isa<CallInst>(U)) {
3740 // Calls which don't unwind may be found inside funclet
3741 // pads that unwind somewhere else. We don't *require*
3742 // such calls to be annotated nounwind.
3743 continue;
3744 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3745 // The unwind dest for a cleanup can only be found by
3746 // recursive search. Add it to the worklist, and we'll
3747 // search for its first use that determines where it unwinds.
3748 Worklist.push_back(CPI);
3749 continue;
3750 } else {
3751 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U)do { if (!(isa<CatchReturnInst>(U))) { CheckFailed("Bogus funclet pad use"
, U); return; } } while (false)
;
3752 continue;
3753 }
3754
3755 Value *UnwindPad;
3756 bool ExitsFPI;
3757 if (UnwindDest) {
3758 UnwindPad = UnwindDest->getFirstNonPHI();
3759 if (!cast<Instruction>(UnwindPad)->isEHPad())
3760 continue;
3761 Value *UnwindParent = getParentPad(UnwindPad);
3762 // Ignore unwind edges that don't exit CurrentPad.
3763 if (UnwindParent == CurrentPad)
3764 continue;
3765 // Determine whether the original funclet pad is exited,
3766 // and if we are scanning nested pads determine how many
3767 // of them are exited so we can stop searching their
3768 // children.
3769 Value *ExitedPad = CurrentPad;
3770 ExitsFPI = false;
3771 do {
3772 if (ExitedPad == &FPI) {
3773 ExitsFPI = true;
3774 // Now we can resolve any ancestors of CurrentPad up to
3775 // FPI, but not including FPI since we need to make sure
3776 // to check all direct users of FPI for consistency.
3777 UnresolvedAncestorPad = &FPI;
3778 break;
3779 }
3780 Value *ExitedParent = getParentPad(ExitedPad);
3781 if (ExitedParent == UnwindParent) {
3782 // ExitedPad is the ancestor-most pad which this unwind
3783 // edge exits, so we can resolve up to it, meaning that
3784 // ExitedParent is the first ancestor still unresolved.
3785 UnresolvedAncestorPad = ExitedParent;
3786 break;
3787 }
3788 ExitedPad = ExitedParent;
3789 } while (!isa<ConstantTokenNone>(ExitedPad));
3790 } else {
3791 // Unwinding to caller exits all pads.
3792 UnwindPad = ConstantTokenNone::get(FPI.getContext());
3793 ExitsFPI = true;
3794 UnresolvedAncestorPad = &FPI;
3795 }
3796
3797 if (ExitsFPI) {
3798 // This unwind edge exits FPI. Make sure it agrees with other
3799 // such edges.
3800 if (FirstUser) {
3801 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3802 "pad must have the same unwind "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3803 "dest",do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3804 &FPI, U, FirstUser)do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
;
3805 } else {
3806 FirstUser = U;
3807 FirstUnwindPad = UnwindPad;
3808 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3809 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3810 getParentPad(UnwindPad) == getParentPad(&FPI))
3811 SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
3812 }
3813 }
3814 // Make sure we visit all uses of FPI, but for nested pads stop as
3815 // soon as we know where they unwind to.
3816 if (CurrentPad != &FPI)
3817 break;
3818 }
3819 if (UnresolvedAncestorPad) {
3820 if (CurrentPad == UnresolvedAncestorPad) {
3821 // When CurrentPad is FPI itself, we don't mark it as resolved even if
3822 // we've found an unwind edge that exits it, because we need to verify
3823 // all direct uses of FPI.
3824 assert(CurrentPad == &FPI)((CurrentPad == &FPI) ? static_cast<void> (0) : __assert_fail
("CurrentPad == &FPI", "/build/llvm-toolchain-snapshot-9~svn360410/lib/IR/Verifier.cpp"
, 3824, __PRETTY_FUNCTION__))
;
3825 continue;
3826 }
3827 // Pop off the worklist any nested pads that we've found an unwind
3828 // destination for. The pads on the worklist are the uncles,
3829 // great-uncles, etc. of CurrentPad. We've found an unwind destination
3830 // for all ancestors of CurrentPad up to but not including
3831 // UnresolvedAncestorPad.
3832 Value *ResolvedPad = CurrentPad;
3833 while (!Worklist.empty()) {
3834 Value *UnclePad = Worklist.back();
3835 Value *AncestorPad = getParentPad(UnclePad);
3836 // Walk ResolvedPad up the ancestor list until we either find the
3837 // uncle's parent or the last resolved ancestor.
3838 while (ResolvedPad != AncestorPad) {
3839 Value *ResolvedParent = getParentPad(ResolvedPad);
3840 if (ResolvedParent == UnresolvedAncestorPad) {
3841 break;
3842 }
3843 ResolvedPad = ResolvedParent;
3844 }
3845 // If the resolved ancestor search didn't find the uncle's parent,
3846 // then the uncle is not yet resolved.
3847 if (ResolvedPad != AncestorPad)
3848 break;
3849 // This uncle is resolved, so pop it from the worklist.
3850 Worklist.pop_back();
3851 }
3852 }
3853 }
3854
3855 if (FirstUnwindPad) {
3856 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3857 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3858 Value *SwitchUnwindPad;
3859 if (SwitchUnwindDest)
3860 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3861 else
3862 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3863 Assert(SwitchUnwindPad == FirstUnwindPad,do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3864 "Unwind edges out of a catch must have the same unwind dest as "do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3865 "the parent catchswitch",do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3866 &FPI, FirstUser, CatchSwitch)do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
;
3867 }
3868 }
3869
3870 visitInstruction(FPI);
3871}
3872
3873void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3874 BasicBlock *BB = CatchSwitch.getParent();
3875
3876 Function *F = BB->getParent();
3877 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
3878 "CatchSwitchInst needs to be in a function with a personality.",do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
3879 &CatchSwitch)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
;
3880
3881 // The catchswitch instruction must be the first non-PHI instruction in the
3882 // block.
3883 Assert(BB->getFirstNonPHI() == &CatchSwitch,do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
3884 "CatchSwitchInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
3885 &CatchSwitch)do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
;
3886
3887 auto *ParentPad = CatchSwitch.getParentPad();
3888 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CatchSwitchInst has an invalid parent."
, ParentPad); return; } } while (false)
3889 "CatchSwitchInst has an invalid parent.", ParentPad)do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CatchSwitchInst has an invalid parent."
, ParentPad); return; } } while (false)
;
3890
3891 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3892 Instruction *I = UnwindDest->getFirstNonPHI();
3893 Assert(I->isEHPad() && !isa<LandingPadInst>(I),do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3894 "CatchSwitchInst must unwind to an EH block which is not a "do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3895 "landingpad.",do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3896 &CatchSwitch)do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
;
3897
3898 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3899 if (getParentPad(I) == ParentPad)
3900 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3901 }
3902
3903 Assert(CatchSwitch.getNumHandlers() != 0,do { if (!(CatchSwitch.getNumHandlers() != 0)) { CheckFailed(
"CatchSwitchInst cannot have empty handler list", &CatchSwitch
); return; } } while (false)
3904 "CatchSwitchInst cannot have empty handler list", &CatchSwitch)do { if (!(CatchSwitch.getNumHandlers() != 0)) { CheckFailed(
"CatchSwitchInst cannot have empty handler list", &CatchSwitch
); return; } } while (false)
;
3905
3906 for (BasicBlock *Handler : CatchSwitch.handlers()) {
3907 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),do { if (!(isa<CatchPadInst>(Handler->getFirstNonPHI
()))) { CheckFailed("CatchSwitchInst handlers must be catchpads"
, &CatchSwitch, Handler); return; } } while (false)
3908 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler)do { if (!(isa<CatchPadInst>(Handler->getFirstNonPHI
()))) { CheckFailed("CatchSwitchInst handlers must be catchpads"
, &CatchSwitch, Handler); return; } } while (false)
;
3909 }
3910
3911 visitEHPadPredecessors(CatchSwitch);
3912 visitTerminator(CatchSwitch);
3913}
3914
3915void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3916 Assert(isa<CleanupPadInst>(CRI.getOperand(0)),do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
3917 "CleanupReturnInst needs to be provided a CleanupPad", &CRI,do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
3918 CRI.getOperand(0))do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
;
3919
3920 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3921 Instruction *I = UnwindDest->getFirstNonPHI();
3922 Assert(I->isEHPad() && !isa<LandingPadInst>(I),do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
3923 "CleanupReturnInst must unwind to an EH block which is not a "do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
3924 "landingpad.",do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
3925 &CRI)do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
;
3926 }
3927
3928 visitTerminator(CRI);
3929}
3930
3931void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3932 Instruction *Op = cast<Instruction>(I.getOperand(i));
3933 // If the we have an invalid invoke, don't try to compute the dominance.
3934 // We already reject it in the invoke specific checks and the dominance
3935 // computation doesn't handle multiple edges.
3936 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3937 if (II->getNormalDest() == II->getUnwindDest())
3938 return;
3939 }
3940
3941 // Quick check whether the def has already been encountered in the same block.
3942 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
3943 // uses are defined to happen on the incoming edge, not at the instruction.
3944 //
3945 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3946 // wrapping an SSA value, assert that we've already encountered it. See
3947 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3948 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3949 return;
3950
3951 const Use &U = I.getOperandUse(i);
3952 Assert(DT.dominates(Op, U),do { if (!(DT.dominates(Op, U))) { CheckFailed("Instruction does not dominate all uses!"
, Op, &I); return; } } while (false)
3953 "Instruction does not dominate all uses!", Op, &I)do { if (!(DT.dominates(Op, U))) { CheckFailed("Instruction does not dominate all uses!"
, Op, &I); return; } } while (false)
;
3954}
3955
3956void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3957 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "do { if (!(I.getType()->isPointerTy())) { CheckFailed("dereferenceable, dereferenceable_or_null "
"apply only to pointer types", &I); return; } } while (false
)
3958 "apply only to pointer types", &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("dereferenceable, dereferenceable_or_null "
"apply only to pointer types", &I); return; } } while (false
)
;
3959 Assert(isa<LoadInst>(I),do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (false)
3960 "dereferenceable, dereferenceable_or_null apply only to load"do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (false)
3961 " instructions, use attributes for calls or invokes", &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (false)
;
3962 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "do { if (!(MD->getNumOperands() == 1)) { CheckFailed("dereferenceable, dereferenceable_or_null "
"take one operand!", &I); return; } } while (false)
3963 "take one operand!", &I)do { if (!(MD->getNumOperands() == 1)) { CheckFailed("dereferenceable, dereferenceable_or_null "
"take one operand!", &I); return; } } while (false)
;
3964 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3965 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("dereferenceable, " "dereferenceable_or_null metadata value must be an i64!"
, &I); return; } } while (false)
3966 "dereferenceable_or_null metadata value must be an i64!", &I)do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("dereferenceable, " "dereferenceable_or_null metadata value must be an i64!"
, &I); return; } } while (false)
;
3967}
3968
3969/// verifyInstruction - Verify that an instruction is well formed.
3970///
3971void Verifier::visitInstruction(Instruction &I) {
3972 BasicBlock *BB = I.getParent();
3973 Assert(BB, "Instruction not embedded in basic block!", &I)do { if (!(BB)) { CheckFailed("Instruction not embedded in basic block!"
, &I); return; } } while (false)
;
3974
3975 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
3976 for (User *U : I.users()) {
3977 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),do { if (!(U != (User *)&I || !DT.isReachableFromEntry(BB
))) { CheckFailed("Only PHI nodes may reference their own value!"
, &I); return; } } while (false)
3978 "Only PHI nodes may reference their own value!", &I)do { if (!(U != (User *)&I || !DT.isReachableFromEntry(BB
))) { CheckFailed("Only PHI nodes may reference their own value!"
, &I); return; } } while (false)
;
3979 }
3980 }
3981
3982 // Check that void typed values don't have names
3983 Assert(!I.getType()->isVoidTy() || !I.hasName(),do { if (!(!I.getType()->isVoidTy() || !I.hasName())) { CheckFailed
("Instruction has a name, but provides a void value!", &I
); return; } } while (false)
3984 "Instruction has a name, but provides a void value!", &I)do { if (!(!I.getType()->isVoidTy() || !I.hasName())) { CheckFailed
("Instruction has a name, but provides a void value!", &I
); return; } } while (false)
;
3985
3986 // Check that the return value of the instruction is either void or a legal
3987 // value type.
