Bug Summary

File:lib/IR/Verifier.cpp
Warning:line 2165, column 7
Called C++ object pointer is null

Annotated Source Code

1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the function verifier interface, that can be used for some
11// sanity checking of input to the system.
12//
13// Note that this does not provide full `Java style' security and verifications,
14// instead it just tries to ensure that code is well-formed.
15//
16// * Both of a binary operator's parameters are of the same type
17// * Verify that the indices of mem access instructions match other operands
18// * Verify that arithmetic and other things are only performed on first-class
19// types. Verify that shifts & logicals only happen on integrals f.e.
20// * All of the constants in a switch statement are of the correct type
21// * The code is in valid SSA form
22// * It should be illegal to put a label into any other type (like a structure)
23// or to return one. [except constant arrays!]
24// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25// * PHI nodes must have an entry for each predecessor, with no extras.
26// * PHI nodes must be the first thing in a basic block, all grouped together
27// * PHI nodes must have at least one entry
28// * All basic blocks should only end with terminator insts, not contain them
29// * The entry node to a function must not have predecessors
30// * All Instructions must be embedded into a basic block
31// * Functions cannot take a void-typed parameter
32// * Verify that a function's argument list agrees with it's declared type.
33// * It is illegal to specify a name for a void value.
34// * It is illegal to have a internal global value with no initializer
35// * It is illegal to have a ret instruction that returns a value that does not
36// agree with the function return value type.
37// * Function call argument types match the function prototype
38// * A landing pad is defined by a landingpad instruction, and can be jumped to
39// only by the unwind edge of an invoke instruction.
40// * A landingpad instruction must be the first non-PHI instruction in the
41// block.
42// * Landingpad instructions must be in a function with a personality function.
43// * All other things that are tested by asserts spread about the code...
44//
45//===----------------------------------------------------------------------===//
46
47#include "llvm/IR/Verifier.h"
48#include "llvm/ADT/APFloat.h"
49#include "llvm/ADT/APInt.h"
50#include "llvm/ADT/ArrayRef.h"
51#include "llvm/ADT/DenseMap.h"
52#include "llvm/ADT/ilist.h"
53#include "llvm/ADT/MapVector.h"
54#include "llvm/ADT/Optional.h"
55#include "llvm/ADT/STLExtras.h"
56#include "llvm/ADT/SmallPtrSet.h"
57#include "llvm/ADT/SmallSet.h"
58#include "llvm/ADT/SmallVector.h"
59#include "llvm/ADT/StringMap.h"
60#include "llvm/ADT/StringRef.h"
61#include "llvm/ADT/Twine.h"
62#include "llvm/IR/Argument.h"
63#include "llvm/IR/Attributes.h"
64#include "llvm/IR/BasicBlock.h"
65#include "llvm/IR/CFG.h"
66#include "llvm/IR/CallSite.h"
67#include "llvm/IR/CallingConv.h"
68#include "llvm/IR/Comdat.h"
69#include "llvm/IR/Constant.h"
70#include "llvm/IR/ConstantRange.h"
71#include "llvm/IR/Constants.h"
72#include "llvm/IR/DataLayout.h"
73#include "llvm/IR/DebugInfo.h"
74#include "llvm/IR/DebugInfoMetadata.h"
75#include "llvm/IR/DebugLoc.h"
76#include "llvm/IR/DerivedTypes.h"
77#include "llvm/IR/DiagnosticInfo.h"
78#include "llvm/IR/Dominators.h"
79#include "llvm/IR/Function.h"
80#include "llvm/IR/GlobalAlias.h"
81#include "llvm/IR/GlobalValue.h"
82#include "llvm/IR/GlobalVariable.h"
83#include "llvm/IR/InlineAsm.h"
84#include "llvm/IR/InstrTypes.h"
85#include "llvm/IR/Instruction.h"
86#include "llvm/IR/Instructions.h"
87#include "llvm/IR/InstVisitor.h"
88#include "llvm/IR/IntrinsicInst.h"
89#include "llvm/IR/Intrinsics.h"
90#include "llvm/IR/LLVMContext.h"
91#include "llvm/IR/Metadata.h"
92#include "llvm/IR/Module.h"
93#include "llvm/IR/ModuleSlotTracker.h"
94#include "llvm/IR/PassManager.h"
95#include "llvm/IR/Statepoint.h"
96#include "llvm/IR/Type.h"
97#include "llvm/IR/Use.h"
98#include "llvm/IR/User.h"
99#include "llvm/IR/Value.h"
100#include "llvm/Pass.h"
101#include "llvm/Support/AtomicOrdering.h"
102#include "llvm/Support/Casting.h"
103#include "llvm/Support/CommandLine.h"
104#include "llvm/Support/Debug.h"
105#include "llvm/Support/Dwarf.h"
106#include "llvm/Support/ErrorHandling.h"
107#include "llvm/Support/MathExtras.h"
108#include "llvm/Support/raw_ostream.h"
109#include <algorithm>
110#include <cassert>
111#include <cstdint>
112#include <memory>
113#include <string>
114#include <utility>
115
116using namespace llvm;
117
118static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
119
120namespace llvm {
121
122struct VerifierSupport {
123 raw_ostream *OS;
124 const Module &M;
125 ModuleSlotTracker MST;
126 const DataLayout &DL;
127 LLVMContext &Context;
128
129 /// Track the brokenness of the module while recursively visiting.
130 bool Broken = false;
131 /// Broken debug info can be "recovered" from by stripping the debug info.
132 bool BrokenDebugInfo = false;
133 /// Whether to treat broken debug info as an error.
134 bool TreatBrokenDebugInfoAsError = true;
135
136 explicit VerifierSupport(raw_ostream *OS, const Module &M)
137 : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
138
139private:
140 void Write(const Module *M) {
141 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
142 }
143
144 void Write(const Value *V) {
145 if (!V)
146 return;
147 if (isa<Instruction>(V)) {
148 V->print(*OS, MST);
149 *OS << '\n';
150 } else {
151 V->printAsOperand(*OS, true, MST);
152 *OS << '\n';
153 }
154 }
155
156 void Write(ImmutableCallSite CS) {
157 Write(CS.getInstruction());
158 }
159
160 void Write(const Metadata *MD) {
161 if (!MD)
162 return;
163 MD->print(*OS, MST, &M);
164 *OS << '\n';
165 }
166
167 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
168 Write(MD.get());
169 }
170
171 void Write(const NamedMDNode *NMD) {
172 if (!NMD)
173 return;
174 NMD->print(*OS, MST);
175 *OS << '\n';
176 }
177
178 void Write(Type *T) {
179 if (!T)
180 return;
181 *OS << ' ' << *T;
182 }
183
184 void Write(const Comdat *C) {
185 if (!C)
186 return;
187 *OS << *C;
188 }
189
190 void Write(const APInt *AI) {
191 if (!AI)
192 return;
193 *OS << *AI << '\n';
194 }
195
196 void Write(const unsigned i) { *OS << i << '\n'; }
197
198 template <typename T> void Write(ArrayRef<T> Vs) {
199 for (const T &V : Vs)
200 Write(V);
201 }
202
203 template <typename T1, typename... Ts>
204 void WriteTs(const T1 &V1, const Ts &... Vs) {
205 Write(V1);
206 WriteTs(Vs...);
207 }
208
209 template <typename... Ts> void WriteTs() {}
210
211public:
212 /// \brief A check failed, so printout out the condition and the message.
213 ///
214 /// This provides a nice place to put a breakpoint if you want to see why
215 /// something is not correct.
216 void CheckFailed(const Twine &Message) {
217 if (OS)
218 *OS << Message << '\n';
219 Broken = true;
220 }
221
222 /// \brief A check failed (with values to print).
223 ///
224 /// This calls the Message-only version so that the above is easier to set a
225 /// breakpoint on.
226 template <typename T1, typename... Ts>
227 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
228 CheckFailed(Message);
229 if (OS)
230 WriteTs(V1, Vs...);
231 }
232
233 /// A debug info check failed.
234 void DebugInfoCheckFailed(const Twine &Message) {
235 if (OS)
236 *OS << Message << '\n';
237 Broken |= TreatBrokenDebugInfoAsError;
238 BrokenDebugInfo = true;
239 }
240
241 /// A debug info check failed (with values to print).
242 template <typename T1, typename... Ts>
243 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
244 const Ts &... Vs) {
245 DebugInfoCheckFailed(Message);
246 if (OS)
247 WriteTs(V1, Vs...);
248 }
249};
250
251} // namespace llvm
252
253namespace {
254
255class Verifier : public InstVisitor<Verifier>, VerifierSupport {
256 friend class InstVisitor<Verifier>;
257
258 DominatorTree DT;
259
260 /// \brief When verifying a basic block, keep track of all of the
261 /// instructions we have seen so far.
262 ///
263 /// This allows us to do efficient dominance checks for the case when an
264 /// instruction has an operand that is an instruction in the same block.
265 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
266
267 /// \brief Keep track of the metadata nodes that have been checked already.
268 SmallPtrSet<const Metadata *, 32> MDNodes;
269
270 /// Keep track which DISubprogram is attached to which function.
271 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
272
273 /// Track all DICompileUnits visited.
274 SmallPtrSet<const Metadata *, 2> CUVisited;
275
276 /// \brief The result type for a landingpad.
277 Type *LandingPadResultTy;
278
279 /// \brief Whether we've seen a call to @llvm.localescape in this function
280 /// already.
281 bool SawFrameEscape;
282
283 /// Whether the current function has a DISubprogram attached to it.
284 bool HasDebugInfo = false;
285
286 /// Stores the count of how many objects were passed to llvm.localescape for a
287 /// given function and the largest index passed to llvm.localrecover.
288 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
289
290 // Maps catchswitches and cleanuppads that unwind to siblings to the
291 // terminators that indicate the unwind, used to detect cycles therein.
292 MapVector<Instruction *, TerminatorInst *> SiblingFuncletInfo;
293
294 /// Cache of constants visited in search of ConstantExprs.
295 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
296
297 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
298 SmallVector<const Function *, 4> DeoptimizeDeclarations;
299
300 // Verify that this GlobalValue is only used in this module.
301 // This map is used to avoid visiting uses twice. We can arrive at a user
302 // twice, if they have multiple operands. In particular for very large
303 // constant expressions, we can arrive at a particular user many times.
304 SmallPtrSet<const Value *, 32> GlobalValueVisited;
305
306 // Keeps track of duplicate function argument debug info.
307 SmallVector<const DILocalVariable *, 16> DebugFnArgs;
308
309 TBAAVerifier TBAAVerifyHelper;
310
311 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
312
313public:
314 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
315 const Module &M)
316 : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
317 SawFrameEscape(false), TBAAVerifyHelper(this) {
318 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
319 }
320
321 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
322
323 bool verify(const Function &F) {
324 assert(F.getParent() == &M &&((F.getParent() == &M && "An instance of this class only works with a specific module!"
) ? static_cast<void> (0) : __assert_fail ("F.getParent() == &M && \"An instance of this class only works with a specific module!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/IR/Verifier.cpp"
, 325, __PRETTY_FUNCTION__))
325 "An instance of this class only works with a specific module!")((F.getParent() == &M && "An instance of this class only works with a specific module!"