3988 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),do { if (!(I.getType()->isVoidTy() || I.getType()->isFirstClassType
())) { CheckFailed("Instruction returns a non-scalar type!", &
I); return; } } while (false)
3989 "Instruction returns a non-scalar type!", &I)do { if (!(I.getType()->isVoidTy() || I.getType()->isFirstClassType
())) { CheckFailed("Instruction returns a non-scalar type!", &
I); return; } } while (false)
;
3990
3991 // Check that the instruction doesn't produce metadata. Calls are already
3992 // checked against the callee type.
3993 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),do { if (!(!I.getType()->isMetadataTy() || isa<CallInst
>(I) || isa<InvokeInst>(I))) { CheckFailed("Invalid use of metadata!"
, &I); return; } } while (false)
3994 "Invalid use of metadata!", &I)do { if (!(!I.getType()->isMetadataTy() || isa<CallInst
>(I) || isa<InvokeInst>(I))) { CheckFailed("Invalid use of metadata!"
, &I); return; } } while (false)
;
3995
3996 // Check that all uses of the instruction, if they are instructions
3997 // themselves, actually have parent basic blocks. If the use is not an
3998 // instruction, it is an error!
3999 for (Use &U : I.uses()) {
4000 if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4001 Assert(Used->getParent() != nullptr,do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
4002 "Instruction referencing"do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
4003 " instruction not embedded in a basic block!",do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
4004 &I, Used)do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
;
4005 else {
4006 CheckFailed("Use of instruction is not an instruction!", U);
4007 return;
4008 }
4009 }
4010
4011 // Get a pointer to the call base of the instruction if it is some form of
4012 // call.
4013 const CallBase *CBI = dyn_cast<CallBase>(&I);
4014
4015 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4016 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Instruction has null operand!"
, &I); return; } } while (false)
;
4017
4018 // Check to make sure that only first-class-values are operands to
4019 // instructions.
4020 if (!I.getOperand(i)->getType()->isFirstClassType()) {
4021 Assert(false, "Instruction operands must be first-class values!", &I)do { if (!(false)) { CheckFailed("Instruction operands must be first-class values!"
, &I); return; } } while (false)
;
4022 }
4023
4024 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4025 // Check to make sure that the "address of" an intrinsic function is never
4026 // taken.
4027 Assert(!F->isIntrinsic() ||do { if (!(!F->isIntrinsic() || (CBI && &CBI->
getCalledOperandUse() == &I.getOperandUse(i)))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
4028 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)),do { if (!(!F->isIntrinsic() || (CBI && &CBI->
getCalledOperandUse() == &I.getOperandUse(i)))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
4029 "Cannot take the address of an intrinsic!", &I)do { if (!(!F->isIntrinsic() || (CBI && &CBI->
getCalledOperandUse() == &I.getOperandUse(i)))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
;
4030 Assert(do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
|| F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
4031 !F->isIntrinsic() || isa<CallInst>(I) ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
|| F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
4032 F->getIntrinsicID() == Intrinsic::donothing ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
|| F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
4033 F->getIntrinsicID() == Intrinsic::coro_resume ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
|| F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
4034 F->getIntrinsicID() == Intrinsic::coro_destroy ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
|| F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
4035 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
|| F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
4036 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
|| F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
4037 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
|| F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
4038 F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch,do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
|| F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
4039 "Cannot invoke an intrinsic other than donothing, patchpoint, "do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
|| F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
4040 "statepoint, coro_resume or coro_destroy",do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
|| F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
4041 &I)do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
|| F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
;
4042 Assert(F->getParent() == &M, "Referencing function in another module!",do { if (!(F->getParent() == &M)) { CheckFailed("Referencing function in another module!"
, &I, &M, F, F->getParent()); return; } } while (false
)
4043 &I, &M, F, F->getParent())do { if (!(F->getParent() == &M)) { CheckFailed("Referencing function in another module!"
, &I, &M, F, F->getParent()); return; } } while (false
)
;
4044 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4045 Assert(OpBB->getParent() == BB->getParent(),do { if (!(OpBB->getParent() == BB->getParent())) { CheckFailed
("Referring to a basic block in another function!", &I); return
; } } while (false)
4046 "Referring to a basic block in another function!", &I)do { if (!(OpBB->getParent() == BB->getParent())) { CheckFailed
("Referring to a basic block in another function!", &I); return
; } } while (false)
;
4047 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4048 Assert(OpArg->getParent() == BB->getParent(),do { if (!(OpArg->getParent() == BB->getParent())) { CheckFailed
("Referring to an argument in another function!", &I); return
; } } while (false)
4049 "Referring to an argument in another function!", &I)do { if (!(OpArg->getParent() == BB->getParent())) { CheckFailed
("Referring to an argument in another function!", &I); return
; } } while (false)
;
4050 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4051 Assert(GV->getParent() == &M, "Referencing global in another module!", &I,do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, &I, &M, GV, GV->getParent()); return; } } while (
false)
4052 &M, GV, GV->getParent())do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, &I, &M, GV, GV->getParent()); return; } } while (
false)
;
4053 } else if (isa<Instruction>(I.getOperand(i))) {
4054 verifyDominatesUse(I, i);
4055 } else if (isa<InlineAsm>(I.getOperand(i))) {
4056 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),do { if (!(CBI && &CBI->getCalledOperandUse() ==
&I.getOperandUse(i))) { CheckFailed("Cannot take the address of an inline asm!"
, &I); return; } } while (false)
4057 "Cannot take the address of an inline asm!", &I)do { if (!(CBI && &CBI->getCalledOperandUse() ==
&I.getOperandUse(i))) { CheckFailed("Cannot take the address of an inline asm!"
, &I); return; } } while (false)
;
4058 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4059 if (CE->getType()->isPtrOrPtrVectorTy() ||
4060 !DL.getNonIntegralAddressSpaces().empty()) {
4061 // If we have a ConstantExpr pointer, we need to see if it came from an
4062 // illegal bitcast. If the datalayout string specifies non-integral
4063 // address spaces then we also need to check for illegal ptrtoint and
4064 // inttoptr expressions.
4065 visitConstantExprsRecursively(CE);
4066 }
4067 }
4068 }
4069
4070 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4071 Assert(I.getType()->isFPOrFPVectorTy(),do { if (!(I.getType()->isFPOrFPVectorTy())) { CheckFailed
("fpmath requires a floating point result!", &I); return;
} } while (false)
4072 "fpmath requires a floating point result!", &I)do { if (!(I.getType()->isFPOrFPVectorTy())) { CheckFailed
("fpmath requires a floating point result!", &I); return;
} } while (false)
;
4073 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I)do { if (!(MD->getNumOperands() == 1)) { CheckFailed("fpmath takes one operand!"
, &I); return; } } while (false)
;
4074 if (ConstantFP *CFP0 =
4075 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4076 const APFloat &Accuracy = CFP0->getValueAPF();
4077 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),do { if (!(&Accuracy.getSemantics() == &APFloat::IEEEsingle
())) { CheckFailed("fpmath accuracy must have float type", &
I); return; } } while (false)
4078 "fpmath accuracy must have float type", &I)do { if (!(&Accuracy.getSemantics() == &APFloat::IEEEsingle
())) { CheckFailed("fpmath accuracy must have float type", &
I); return; } } while (false)
;
4079 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),do { if (!(Accuracy.isFiniteNonZero() && !Accuracy.isNegative
())) { CheckFailed("fpmath accuracy not a positive number!", &
I); return; } } while (false)
4080 "fpmath accuracy not a positive number!", &I)do { if (!(Accuracy.isFiniteNonZero() && !Accuracy.isNegative
())) { CheckFailed("fpmath accuracy not a positive number!", &
I); return; } } while (false)
;
4081 } else {
4082 Assert(false, "invalid fpmath accuracy!", &I)do { if (!(false)) { CheckFailed("invalid fpmath accuracy!", &
I); return; } } while (false)
;
4083 }
4084 }
4085
4086 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4087 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),do { if (!(isa<LoadInst>(I) || isa<CallInst>(I) ||
isa<InvokeInst>(I))) { CheckFailed("Ranges are only for loads, calls and invokes!"
, &I); return; } } while (false)
4088 "Ranges are only for loads, calls and invokes!", &I)do { if (!(isa<LoadInst>(I) || isa<CallInst>(I) ||
isa<InvokeInst>(I))) { CheckFailed("Ranges are only for loads, calls and invokes!"
, &I); return; } } while (false)
;
4089 visitRangeMetadata(I, Range, I.getType());
4090 }
4091
4092 if (I.getMetadata(LLVMContext::MD_nonnull)) {
4093 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",do { if (!(I.getType()->isPointerTy())) { CheckFailed("nonnull applies only to pointer types"
, &I); return; } } while (false)
4094 &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("nonnull applies only to pointer types"
, &I); return; } } while (false)
;
4095 Assert(isa<LoadInst>(I),do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
4096 "nonnull applies only to load instructions, use attributes"do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
4097 " for calls or invokes",do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
4098 &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
;
4099 }
4100
4101 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4102 visitDereferenceableMetadata(I, MD);
4103
4104 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4105 visitDereferenceableMetadata(I, MD);
4106
4107 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4108 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4109
4110 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4111 Assert(I.getType()->isPointerTy(), "align applies only to pointer types",do { if (!(I.getType()->isPointerTy())) { CheckFailed("align applies only to pointer types"
, &I); return; } } while (false)
4112 &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("align applies only to pointer types"
, &I); return; } } while (false)
;
4113 Assert(isa<LoadInst>(I), "align applies only to load instructions, "do { if (!(isa<LoadInst>(I))) { CheckFailed("align applies only to load instructions, "
"use attributes for calls or invokes", &I); return; } } while
(false)
4114 "use attributes for calls or invokes", &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("align applies only to load instructions, "
"use attributes for calls or invokes", &I); return; } } while
(false)
;
4115 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I)do { if (!(AlignMD->getNumOperands() == 1)) { CheckFailed(
"align takes one operand!", &I); return; } } while (false
)
;
4116 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4117 Assert(CI && CI->getType()->isIntegerTy(64),do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("align metadata value must be an i64!", &
I); return; } } while (false)
4118 "align metadata value must be an i64!", &I)do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("align metadata value must be an i64!", &
I); return; } } while (false)
;
4119 uint64_t Align = CI->getZExtValue();
4120 Assert(isPowerOf2_64(Align),do { if (!(isPowerOf2_64(Align))) { CheckFailed("align metadata value must be a power of 2!"
, &I); return; } } while (false)
4121 "align metadata value must be a power of 2!", &I)do { if (!(isPowerOf2_64(Align))) { CheckFailed("align metadata value must be a power of 2!"
, &I); return; } } while (false)
;
4122 Assert(Align <= Value::MaximumAlignment,do { if (!(Align <= Value::MaximumAlignment)) { CheckFailed
("alignment is larger that implementation defined limit", &
I); return; } } while (false)
4123 "alignment is larger that implementation defined limit", &I)do { if (!(Align <= Value::MaximumAlignment)) { CheckFailed
("alignment is larger that implementation defined limit", &
I); return; } } while (false)
;
4124 }
4125
4126 if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4127 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N)do { if (!(isa<DILocation>(N))) { DebugInfoCheckFailed(
"invalid !dbg metadata attachment", &I, N); return; } } while
(false)
;
4128 visitMDNode(*N);
4129 }
4130
4131 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I))
4132 verifyFragmentExpression(*DII);
4133
4134 InstsInThisBlock.insert(&I);
4135}
4136
4137/// Allow intrinsics to be verified in different ways.
4138void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
4139 Function *IF = Call.getCalledFunction();
4140 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",do { if (!(IF->isDeclaration())) { CheckFailed("Intrinsic functions should never be defined!"