) ? static_cast<void> (0) : __assert_fail ("F.getParent() == &M && \"An instance of this class only works with a specific module!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/IR/Verifier.cpp"
, 325, __PRETTY_FUNCTION__))
;
326
327 // First ensure the function is well-enough formed to compute dominance
328 // information, and directly compute a dominance tree. We don't rely on the
329 // pass manager to provide this as it isolates us from a potentially
330 // out-of-date dominator tree and makes it significantly more complex to run
331 // this code outside of a pass manager.
332 // FIXME: It's really gross that we have to cast away constness here.
333 if (!F.empty())
334 DT.recalculate(const_cast<Function &>(F));
335
336 for (const BasicBlock &BB : F) {
337 if (!BB.empty() && BB.back().isTerminator())
338 continue;
339
340 if (OS) {
341 *OS << "Basic Block in function '" << F.getName()
342 << "' does not have terminator!\n";
343 BB.printAsOperand(*OS, true, MST);
344 *OS << "\n";
345 }
346 return false;
347 }
348
349 Broken = false;
350 // FIXME: We strip const here because the inst visitor strips const.
351 visit(const_cast<Function &>(F));
352 verifySiblingFuncletUnwinds();
353 InstsInThisBlock.clear();
354 DebugFnArgs.clear();
355 LandingPadResultTy = nullptr;
356 SawFrameEscape = false;
357 SiblingFuncletInfo.clear();
358
359 return !Broken;
360 }
361
362 /// Verify the module that this instance of \c Verifier was initialized with.
363 bool verify() {
364 Broken = false;
365
366 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
367 for (const Function &F : M)
368 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
369 DeoptimizeDeclarations.push_back(&F);
370
371 // Now that we've visited every function, verify that we never asked to
372 // recover a frame index that wasn't escaped.
373 verifyFrameRecoverIndices();
374 for (const GlobalVariable &GV : M.globals())
375 visitGlobalVariable(GV);
376
377 for (const GlobalAlias &GA : M.aliases())
378 visitGlobalAlias(GA);
379
380 for (const NamedMDNode &NMD : M.named_metadata())
381 visitNamedMDNode(NMD);
382
383 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
384 visitComdat(SMEC.getValue());
385
386 visitModuleFlags(M);
387 visitModuleIdents(M);
388
389 verifyCompileUnits();
390
391 verifyDeoptimizeCallingConvs();
392 DISubprogramAttachments.clear();
393 return !Broken;
394 }
395
396private:
397 // Verification methods...
398 void visitGlobalValue(const GlobalValue &GV);
399 void visitGlobalVariable(const GlobalVariable &GV);
400 void visitGlobalAlias(const GlobalAlias &GA);
401 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
402 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
403 const GlobalAlias &A, const Constant &C);
404 void visitNamedMDNode(const NamedMDNode &NMD);
405 void visitMDNode(const MDNode &MD);
406 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
407 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
408 void visitComdat(const Comdat &C);
409 void visitModuleIdents(const Module &M);
410 void visitModuleFlags(const Module &M);
411 void visitModuleFlag(const MDNode *Op,
412 DenseMap<const MDString *, const MDNode *> &SeenIDs,
413 SmallVectorImpl<const MDNode *> &Requirements);
414 void visitFunction(const Function &F);
415 void visitBasicBlock(BasicBlock &BB);
416 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
417 void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
418
419 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
420#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
421#include "llvm/IR/Metadata.def"
422 void visitDIScope(const DIScope &N);
423 void visitDIVariable(const DIVariable &N);
424 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
425 void visitDITemplateParameter(const DITemplateParameter &N);
426
427 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
428
429 // InstVisitor overrides...
430 using InstVisitor<Verifier>::visit;
431 void visit(Instruction &I);
432
433 void visitTruncInst(TruncInst &I);
434 void visitZExtInst(ZExtInst &I);
435 void visitSExtInst(SExtInst &I);
436 void visitFPTruncInst(FPTruncInst &I);
437 void visitFPExtInst(FPExtInst &I);
438 void visitFPToUIInst(FPToUIInst &I);
439 void visitFPToSIInst(FPToSIInst &I);
440 void visitUIToFPInst(UIToFPInst &I);
441 void visitSIToFPInst(SIToFPInst &I);
442 void visitIntToPtrInst(IntToPtrInst &I);
443 void visitPtrToIntInst(PtrToIntInst &I);
444 void visitBitCastInst(BitCastInst &I);
445 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
446 void visitPHINode(PHINode &PN);
447 void visitBinaryOperator(BinaryOperator &B);
448 void visitICmpInst(ICmpInst &IC);
449 void visitFCmpInst(FCmpInst &FC);
450 void visitExtractElementInst(ExtractElementInst &EI);
451 void visitInsertElementInst(InsertElementInst &EI);
452 void visitShuffleVectorInst(ShuffleVectorInst &EI);
453 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
454 void visitCallInst(CallInst &CI);
455 void visitInvokeInst(InvokeInst &II);
456 void visitGetElementPtrInst(GetElementPtrInst &GEP);
457 void visitLoadInst(LoadInst &LI);
458 void visitStoreInst(StoreInst &SI);
459 void verifyDominatesUse(Instruction &I, unsigned i);
460 void visitInstruction(Instruction &I);
461 void visitTerminatorInst(TerminatorInst &I);
462 void visitBranchInst(BranchInst &BI);
463 void visitReturnInst(ReturnInst &RI);
464 void visitSwitchInst(SwitchInst &SI);
465 void visitIndirectBrInst(IndirectBrInst &BI);
466 void visitSelectInst(SelectInst &SI);
467 void visitUserOp1(Instruction &I);
468 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
469 void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
470 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
471 template <class DbgIntrinsicTy>
472 void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
473 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
474 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
475 void visitFenceInst(FenceInst &FI);
476 void visitAllocaInst(AllocaInst &AI);
477 void visitExtractValueInst(ExtractValueInst &EVI);
478 void visitInsertValueInst(InsertValueInst &IVI);
479 void visitEHPadPredecessors(Instruction &I);
480 void visitLandingPadInst(LandingPadInst &LPI);
481 void visitResumeInst(ResumeInst &RI);
482 void visitCatchPadInst(CatchPadInst &CPI);
483 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
484 void visitCleanupPadInst(CleanupPadInst &CPI);
485 void visitFuncletPadInst(FuncletPadInst &FPI);
486 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
487 void visitCleanupReturnInst(CleanupReturnInst &CRI);
488
489 void verifyCallSite(CallSite CS);
490 void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal);
491 void verifySwiftErrorValue(const Value *SwiftErrorVal);
492 void verifyMustTailCall(CallInst &CI);
493 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
494 unsigned ArgNo, std::string &Suffix);
495 bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
496 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
497 const Value *V);
498 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
499 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
500 const Value *V);
501 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
502
503 void visitConstantExprsRecursively(const Constant *EntryC);
504 void visitConstantExpr(const ConstantExpr *CE);
505 void verifyStatepoint(ImmutableCallSite CS);
506 void verifyFrameRecoverIndices();
507 void verifySiblingFuncletUnwinds();
508
509 void verifyFragmentExpression(const DbgInfoIntrinsic &I);
510 void verifyFnArgs(const DbgInfoIntrinsic &I);
511
512 /// Module-level debug info verification...
513 void verifyCompileUnits();
514
515 /// Module-level verification that all @llvm.experimental.deoptimize
516 /// declarations share the same calling convention.
517 void verifyDeoptimizeCallingConvs();
518};
519
520} // end anonymous namespace
521
522/// We know that cond should be true, if not print an error message.
523#define Assert(C, ...)do { if (!(C)) { CheckFailed(...); return; } } while (false) \
524 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
525
526/// We know that a debug info condition should be true, if not print
527/// an error message.
528#define AssertDI(C, ...)do { if (!(C)) { DebugInfoCheckFailed(...); return; } } while
(false)
\
529 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
530
531void Verifier::visit(Instruction &I) {
532 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
533 Assert(I.getOperand(i) != nullptr, "Operand is null", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Operand is null"
, &I); return; } } while (false)
;
534 InstVisitor<Verifier>::visit(I);
535}
536
537// Helper to recursively iterate over indirect users. By
538// returning false, the callback can ask to stop recursing
539// further.
540static void forEachUser(const Value *User,
541 SmallPtrSet<const Value *, 32> &Visited,
542 llvm::function_ref<bool(const Value *)> Callback) {
543 if (!Visited.insert(User).second)
544 return;
545 for (const Value *TheNextUser : User->materialized_users())
546 if (Callback(TheNextUser))
547 forEachUser(TheNextUser, Visited, Callback);
548}
549
550void Verifier::visitGlobalValue(const GlobalValue &GV) {
551 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),do { if (!(!GV.isDeclaration() || GV.hasValidDeclarationLinkage
())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (false)
552 "Global is external, but doesn't have external or weak linkage!", &GV)do { if (!(!GV.isDeclaration() || GV.hasValidDeclarationLinkage
())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (false)
;
553
554 Assert(GV.getAlignment() <= Value::MaximumAlignment,do { if (!(GV.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &GV
); return; } } while (false)
555 "huge alignment values are unsupported", &GV)do { if (!(GV.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &GV
); return; } } while (false)
;
556 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (false)
557 "Only global variables can have appending linkage!", &GV)do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (false)
;
558
559 if (GV.hasAppendingLinkage()) {
560 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
561 Assert(GVar && GVar->getValueType()->isArrayTy(),do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (false)
562 "Only global arrays can have appending linkage!", GVar)do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (false)
;
563 }
564
565 if (GV.isDeclarationForLinker())
566 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("Declaration may not be in a Comdat!"
, &GV); return; } } while (false)
;
567
568 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
569 if (const Instruction *I = dyn_cast<Instruction>(V)) {
570 if (!I->getParent() || !I->getParent()->getParent())
571 CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
572 I);
573 else if (I->getParent()->getParent()->getParent() != &M)
574 CheckFailed("Global is referenced in a different module!", &GV, &M, I,
575 I->getParent()->getParent(),
576 I->getParent()->getParent()->getParent());
577 return false;
578 } else if (const Function *F = dyn_cast<Function>(V)) {
579 if (F->getParent() != &M)
580 CheckFailed("Global is used by function in a different module", &GV, &M,
581 F, F->getParent());
582 return false;
583 }
584 return true;
585 });
586}
587
588void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
589 if (GV.hasInitializer()) {
590 Assert(GV.getInitializer()->getType() == GV.getValueType(),do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
591 "Global variable initializer type does not match global "do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
592 "variable type!",do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
593 &GV)do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
;
594 // If the global has common linkage, it must have a zero initializer and
595 // cannot be constant.
596 if (GV.hasCommonLinkage()) {
597 Assert(GV.getInitializer()->isNullValue(),do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (false)
598 "'common' global must have a zero initializer!", &GV)do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (false)
;
599 Assert(!GV.isConstant(), "'common' global may not be marked constant!",do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (false)
600 &GV)do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (false)
;
601 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("'common' global may not be in a Comdat!"
, &GV); return; } } while (false)
;
602 }
603 }
604
605 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
606 GV.getName() == "llvm.global_dtors")) {
607 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
608 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
;
609 // Don't worry about emitting an error for it not being an array,
610 // visitGlobalValue will complain on appending non-array.