, IF); return; } } while (false)
4141 IF)do { if (!(IF->isDeclaration())) { CheckFailed("Intrinsic functions should never be defined!"
, IF); return; } } while (false)
;
4142
4143 // Verify that the intrinsic prototype lines up with what the .td files
4144 // describe.
4145 FunctionType *IFTy = IF->getFunctionType();
4146 bool IsVarArg = IFTy->isVarArg();
4147
4148 SmallVector<Intrinsic::IITDescriptor, 8> Table;
4149 getIntrinsicInfoTableEntries(ID, Table);
4150 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
4151
4152 SmallVector<Type *, 4> ArgTys;
4153 Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getReturnType
(), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (false)
4154 TableRef, ArgTys),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getReturnType
(), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (false)
4155 "Intrinsic has incorrect return type!", IF)do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getReturnType
(), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (false)
;
4156 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
4157 Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getParamType
(i), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (false)
4158 TableRef, ArgTys),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getParamType
(i), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (false)
4159 "Intrinsic has incorrect argument type!", IF)do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getParamType
(i), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (false)
;
4160
4161 // Verify if the intrinsic call matches the vararg property.
4162 if (IsVarArg)
4163 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Intrinsic was not defined with variable arguments!"
, IF); return; } } while (false)
4164 "Intrinsic was not defined with variable arguments!", IF)do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Intrinsic was not defined with variable arguments!"
, IF); return; } } while (false)
;
4165 else
4166 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Callsite was not defined with variable arguments!"
, IF); return; } } while (false)
4167 "Callsite was not defined with variable arguments!", IF)do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Callsite was not defined with variable arguments!"
, IF); return; } } while (false)
;
4168
4169 // All descriptors should be absorbed by now.
4170 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF)do { if (!(TableRef.empty())) { CheckFailed("Intrinsic has too few arguments!"
, IF); return; } } while (false)
;
4171
4172 // Now that we have the intrinsic ID and the actual argument types (and we
4173 // know they are legal for the intrinsic!) get the intrinsic name through the
4174 // usual means. This allows us to verify the mangling of argument types into
4175 // the name.
4176 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
4177 Assert(ExpectedName == IF->getName(),do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
4178 "Intrinsic name not mangled correctly for type arguments! "do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
4179 "Should be: " +do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
4180 ExpectedName,do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
4181 IF)do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
;
4182
4183 // If the intrinsic takes MDNode arguments, verify that they are either global
4184 // or are local to *this* function.
4185 for (Value *V : Call.args())
4186 if (auto *MD = dyn_cast<MetadataAsValue>(V))
4187 visitMetadataAsValue(*MD, Call.getCaller());
4188
4189 switch (ID) {
4190 default:
4191 break;
4192 case Intrinsic::coro_id: {
4193 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
4194 if (isa<ConstantPointerNull>(InfoArg))
4195 break;
4196 auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4197 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
4198 "info argument of llvm.coro.begin must refer to an initialized "do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
4199 "constant")do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
;
4200 Constant *Init = GV->getInitializer();
4201 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
4202 "info argument of llvm.coro.begin must refer to either a struct or "do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
4203 "an array")do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
;
4204 break;
4205 }
4206 case Intrinsic::experimental_constrained_fadd:
4207 case Intrinsic::experimental_constrained_fsub:
4208 case Intrinsic::experimental_constrained_fmul:
4209 case Intrinsic::experimental_constrained_fdiv:
4210 case Intrinsic::experimental_constrained_frem:
4211 case Intrinsic::experimental_constrained_fma:
4212 case Intrinsic::experimental_constrained_sqrt:
4213 case Intrinsic::experimental_constrained_pow:
4214 case Intrinsic::experimental_constrained_powi:
4215 case Intrinsic::experimental_constrained_sin:
4216 case Intrinsic::experimental_constrained_cos:
4217 case Intrinsic::experimental_constrained_exp:
4218 case Intrinsic::experimental_constrained_exp2:
4219 case Intrinsic::experimental_constrained_log:
4220 case Intrinsic::experimental_constrained_log10:
4221 case Intrinsic::experimental_constrained_log2:
4222 case Intrinsic::experimental_constrained_rint:
4223 case Intrinsic::experimental_constrained_nearbyint:
4224 case Intrinsic::experimental_constrained_maxnum:
4225 case Intrinsic::experimental_constrained_minnum:
4226 case Intrinsic::experimental_constrained_ceil:
4227 case Intrinsic::experimental_constrained_floor:
4228 case Intrinsic::experimental_constrained_round:
4229 case Intrinsic::experimental_constrained_trunc:
4230 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
4231 break;
4232 case Intrinsic::dbg_declare: // llvm.dbg.declare
4233 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),do { if (!(isa<MetadataAsValue>(Call.getArgOperand(0)))
) { CheckFailed("invalid llvm.dbg.declare intrinsic call 1", Call
); return; } } while (false)
4234 "invalid llvm.dbg.declare intrinsic call 1", Call)do { if (!(isa<MetadataAsValue>(Call.getArgOperand(0)))
) { CheckFailed("invalid llvm.dbg.declare intrinsic call 1", Call
); return; } } while (false)
;
4235 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
4236 break;
4237 case Intrinsic::dbg_addr: // llvm.dbg.addr
4238 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
4239 break;
4240 case Intrinsic::dbg_value: // llvm.dbg.value
4241 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
4242 break;
4243 case Intrinsic::dbg_label: // llvm.dbg.label
4244 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
4245 break;
4246 case Intrinsic::memcpy:
4247 case Intrinsic::memmove:
4248 case Intrinsic::memset: {
4249 const auto *MI = cast<MemIntrinsic>(&Call);
4250 auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4251 return Alignment == 0 || isPowerOf2_32(Alignment);
4252 };
4253 Assert(IsValidAlignment(MI->getDestAlignment()),do { if (!(IsValidAlignment(MI->getDestAlignment()))) { CheckFailed
("alignment of arg 0 of memory intrinsic must be 0 or a power of 2"
, Call); return; } } while (false)
4254 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",do { if (!(IsValidAlignment(MI->getDestAlignment()))) { CheckFailed
("alignment of arg 0 of memory intrinsic must be 0 or a power of 2"
, Call); return; } } while (false)
4255 Call)do { if (!(IsValidAlignment(MI->getDestAlignment()))) { CheckFailed
("alignment of arg 0 of memory intrinsic must be 0 or a power of 2"
, Call); return; } } while (false)
;
4256 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4257 Assert(IsValidAlignment(MTI->getSourceAlignment()),do { if (!(IsValidAlignment(MTI->getSourceAlignment()))) {
CheckFailed("alignment of arg 1 of memory intrinsic must be 0 or a power of 2"
, Call); return; } } while (false)
4258 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",do { if (!(IsValidAlignment(MTI->getSourceAlignment()))) {
CheckFailed("alignment of arg 1 of memory intrinsic must be 0 or a power of 2"
, Call); return; } } while (false)
4259 Call)do { if (!(IsValidAlignment(MTI->getSourceAlignment()))) {
CheckFailed("alignment of arg 1 of memory intrinsic must be 0 or a power of 2"
, Call); return; } } while (false)
;
4260 }
4261
4262 break;
4263 }
4264 case Intrinsic::memcpy_element_unordered_atomic:
4265 case Intrinsic::memmove_element_unordered_atomic:
4266 case Intrinsic::memset_element_unordered_atomic: {
4267 const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
4268
4269 ConstantInt *ElementSizeCI =
4270 cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4271 const APInt &ElementSizeVal = ElementSizeCI->getValue();
4272 Assert(ElementSizeVal.isPowerOf2(),do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", Call); return; } } while (false)
4273 "element size of the element-wise atomic memory intrinsic "do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", Call); return; } } while (false)
4274 "must be a power of 2",do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", Call); return; } } while (false)
4275 Call)do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", Call); return; } } while (false)
;
4276
4277 if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) {
4278 uint64_t Length = LengthCI->getZExtValue();
4279 uint64_t ElementSize = AMI->getElementSizeInBytes();
4280 Assert((Length % ElementSize) == 0,do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", Call); return; } } while
(false)
4281 "constant length must be a multiple of the element size in the "do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", Call); return; } } while
(false)
4282 "element-wise atomic memory intrinsic",do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", Call); return; } } while
(false)
4283 Call)do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", Call); return; } } while
(false)
;
4284 }
4285
4286 auto IsValidAlignment = [&](uint64_t Alignment) {
4287 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4288 };
4289 uint64_t DstAlignment = AMI->getDestAlignment();
4290 Assert(IsValidAlignment(DstAlignment),do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, Call); return; } } while (false)
4291 "incorrect alignment of the destination argument", Call)do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, Call); return; } } while (false)
;
4292 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4293 uint64_t SrcAlignment = AMT->getSourceAlignment();
4294 Assert(IsValidAlignment(SrcAlignment),do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, Call); return; } } while (false)
4295 "incorrect alignment of the source argument", Call)do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, Call); return; } } while (false)
;
4296 }
4297 break;
4298 }
4299 case Intrinsic::gcroot:
4300 case Intrinsic::gcwrite:
4301 case Intrinsic::gcread:
4302 if (ID == Intrinsic::gcroot) {
4303 AllocaInst *AI =
4304 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
4305 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call)do { if (!(AI)) { CheckFailed("llvm.gcroot parameter #1 must be an alloca."
, Call); return; } } while (false)
;
4306 Assert(isa<Constant>(Call.getArgOperand(1)),do { if (!(isa<Constant>(Call.getArgOperand(1)))) { CheckFailed
("llvm.gcroot parameter #2 must be a constant.", Call); return
; } } while (false)
4307 "llvm.gcroot parameter #2 must be a constant.", Call)do { if (!(isa<Constant>(Call.getArgOperand(1)))) { CheckFailed
("llvm.gcroot parameter #2 must be a constant.", Call); return
; } } while (false)
;
4308 if (!AI->getAllocatedType()->isPointerTy()) {
4309 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),do { if (!(!isa<ConstantPointerNull>(Call.getArgOperand
(1)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", Call); return
; } } while (false)
4310 "llvm.gcroot parameter #1 must either be a pointer alloca, "do { if (!(!isa<ConstantPointerNull>(Call.getArgOperand
(1)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", Call); return
; } } while (false)
4311 "or argument #2 must be a non-null constant.",do { if (!(!isa<ConstantPointerNull>(Call.getArgOperand
(1)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", Call); return
; } } while (false)
4312 Call)do { if (!(!isa<ConstantPointerNull>(Call.getArgOperand
(1)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", Call); return
; } } while (false)
;
4313 }
4314 }
4315
4316 Assert(Call.getParent()->getParent()->hasGC(),do { if (!(Call.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", Call); return; } } while
(false)
4317 "Enclosing function does not use GC.", Call)do { if (!(Call.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", Call); return; } } while
(false)
;
4318 break;
4319 case Intrinsic::init_trampoline:
4320 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),do { if (!(isa<Function>(Call.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, Call); return; } } while (false)
4321 "llvm.init_trampoline parameter #2 must resolve to a function.",do { if (!(isa<Function>(Call.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, Call); return; } } while (false)
4322 Call)do { if (!(isa<Function>(Call.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, Call); return; } } while (false)
;
4323 break;
4324 case Intrinsic::prefetch:
4325 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&do { if (!(cast<ConstantInt>(Call.getArgOperand(1))->
getZExtValue() < 2 && cast<ConstantInt>(Call
.getArgOperand(2))->getZExtValue() < 4)) { CheckFailed(
"invalid arguments to llvm.prefetch", Call); return; } } while
(false)
4326 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,do { if (!(cast<ConstantInt>(Call.getArgOperand(1))->
getZExtValue() < 2 && cast<ConstantInt>(Call
.getArgOperand(2))->getZExtValue() < 4)) { CheckFailed(
"invalid arguments to llvm.prefetch", Call); return; } } while
(false)
4327 "invalid arguments to llvm.prefetch", Call)do { if (!(cast<ConstantInt>(Call.getArgOperand(1))->
getZExtValue() < 2 && cast<ConstantInt>(Call
.getArgOperand(2))->getZExtValue() < 4)) { CheckFailed(
"invalid arguments to llvm.prefetch", Call); return; } } while
(false)
;
4328 break;
4329 case Intrinsic::stackprotector:
4330 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),do { if (!(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.stackprotector parameter #2 must resolve to an alloca."