611 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
612 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
613 PointerType *FuncPtrTy =
614 FunctionType::get(Type::getVoidTy(Context), false)->getPointerTo();
615 // FIXME: Reject the 2-field form in LLVM 4.0.
616 Assert(STy &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
617 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
618 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
619 STy->getTypeAtIndex(1) == FuncPtrTy,do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
620 "wrong type for intrinsic global variable", &GV)do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
;
621 if (STy->getNumElements() == 3) {
622 Type *ETy = STy->getTypeAtIndex(2);
623 Assert(ETy->isPointerTy() &&do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
624 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
625 "wrong type for intrinsic global variable", &GV)do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
;
626 }
627 }
628 }
629
630 if (GV.hasName() && (GV.getName() == "llvm.used" ||
631 GV.getName() == "llvm.compiler.used")) {
632 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
633 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
;
634 Type *GVType = GV.getValueType();
635 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
636 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
637 Assert(PTy, "wrong type for intrinsic global variable", &GV)do { if (!(PTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
;
638 if (GV.hasInitializer()) {
639 const Constant *Init = GV.getInitializer();
640 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
641 Assert(InitArray, "wrong initalizer for intrinsic global variable",do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (false)
642 Init)do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (false)
;
643 for (Value *Op : InitArray->operands()) {
644 Value *V = Op->stripPointerCastsNoFollowAliases();
645 Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
646 isa<GlobalAlias>(V),do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
647 "invalid llvm.used member", V)do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
;
648 Assert(V->hasName(), "members of llvm.used must be named", V)do { if (!(V->hasName())) { CheckFailed("members of llvm.used must be named"
, V); return; } } while (false)
;
649 }
650 }
651 }
652 }
653
654 Assert(!GV.hasDLLImportStorageClass() ||do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
655 (GV.isDeclaration() && GV.hasExternalLinkage()) ||do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
656 GV.hasAvailableExternallyLinkage(),do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
657 "Global is marked as dllimport, but not external", &GV)do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
;
658
659 // Visit any debug info attachments.
660 SmallVector<MDNode *, 1> MDs;
661 GV.getMetadata(LLVMContext::MD_dbg, MDs);
662 for (auto *MD : MDs) {
663 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
664 visitDIGlobalVariableExpression(*GVE);
665 else
666 AssertDI(false, "!dbg attachment of global variable must be a "do { if (!(false)) { DebugInfoCheckFailed("!dbg attachment of global variable must be a "
"DIGlobalVariableExpression"); return; } } while (false)
667 "DIGlobalVariableExpression")do { if (!(false)) { DebugInfoCheckFailed("!dbg attachment of global variable must be a "
"DIGlobalVariableExpression"); return; } } while (false)
;
668 }
669
670 if (!GV.hasInitializer()) {
671 visitGlobalValue(GV);
672 return;
673 }
674
675 // Walk any aggregate initializers looking for bitcasts between address spaces
676 visitConstantExprsRecursively(GV.getInitializer());
677
678 visitGlobalValue(GV);
679}
680
681void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
682 SmallPtrSet<const GlobalAlias*, 4> Visited;
683 Visited.insert(&GA);
684 visitAliaseeSubExpr(Visited, GA, C);
685}
686
687void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
688 const GlobalAlias &GA, const Constant &C) {
689 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
690 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (false)
691 &GA)do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (false)
;
692
693 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
694 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA)do { if (!(Visited.insert(GA2).second)) { CheckFailed("Aliases cannot form a cycle"
, &GA); return; } } while (false)
;
695
696 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias"
, &GA); return; } } while (false)
697 &GA)do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias"
, &GA); return; } } while (false)
;
698 } else {
699 // Only continue verifying subexpressions of GlobalAliases.
700 // Do not recurse into global initializers.
701 return;
702 }
703 }
704
705 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
706 visitConstantExprsRecursively(CE);
707
708 for (const Use &U : C.operands()) {
709 Value *V = &*U;
710 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
711 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
712 else if (const auto *C2 = dyn_cast<Constant>(V))
713 visitAliaseeSubExpr(Visited, GA, *C2);
714 }
715}
716
717void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
718 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
719 "Alias should have private, internal, linkonce, weak, linkonce_odr, "do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
720 "weak_odr, or external linkage!",do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
721 &GA)do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
;
722 const Constant *Aliasee = GA.getAliasee();
723 Assert(Aliasee, "Aliasee cannot be NULL!", &GA)do { if (!(Aliasee)) { CheckFailed("Aliasee cannot be NULL!",
&GA); return; } } while (false)
;
724 Assert(GA.getType() == Aliasee->getType(),do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (false)
725 "Alias and aliasee types should match!", &GA)do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (false)
;
726
727 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (false)
728 "Aliasee should be either GlobalValue or ConstantExpr", &GA)do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (false)
;
729
730 visitAliaseeSubExpr(GA, *Aliasee);
731
732 visitGlobalValue(GA);
733}
734
735void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
736 // There used to be various other llvm.dbg.* nodes, but we don't support
737 // upgrading them and we want to reserve the namespace for future uses.
738 if (NMD.getName().startswith("llvm.dbg."))
739 AssertDI(NMD.getName() == "llvm.dbg.cu",do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
740 "unrecognized named metadata node in the llvm.dbg namespace",do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
741 &NMD)do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
;
742 for (const MDNode *MD : NMD.operands()) {
743 if (NMD.getName() == "llvm.dbg.cu")
744 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD)do { if (!(MD && isa<DICompileUnit>(MD))) { DebugInfoCheckFailed
("invalid compile unit", &NMD, MD); return; } } while (false
)
;
745
746 if (!MD)
747 continue;
748
749 visitMDNode(*MD);
750 }
751}
752
753void Verifier::visitMDNode(const MDNode &MD) {
754 // Only visit each node once. Metadata can be mutually recursive, so this
755 // avoids infinite recursion here, as well as being an optimization.
756 if (!MDNodes.insert(&MD).second)
757 return;
758
759 switch (MD.getMetadataID()) {
760 default:
761 llvm_unreachable("Invalid MDNode subclass")::llvm::llvm_unreachable_internal("Invalid MDNode subclass", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/IR/Verifier.cpp"
, 761)
;
762 case Metadata::MDTupleKind:
763 break;
764#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
765 case Metadata::CLASS##Kind: \
766 visit##CLASS(cast<CLASS>(MD)); \
767 break;
768#include "llvm/IR/Metadata.def"
769 }
770
771 for (const Metadata *Op : MD.operands()) {
772 if (!Op)
773 continue;
774 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (false)
775 &MD, Op)do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (false)
;
776 if (auto *N = dyn_cast<MDNode>(Op)) {
777 visitMDNode(*N);
778 continue;
779 }
780 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
781 visitValueAsMetadata(*V, nullptr);
782 continue;
783 }
784 }
785
786 // Check these last, so we diagnose problems in operands first.
787 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD)do { if (!(!MD.isTemporary())) { CheckFailed("Expected no forward declarations!"
, &MD); return; } } while (false)
;
788 Assert(MD.isResolved(), "All nodes should be resolved!", &MD)do { if (!(MD.isResolved())) { CheckFailed("All nodes should be resolved!"
, &MD); return; } } while (false)
;
789}
790
791void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
792 Assert(MD.getValue(), "Expected valid value", &MD)do { if (!(MD.getValue())) { CheckFailed("Expected valid value"
, &MD); return; } } while (false)
;
793 Assert(!MD.getValue()->getType()->isMetadataTy(),do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (false)
794 "Unexpected metadata round-trip through values", &MD, MD.getValue())do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (false)
;
795
796 auto *L = dyn_cast<LocalAsMetadata>(&MD);
797 if (!L)
798 return;
799
800 Assert(F, "function-local metadata used outside a function", L)do { if (!(F)) { CheckFailed("function-local metadata used outside a function"
, L); return; } } while (false)
;
801
802 // If this was an instruction, bb, or argument, verify that it is in the
803 // function that we expect.
804 Function *ActualF = nullptr;
805 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
806 Assert(I->getParent(), "function-local metadata not in basic block", L, I)do { if (!(I->getParent())) { CheckFailed("function-local metadata not in basic block"
, L, I); return; } } while (false)
;
807 ActualF = I->getParent()->getParent();
808 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
809 ActualF = BB->getParent();
810 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
811 ActualF = A->getParent();
812 assert(ActualF && "Unimplemented function local metadata case!")((ActualF && "Unimplemented function local metadata case!"
) ? static_cast<void> (0) : __assert_fail ("ActualF && \"Unimplemented function local metadata case!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/IR/Verifier.cpp"
, 812, __PRETTY_FUNCTION__))
;
813
814 Assert(ActualF == F, "function-local metadata used in wrong function", L)do { if (!(ActualF == F)) { CheckFailed("function-local metadata used in wrong function"
, L); return; } } while (false)
;
815}
816
817void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
818 Metadata *MD = MDV.getMetadata();
819 if (auto *N = dyn_cast<MDNode>(MD)) {
820 visitMDNode(*N);
821 return;
822 }
823
824 // Only visit each node once. Metadata can be mutually recursive, so this
825 // avoids infinite recursion here, as well as being an optimization.
826 if (!MDNodes.insert(MD).second)
827 return;
828
829 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
830 visitValueAsMetadata(*V, F);
831}
832
833static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
834static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
835static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
836
837void Verifier::visitDILocation(const DILocation &N) {
838 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
839 "location requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
840 if (auto *IA = N.getRawInlinedAt())
841 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA)do { if (!(isa<DILocation>(IA))) { DebugInfoCheckFailed
("inlined-at should be a location", &N, IA); return; } } while
(false)
;
842}
843
844void Verifier::visitGenericDINode(const GenericDINode &N) {
845 AssertDI(N.getTag(), "invalid tag", &N)do { if (!(N.getTag())) { DebugInfoCheckFailed("invalid tag",
&N); return; } } while (false)
;
846}
847
848void Verifier::visitDIScope(const DIScope &N) {
849 if (auto *F = N.getRawFile())
850 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
851}
852
853void Verifier::visitDISubrange(const DISubrange &N) {
854 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
855 AssertDI(N.getCount() >= -1, "invalid subrange count", &N)do { if (!(N.getCount() >= -1)) { DebugInfoCheckFailed("invalid subrange count"
, &N); return; } } while (false)
;
856}
857
858void Verifier::visitDIEnumerator(const DIEnumerator &N) {
859 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_enumerator)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
860}
861
862void Verifier::visitDIBasicType(const DIBasicType &N) {
863 AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
864 N.getTag() == dwarf::DW_TAG_unspecified_type,do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
865 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
;
866}
867
868void Verifier::visitDIDerivedType(const DIDerivedType &N) {
869 // Common scope checks.
870 visitDIScope(N);
871
872 AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
873 N.getTag() == dwarf::DW_TAG_pointer_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
874 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
875 N.getTag() == dwarf::DW_TAG_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
876 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
877 N.getTag() == dwarf::DW_TAG_const_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
878 N.getTag() == dwarf::DW_TAG_volatile_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
879 N.getTag() == dwarf::DW_TAG_restrict_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
880 N.getTag() == dwarf::DW_TAG_atomic_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
881 N.getTag() == dwarf::DW_TAG_member ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
882 N.getTag() == dwarf::DW_TAG_inheritance ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
883 N.getTag() == dwarf::DW_TAG_friend,do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
884 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
;
885 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
886 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,do { if (!(isType(N.getRawExtraData()))) { DebugInfoCheckFailed
("invalid pointer to member type", &N, N.getRawExtraData(
)); return; } } while (false)
887 N.getRawExtraData())do { if (!(isType(N.getRawExtraData()))) { DebugInfoCheckFailed
("invalid pointer to member type", &N, N.getRawExtraData(
)); return; } } while (false)
;
888 }
889
890 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
891 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
892 N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
;
893
894 if (N.getDWARFAddressSpace()) {
895 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
896 N.getTag() == dwarf::DW_TAG_reference_type,do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
897 "DWARF address space only applies to pointer or reference types",do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
898 &N)do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
;
899 }
900}
901
902static bool hasConflictingReferenceFlags(unsigned Flags) {
903 return (Flags & DINode::FlagLValueReference) &&
904 (Flags & DINode::FlagRValueReference);
905}
906
907void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
908 auto *Params = dyn_cast<MDTuple>(&RawParams);
909 AssertDI(Params, "invalid template params", &N, &RawParams)do { if (!(Params)) { DebugInfoCheckFailed("invalid template params"
, &N, &RawParams); return; } } while (false)
;
910 for (Metadata *Op : Params->operands()) {
911 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",do { if (!(Op && isa<DITemplateParameter>(Op)))
{ DebugInfoCheckFailed("invalid template parameter", &N,
Params, Op); return; } } while (false)
912 &N, Params, Op)do { if (!(Op && isa<DITemplateParameter>(Op)))
{ DebugInfoCheckFailed("invalid template parameter", &N,
Params, Op); return; } } while (false)
;
913 }
914}
915
916void Verifier::visitDICompositeType(const DICompositeType &N) {
917 // Common scope checks.
918 visitDIScope(N);
919
920 AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
921 N.getTag() == dwarf::DW_TAG_structure_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
922 N.getTag() == dwarf::DW_TAG_union_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
923 N.getTag() == dwarf::DW_TAG_enumeration_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
924 N.getTag() == dwarf::DW_TAG_class_type,do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
925 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
;
926
927 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
928 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
929 N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
;
930
931 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { DebugInfoCheckFailed("invalid composite elements", &
N, N.getRawElements()); return; } } while (false)
932 "invalid composite elements", &N, N.getRawElements())do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { DebugInfoCheckFailed("invalid composite elements", &
N, N.getRawElements()); return; } } while (false)
;
933 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,do { if (!(isType(N.getRawVTableHolder()))) { DebugInfoCheckFailed
("invalid vtable holder", &N, N.getRawVTableHolder()); return
; } } while (false)
934 N.getRawVTableHolder())do { if (!(isType(N.getRawVTableHolder()))) { DebugInfoCheckFailed
("invalid vtable holder", &N, N.getRawVTableHolder()); return
; } } while (false)
;
935 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
936 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
937 if (auto *Params = N.getRawTemplateParams())
938 visitTemplateParams(N, *Params);
939
940 if (N.getTag() == dwarf::DW_TAG_class_type ||
941 N.getTag() == dwarf::DW_TAG_union_type) {
942 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),do { if (!(N.getFile() && !N.getFile()->getFilename
().empty())) { DebugInfoCheckFailed("class/union requires a filename"
, &N, N.getFile()); return; } } while (false)
943 "class/union requires a filename", &N, N.getFile())do { if (!(N.getFile() && !N.getFile()->getFilename
().empty())) { DebugInfoCheckFailed("class/union requires a filename"
, &N, N.getFile()); return; } } while (false)
;
944 }
945}
946
947void Verifier::visitDISubroutineType(const DISubroutineType &N) {
948 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subroutine_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
949 if (auto *Types = N.getRawTypeArray()) {
950 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types)do { if (!(isa<MDTuple>(Types))) { DebugInfoCheckFailed
("invalid composite elements", &N, Types); return; } } while
(false)
;
951 for (Metadata *Ty : N.getTypeArray()->operands()) {
952 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty)do { if (!(isType(Ty))) { DebugInfoCheckFailed("invalid subroutine type ref"
, &N, Types, Ty); return; } } while (false)
;
953 }
954 }
955 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
956 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
957}
958
959void Verifier::visitDIFile(const DIFile &N) {
960 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_file_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
961 AssertDI((N.getChecksumKind() != DIFile::CSK_None ||do { if (!((N.getChecksumKind() != DIFile::CSK_None || N.getChecksum
().empty()))) { DebugInfoCheckFailed("invalid checksum kind",
&N); return; } } while (false)
962 N.getChecksum().empty()), "invalid checksum kind", &N)do { if (!((N.getChecksumKind() != DIFile::CSK_None || N.getChecksum
().empty()))) { DebugInfoCheckFailed("invalid checksum kind",
&N); return; } } while (false)
;
963}
964
965void Verifier::visitDICompileUnit(const DICompileUnit &N) {
966 AssertDI(N.isDistinct(), "compile units must be distinct", &N)do { if (!(N.isDistinct())) { DebugInfoCheckFailed("compile units must be distinct"
, &N); return; } } while (false)
;
967 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_compile_unit)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
968
969 // Don't bother verifying the compilation directory or producer string
970 // as those could be empty.
971 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { DebugInfoCheckFailed("invalid file", &N, N.getRawFile
()); return; } } while (false)
972 N.getRawFile())do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { DebugInfoCheckFailed("invalid file", &N, N.getRawFile
()); return; } } while (false)
;
973 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,do { if (!(!N.getFile()->getFilename().empty())) { DebugInfoCheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
false)
974 N.getFile())do { if (!(!N.getFile()->getFilename().empty())) { DebugInfoCheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
false)
;
975
976 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind
))) { DebugInfoCheckFailed("invalid emission kind", &N); return
; } } while (false)
977 "invalid emission kind", &N)do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind
))) { DebugInfoCheckFailed("invalid emission kind", &N); return
; } } while (false)
;
978
979 if (auto *Array = N.getRawEnumTypes()) {
980 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid enum list", &N, Array); return; } } while (false
)
;
981 for (Metadata *Op : N.getEnumTypes()->operands()) {
982 auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
983 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { DebugInfoCheckFailed("invalid enum type", &N, N.getEnumTypes
(), Op); return; } } while (false)
984 "invalid enum type", &N, N.getEnumTypes(), Op)do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { DebugInfoCheckFailed("invalid enum type", &N, N.getEnumTypes
(), Op); return; } } while (false)
;
985 }
986 }
987 if (auto *Array = N.getRawRetainedTypes()) {
988 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid retained type list", &N, Array); return; } } while
(false)
;
989 for (Metadata *Op : N.getRetainedTypes()->operands()) {
990 AssertDI(Op && (isa<DIType>(Op) ||do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
991 (isa<DISubprogram>(Op) &&do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
992 !cast<DISubprogram>(Op)->isDefinition())),do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
993 "invalid retained type", &N, Op)do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
;
994 }
995 }
996 if (auto *Array = N.getRawGlobalVariables()) {
997 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid global variable list", &N, Array); return; } } while
(false)
;
998 for (Metadata *Op : N.getGlobalVariables()->operands()) {
999 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),do { if (!(Op && (isa<DIGlobalVariableExpression>
(Op)))) { DebugInfoCheckFailed("invalid global variable ref",
&N, Op); return; } } while (false)
1000 "invalid global variable ref", &N, Op)do { if (!(Op && (isa<DIGlobalVariableExpression>
(Op)))) { DebugInfoCheckFailed("invalid global variable ref",
&N, Op); return; } } while (false)
;
1001 }
1002 }
1003 if (auto *Array = N.getRawImportedEntities()) {
1004 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid imported entity list", &N, Array); return; } } while
(false)
;
1005 for (Metadata *Op : N.getImportedEntities()->operands()) {
1006 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",do { if (!(Op && isa<DIImportedEntity>(Op))) { DebugInfoCheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(false)
1007 &N, Op)do { if (!(Op && isa<DIImportedEntity>(Op))) { DebugInfoCheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(false)
;
1008 }
1009 }
1010 if (auto *Array = N.getRawMacros()) {
1011 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid macro list", &N, Array); return; } } while (false
)
;
1012 for (Metadata *Op : N.getMacros()->operands()) {
1013 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { DebugInfoCheckFailed
("invalid macro ref", &N, Op); return; } } while (false)
;
1014 }
1015 }
1016 CUVisited.insert(&N);
1017}
1018
1019void Verifier::visitDISubprogram(const DISubprogram &N) {
1020 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subprogram)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1021 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
1022 if (auto *F = N.getRawFile())
1023 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1024 else
1025 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine())do { if (!(N.getLine() == 0)) { DebugInfoCheckFailed("line specified with no file"
, &N, N.getLine()); return; } } while (false)
;
1026 if (auto *T = N.getRawType())
1027 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T)do { if (!(isa<DISubroutineType>(T))) { DebugInfoCheckFailed
("invalid subroutine type", &N, T); return; } } while (false
)
;
1028 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,do { if (!(isType(N.getRawContainingType()))) { DebugInfoCheckFailed
("invalid containing type", &N, N.getRawContainingType())
; return; } } while (false)
1029 N.getRawContainingType())do { if (!(isType(N.getRawContainingType()))) { DebugInfoCheckFailed
("invalid containing type", &N, N.getRawContainingType())
; return; } } while (false)
;
1030 if (auto *Params = N.getRawTemplateParams())
1031 visitTemplateParams(N, *Params);
1032 if (auto *S = N.getRawDeclaration())
1033 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { DebugInfoCheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (false)
1034 "invalid subprogram declaration", &N, S)do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { DebugInfoCheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (false)
;
1035 if (auto *RawVars = N.getRawVariables()) {
1036 auto *Vars = dyn_cast<MDTuple>(RawVars);
1037 AssertDI(Vars, "invalid variable list", &N, RawVars)do { if (!(Vars)) { DebugInfoCheckFailed("invalid variable list"
, &N, RawVars); return; } } while (false)
;
1038 for (Metadata *Op : Vars->operands()) {
1039 AssertDI(Op && isa<DILocalVariable>(Op), "invalid local variable", &N,do { if (!(Op && isa<DILocalVariable>(Op))) { DebugInfoCheckFailed
("invalid local variable", &N, Vars, Op); return; } } while
(false)
1040 Vars, Op)do { if (!(Op && isa<DILocalVariable>(Op))) { DebugInfoCheckFailed
("invalid local variable", &N, Vars, Op); return; } } while
(false)
;
1041 }
1042 }
1043 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
1044 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
1045
1046 auto *Unit = N.getRawUnit();
1047 if (N.isDefinition()) {
1048 // Subprogram definitions (not part of the type hierarchy).
1049 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N)do { if (!(N.isDistinct())) { DebugInfoCheckFailed("subprogram definitions must be distinct"
, &N); return; } } while (false)
;
1050 AssertDI(Unit, "subprogram definitions must have a compile unit", &N)do { if (!(Unit)) { DebugInfoCheckFailed("subprogram definitions must have a compile unit"
, &N); return; } } while (false)
;
1051 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit)do { if (!(isa<DICompileUnit>(Unit))) { DebugInfoCheckFailed
("invalid unit type", &N, Unit); return; } } while (false
)
;
1052 } else {
1053 // Subprogram declarations (part of the type hierarchy).