, Call); return; } } while (false)
4331 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call)do { if (!(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.stackprotector parameter #2 must resolve to an alloca."
, Call); return; } } while (false)
;
4332 break;
4333 case Intrinsic::localescape: {
4334 BasicBlock *BB = Call.getParent();
4335 Assert(BB == &BB->getParent()->front(),do { if (!(BB == &BB->getParent()->front())) { CheckFailed
("llvm.localescape used outside of entry block", Call); return
; } } while (false)
4336 "llvm.localescape used outside of entry block", Call)do { if (!(BB == &BB->getParent()->front())) { CheckFailed
("llvm.localescape used outside of entry block", Call); return
; } } while (false)
;
4337 Assert(!SawFrameEscape,do { if (!(!SawFrameEscape)) { CheckFailed("multiple calls to llvm.localescape in one function"
, Call); return; } } while (false)
4338 "multiple calls to llvm.localescape in one function", Call)do { if (!(!SawFrameEscape)) { CheckFailed("multiple calls to llvm.localescape in one function"
, Call); return; } } while (false)
;
4339 for (Value *Arg : Call.args()) {
4340 if (isa<ConstantPointerNull>(Arg))
4341 continue; // Null values are allowed as placeholders.
4342 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4343 Assert(AI && AI->isStaticAlloca(),do { if (!(AI && AI->isStaticAlloca())) { CheckFailed
("llvm.localescape only accepts static allocas", Call); return
; } } while (false)
4344 "llvm.localescape only accepts static allocas", Call)do { if (!(AI && AI->isStaticAlloca())) { CheckFailed
("llvm.localescape only accepts static allocas", Call); return
; } } while (false)
;
4345 }
4346 FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands();
4347 SawFrameEscape = true;
4348 break;
4349 }
4350 case Intrinsic::localrecover: {
4351 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
4352 Function *Fn = dyn_cast<Function>(FnArg);
4353 Assert(Fn && !Fn->isDeclaration(),do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, Call); return; } } while (false)
4354 "llvm.localrecover first "do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, Call); return; } } while (false)
4355 "argument must be function defined in this module",do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, Call); return; } } while (false)
4356 Call)do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, Call); return; } } while (false)
;
4357 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
4358 auto &Entry = FrameEscapeInfo[Fn];
4359 Entry.second = unsigned(
4360 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4361 break;
4362 }
4363
4364 case Intrinsic::experimental_gc_statepoint:
4365 if (auto *CI = dyn_cast<CallInst>(&Call))
4366 Assert(!CI->isInlineAsm(),do { if (!(!CI->isInlineAsm())) { CheckFailed("gc.statepoint support for inline assembly unimplemented"
, CI); return; } } while (false)
4367 "gc.statepoint support for inline assembly unimplemented", CI)do { if (!(!CI->isInlineAsm())) { CheckFailed("gc.statepoint support for inline assembly unimplemented"
, CI); return; } } while (false)
;
4368 Assert(Call.getParent()->getParent()->hasGC(),do { if (!(Call.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", Call); return; } } while
(false)
4369 "Enclosing function does not use GC.", Call)do { if (!(Call.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", Call); return; } } while
(false)
;
4370
4371 verifyStatepoint(Call);
4372 break;
4373 case Intrinsic::experimental_gc_result: {
4374 Assert(Call.getParent()->getParent()->hasGC(),do { if (!(Call.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", Call); return; } } while
(false)
4375 "Enclosing function does not use GC.", Call)do { if (!(Call.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", Call); return; } } while
(false)
;
4376 // Are we tied to a statepoint properly?
4377 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
4378 const Function *StatepointFn =
4379 StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
4380 Assert(StatepointFn && StatepointFn->isDeclaration() &&do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, Call, Call.getArgOperand(0)); return; } } while (false)
4381 StatepointFn->getIntrinsicID() ==do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, Call, Call.getArgOperand(0)); return; } } while (false)
4382 Intrinsic::experimental_gc_statepoint,do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, Call, Call.getArgOperand(0)); return; } } while (false)
4383 "gc.result operand #1 must be from a statepoint", Call,do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, Call, Call.getArgOperand(0)); return; } } while (false)
4384 Call.getArgOperand(0))do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, Call, Call.getArgOperand(0)); return; } } while (false)
;
4385
4386 // Assert that result type matches wrapped callee.
4387 const Value *Target = StatepointCall->getArgOperand(2);
4388 auto *PT = cast<PointerType>(Target->getType());
4389 auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4390 Assert(Call.getType() == TargetFuncType->getReturnType(),do { if (!(Call.getType() == TargetFuncType->getReturnType
())) { CheckFailed("gc.result result type does not match wrapped callee"
, Call); return; } } while (false)
4391 "gc.result result type does not match wrapped callee", Call)do { if (!(Call.getType() == TargetFuncType->getReturnType
())) { CheckFailed("gc.result result type does not match wrapped callee"
, Call); return; } } while (false)
;
4392 break;
4393 }
4394 case Intrinsic::experimental_gc_relocate: {
4395 Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call)do { if (!(Call.getNumArgOperands() == 3)) { CheckFailed("wrong number of arguments"
, Call); return; } } while (false)
;
4396
4397 Assert(isa<PointerType>(Call.getType()->getScalarType()),do { if (!(isa<PointerType>(Call.getType()->getScalarType
()))) { CheckFailed("gc.relocate must return a pointer or a vector of pointers"
, Call); return; } } while (false)
4398 "gc.relocate must return a pointer or a vector of pointers", Call)do { if (!(isa<PointerType>(Call.getType()->getScalarType
()))) { CheckFailed("gc.relocate must return a pointer or a vector of pointers"
, Call); return; } } while (false)
;
4399
4400 // Check that this relocate is correctly tied to the statepoint
4401
4402 // This is case for relocate on the unwinding path of an invoke statepoint
4403 if (LandingPadInst *LandingPad =
4404 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
4405
4406 const BasicBlock *InvokeBB =
4407 LandingPad->getParent()->getUniquePredecessor();
4408
4409 // Landingpad relocates should have only one predecessor with invoke
4410 // statepoint terminator
4411 Assert(InvokeBB, "safepoints should have unique landingpads",do { if (!(InvokeBB)) { CheckFailed("safepoints should have unique landingpads"
, LandingPad->getParent()); return; } } while (false)
4412 LandingPad->getParent())do { if (!(InvokeBB)) { CheckFailed("safepoints should have unique landingpads"
, LandingPad->getParent()); return; } } while (false)
;
4413 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",do { if (!(InvokeBB->getTerminator())) { CheckFailed("safepoint block should be well formed"
, InvokeBB); return; } } while (false)
4414 InvokeBB)do { if (!(InvokeBB->getTerminator())) { CheckFailed("safepoint block should be well formed"
, InvokeBB); return; } } while (false)
;
4415 Assert(isStatepoint(InvokeBB->getTerminator()),do { if (!(isStatepoint(InvokeBB->getTerminator()))) { CheckFailed
("gc relocate should be linked to a statepoint", InvokeBB); return
; } } while (false)
4416 "gc relocate should be linked to a statepoint", InvokeBB)do { if (!(isStatepoint(InvokeBB->getTerminator()))) { CheckFailed
("gc relocate should be linked to a statepoint", InvokeBB); return
; } } while (false)
;
4417 } else {
4418 // In all other cases relocate should be tied to the statepoint directly.
4419 // This covers relocates on a normal return path of invoke statepoint and
4420 // relocates of a call statepoint.
4421 auto Token = Call.getArgOperand(0);
4422 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),do { if (!(isa<Instruction>(Token) && isStatepoint
(cast<Instruction>(Token)))) { CheckFailed("gc relocate is incorrectly tied to the statepoint"
, Call, Token); return; } } while (false)
4423 "gc relocate is incorrectly tied to the statepoint", Call, Token)do { if (!(isa<Instruction>(Token) && isStatepoint
(cast<Instruction>(Token)))) { CheckFailed("gc relocate is incorrectly tied to the statepoint"
, Call, Token); return; } } while (false)
;
4424 }
4425
4426 // Verify rest of the relocate arguments.
4427 const CallBase &StatepointCall =
4428 *cast<CallBase>(cast<GCRelocateInst>(Call).getStatepoint());
4429
4430 // Both the base and derived must be piped through the safepoint.
4431 Value *Base = Call.getArgOperand(1);
4432 Assert(isa<ConstantInt>(Base),do { if (!(isa<ConstantInt>(Base))) { CheckFailed("gc.relocate operand #2 must be integer offset"
, Call); return; } } while (false)
4433 "gc.relocate operand #2 must be integer offset", Call)do { if (!(isa<ConstantInt>(Base))) { CheckFailed("gc.relocate operand #2 must be integer offset"
, Call); return; } } while (false)
;
4434
4435 Value *Derived = Call.getArgOperand(2);
4436 Assert(isa<ConstantInt>(Derived),do { if (!(isa<ConstantInt>(Derived))) { CheckFailed("gc.relocate operand #3 must be integer offset"
, Call); return; } } while (false)
4437 "gc.relocate operand #3 must be integer offset", Call)do { if (!(isa<ConstantInt>(Derived))) { CheckFailed("gc.relocate operand #3 must be integer offset"
, Call); return; } } while (false)
;
4438
4439 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4440 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4441 // Check the bounds
4442 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(),do { if (!(0 <= BaseIndex && BaseIndex < (int)StatepointCall
.arg_size())) { CheckFailed("gc.relocate: statepoint base index out of bounds"
, Call); return; } } while (false)
4443 "gc.relocate: statepoint base index out of bounds", Call)do { if (!(0 <= BaseIndex && BaseIndex < (int)StatepointCall
.arg_size())) { CheckFailed("gc.relocate: statepoint base index out of bounds"
, Call); return; } } while (false)
;
4444 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(),do { if (!(0 <= DerivedIndex && DerivedIndex < (
int)StatepointCall.arg_size())) { CheckFailed("gc.relocate: statepoint derived index out of bounds"
, Call); return; } } while (false)
4445 "gc.relocate: statepoint derived index out of bounds", Call)do { if (!(0 <= DerivedIndex && DerivedIndex < (
int)StatepointCall.arg_size())) { CheckFailed("gc.relocate: statepoint derived index out of bounds"
, Call); return; } } while (false)
;
4446
4447 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4448 // section of the statepoint's argument.