1054 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N)do { if (!(!Unit)) { DebugInfoCheckFailed("subprogram declarations must not have a compile unit"
, &N); return; } } while (false)
;
1055 }
1056
1057 if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1058 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1059 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes)do { if (!(ThrownTypes)) { DebugInfoCheckFailed("invalid thrown types list"
, &N, RawThrownTypes); return; } } while (false)
;
1060 for (Metadata *Op : ThrownTypes->operands())
1061 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,do { if (!(Op && isa<DIType>(Op))) { DebugInfoCheckFailed
("invalid thrown type", &N, ThrownTypes, Op); return; } }
while (false)
1062 Op)do { if (!(Op && isa<DIType>(Op))) { DebugInfoCheckFailed
("invalid thrown type", &N, ThrownTypes, Op); return; } }
while (false)
;
1063 }
1064}
1065
1066void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1067 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_lexical_block)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1068 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("invalid local scope"
, &N, N.getRawScope()); return; } } while (false)
1069 "invalid local scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("invalid local scope"
, &N, N.getRawScope()); return; } } while (false)
;
1070}
1071
1072void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1073 visitDILexicalBlockBase(N);
1074
1075 AssertDI(N.getLine() || !N.getColumn(),do { if (!(N.getLine() || !N.getColumn())) { DebugInfoCheckFailed
("cannot have column info without line info", &N); return
; } } while (false)
1076 "cannot have column info without line info", &N)do { if (!(N.getLine() || !N.getColumn())) { DebugInfoCheckFailed
("cannot have column info without line info", &N); return
; } } while (false)
;
1077}
1078
1079void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1080 visitDILexicalBlockBase(N);
1081}
1082
1083void Verifier::visitDINamespace(const DINamespace &N) {
1084 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_namespace)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1085 if (auto *S = N.getRawScope())
1086 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope ref"
, &N, S); return; } } while (false)
;
1087}
1088
1089void Verifier::visitDIMacro(const DIMacro &N) {
1090 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
1091 N.getMacinfoType() == dwarf::DW_MACINFO_undef,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
1092 "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
;
1093 AssertDI(!N.getName().empty(), "anonymous macro", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("anonymous macro"
, &N); return; } } while (false)
;
1094 if (!N.getValue().empty()) {
1095 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix")((N.getValue().data()[0] != ' ' && "Macro value has a space prefix"
) ? static_cast<void> (0) : __assert_fail ("N.getValue().data()[0] != ' ' && \"Macro value has a space prefix\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/IR/Verifier.cpp"
, 1095, __PRETTY_FUNCTION__))
;
1096 }
1097}
1098
1099void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1100 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file
)) { DebugInfoCheckFailed("invalid macinfo type", &N); return
; } } while (false)
1101 "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file
)) { DebugInfoCheckFailed("invalid macinfo type", &N); return
; } } while (false)
;
1102 if (auto *F = N.getRawFile())
1103 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1104
1105 if (auto *Array = N.getRawElements()) {
1106 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid macro list", &N, Array); return; } } while (false
)
;
1107 for (Metadata *Op : N.getElements()->operands()) {
1108 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { DebugInfoCheckFailed
("invalid macro ref", &N, Op); return; } } while (false)
;
1109 }
1110 }
1111}
1112
1113void Verifier::visitDIModule(const DIModule &N) {
1114 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_module)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1115 AssertDI(!N.getName().empty(), "anonymous module", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("anonymous module"
, &N); return; } } while (false)
;
1116}
1117
1118void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1119 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1120}
1121
1122void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1123 visitDITemplateParameter(N);
1124
1125 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1126 &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
;
1127}
1128
1129void Verifier::visitDITemplateValueParameter(
1130 const DITemplateValueParameter &N) {
1131 visitDITemplateParameter(N);
1132
1133 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1134 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1135 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1136 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1137}
1138
1139void Verifier::visitDIVariable(const DIVariable &N) {
1140 if (auto *S = N.getRawScope())
1141 AssertDI(isa<DIScope>(S), "invalid scope", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope"
, &N, S); return; } } while (false)
;
1142 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1143 if (auto *F = N.getRawFile())
1144 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1145}
1146
1147void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1148 // Checks common to all variables.
1149 visitDIVariable(N);
1150
1151 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1152 AssertDI(!N.getName().empty(), "missing global variable name", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("missing global variable name"
, &N); return; } } while (false)
;
1153 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1154 AssertDI(isa<DIDerivedType>(Member),do { if (!(isa<DIDerivedType>(Member))) { DebugInfoCheckFailed
("invalid static data member declaration", &N, Member); return
; } } while (false)
1155 "invalid static data member declaration", &N, Member)do { if (!(isa<DIDerivedType>(Member))) { DebugInfoCheckFailed
("invalid static data member declaration", &N, Member); return
; } } while (false)
;
1156 }
1157}
1158
1159void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1160 // Checks common to all variables.
1161 visitDIVariable(N);
1162
1163 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1164 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
1165 "local variable requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
1166}
1167
1168void Verifier::visitDIExpression(const DIExpression &N) {
1169 AssertDI(N.isValid(), "invalid expression", &N)do { if (!(N.isValid())) { DebugInfoCheckFailed("invalid expression"
, &N); return; } } while (false)
;
1170}
1171
1172void Verifier::visitDIGlobalVariableExpression(
1173 const DIGlobalVariableExpression &GVE) {
1174 AssertDI(GVE.getVariable(), "missing variable")do { if (!(GVE.getVariable())) { DebugInfoCheckFailed("missing variable"
); return; } } while (false)
;
1175 if (auto *Var = GVE.getVariable())
1176 visitDIGlobalVariable(*Var);
1177 if (auto *Expr = GVE.getExpression())
1178 visitDIExpression(*Expr);
1179}
1180
1181void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1182 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_APPLE_property)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1183 if (auto *T = N.getRawType())
1184 AssertDI(isType(T), "invalid type ref", &N, T)do { if (!(isType(T))) { DebugInfoCheckFailed("invalid type ref"
, &N, T); return; } } while (false)
;
1185 if (auto *F = N.getRawFile())
1186 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1187}
1188
1189void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1190 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1191 N.getTag() == dwarf::DW_TAG_imported_declaration,do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1192 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1193 if (auto *S = N.getRawScope())
1194 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope for imported entity"
, &N, S); return; } } while (false)
;
1195 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,do { if (!(isDINode(N.getRawEntity()))) { DebugInfoCheckFailed
("invalid imported entity", &N, N.getRawEntity()); return
; } } while (false)
1196 N.getRawEntity())do { if (!(isDINode(N.getRawEntity()))) { DebugInfoCheckFailed
("invalid imported entity", &N, N.getRawEntity()); return
; } } while (false)
;
1197}
1198
1199void Verifier::visitComdat(const Comdat &C) {
1200 // The Module is invalid if the GlobalValue has private linkage. Entities
1201 // with private linkage don't have entries in the symbol table.
1202 if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1203 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (false)
1204 GV)do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (false)
;
1205}
1206
1207void Verifier::visitModuleIdents(const Module &M) {
1208 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1209 if (!Idents)
1210 return;
1211
1212 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1213 // Scan each llvm.ident entry and make sure that this requirement is met.
1214 for (const MDNode *N : Idents->operands()) {
1215 Assert(N->getNumOperands() == 1,do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (false)
1216 "incorrect number of operands in llvm.ident metadata", N)do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (false)
;
1217 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1218 ("invalid value for llvm.ident metadata entry operand"do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1219 "(the operand should be a string)"),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1220 N->getOperand(0))do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
;
1221 }
1222}
1223
1224void Verifier::visitModuleFlags(const Module &M) {
1225 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1226 if (!Flags) return;
1227
1228 // Scan each flag, and track the flags and requirements.
1229 DenseMap<const MDString*, const MDNode*> SeenIDs;
1230 SmallVector<const MDNode*, 16> Requirements;
1231 for (const MDNode *MDN : Flags->operands())
1232 visitModuleFlag(MDN, SeenIDs, Requirements);
1233
1234 // Validate that the requirements in the module are valid.
1235 for (const MDNode *Requirement : Requirements) {
1236 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1237 const Metadata *ReqValue = Requirement->getOperand(1);
1238
1239 const MDNode *Op = SeenIDs.lookup(Flag);
1240 if (!Op) {
1241 CheckFailed("invalid requirement on flag, flag is not present in module",
1242 Flag);
1243 continue;
1244 }
1245
1246 if (Op->getOperand(2) != ReqValue) {
1247 CheckFailed(("invalid requirement on flag, "
1248 "flag does not have the required value"),
1249 Flag);
1250 continue;
1251 }
1252 }
1253}
1254
1255void
1256Verifier::visitModuleFlag(const MDNode *Op,
1257 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1258 SmallVectorImpl<const MDNode *> &Requirements) {
1259 // Each module flag should have three arguments, the merge behavior (a
1260 // constant int), the flag ID (an MDString), and the value.
1261 Assert(Op->getNumOperands() == 3,do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (false)
1262 "incorrect number of operands in module flag", Op)do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (false)
;
1263 Module::ModFlagBehavior MFB;
1264 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1265 Assert(do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1266 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1267 "invalid behavior operand in module flag (expected constant integer)",do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1268 Op->getOperand(0))do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
;
1269 Assert(false,do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
1270 "invalid behavior operand in module flag (unexpected constant)",do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
1271 Op->getOperand(0))do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
;
1272 }
1273 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1274 Assert(ID, "invalid ID operand in module flag (expected metadata string)",do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (false)
1275 Op->getOperand(1))do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (false)
;
1276
1277 // Sanity check the values for behaviors with additional requirements.
1278 switch (MFB) {
1279 case Module::Error:
1280 case Module::Warning:
1281 case Module::Override:
1282 // These behavior types accept any value.
1283 break;
1284
1285 case Module::Require: {
1286 // The value should itself be an MDNode with two operands, a flag ID (an
1287 // MDString), and a value.
1288 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1289 Assert(Value && Value->getNumOperands() == 2,do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
1290 "invalid value for 'require' module flag (expected metadata pair)",do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
1291 Op->getOperand(2))do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
;
1292 Assert(isa<MDString>(Value->getOperand(0)),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1293 ("invalid value for 'require' module flag "do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1294 "(first value operand should be a string)"),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1295 Value->getOperand(0))do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
;
1296
1297 // Append it to the list of requirements, to check once all module flags are
1298 // scanned.
1299 Requirements.push_back(Value);
1300 break;
1301 }
1302
1303 case Module::Append:
1304 case Module::AppendUnique: {
1305 // These behavior types require the operand be an MDNode.
1306 Assert(isa<MDNode>(Op->getOperand(2)),do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1307 "invalid value for 'append'-type module flag "do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1308 "(expected a metadata node)",do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1309 Op->getOperand(2))do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
;
1310 break;
1311 }
1312 }
1313
1314 // Unless this is a "requires" flag, check the ID is unique.
1315 if (MFB != Module::Require) {
1316 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1317 Assert(Inserted,do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (false)
1318 "module flag identifiers must be unique (or of 'require' type)", ID)do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (false)
;
1319 }
1320}
1321
1322/// Return true if this attribute kind only applies to functions.
1323static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
1324 switch (Kind) {
1325 case Attribute::NoReturn:
1326 case Attribute::NoUnwind:
1327 case Attribute::NoInline:
1328 case Attribute::AlwaysInline:
1329 case Attribute::OptimizeForSize:
1330 case Attribute::StackProtect:
1331 case Attribute::StackProtectReq:
1332 case Attribute::StackProtectStrong:
1333 case Attribute::SafeStack:
1334 case Attribute::NoRedZone:
1335 case Attribute::NoImplicitFloat:
1336 case Attribute::Naked:
1337 case Attribute::InlineHint:
1338 case Attribute::StackAlignment:
1339 case Attribute::UWTable:
1340 case Attribute::NonLazyBind:
1341 case Attribute::ReturnsTwice:
1342 case Attribute::SanitizeAddress:
1343 case Attribute::SanitizeThread:
1344 case Attribute::SanitizeMemory:
1345 case Attribute::MinSize:
1346 case Attribute::NoDuplicate:
1347 case Attribute::Builtin:
1348 case Attribute::NoBuiltin:
1349 case Attribute::Cold:
1350 case Attribute::OptimizeNone:
1351 case Attribute::JumpTable:
1352 case Attribute::Convergent:
1353 case Attribute::ArgMemOnly:
1354 case Attribute::NoRecurse:
1355 case Attribute::InaccessibleMemOnly:
1356 case Attribute::InaccessibleMemOrArgMemOnly:
1357 case Attribute::AllocSize:
1358 case Attribute::Speculatable:
1359 return true;
1360 default:
1361 break;
1362 }
1363 return false;
1364}
1365
1366/// Return true if this is a function attribute that can also appear on
1367/// arguments.
1368static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
1369 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1370 Kind == Attribute::ReadNone;
1371}
1372
1373void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1374 const Value *V) {
1375 for (Attribute A : Attrs) {
1376 if (A.isStringAttribute())
1377 continue;
1378
1379 if (isFuncOnlyAttr(A.getKindAsEnum())) {
1380 if (!IsFunction) {
1381 CheckFailed("Attribute '" + A.getAsString() +
1382 "' only applies to functions!",
1383 V);
1384 return;
1385 }
1386 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1387 CheckFailed("Attribute '" + A.getAsString() +
1388 "' does not apply to functions!",
1389 V);
1390 return;
1391 }
1392 }
1393}
1394
1395// VerifyParameterAttrs - Check the given attributes for an argument or return
1396// value of the specified type. The value V is printed in error messages.
1397void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1398 const Value *V) {
1399 if (!Attrs.hasAttributes())
1400 return;
1401
1402 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1403
1404 // Check for mutually incompatible attributes. Only inreg is compatible with
1405 // sret.
1406 unsigned AttrCount = 0;
1407 AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1408 AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1409 AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1410 Attrs.hasAttribute(Attribute::InReg);
1411 AttrCount += Attrs.hasAttribute(Attribute::Nest);
1412 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
1413 "and 'sret' are incompatible!",do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
1414 V)do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
;
1415
1416 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1417 Attrs.hasAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1418 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1419 "'inalloca and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1420 V)do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
;
1421
1422 Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1423 Attrs.hasAttribute(Attribute::Returned)),do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1424 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1425 "'sret and returned' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1426 V)do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
;
1427
1428 Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1429 Attrs.hasAttribute(Attribute::SExt)),do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1430 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1431 "'zeroext and signext' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1432 V)do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
;
1433
1434 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1435 Attrs.hasAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1436 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1437 "'readnone and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1438 V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
;
1439
1440 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1441 Attrs.hasAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1442 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1443 "'readnone and writeonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1444 V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
;
1445
1446 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1447 Attrs.hasAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1448 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1449 "'readonly and writeonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1450 V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
;
1451
1452 Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1453 Attrs.hasAttribute(Attribute::AlwaysInline)),do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1454 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1455 "'noinline and alwaysinline' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1456 V)do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
;
1457
1458 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1459 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
1460 "Wrong types for attribute: " +do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
1461 AttributeSet::get(Context, IncompatibleAttrs).getAsString(),do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
1462 V)do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
;
1463
1464 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1465 SmallPtrSet<Type*, 4> Visited;
1466 if (!PTy->getElementType()->isSized(&Visited)) {
1467 Assert(!Attrs.hasAttribute(Attribute::ByVal) &&do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::InAlloca))) { CheckFailed("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1468 !Attrs.hasAttribute(Attribute::InAlloca),do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::InAlloca))) { CheckFailed("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1469 "Attributes 'byval' and 'inalloca' do not support unsized types!",do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::InAlloca))) { CheckFailed("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1470 V)do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::InAlloca))) { CheckFailed("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
;
1471 }
1472 if (!isa<PointerType>(PTy->getElementType()))
1473 Assert(!Attrs.hasAttribute(Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
1474 "Attribute 'swifterror' only applies to parameters "do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
1475 "with pointer to pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
1476 V)do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
;
1477 } else {
1478 Assert(!Attrs.hasAttribute(Attribute::ByVal),do { if (!(!Attrs.hasAttribute(Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
1479 "Attribute 'byval' only applies to parameters with pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
1480 V)do { if (!(!Attrs.hasAttribute(Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
;
1481 Assert(!Attrs.hasAttribute(Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
1482 "Attribute 'swifterror' only applies to parameters "do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
1483 "with pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
1484 V)do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
;
1485 }
1486}
1487
1488// Check parameter attributes against a function type.
1489// The value V is printed in error messages.
1490void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1491 const Value *V) {
1492 if (Attrs.isEmpty())
1493 return;
1494
1495 bool SawNest = false;
1496 bool SawReturned = false;
1497 bool SawSRet = false;
1498 bool SawSwiftSelf = false;
1499 bool SawSwiftError = false;
1500
1501 // Verify return value attributes.
1502 AttributeSet RetAttrs = Attrs.getRetAttributes();
1503 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1504 !RetAttrs.hasAttribute(Attribute::Nest) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1505 !RetAttrs.hasAttribute(Attribute::StructRet) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1506 !RetAttrs.hasAttribute(Attribute::NoCapture) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1507 !RetAttrs.hasAttribute(Attribute::Returned) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1508 !RetAttrs.hasAttribute(Attribute::InAlloca) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1509 !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1510 !RetAttrs.hasAttribute(Attribute::SwiftError)),do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1511 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1512 "'returned', 'swiftself', and 'swifterror' do not apply to return "do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1513 "values!",do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1514 V)do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
;
1515 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1516 !RetAttrs.hasAttribute(Attribute::WriteOnly) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1517 !RetAttrs.hasAttribute(Attribute::ReadNone)),do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1518 "Attribute '" + RetAttrs.getAsString() +do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1519 "' does not apply to function returns",do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1520 V)do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
;
1521 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1522
1523 // Verify parameter attributes.
1524 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1525 Type *Ty = FT->getParamType(i);
1526 AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1527
1528 verifyParameterAttrs(ArgAttrs, Ty, V);
1529
1530 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1531 Assert(!SawNest, "More than one parameter has attribute nest!", V)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, V); return; } } while (false)
;
1532 SawNest = true;
1533 }
1534
1535 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1536 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (false)
1537 V)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (false)
;
1538 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute"
, V); return; } } while (false)
1539 "Incompatible argument and return types for 'returned' attribute",do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute"
, V); return; } } while (false)
1540 V)do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute"
, V); return; } } while (false)
;
1541 SawReturned = true;
1542 }
1543
1544 if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1545 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V)do { if (!(!SawSRet)) { CheckFailed("Cannot have multiple 'sret' parameters!"
, V); return; } } while (false)
;
1546 Assert(i == 0 || i == 1,do { if (!(i == 0 || i == 1)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (false)
1547 "Attribute 'sret' is not on first or second parameter!", V)do { if (!(i == 0 || i == 1)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (false)
;
1548 SawSRet = true;
1549 }
1550
1551 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1552 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V)do { if (!(!SawSwiftSelf)) { CheckFailed("Cannot have multiple 'swiftself' parameters!"
, V); return; } } while (false)
;
1553 SawSwiftSelf = true;
1554 }
1555
1556 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1557 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!"
, V); return; } } while (false)
1558 V)do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!"
, V); return; } } while (false)
;
1559 SawSwiftError = true;
1560 }
1561
1562 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1563 Assert(i == FT->getNumParams() - 1,do { if (!(i == FT->getNumParams() - 1)) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (false)
1564 "inalloca isn't on the last parameter!", V)do { if (!(i == FT->getNumParams() - 1)) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (false)
;
1565 }
1566 }
1567
1568 if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1569 return;
1570
1571 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1572
1573 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1574 Attrs.hasFnAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1575 "Attributes 'readnone and readonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
;
1576
1577 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readnone and writeonly' are incompatible!", V); return
; } } while (false)
1578 Attrs.hasFnAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readnone and writeonly' are incompatible!", V); return
; } } while (false)
1579 "Attributes 'readnone and writeonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readnone and writeonly' are incompatible!", V); return
; } } while (false)
;
1580
1581 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readonly and writeonly' are incompatible!", V); return
; } } while (false)
1582 Attrs.hasFnAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readonly and writeonly' are incompatible!", V); return
; } } while (false)
1583 "Attributes 'readonly and writeonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readonly and writeonly' are incompatible!", V); return
; } } while (false)
;
1584
1585 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1586 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1587 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1588 "incompatible!",do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1589 V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
;
1590
1591 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1592 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1593 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
;
1594
1595 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes 'noinline and alwaysinline' are incompatible!", V
); return; } } while (false)
1596 Attrs.hasFnAttribute(Attribute::AlwaysInline)),do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes 'noinline and alwaysinline' are incompatible!", V
); return; } } while (false)
1597 "Attributes 'noinline and alwaysinline' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes 'noinline and alwaysinline' are incompatible!", V
); return; } } while (false)
;
1598
1599 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1600 Assert(Attrs.hasFnAttribute(Attribute::NoInline),do { if (!(Attrs.hasFnAttribute(Attribute::NoInline))) { CheckFailed
("Attribute 'optnone' requires 'noinline'!", V); return; } } while
(false)
1601 "Attribute 'optnone' requires 'noinline'!", V)do { if (!(Attrs.hasFnAttribute(Attribute::NoInline))) { CheckFailed
("Attribute 'optnone' requires 'noinline'!", V); return; } } while
(false)
;
1602
1603 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),do { if (!(!Attrs.hasFnAttribute(Attribute::OptimizeForSize))
) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
1604 "Attributes 'optsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasFnAttribute(Attribute::OptimizeForSize))
) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
;
1605
1606 Assert(!Attrs.hasFnAttribute(Attribute::MinSize),do { if (!(!Attrs.hasFnAttribute(Attribute::MinSize))) { CheckFailed
("Attributes 'minsize and optnone' are incompatible!", V); return
; } } while (false)
1607 "Attributes 'minsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasFnAttribute(Attribute::MinSize))) { CheckFailed
("Attributes 'minsize and optnone' are incompatible!", V); return
; } } while (false)
;
1608 }
1609
1610 if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1611 const GlobalValue *GV = cast<GlobalValue>(V);
1612 Assert(GV->hasGlobalUnnamedAddr(),do { if (!(GV->hasGlobalUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (false)
1613 "Attribute 'jumptable' requires 'unnamed_addr'", V)do { if (!(GV->hasGlobalUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (false)
;
1614 }
1615
1616 if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1617 std::pair<unsigned, Optional<unsigned>> Args =
1618 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
1619
1620 auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1621 if (ParamNo >= FT->getNumParams()) {
1622 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1623 return false;
1624 }
1625
1626 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1627 CheckFailed("'allocsize' " + Name +
1628 " argument must refer to an integer parameter",
1629 V);
1630 return false;
1631 }
1632
1633 return true;
1634 };
1635
1636 if (!CheckParam("element size", Args.first))
1637 return;
1638
1639 if (Args.second && !CheckParam("number of elements", *Args.second))
1640 return;
1641 }
1642}
1643
1644void Verifier::verifyFunctionMetadata(
1645 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1646 for (const auto &Pair : MDs) {
1647 if (Pair.first == LLVMContext::MD_prof) {
1648 MDNode *MD = Pair.second;
1649 Assert(MD->getNumOperands() >= 2,do { if (!(MD->getNumOperands() >= 2)) { CheckFailed("!prof annotations should have no less than 2 operands"
, MD); return; } } while (false)
1650 "!prof annotations should have no less than 2 operands", MD)do { if (!(MD->getNumOperands() >= 2)) { CheckFailed("!prof annotations should have no less than 2 operands"
, MD); return; } } while (false)
;
1651
1652 // Check first operand.