4449 Assert(StatepointCall.arg_size() > 0,do { if (!(StatepointCall.arg_size() > 0)) { CheckFailed("gc.statepoint: insufficient arguments"
); return; } } while (false)
4450 "gc.statepoint: insufficient arguments")do { if (!(StatepointCall.arg_size() > 0)) { CheckFailed("gc.statepoint: insufficient arguments"
); return; } } while (false)
;
4451 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)),do { if (!(isa<ConstantInt>(StatepointCall.getArgOperand
(3)))) { CheckFailed("gc.statement: number of call arguments must be constant integer"
); return; } } while (false)
4452 "gc.statement: number of call arguments must be constant integer")do { if (!(isa<ConstantInt>(StatepointCall.getArgOperand
(3)))) { CheckFailed("gc.statement: number of call arguments must be constant integer"
); return; } } while (false)
;
4453 const unsigned NumCallArgs =
4454 cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue();
4455 Assert(StatepointCall.arg_size() > NumCallArgs + 5,do { if (!(StatepointCall.arg_size() > NumCallArgs + 5)) {
CheckFailed("gc.statepoint: mismatch in number of call arguments"
); return; } } while (false)
4456 "gc.statepoint: mismatch in number of call arguments")do { if (!(StatepointCall.arg_size() > NumCallArgs + 5)) {
CheckFailed("gc.statepoint: mismatch in number of call arguments"
); return; } } while (false)
;
4457 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)),do { if (!(isa<ConstantInt>(StatepointCall.getArgOperand
(NumCallArgs + 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
4458 "gc.statepoint: number of transition arguments must be "do { if (!(isa<ConstantInt>(StatepointCall.getArgOperand
(NumCallArgs + 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
4459 "a constant integer")do { if (!(isa<ConstantInt>(StatepointCall.getArgOperand
(NumCallArgs + 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
;
4460 const int NumTransitionArgs =
4461 cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5))
4462 ->getZExtValue();
4463 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4464 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)),do { if (!(isa<ConstantInt>(StatepointCall.getArgOperand
(DeoptArgsStart)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
4465 "gc.statepoint: number of deoptimization arguments must be "do { if (!(isa<ConstantInt>(StatepointCall.getArgOperand
(DeoptArgsStart)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
4466 "a constant integer")do { if (!(isa<ConstantInt>(StatepointCall.getArgOperand
(DeoptArgsStart)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
;
4467 const int NumDeoptArgs =
4468 cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart))
4469 ->getZExtValue();
4470 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4471 const int GCParamArgsEnd = StatepointCall.arg_size();
4472 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", Call); return
; } } while (false)
4473 "gc.relocate: statepoint base index doesn't fall within the "do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", Call); return
; } } while (false)
4474 "'gc parameters' section of the statepoint call",do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", Call); return
; } } while (false)
4475 Call)do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", Call); return
; } } while (false)
;
4476 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", Call); return
; } } while (false)
4477 "gc.relocate: statepoint derived index doesn't fall within the "do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", Call); return
; } } while (false)
4478 "'gc parameters' section of the statepoint call",do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", Call); return
; } } while (false)
4479 Call)do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", Call); return
; } } while (false)
;
4480
4481 // Relocated value must be either a pointer type or vector-of-pointer type,
4482 // but gc_relocate does not need to return the same pointer type as the
4483 // relocated pointer. It can be casted to the correct type later if it's
4484 // desired. However, they must have the same address space and 'vectorness'
4485 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
4486 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),do { if (!(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy
())) { CheckFailed("gc.relocate: relocated value must be a gc pointer"
, Call); return; } } while (false)
4487 "gc.relocate: relocated value must be a gc pointer", Call)do { if (!(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy
())) { CheckFailed("gc.relocate: relocated value must be a gc pointer"
, Call); return; } } while (false)
;
4488
4489 auto ResultType = Call.getType();
4490 auto DerivedType = Relocate.getDerivedPtr()->getType();
4491 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, Call); return; } } while (false)
4492 "gc.relocate: vector relocates to vector and pointer to pointer",do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, Call); return; } } while (false)
4493 Call)do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, Call); return; } } while (false)
;
4494 Assert(do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, Call); return; } } while (false)
4495 ResultType->getPointerAddressSpace() ==do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, Call); return; } } while (false)
4496 DerivedType->getPointerAddressSpace(),do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, Call); return; } } while (false)
4497 "gc.relocate: relocating a pointer shouldn't change its address space",do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, Call); return; } } while (false)
4498 Call)do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, Call); return; } } while (false)
;
4499 break;
4500 }
4501 case Intrinsic::eh_exceptioncode:
4502 case Intrinsic::eh_exceptionpointer: {
4503 Assert(isa<CatchPadInst>(Call.getArgOperand(0)),do { if (!(isa<CatchPadInst>(Call.getArgOperand(0)))) {
CheckFailed("eh.exceptionpointer argument must be a catchpad"
, Call); return; } } while (false)
4504 "eh.exceptionpointer argument must be a catchpad", Call)do { if (!(isa<CatchPadInst>(Call.getArgOperand(0)))) {
CheckFailed("eh.exceptionpointer argument must be a catchpad"
, Call); return; } } while (false)
;
4505 break;
4506 }
4507 case Intrinsic::masked_load: {
4508 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",do { if (!(Call.getType()->isVectorTy())) { CheckFailed("masked_load: must return a vector"
, Call); return; } } while (false)
4509 Call)do { if (!(Call.getType()->isVectorTy())) { CheckFailed("masked_load: must return a vector"
, Call); return; } } while (false)
;
4510
4511 Value *Ptr = Call.getArgOperand(0);
4512 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
4513 Value *Mask = Call.getArgOperand(2);
4514 Value *PassThru = Call.getArgOperand(3);
4515 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_load: mask must be vector", Call); return; } } while
(false)
4516 Call)do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_load: mask must be vector", Call); return; } } while
(false)
;
4517 Assert(Alignment->getValue().isPowerOf2(),do { if (!(Alignment->getValue().isPowerOf2())) { CheckFailed
("masked_load: alignment must be a power of 2", Call); return
; } } while (false)
4518 "masked_load: alignment must be a power of 2", Call)do { if (!(Alignment->getValue().isPowerOf2())) { CheckFailed
("masked_load: alignment must be a power of 2", Call); return
; } } while (false)
;
4519
4520 // DataTy is the overloaded type
4521 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4522 Assert(DataTy == Call.getType(),do { if (!(DataTy == Call.getType())) { CheckFailed("masked_load: return must match pointer type"
, Call); return; } } while (false)
4523 "masked_load: return must match pointer type", Call)do { if (!(DataTy == Call.getType())) { CheckFailed("masked_load: return must match pointer type"
, Call); return; } } while (false)
;
4524 Assert(PassThru->getType() == DataTy,do { if (!(PassThru->getType() == DataTy)) { CheckFailed("masked_load: pass through and data type must match"
, Call); return; } } while (false)
4525 "masked_load: pass through and data type must match", Call)do { if (!(PassThru->getType() == DataTy)) { CheckFailed("masked_load: pass through and data type must match"
, Call); return; } } while (false)
;
4526 Assert(Mask->getType()->getVectorNumElements() ==do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, Call); return; } } while (false)
4527 DataTy->getVectorNumElements(),do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, Call); return; } } while (false)
4528 "masked_load: vector mask must be same length as data", Call)do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, Call); return; } } while (false)
;
4529 break;
4530 }
4531 case Intrinsic::masked_store: {
4532 Value *Val = Call.getArgOperand(0);
4533 Value *Ptr = Call.getArgOperand(1);
4534 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
4535 Value *Mask = Call.getArgOperand(3);
4536 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_store: mask must be vector", Call); return; } } while
(false)
4537 Call)do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_store: mask must be vector", Call); return; } } while
(false)
;
4538 Assert(Alignment->getValue().isPowerOf2(),do { if (!(Alignment->getValue().isPowerOf2())) { CheckFailed
("masked_store: alignment must be a power of 2", Call); return
; } } while (false)
4539 "masked_store: alignment must be a power of 2", Call)do { if (!(Alignment->getValue().isPowerOf2())) { CheckFailed
("masked_store: alignment must be a power of 2", Call); return
; } } while (false)
;
4540
4541 // DataTy is the overloaded type
4542 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4543 Assert(DataTy == Val->getType(),do { if (!(DataTy == Val->getType())) { CheckFailed("masked_store: storee must match pointer type"
, Call); return; } } while (false)
4544 "masked_store: storee must match pointer type", Call)do { if (!(DataTy == Val->getType())) { CheckFailed("masked_store: storee must match pointer type"
, Call); return; } } while (false)
;
4545 Assert(Mask->getType()->getVectorNumElements() ==do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, Call); return; } } while (false)
4546 DataTy->getVectorNumElements(),do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, Call); return; } } while (false)
4547 "masked_store: vector mask must be same length as data", Call)do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, Call); return; } } while (false)
;
4548 break;
4549 }
4550
4551 case Intrinsic::experimental_guard: {
4552 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call)do { if (!(isa<CallInst>(Call))) { CheckFailed("experimental_guard cannot be invoked"
, Call); return; } } while (false)
;
4553 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,do { if (!(Call.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4554 "experimental_guard must have exactly one "do { if (!(Call.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4555 "\"deopt\" operand bundle")do { if (!(Call.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
;
4556 break;
4557 }
4558
4559 case Intrinsic::experimental_deoptimize: {
4560 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",do { if (!(isa<CallInst>(Call))) { CheckFailed("experimental_deoptimize cannot be invoked"
, Call); return; } } while (false)
4561 Call)do { if (!(isa<CallInst>(Call))) { CheckFailed("experimental_deoptimize cannot be invoked"
, Call); return; } } while (false)
;
4562 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,do { if (!(Call.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4563 "experimental_deoptimize must have exactly one "do { if (!(Call.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4564 "\"deopt\" operand bundle")do { if (!(Call.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
;
4565 Assert(Call.getType() == Call.getFunction()->getReturnType(),do { if (!(Call.getType() == Call.getFunction()->getReturnType
())) { CheckFailed("experimental_deoptimize return type must match caller return type"
); return; } } while (false)
4566 "experimental_deoptimize return type must match caller return type")do { if (!(Call.getType() == Call.getFunction()->getReturnType
())) { CheckFailed("experimental_deoptimize return type must match caller return type"
); return; } } while (false)
;
4567
4568 if (isa<CallInst>(Call)) {
4569 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
4570 Assert(RI,do { if (!(RI)) { CheckFailed("calls to experimental_deoptimize must be followed by a return"
); return; } } while (false)
4571 "calls to experimental_deoptimize must be followed by a return")do { if (!(RI)) { CheckFailed("calls to experimental_deoptimize must be followed by a return"
); return; } } while (false)
;
4572
4573 if (!Call.getType()->isVoidTy() && RI)
4574 Assert(RI->getReturnValue() == &Call,do { if (!(RI->getReturnValue() == &Call)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
4575 "calls to experimental_deoptimize must be followed by a return "do { if (!(RI->getReturnValue() == &Call)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
4576 "of the value computed by experimental_deoptimize")do { if (!(RI->getReturnValue() == &Call)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
;
4577 }
4578
4579 break;
4580 }
4581 case Intrinsic::sadd_sat:
4582 case Intrinsic::uadd_sat:
4583 case Intrinsic::ssub_sat:
4584 case Intrinsic::usub_sat: {
4585 Value *Op1 = Call.getArgOperand(0);
4586 Value *Op2 = Call.getArgOperand(1);
4587 Assert(Op1->getType()->isIntOrIntVectorTy(),do { if (!(Op1->getType()->isIntOrIntVectorTy())) { CheckFailed
("first operand of [us][add|sub]_sat must be an int type or vector "
"of ints"); return; } } while (false)
4588 "first operand of [us][add|sub]_sat must be an int type or vector "do { if (!(Op1->getType()->isIntOrIntVectorTy())) { CheckFailed
("first operand of [us][add|sub]_sat must be an int type or vector "
"of ints"); return; } } while (false)
4589 "of ints")do { if (!(Op1->getType()->isIntOrIntVectorTy())) { CheckFailed
("first operand of [us][add|sub]_sat must be an int type or vector "
"of ints"); return; } } while (false)
;
4590 Assert(Op2->getType()->isIntOrIntVectorTy(),do { if (!(Op2->getType()->isIntOrIntVectorTy())) { CheckFailed
("second operand of [us][add|sub]_sat must be an int type or vector "
"of ints"); return; } } while (false)
4591 "second operand of [us][add|sub]_sat must be an int type or vector "do { if (!(Op2->getType()->isIntOrIntVectorTy())) { CheckFailed
("second operand of [us][add|sub]_sat must be an int type or vector "
"of ints"); return; } } while (false)
4592 "of ints")do { if (!(Op2->getType()->isIntOrIntVectorTy())) { CheckFailed
("second operand of [us][add|sub]_sat must be an int type or vector "
"of ints"); return; } } while (false)
;
4593 break;
4594 }
4595 case Intrinsic::smul_fix:
4596 case Intrinsic::umul_fix: {
4597 Value *Op1 = Call.getArgOperand(0);
4598 Value *Op2 = Call.getArgOperand(1);
4599 Assert(Op1->getType()->isIntOrIntVectorTy(),do { if (!(Op1->getType()->isIntOrIntVectorTy())) { CheckFailed
("first operand of [us]mul_fix must be an int type or vector "
"of ints"); return; } } while (false)
4600 "first operand of [us]mul_fix must be an int type or vector "do { if (!(Op1->getType()->isIntOrIntVectorTy())) { CheckFailed
("first operand of [us]mul_fix must be an int type or vector "
"of ints"); return; } } while (false)
4601 "of ints")do { if (!(Op1->getType()->isIntOrIntVectorTy())) { CheckFailed
("first operand of [us]mul_fix must be an int type or vector "
"of ints"); return; } } while (false)
;
4602 Assert(Op2->getType()->isIntOrIntVectorTy(),do { if (!(Op2->getType()->isIntOrIntVectorTy())) { CheckFailed
("second operand of [us]mul_fix must be an int type or vector "
"of ints"); return; } } while (false)
4603 "second operand of [us]mul_fix must be an int type or vector "do { if (!(Op2->getType()->isIntOrIntVectorTy())) { CheckFailed
("second operand of [us]mul_fix must be an int type or vector "
"of ints"); return; } } while (false)
4604 "of ints")do { if (!(Op2->getType()->isIntOrIntVectorTy())) { CheckFailed
("second operand of [us]mul_fix must be an int type or vector "
"of ints"); return; } } while (false)
;
4605
4606 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
4607 Assert(Op3->getType()->getBitWidth() <= 32,do { if (!(Op3->getType()->getBitWidth() <= 32)) { CheckFailed
("third argument of [us]mul_fix must fit within 32 bits"); return
; } } while (false)
4608 "third argument of [us]mul_fix must fit within 32 bits")do { if (!(Op3->getType()->getBitWidth() <= 32)) { CheckFailed
("third argument of [us]mul_fix must fit within 32 bits"); return
; } } while (false)
;
4609
4610 if (ID == Intrinsic::smul_fix) {
4611 Assert(do { if (!(Op3->getZExtValue() < Op1->getType()->
getScalarSizeInBits())) { CheckFailed("the scale of smul_fix must be less than the width of the operands"
); return; } } while (false)
4612 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),do { if (!(Op3->getZExtValue() < Op1->getType()->
getScalarSizeInBits())) { CheckFailed("the scale of smul_fix must be less than the width of the operands"
); return; } } while (false)
4613 "the scale of smul_fix must be less than the width of the operands")do { if (!(Op3->getZExtValue() < Op1->getType()->
getScalarSizeInBits())) { CheckFailed("the scale of smul_fix must be less than the width of the operands"
); return; } } while (false)
;
4614 } else {
4615 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),do { if (!(Op3->getZExtValue() <= Op1->getType()->
getScalarSizeInBits())) { CheckFailed("the scale of umul_fix must be less than or equal to the width of "
"the operands"); return; } } while (false)
4616 "the scale of umul_fix must be less than or equal to the width of "do { if (!(Op3->getZExtValue() <= Op1->getType()->
getScalarSizeInBits())) { CheckFailed("the scale of umul_fix must be less than or equal to the width of "
"the operands"); return; } } while (false)
4617 "the operands")do { if (!(Op3->getZExtValue() <= Op1->getType()->
getScalarSizeInBits())) { CheckFailed("the scale of umul_fix must be less than or equal to the width of "
"the operands"); return; } } while (false)
;
4618 }
4619 break;
4620 }
4621 };
4622}
4623
4624/// Carefully grab the subprogram from a local scope.
4625///
4626/// This carefully grabs the subprogram from a local scope, avoiding the
4627/// built-in assertions that would typically fire.
4628static DISubprogram *getSubprogram(Metadata *LocalScope) {
4629 if (!LocalScope)
4630 return nullptr;
4631
4632 if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4633 return SP;
4634
4635 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4636 return getSubprogram(LB->getRawScope());
4637
4638 // Just return null; broken scope chains are checked elsewhere.
4639 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope")((!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"
) ? static_cast<void> (0) : __assert_fail ("!isa<DILocalScope>(LocalScope) && \"Unknown type of local scope\""
, "/build/llvm-toolchain-snapshot-9~svn360410/lib/IR/Verifier.cpp"
, 4639, __PRETTY_FUNCTION__))
;
4640 return nullptr;
4641}
4642
4643void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4644 unsigned NumOperands = FPI.getNumArgOperands();
4645 bool HasExceptionMD = false;
4646 bool HasRoundingMD = false;
4647 switch (FPI.getIntrinsicID()) {
4648 case Intrinsic::experimental_constrained_sqrt:
4649 case Intrinsic::experimental_constrained_sin:
4650 case Intrinsic::experimental_constrained_cos:
4651 case Intrinsic::experimental_constrained_exp:
4652 case Intrinsic::experimental_constrained_exp2:
4653 case Intrinsic::experimental_constrained_log:
4654 case Intrinsic::experimental_constrained_log10:
4655 case Intrinsic::experimental_constrained_log2:
4656 case Intrinsic::experimental_constrained_rint:
4657 case Intrinsic::experimental_constrained_nearbyint:
4658 case Intrinsic::experimental_constrained_ceil:
4659 case Intrinsic::experimental_constrained_floor:
4660 case Intrinsic::experimental_constrained_round:
4661 case Intrinsic::experimental_constrained_trunc:
4662 Assert((NumOperands == 3), "invalid arguments for constrained FP intrinsic",do { if (!((NumOperands == 3))) { CheckFailed("invalid arguments for constrained FP intrinsic"
, &FPI); return; } } while (false)
4663 &FPI)do { if (!((NumOperands == 3))) { CheckFailed("invalid arguments for constrained FP intrinsic"
, &FPI); return; } } while (false)
;
4664 HasExceptionMD = true;
4665 HasRoundingMD = true;
4666 break;
4667
4668 case Intrinsic::experimental_constrained_fma:
4669 Assert((NumOperands == 5), "invalid arguments for constrained FP intrinsic",do { if (!((NumOperands == 5))) { CheckFailed("invalid arguments for constrained FP intrinsic"
, &FPI); return; } } while (false)
4670 &FPI)do { if (!((NumOperands == 5))) { CheckFailed("invalid arguments for constrained FP intrinsic"
, &FPI); return; } } while (false)
;
4671 HasExceptionMD = true;
4672 HasRoundingMD = true;
4673 break;
4674
4675 case Intrinsic::experimental_constrained_fadd:
4676 case Intrinsic::experimental_constrained_fsub:
4677 case Intrinsic::experimental_constrained_fmul:
4678 case Intrinsic::experimental_constrained_fdiv:
4679 case Intrinsic::experimental_constrained_frem:
4680 case Intrinsic::experimental_constrained_pow:
4681 case Intrinsic::experimental_constrained_powi:
4682 case Intrinsic::experimental_constrained_maxnum:
4683 case Intrinsic::experimental_constrained_minnum:
4684 Assert((NumOperands == 4), "invalid arguments for constrained FP intrinsic",do { if (!((NumOperands == 4))) { CheckFailed("invalid arguments for constrained FP intrinsic"
, &FPI); return; } } while (false)
4685 &FPI)do { if (!((NumOperands == 4))) { CheckFailed("invalid arguments for constrained FP intrinsic"
, &FPI); return; } } while (false)
;
4686 HasExceptionMD = true;
4687 HasRoundingMD = true;
4688 break;
4689
4690 default:
4691 llvm_unreachable("Invalid constrained FP intrinsic!")::llvm::llvm_unreachable_internal("Invalid constrained FP intrinsic!"
, "/build/llvm-toolchain-snapshot-9~svn360410/lib/IR/Verifier.cpp"
, 4691)
;
4692 }
4693
4694 // If a non-metadata argument is passed in a metadata slot then the
4695 // error will be caught earlier when the incorrect argument doesn't
4696 // match the specification in the intrinsic call table. Thus, no
4697 // argument type check is needed here.
4698
4699 if (HasExceptionMD) {
4700 Assert(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic::ebInvalid,do { if (!(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic
::ebInvalid)) { CheckFailed("invalid exception behavior argument"
, &FPI); return; } } while (false)
4701 "invalid exception behavior argument", &FPI)do { if (!(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic
::ebInvalid)) { CheckFailed("invalid exception behavior argument"
, &FPI); return; } } while (false)
;
4702 }
4703 if (HasRoundingMD) {
4704 Assert(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid,do { if (!(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid
)) { CheckFailed("invalid rounding mode argument", &FPI);
return; } } while (false)
4705 "invalid rounding mode argument", &FPI)do { if (!(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid
)) { CheckFailed("invalid rounding mode argument", &FPI);
return; } } while (false)
;
4706 }
4707}
4708
4709void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
4710 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4711 AssertDI(isa<ValueAsMetadata>(MD) ||do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
4712 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
4713 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD)do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
;
4714 AssertDI(isa<DILocalVariable>(DII.getRawVariable()),do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
4715 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
4716 DII.getRawVariable())do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
;
4717 AssertDI(isa<DIExpression>(DII.getRawExpression()),do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
4718 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
4719 DII.getRawExpression())do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
;
4720
4721 // Ignore broken !dbg attachments; they're checked elsewhere.
4722 if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4723 if (!isa<DILocation>(N))
4724 return;
4725
4726 BasicBlock *BB = DII.getParent();
4727 Function *F = BB ? BB->getParent() : nullptr;
4728
4729 // The scopes for variables and !dbg attachments must agree.
4730 DILocalVariable *Var = DII.getVariable();
4731 DILocation *Loc = DII.getDebugLoc();
4732 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",do { if (!(Loc)) { DebugInfoCheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DII, BB, F); return; } } while (false)
4733 &DII, BB, F)do { if (!(Loc)) { DebugInfoCheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DII, BB, F); return; } } while (false)
;
4734
4735 DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4736 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4737 if (!VarSP || !LocSP)
4738 return; // Broken scope chains are checked elsewhere.
4739
4740 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4741 " variable and !dbg attachment",do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4742 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4743 Loc->getScope()->getSubprogram())do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
;
4744
4745 // This check is redundant with one in visitLocalVariable().
4746 AssertDI(isType(Var->getRawType()), "invalid type ref", Var,do { if (!(isType(Var->getRawType()))) { DebugInfoCheckFailed
("invalid type ref", Var, Var->getRawType()); return; } } while
(false)
4747 Var->getRawType())do { if (!(isType(Var->getRawType()))) { DebugInfoCheckFailed
("invalid type ref", Var, Var->getRawType()); return; } } while
(false)
;
4748 if (auto *Type = dyn_cast_or_null<DIType>(Var->getRawType()))
4749 if (Type->isBlockByrefStruct())
4750 AssertDI(DII.getExpression() && DII.getExpression()->getNumElements(),do { if (!(DII.getExpression() && DII.getExpression()
->getNumElements())) { DebugInfoCheckFailed("BlockByRef variable without complex expression"
, Var, &DII); return; } } while (false)
4751 "BlockByRef variable without complex expression", Var, &DII)do { if (!(DII.getExpression() && DII.getExpression()
->getNumElements())) { DebugInfoCheckFailed("BlockByRef variable without complex expression"
, Var, &DII); return; } } while (false)
;
4752
4753 verifyFnArgs(DII);
4754}
4755
4756void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
4757 AssertDI(isa<DILabel>(DLI.getRawLabel()),do { if (!(isa<DILabel>(DLI.getRawLabel()))) { DebugInfoCheckFailed
("invalid llvm.dbg." + Kind + " intrinsic variable", &DLI
, DLI.getRawLabel()); return; } } while (false)
4758 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,do { if (!(isa<DILabel>(DLI.getRawLabel()))) { DebugInfoCheckFailed
("invalid llvm.dbg." + Kind + " intrinsic variable", &DLI
, DLI.getRawLabel()); return; } } while (false)
4759 DLI.getRawLabel())do { if (!(isa<DILabel>(DLI.getRawLabel()))) { DebugInfoCheckFailed
("invalid llvm.dbg." + Kind + " intrinsic variable", &DLI
, DLI.getRawLabel()); return; } } while (false)
;
4760
4761 // Ignore broken !dbg attachments; they're checked elsewhere.
4762 if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
4763 if (!isa<DILocation>(N))
4764 return;
4765
4766 BasicBlock *BB = DLI.getParent();
4767 Function *F = BB ? BB->getParent() : nullptr;
4768
4769 // The scopes for variables and !dbg attachments must agree.