1653 Assert(MD->getOperand(0) != nullptr, "first operand should not be null",do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (false)
1654 MD)do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (false)
;
1655 Assert(isa<MDString>(MD->getOperand(0)),do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (false)
1656 "expected string with name of the !prof annotation", MD)do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (false)
;
1657 MDString *MDS = cast<MDString>(MD->getOperand(0));
1658 StringRef ProfName = MDS->getString();
1659 Assert(ProfName.equals("function_entry_count"),do { if (!(ProfName.equals("function_entry_count"))) { CheckFailed
("first operand should be 'function_entry_count'", MD); return
; } } while (false)
1660 "first operand should be 'function_entry_count'", MD)do { if (!(ProfName.equals("function_entry_count"))) { CheckFailed
("first operand should be 'function_entry_count'", MD); return
; } } while (false)
;
1661
1662 // Check second operand.
1663 Assert(MD->getOperand(1) != nullptr, "second operand should not be null",do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (false)
1664 MD)do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (false)
;
1665 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (false)
1666 "expected integer argument to function_entry_count", MD)do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (false)
;
1667 }
1668 }
1669}
1670
1671void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1672 if (!ConstantExprVisited.insert(EntryC).second)
1673 return;
1674
1675 SmallVector<const Constant *, 16> Stack;
1676 Stack.push_back(EntryC);
1677
1678 while (!Stack.empty()) {
1679 const Constant *C = Stack.pop_back_val();
1680
1681 // Check this constant expression.
1682 if (const auto *CE = dyn_cast<ConstantExpr>(C))
1683 visitConstantExpr(CE);
1684
1685 if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1686 // Global Values get visited separately, but we do need to make sure
1687 // that the global value is in the correct module
1688 Assert(GV->getParent() == &M, "Referencing global in another module!",do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, EntryC, &M, GV, GV->getParent()); return; } } while (
false)
1689 EntryC, &M, GV, GV->getParent())do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, EntryC, &M, GV, GV->getParent()); return; } } while (
false)
;
1690 continue;
1691 }
1692
1693 // Visit all sub-expressions.
1694 for (const Use &U : C->operands()) {
1695 const auto *OpC = dyn_cast<Constant>(U);
1696 if (!OpC)
1697 continue;
1698 if (!ConstantExprVisited.insert(OpC).second)
1699 continue;
1700 Stack.push_back(OpC);
1701 }
1702 }
1703}
1704
1705void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1706 if (CE->getOpcode() == Instruction::BitCast)
1707 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
1708 CE->getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
1709 "Invalid bitcast", CE)do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
;
1710
1711 if (CE->getOpcode() == Instruction::IntToPtr ||
1712 CE->getOpcode() == Instruction::PtrToInt) {
1713 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1714 ? CE->getType()
1715 : CE->getOperand(0)->getType();
1716 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1717 ? "inttoptr not supported for non-integral pointers"
1718 : "ptrtoint not supported for non-integral pointers";
1719 Assert(do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
1720 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
1721 Msg)do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
;
1722 }
1723}
1724
1725bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
1726 if (Attrs.getNumSlots() == 0)
1727 return true;
1728
1729 unsigned LastSlot = Attrs.getNumSlots() - 1;
1730 unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
1731 if (LastIndex <= Params ||
1732 (LastIndex == AttributeList::FunctionIndex &&
1733 (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
1734 return true;
1735
1736 return false;
1737}
1738
1739/// Verify that statepoint intrinsic is well formed.
1740void Verifier::verifyStatepoint(ImmutableCallSite CS) {
1741 assert(CS.getCalledFunction() &&((CS.getCalledFunction() && CS.getCalledFunction()->
getIntrinsicID() == Intrinsic::experimental_gc_statepoint) ? static_cast
<void> (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/IR/Verifier.cpp"
, 1743, __PRETTY_FUNCTION__))
1742 CS.getCalledFunction()->getIntrinsicID() ==((CS.getCalledFunction() && CS.getCalledFunction()->
getIntrinsicID() == Intrinsic::experimental_gc_statepoint) ? static_cast
<void> (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/IR/Verifier.cpp"
, 1743, __PRETTY_FUNCTION__))
1743 Intrinsic::experimental_gc_statepoint)((CS.getCalledFunction() && CS.getCalledFunction()->
getIntrinsicID() == Intrinsic::experimental_gc_statepoint) ? static_cast
<void> (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/IR/Verifier.cpp"
, 1743, __PRETTY_FUNCTION__))
;
1744
1745 const Instruction &CI = *CS.getInstruction();
1746
1747 Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1748 !CS.onlyAccessesArgMemory(),do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1749 "gc.statepoint must read and write all memory to preserve "do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1750 "reordering restrictions required by safepoint semantics",do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1751 &CI)do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
;
1752
1753 const Value *IDV = CS.getArgument(0);
1754 Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",do { if (!(isa<ConstantInt>(IDV))) { CheckFailed("gc.statepoint ID must be a constant integer"
, &CI); return; } } while (false)
1755 &CI)do { if (!(isa<ConstantInt>(IDV))) { CheckFailed("gc.statepoint ID must be a constant integer"
, &CI); return; } } while (false)
;
1756
1757 const Value *NumPatchBytesV = CS.getArgument(1);
1758 Assert(isa<ConstantInt>(NumPatchBytesV),do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (false)
1759 "gc.statepoint number of patchable bytes must be a constant integer",do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (false)
1760 &CI)do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (false)
;
1761 const int64_t NumPatchBytes =
1762 cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1763 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!")((isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"
) ? static_cast<void> (0) : __assert_fail ("isInt<32>(NumPatchBytes) && \"NumPatchBytesV is an i32!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/IR/Verifier.cpp"
, 1763, __PRETTY_FUNCTION__))
;
1764 Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (false)
1765 "positive",do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (false)
1766 &CI)do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (false)
;
1767
1768 const Value *Target = CS.getArgument(2);
1769 auto *PT = dyn_cast<PointerType>(Target->getType());
1770 Assert(PT && PT->getElementType()->isFunctionTy(),do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, &CI, Target); return; } } while (false)
1771 "gc.statepoint callee must be of function pointer type", &CI, Target)do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, &CI, Target); return; } } while (false)
;
1772 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1773
1774 const Value *NumCallArgsV = CS.getArgument(3);
1775 Assert(isa<ConstantInt>(NumCallArgsV),do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
1776 "gc.statepoint number of arguments to underlying call "do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
1777 "must be constant integer",do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
1778 &CI)do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
;
1779 const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1780 Assert(NumCallArgs >= 0,do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
1781 "gc.statepoint number of arguments to underlying call "do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
1782 "must be positive",do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
1783 &CI)do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
;
1784 const int NumParams = (int)TargetFuncType->getNumParams();
1785 if (TargetFuncType->isVarArg()) {
1786 Assert(NumCallArgs >= NumParams,do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, &CI); return; } } while (false)
1787 "gc.statepoint mismatch in number of vararg call args", &CI)do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, &CI); return; } } while (false)
;
1788
1789 // TODO: Remove this limitation
1790 Assert(TargetFuncType->getReturnType()->isVoidTy(),do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
1791 "gc.statepoint doesn't support wrapping non-void "do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
1792 "vararg functions yet",do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
1793 &CI)do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
;
1794 } else
1795 Assert(NumCallArgs == NumParams,do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, &CI); return; } } while (false)
1796 "gc.statepoint mismatch in number of call args", &CI)do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, &CI); return; } } while (false)
;
1797
1798 const Value *FlagsV = CS.getArgument(4);
1799 Assert(isa<ConstantInt>(FlagsV),do { if (!(isa<ConstantInt>(FlagsV))) { CheckFailed("gc.statepoint flags must be constant integer"
, &CI); return; } } while (false)
1800 "gc.statepoint flags must be constant integer", &CI)do { if (!(isa<ConstantInt>(FlagsV))) { CheckFailed("gc.statepoint flags must be constant integer"
, &CI); return; } } while (false)
;
1801 const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1802 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, &CI); return; } } while (false)
1803 "unknown flag used in gc.statepoint flags argument", &CI)do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, &CI); return; } } while (false)
;
1804
1805 // Verify that the types of the call parameter arguments match
1806 // the type of the wrapped callee.
1807 for (int i = 0; i < NumParams; i++) {
1808 Type *ParamType = TargetFuncType->getParamType(i);
1809 Type *ArgType = CS.getArgument(5 + i)->getType();
1810 Assert(ArgType == ParamType,do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
1811 "gc.statepoint call argument does not match wrapped "do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
1812 "function type",do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
1813 &CI)do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
;
1814 }
1815
1816 const int EndCallArgsInx = 4 + NumCallArgs;
1817
1818 const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1819 Assert(isa<ConstantInt>(NumTransitionArgsV),do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
1820 "gc.statepoint number of transition arguments "do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
1821 "must be constant integer",do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
1822 &CI)do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
;
1823 const int NumTransitionArgs =
1824 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1825 Assert(NumTransitionArgs >= 0,do { if (!(NumTransitionArgs >= 0)) { CheckFailed("gc.statepoint number of transition arguments must be positive"
, &CI); return; } } while (false)
1826 "gc.statepoint number of transition arguments must be positive", &CI)do { if (!(NumTransitionArgs >= 0)) { CheckFailed("gc.statepoint number of transition arguments must be positive"
, &CI); return; } } while (false)
;
1827 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1828
1829 const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1830 Assert(isa<ConstantInt>(NumDeoptArgsV),do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
1831 "gc.statepoint number of deoptimization arguments "do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
1832 "must be constant integer",do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
1833 &CI)do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
;
1834 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1835 Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (false)
1836 "must be positive",do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (false)
1837 &CI)do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (false)
;
1838
1839 const int ExpectedNumArgs =
1840 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1841 Assert(ExpectedNumArgs <= (int)CS.arg_size(),do { if (!(ExpectedNumArgs <= (int)CS.arg_size())) { CheckFailed
("gc.statepoint too few arguments according to length fields"
, &CI); return; } } while (false)
1842 "gc.statepoint too few arguments according to length fields", &CI)do { if (!(ExpectedNumArgs <= (int)CS.arg_size())) { CheckFailed
("gc.statepoint too few arguments according to length fields"
, &CI); return; } } while (false)
;
1843
1844 // Check that the only uses of this gc.statepoint are gc.result or
1845 // gc.relocate calls which are tied to this statepoint and thus part
1846 // of the same statepoint sequence
1847 for (const User *U : CI.users()) {
1848 const CallInst *Call = dyn_cast<const CallInst>(U);
1849 Assert(Call, "illegal use of statepoint token", &CI, U)do { if (!(Call)) { CheckFailed("illegal use of statepoint token"
, &CI, U); return; } } while (false)
;
1850 if (!Call) continue;
1851 Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call),do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
1852 "gc.result or gc.relocate are the only value uses "do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
1853 "of a gc.statepoint",do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
1854 &CI, U)do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
;
1855 if (isa<GCResultInst>(Call)) {
1856 Assert(Call->getArgOperand(0) == &CI,do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.result connected to wrong gc.statepoint", &CI, Call)
; return; } } while (false)
1857 "gc.result connected to wrong gc.statepoint", &CI, Call)do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.result connected to wrong gc.statepoint", &CI, Call)
; return; } } while (false)
;
1858 } else if (isa<GCRelocateInst>(Call)) {
1859 Assert(Call->getArgOperand(0) == &CI,do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", &CI, Call
); return; } } while (false)
1860 "gc.relocate connected to wrong gc.statepoint", &CI, Call)do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", &CI, Call
); return; } } while (false)
;
1861 }
1862 }
1863
1864 // Note: It is legal for a single derived pointer to be listed multiple
1865 // times. It's non-optimal, but it is legal. It can also happen after
1866 // insertion if we strip a bitcast away.