4770 DILabel *Label = DLI.getLabel();
4771 DILocation *Loc = DLI.getDebugLoc();
4772 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",do { if (!(Loc)) { CheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DLI, BB, F); return; } } while (false)
4773 &DLI, BB, F)do { if (!(Loc)) { CheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DLI, BB, F); return; } } while (false)
;
4774
4775 DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
4776 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4777 if (!LabelSP || !LocSP)
4778 return;
4779
4780 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +do { if (!(LabelSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " label and !dbg attachment", &DLI, BB, F, Label
, Label->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4781 " label and !dbg attachment",do { if (!(LabelSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " label and !dbg attachment", &DLI, BB, F, Label
, Label->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4782 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,do { if (!(LabelSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " label and !dbg attachment", &DLI, BB, F, Label
, Label->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4783 Loc->getScope()->getSubprogram())do { if (!(LabelSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " label and !dbg attachment", &DLI, BB, F, Label
, Label->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
;
4784}
4785
4786void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
4787 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
4788 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
4789
4790 // We don't know whether this intrinsic verified correctly.
4791 if (!V || !E || !E->isValid())
4792 return;
4793
4794 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
4795 auto Fragment = E->getFragmentInfo();
4796 if (!Fragment)
4797 return;
4798
4799 // The frontend helps out GDB by emitting the members of local anonymous
4800 // unions as artificial local variables with shared storage. When SROA splits
4801 // the storage for artificial local variables that are smaller than the entire
4802 // union, the overhang piece will be outside of the allotted space for the
4803 // variable and this check fails.
4804 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4805 if (V->isArtificial())
4806 return;
4807
4808 verifyFragmentExpression(*V, *Fragment, &I);
4809}
4810
4811template <typename ValueOrMetadata>
4812void Verifier::verifyFragmentExpression(const DIVariable &V,
4813 DIExpression::FragmentInfo Fragment,
4814 ValueOrMetadata *Desc) {
4815 // If there's no size, the type is broken, but that should be checked
4816 // elsewhere.
4817 auto VarSize = V.getSizeInBits();
4818 if (!VarSize)
4819 return;
4820
4821 unsigned FragSize = Fragment.SizeInBits;
4822 unsigned FragOffset = Fragment.OffsetInBits;
4823 AssertDI(FragSize + FragOffset <= *VarSize,do { if (!(FragSize + FragOffset <= *VarSize)) { DebugInfoCheckFailed
("fragment is larger than or outside of variable", Desc, &
V); return; } } while (false)
4824 "fragment is larger than or outside of variable", Desc, &V)do { if (!(FragSize + FragOffset <= *VarSize)) { DebugInfoCheckFailed
("fragment is larger than or outside of variable", Desc, &
V); return; } } while (false)
;
4825 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V)do { if (!(FragSize != *VarSize)) { DebugInfoCheckFailed("fragment covers entire variable"
, Desc, &V); return; } } while (false)
;
4826}
4827
4828void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
4829 // This function does not take the scope of noninlined function arguments into
4830 // account. Don't run it if current function is nodebug, because it may
4831 // contain inlined debug intrinsics.
4832 if (!HasDebugInfo)
4833 return;
4834
4835 // For performance reasons only check non-inlined ones.
4836 if (I.getDebugLoc()->getInlinedAt())
4837 return;
4838
4839 DILocalVariable *Var = I.getVariable();
4840 AssertDI(Var, "dbg intrinsic without variable")do { if (!(Var)) { DebugInfoCheckFailed("dbg intrinsic without variable"
); return; } } while (false)
;
4841
4842 unsigned ArgNo = Var->getArg();
4843 if (!ArgNo)
4844 return;
4845
4846 // Verify there are no duplicate function argument debug info entries.
4847 // These will cause hard-to-debug assertions in the DWARF backend.
4848 if (DebugFnArgs.size() < ArgNo)
4849 DebugFnArgs.resize(ArgNo, nullptr);
4850
4851 auto *Prev = DebugFnArgs[ArgNo - 1];
4852 DebugFnArgs[ArgNo - 1] = Var;
4853 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,do { if (!(!Prev || (Prev == Var))) { DebugInfoCheckFailed("conflicting debug info for argument"
, &I, Prev, Var); return; } } while (false)
4854 Prev, Var)do { if (!(!Prev || (Prev == Var))) { DebugInfoCheckFailed("conflicting debug info for argument"
, &I, Prev, Var); return; } } while (false)
;
4855}
4856
4857void Verifier::verifyCompileUnits() {
4858 // When more than one Module is imported into the same context, such as during
4859 // an LTO build before linking the modules, ODR type uniquing may cause types
4860 // to point to a different CU. This check does not make sense in this case.
4861 if (M.getContext().isODRUniquingDebugTypes())
4862 return;
4863 auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
4864 SmallPtrSet<const Metadata *, 2> Listed;
4865 if (CUs)
4866 Listed.insert(CUs->op_begin(), CUs->op_end());
4867 for (auto *CU : CUVisited)
4868 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU)do { if (!(Listed.count(CU))) { DebugInfoCheckFailed("DICompileUnit not listed in llvm.dbg.cu"
, CU); return; } } while (false)
;
4869 CUVisited.clear();
4870}
4871
4872void Verifier::verifyDeoptimizeCallingConvs() {
4873 if (DeoptimizeDeclarations.empty())
4874 return;
4875
4876 const Function *First = DeoptimizeDeclarations[0];
4877 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4878 Assert(First->getCallingConv() == F->getCallingConv(),do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
4879 "All llvm.experimental.deoptimize declarations must have the same "do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
4880 "calling convention",do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
4881 First, F)do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
;
4882 }
4883}
4884
4885void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
4886 bool HasSource = F.getSource().hasValue();
4887 if (!HasSourceDebugInfo.count(&U))
4888 HasSourceDebugInfo[&U] = HasSource;
4889 AssertDI(HasSource == HasSourceDebugInfo[&U],do { if (!(HasSource == HasSourceDebugInfo[&U])) { DebugInfoCheckFailed
("inconsistent use of embedded source"); return; } } while (false
)
4890 "inconsistent use of embedded source")do { if (!(HasSource == HasSourceDebugInfo[&U])) { DebugInfoCheckFailed
("inconsistent use of embedded source"); return; } } while (false
)
;
4891}
4892
4893//===----------------------------------------------------------------------===//
4894// Implement the public interfaces to this file...
4895//===----------------------------------------------------------------------===//
4896
4897bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
4898 Function &F = const_cast<Function &>(f);
4899
4900 // Don't use a raw_null_ostream. Printing IR is expensive.
4901 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
4902
4903 // Note that this function's return value is inverted from what you would
4904 // expect of a function called "verify".
4905 return !V.verify(F);
4906}
4907
4908bool llvm::verifyModule(const Module &M, raw_ostream *OS,
4909 bool *BrokenDebugInfo) {
4910 // Don't use a raw_null_ostream. Printing IR is expensive.
4911 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
4912
4913 bool Broken = false;
4914 for (const Function &F : M)
4915 Broken |= !V.verify(F);
4916
4917 Broken |= !V.verify();
4918 if (BrokenDebugInfo)
4919 *BrokenDebugInfo = V.hasBrokenDebugInfo();
4920 // Note that this function's return value is inverted from what you would
4921 // expect of a function called "verify".
4922 return Broken;
4923}
4924
4925namespace {
4926
4927struct VerifierLegacyPass : public FunctionPass {
4928 static char ID;
4929
4930 std::unique_ptr<Verifier> V;
4931 bool FatalErrors = true;
4932
4933 VerifierLegacyPass() : FunctionPass(ID) {
4934 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4935 }
4936 explicit VerifierLegacyPass(bool FatalErrors)
4937 : FunctionPass(ID),
4938 FatalErrors(FatalErrors) {
4939 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4940 }
4941
4942 bool doInitialization(Module &M) override {
4943 V = llvm::make_unique<Verifier>(
4944 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
4945 return false;
4946 }
4947
4948 bool runOnFunction(Function &F) override {
4949 if (!V->verify(F) && FatalErrors) {
4950 errs() << "in function " << F.getName() << '\n';
4951 report_fatal_error("Broken function found, compilation aborted!");
4952 }
4953 return false;
4954 }
4955
4956 bool doFinalization(Module &M) override {
4957 bool HasErrors = false;
4958 for (Function &F : M)
4959 if (F.isDeclaration())
4960 HasErrors |= !V->verify(F);
4961
4962 HasErrors |= !V->verify();
4963 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
4964 report_fatal_error("Broken module found, compilation aborted!");
4965 return false;
4966 }
4967
4968 void getAnalysisUsage(AnalysisUsage &AU) const override {
4969 AU.setPreservesAll();
4970 }
4971};
4972
4973} // end anonymous namespace
4974
4975/// Helper to issue failure from the TBAA verification
4976template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
4977 if (Diagnostic)
4978 return Diagnostic->CheckFailed(Args...);
4979}
4980
4981#define AssertTBAA(C, ...)do { if (!(C)) { CheckFailed(...); return false; } } while (false
)
\
4982 do { \
4983 if (!(C)) { \
4984 CheckFailed(__VA_ARGS__); \
4985 return false; \
4986 } \
4987 } while (false)
4988
4989/// Verify that \p BaseNode can be used as the "base type" in the struct-path
4990/// TBAA scheme. This means \p BaseNode is either a scalar node, or a
4991/// struct-type node describing an aggregate data structure (like a struct).
4992TBAAVerifier::TBAABaseNodeSummary
4993TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
4994 bool IsNewFormat) {
4995 if (BaseNode->getNumOperands() < 2) {
4996 CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
4997 return {true, ~0u};
4998 }
4999
5000 auto Itr = TBAABaseNodes.find(BaseNode);
5001 if (Itr != TBAABaseNodes.end())
5002 return Itr->second;
5003
5004 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
5005 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
5006 (void)InsertResult;
5007 assert(InsertResult.second && "We just checked!")((InsertResult.second && "We just checked!") ? static_cast
<void> (0) : __assert_fail ("InsertResult.second && \"We just checked!\""
, "/build/llvm-toolchain-snapshot-9~svn360410/lib/IR/Verifier.cpp"
, 5007, __PRETTY_FUNCTION__))
;
5008 return Result;
5009}
5010
5011TBAAVerifier::TBAABaseNodeSummary
5012TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
5013 bool IsNewFormat) {
5014 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
5015
5016 if (BaseNode->getNumOperands() == 2) {
5017 // Scalar nodes can only be accessed at offset 0.
5018 return isValidScalarTBAANode(BaseNode)
5019 ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
5020 : InvalidNode;
5021 }
5022
5023 if (IsNewFormat) {
5024 if (BaseNode->getNumOperands() % 3 != 0) {
5025 CheckFailed("Access tag nodes must have the number of operands that is a "
5026 "multiple of 3!", BaseNode);
5027 return InvalidNode;
5028 }
5029 } else {
5030 if (BaseNode->getNumOperands() % 2 != 1) {
5031 CheckFailed("Struct tag nodes must have an odd number of operands!",
5032 BaseNode);
5033 return InvalidNode;
5034 }
5035 }
5036
5037 // Check the type size field.
5038 if (IsNewFormat) {
5039 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5040 BaseNode->getOperand(1));
5041 if (!TypeSizeNode) {
5042 CheckFailed("Type size nodes must be constants!", &I, BaseNode);
5043 return InvalidNode;
5044 }
5045 }
5046
5047 // Check the type name field. In the new format it can be anything.
5048 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
5049 CheckFailed("Struct tag nodes have a string as their first operand",
5050 BaseNode);
5051 return InvalidNode;
5052 }
5053
5054 bool Failed = false;
5055
5056 Optional<APInt> PrevOffset;
5057 unsigned BitWidth = ~0u;
5058
5059 // We've already checked that BaseNode is not a degenerate root node with one
5060 // operand in \c verifyTBAABaseNode, so this loop should run at least once.
5061 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5062 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5063 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5064 Idx += NumOpsPerField) {
5065 const MDOperand &FieldTy = BaseNode->getOperand(Idx);
5066 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
5067 if (!isa<MDNode>(FieldTy)) {
5068 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
5069 Failed = true;
5070 continue;
5071 }
5072
5073 auto *OffsetEntryCI =
5074 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
5075 if (!OffsetEntryCI) {
5076 CheckFailed("Offset entries must be constants!", &I, BaseNode);
5077 Failed = true;
5078 continue;
5079 }
5080
5081 if (BitWidth == ~0u)
5082 BitWidth = OffsetEntryCI->getBitWidth();
5083
5084 if (OffsetEntryCI->getBitWidth() != BitWidth) {
5085 CheckFailed(
5086 "Bitwidth between the offsets and struct type entries must match", &I,
5087 BaseNode);
5088 Failed = true;
5089 continue;
5090 }
5091
5092 // NB! As far as I can tell, we generate a non-strictly increasing offset
5093 // sequence only from structs that have zero size bit fields. When
5094 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
5095 // pick the field lexically the latest in struct type metadata node. This
5096 // mirrors the actual behavior of the alias analysis implementation.
5097 bool IsAscending =
5098 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
5099
5100 if (!IsAscending) {
5101 CheckFailed("Offsets must be increasing!", &I, BaseNode);
5102 Failed = true;
5103 }
5104
5105 PrevOffset = OffsetEntryCI->getValue();
5106
5107 if (IsNewFormat) {
5108 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5109 BaseNode->getOperand(Idx + 2));
5110 if (!MemberSizeNode) {
5111 CheckFailed("Member size entries must be constants!", &I, BaseNode);
5112 Failed = true;
5113 continue;
5114 }
5115 }
5116 }
5117
5118 return Failed ? InvalidNode
5119 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
5120}
5121
5122static bool IsRootTBAANode(const MDNode *MD) {
5123 return MD->getNumOperands() < 2;
5124}
5125
5126static bool IsScalarTBAANodeImpl(const MDNode *MD,
5127 SmallPtrSetImpl<const MDNode *> &Visited) {
5128 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
5129 return false;
5130
5131 if (!isa<MDString>(MD->getOperand(0)))
5132 return false;
5133
5134 if (MD->getNumOperands() == 3) {
5135 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
5136 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
5137 return false;
5138 }
5139
5140 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5141 return Parent && Visited.insert(Parent).second &&
5142 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
5143}
5144
5145bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
5146 auto ResultIt = TBAAScalarNodes.find(MD);
5147 if (ResultIt != TBAAScalarNodes.end())
5148 return ResultIt->second;
5149
5150 SmallPtrSet<const MDNode *, 4> Visited;
5151 bool Result = IsScalarTBAANodeImpl(MD, Visited);
5152 auto InsertResult = TBAAScalarNodes.insert({MD, Result});
5153 (void)InsertResult;
5154 assert(InsertResult.second && "Just checked!")((InsertResult.second && "Just checked!") ? static_cast
<void> (0) : __assert_fail ("InsertResult.second && \"Just checked!\""
, "/build/llvm-toolchain-snapshot-9~svn360410/lib/IR/Verifier.cpp"
, 5154, __PRETTY_FUNCTION__))
;
5155
5156 return Result;
5157}
5158
5159/// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
5160/// Offset in place to be the offset within the field node returned.
5161///
5162/// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
5163MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
5164 const MDNode *BaseNode,
5165 APInt &Offset,
5166 bool IsNewFormat) {
5167 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!")((BaseNode->getNumOperands() >= 2 && "Invalid base node!"
) ? static_cast<void> (0) : __assert_fail ("BaseNode->getNumOperands() >= 2 && \"Invalid base node!\""
, "/build/llvm-toolchain-snapshot-9~svn360410/lib/IR/Verifier.cpp"
, 5167, __PRETTY_FUNCTION__))
;
5168
5169 // Scalar nodes have only one possible "field" -- their parent in the access
5170 // hierarchy. Offset must be zero at this point, but our caller is supposed
5171 // to Assert that.
5172 if (BaseNode->getNumOperands() == 2)
5173 return cast<MDNode>(BaseNode->getOperand(1));
5174
5175 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5176 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5177 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5178 Idx += NumOpsPerField) {
5179 auto *OffsetEntryCI =
5180 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
5181 if (OffsetEntryCI->getValue().ugt(Offset)) {
5182 if (Idx == FirstFieldOpNo) {
5183 CheckFailed("Could not find TBAA parent in struct type node", &I,
5184 BaseNode, &Offset);
5185 return nullptr;
5186 }
5187
5188 unsigned PrevIdx = Idx - NumOpsPerField;
5189 auto *PrevOffsetEntryCI =
5190 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
5191 Offset -= PrevOffsetEntryCI->getValue();
5192 return cast<MDNode>(BaseNode->getOperand(PrevIdx));
5193 }
5194 }
5195
5196 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
5197 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
5198 BaseNode->getOperand(LastIdx + 1));
5199 Offset -= LastOffsetEntryCI->getValue();
5200 return cast<MDNode>(BaseNode->getOperand(LastIdx));
5201}
5202
5203static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
5204 if (!Type || Type->getNumOperands() < 3)
5205 return false;
5206
5207 // In the new format type nodes shall have a reference to the parent type as
5208 // its first operand.
5209 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
5210 if (!Parent)
5211 return false;
5212
5213 return true;
5214}
5215
5216bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
5217 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("This instruction shall not have a TBAA access tag!", &I
); return false; } } while (false)
5218 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("This instruction shall not have a TBAA access tag!", &I
); return false; } } while (false)
5219 isa<AtomicCmpXchgInst>(I),do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("This instruction shall not have a TBAA access tag!", &I
); return false; } } while (false)
5220 "This instruction shall not have a TBAA access tag!", &I)do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("This instruction shall not have a TBAA access tag!", &I
); return false; } } while (false)
;
5221
5222 bool IsStructPathTBAA =
5223 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
5224
5225 AssertTBAA(do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
5226 IsStructPathTBAA,do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
5227 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I)do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
;
5228
5229 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
5230 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5231
5232 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
5233
5234 if (IsNewFormat) {
5235 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,do { if (!(MD->getNumOperands() == 4 || MD->getNumOperands
() == 5)) { CheckFailed("Access tag metadata must have either 4 or 5 operands"
, &I, MD); return false; } } while (false)
5236 "Access tag metadata must have either 4 or 5 operands", &I, MD)do { if (!(MD->getNumOperands() == 4 || MD->getNumOperands
() == 5)) { CheckFailed("Access tag metadata must have either 4 or 5 operands"
, &I, MD); return false; } } while (false)
;
5237 } else {
5238 AssertTBAA(MD->getNumOperands() < 5,do { if (!(MD->getNumOperands() < 5)) { CheckFailed("Struct tag metadata must have either 3 or 4 operands"
, &I, MD); return false; } } while (false)
5239 "Struct tag metadata must have either 3 or 4 operands", &I, MD)do { if (!(MD->getNumOperands() < 5)) { CheckFailed("Struct tag metadata must have either 3 or 4 operands"
, &I, MD); return false; } } while (false)
;
5240 }
5241
5242 // Check the access size field.
5243 if (IsNewFormat) {
5244 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5245 MD->getOperand(3));
5246 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD)do { if (!(AccessSizeNode)) { CheckFailed("Access size field must be a constant"
, &I, MD); return false; } } while (false)
;
5247 }
5248
5249 // Check the immutability flag.
5250 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
5251 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
5252 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
5253 MD->getOperand(ImmutabilityFlagOpNo));
5254 AssertTBAA(IsImmutableCI,do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
5255 "Immutability tag on struct tag metadata must be a constant",do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
5256 &I, MD)do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
;
5257 AssertTBAA(do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
5258 IsImmutableCI->isZero() || IsImmutableCI->isOne(),do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
5259 "Immutability part of the struct tag metadata must be either 0 or 1",do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
5260 &I, MD)do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
;
5261 }
5262
5263 AssertTBAA(BaseNode && AccessType,do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
5264 "Malformed struct tag metadata: base and access-type "do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
5265 "should be non-null and point to Metadata nodes",do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
5266 &I, MD, BaseNode, AccessType)do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
;
5267
5268 if (!IsNewFormat) {
5269 AssertTBAA(isValidScalarTBAANode(AccessType),do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
5270 "Access type node must be a valid scalar type", &I, MD,do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
5271 AccessType)do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
;
5272 }
5273
5274 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
5275 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD)do { if (!(OffsetCI)) { CheckFailed("Offset must be constant integer"
, &I, MD); return false; } } while (false)
;
5276
5277 APInt Offset = OffsetCI->getValue();
5278 bool SeenAccessTypeInPath = false;
5279
5280 SmallPtrSet<MDNode *, 4> StructPath;
5281
5282 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
5283 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
5284 IsNewFormat)) {
5285 if (!StructPath.insert(BaseNode).second) {
5286 CheckFailed("Cycle detected in struct path", &I, MD);
5287 return false;
5288 }
5289
5290 bool Invalid;
5291 unsigned BaseNodeBitWidth;
5292 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
5293 IsNewFormat);
5294
5295 // If the base node is invalid in itself, then we've already printed all the
5296 // errors we wanted to print.
5297 if (Invalid)
5298 return false;
5299
5300 SeenAccessTypeInPath |= BaseNode == AccessType;
5301
5302 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
5303 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",do { if (!(Offset == 0)) { CheckFailed("Offset not zero at the point of scalar access"
, &I, MD, &Offset); return false; } } while (false)
5304 &I, MD, &Offset)do { if (!(Offset == 0)) { CheckFailed("Offset not zero at the point of scalar access"
, &I, MD, &Offset); return false; } } while (false)
;
5305
5306 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0) || (IsNewFormat && BaseNodeBitWidth
== ~0u))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
5307 (BaseNodeBitWidth == 0 && Offset == 0) ||do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0) || (IsNewFormat && BaseNodeBitWidth
== ~0u))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
5308 (IsNewFormat && BaseNodeBitWidth == ~0u),do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0) || (IsNewFormat && BaseNodeBitWidth
== ~0u))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
5309 "Access bit-width not the same as description bit-width", &I, MD,do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0) || (IsNewFormat && BaseNodeBitWidth
== ~0u))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
5310 BaseNodeBitWidth, Offset.getBitWidth())do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0) || (IsNewFormat && BaseNodeBitWidth
== ~0u))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
;
5311
5312 if (IsNewFormat && SeenAccessTypeInPath)
5313 break;
5314 }
5315
5316 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",do { if (!(SeenAccessTypeInPath)) { CheckFailed("Did not see access type in access path!"
, &I, MD); return false; } } while (false)
5317 &I, MD)do { if (!(SeenAccessTypeInPath)) { CheckFailed("Did not see access type in access path!"
, &I, MD); return false; } } while (false)
;
5318 return true;
5319}
5320
5321char VerifierLegacyPass::ID = 0;
5322INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)static void *initializeVerifierLegacyPassPassOnce(PassRegistry
&Registry) { PassInfo *PI = new PassInfo( "Module Verifier"
, "verify", &VerifierLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<VerifierLegacyPass>), false, false); Registry
.registerPass(*PI, true); return PI; } static llvm::once_flag
InitializeVerifierLegacyPassPassFlag; void llvm::initializeVerifierLegacyPassPass
(PassRegistry &Registry) { llvm::call_once(InitializeVerifierLegacyPassPassFlag
, initializeVerifierLegacyPassPassOnce, std::ref(Registry)); }
5323
5324FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
5325 return new VerifierLegacyPass(FatalErrors);
5326}
5327
5328AnalysisKey VerifierAnalysis::Key;
5329VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
5330 ModuleAnalysisManager &) {
5331 Result Res;
5332 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
5333 return Res;
5334}
5335
5336VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
5337 FunctionAnalysisManager &) {
5338 return { llvm::verifyFunction(F, &dbgs()), false };
5339}
5340
5341PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
5342 auto Res = AM.getResult<VerifierAnalysis>(M);
5343 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
5344 report_fatal_error("Broken module found, compilation aborted!");
5345
5346 return PreservedAnalyses::all();
5347}
5348
5349PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
5350 auto res = AM.getResult<VerifierAnalysis>(F);
5351 if (res.IRBroken && FatalErrors)
5352 report_fatal_error("Broken function found, compilation aborted!");
5353
5354 return PreservedAnalyses::all();
5355}