1867 // Note: It is really tempting to check that each base is relocated and
1868 // that a derived pointer is never reused as a base pointer. This turns
1869 // out to be problematic since optimizations run after safepoint insertion
1870 // can recognize equality properties that the insertion logic doesn't know
1871 // about. See example statepoint.ll in the verifier subdirectory
1872}
1873
1874void Verifier::verifyFrameRecoverIndices() {
1875 for (auto &Counts : FrameEscapeInfo) {
1876 Function *F = Counts.first;
1877 unsigned EscapedObjectCount = Counts.second.first;
1878 unsigned MaxRecoveredIndex = Counts.second.second;
1879 Assert(MaxRecoveredIndex <= EscapedObjectCount,do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1880 "all indices passed to llvm.localrecover must be less than the "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1881 "number of arguments passed ot llvm.localescape in the parent "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1882 "function",do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1883 F)do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
;
1884 }
1885}
1886
1887static Instruction *getSuccPad(TerminatorInst *Terminator) {
1888 BasicBlock *UnwindDest;
1889 if (auto *II = dyn_cast<InvokeInst>(Terminator))
1890 UnwindDest = II->getUnwindDest();
1891 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
1892 UnwindDest = CSI->getUnwindDest();
1893 else
1894 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
1895 return UnwindDest->getFirstNonPHI();
1896}
1897
1898void Verifier::verifySiblingFuncletUnwinds() {
1899 SmallPtrSet<Instruction *, 8> Visited;
1900 SmallPtrSet<Instruction *, 8> Active;
1901 for (const auto &Pair : SiblingFuncletInfo) {
1902 Instruction *PredPad = Pair.first;
1903 if (Visited.count(PredPad))
1904 continue;
1905 Active.insert(PredPad);
1906 TerminatorInst *Terminator = Pair.second;
1907 do {
1908 Instruction *SuccPad = getSuccPad(Terminator);
1909 if (Active.count(SuccPad)) {
1910 // Found a cycle; report error
1911 Instruction *CyclePad = SuccPad;
1912 SmallVector<Instruction *, 8> CycleNodes;
1913 do {
1914 CycleNodes.push_back(CyclePad);
1915 TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
1916 if (CycleTerminator != CyclePad)
1917 CycleNodes.push_back(CycleTerminator);
1918 CyclePad = getSuccPad(CycleTerminator);
1919 } while (CyclePad != SuccPad);
1920 Assert(false, "EH pads can't handle each other's exceptions",do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions"
, ArrayRef<Instruction *>(CycleNodes)); return; } } while
(false)
1921 ArrayRef<Instruction *>(CycleNodes))do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions"
, ArrayRef<Instruction *>(CycleNodes)); return; } } while
(false)
;
1922 }
1923 // Don't re-walk a node we've already checked
1924 if (!Visited.insert(SuccPad).second)
1925 break;
1926 // Walk to this successor if it has a map entry.
1927 PredPad = SuccPad;
1928 auto TermI = SiblingFuncletInfo.find(PredPad);
1929 if (TermI == SiblingFuncletInfo.end())
1930 break;
1931 Terminator = TermI->second;
1932 Active.insert(PredPad);
1933 } while (true);
1934 // Each node only has one successor, so we've walked all the active
1935 // nodes' successors.
1936 Active.clear();
1937 }
1938}
1939
1940// visitFunction - Verify that a function is ok.
1941//
1942void Verifier::visitFunction(const Function &F) {
1943 visitGlobalValue(F);
1944
1945 // Check function arguments.
1946 FunctionType *FT = F.getFunctionType();
1947 unsigned NumArgs = F.arg_size();
1948
1949 Assert(&Context == &F.getContext(),do { if (!(&Context == &F.getContext())) { CheckFailed
("Function context does not match Module context!", &F); return
; } } while (false)
1950 "Function context does not match Module context!", &F)do { if (!(&Context == &F.getContext())) { CheckFailed
("Function context does not match Module context!", &F); return
; } } while (false)
;
1951
1952 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F)do { if (!(!F.hasCommonLinkage())) { CheckFailed("Functions may not have common linkage"
, &F); return; } } while (false)
;
1953 Assert(FT->getNumParams() == NumArgs,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
1954 "# formal arguments must match # of arguments for function type!", &F,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
1955 FT)do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
;
1956 Assert(F.getReturnType()->isFirstClassType() ||do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
1957 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
1958 "Functions cannot return aggregate values!", &F)do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
;
1959
1960 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (false)
1961 "Invalid struct return type!", &F)do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (false)
;
1962
1963 AttributeList Attrs = F.getAttributes();
1964
1965 Assert(verifyAttributeCount(Attrs, FT->getNumParams()),do { if (!(verifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (false)
1966 "Attribute after last parameter!", &F)do { if (!(verifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (false)
;
1967
1968 // Check function attributes.
1969 verifyFunctionAttrs(FT, Attrs, &F);
1970
1971 // On function declarations/definitions, we do not support the builtin
1972 // attribute. We do not check this in VerifyFunctionAttrs since that is
1973 // checking for Attributes that can/can not ever be on functions.
1974 Assert(!Attrs.hasFnAttribute(Attribute::Builtin),do { if (!(!Attrs.hasFnAttribute(Attribute::Builtin))) { CheckFailed
("Attribute 'builtin' can only be applied to a callsite.", &
F); return; } } while (false)
1975 "Attribute 'builtin' can only be applied to a callsite.", &F)do { if (!(!Attrs.hasFnAttribute(Attribute::Builtin))) { CheckFailed
("Attribute 'builtin' can only be applied to a callsite.", &
F); return; } } while (false)
;
1976
1977 // Check that this function meets the restrictions on this calling convention.
1978 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
1979 // restrictions can be lifted.
1980 switch (F.getCallingConv()) {
1
Control jumps to the 'default' case at line 1981
1981 default:
1982 case CallingConv::C:
1983 break;
2
Execution continues on line 2008
1984 case CallingConv::AMDGPU_KERNEL:
1985 case CallingConv::SPIR_KERNEL:
1986 Assert(F.getReturnType()->isVoidTy(),do { if (!(F.getReturnType()->isVoidTy())) { CheckFailed("Calling convention requires void return type"
, &F); return; } } while (false)
1987 "Calling convention requires void return type", &F)do { if (!(F.getReturnType()->isVoidTy())) { CheckFailed("Calling convention requires void return type"
, &F); return; } } while (false)
;
1988 LLVM_FALLTHROUGH[[clang::fallthrough]];
1989 case CallingConv::AMDGPU_VS:
1990 case CallingConv::AMDGPU_HS:
1991 case CallingConv::AMDGPU_GS:
1992 case CallingConv::AMDGPU_PS:
1993 case CallingConv::AMDGPU_CS:
1994 Assert(!F.hasStructRetAttr(),do { if (!(!F.hasStructRetAttr())) { CheckFailed("Calling convention does not allow sret"
, &F); return; } } while (false)
1995 "Calling convention does not allow sret", &F)do { if (!(!F.hasStructRetAttr())) { CheckFailed("Calling convention does not allow sret"
, &F); return; } } while (false)
;
1996 LLVM_FALLTHROUGH[[clang::fallthrough]];
1997 case CallingConv::Fast:
1998 case CallingConv::Cold:
1999 case CallingConv::Intel_OCL_BI:
2000 case CallingConv::PTX_Kernel:
2001 case CallingConv::PTX_Device:
2002 Assert(!F.isVarArg(), "Calling convention does not support varargs or "do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
2003 "perfect forwarding!",do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
2004 &F)do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
;
2005 break;
2006 }
2007
2008 bool isLLVMdotName = F.getName().size() >= 5 &&
3
Assuming the condition is false
2009 F.getName().substr(0, 5) == "llvm.";
2010
2011 // Check that the argument values match the function type for this function...
2012 unsigned i = 0;
2013 for (const Argument &Arg : F.args()) {
4
Assuming '__begin' is equal to '__end'
2014 Assert(Arg.getType() == FT->getParamType(i),do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
2015 "Argument value does not match function argument type!", &Arg,do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
2016 FT->getParamType(i))do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
;
2017 Assert(Arg.getType()->isFirstClassType(),do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", &Arg)
; return; } } while (false)
2018 "Function arguments must have first-class types!", &Arg)do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", &Arg)
; return; } } while (false)
;
2019 if (!isLLVMdotName) {
2020 Assert(!Arg.getType()->isMetadataTy(),do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed(
"Function takes metadata but isn't an intrinsic", &Arg, &
F); return; } } while (false)
2021 "Function takes metadata but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed(
"Function takes metadata but isn't an intrinsic", &Arg, &
F); return; } } while (false)
;
2022 Assert(!Arg.getType()->isTokenTy(),do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, &Arg, &F); return; } } while (false)
2023 "Function takes token but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, &Arg, &F); return; } } while (false)
;
2024 }
2025
2026 // Check that swifterror argument is only used by loads and stores.
2027 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2028 verifySwiftErrorValue(&Arg);
2029 }
2030 ++i;
2031 }
2032
2033 if (!isLLVMdotName)
5
Taking true branch
2034 Assert(!F.getReturnType()->isTokenTy(),do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Functions returns a token but isn't an intrinsic", &F);
return; } } while (false)
2035 "Functions returns a token but isn't an intrinsic", &F)do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Functions returns a token but isn't an intrinsic", &F);
return; } } while (false)
;
2036
2037 // Get the function metadata attachments.
2038 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2039 F.getAllMetadata(MDs);
2040 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync")((F.hasMetadata() != MDs.empty() && "Bit out-of-sync"
) ? static_cast<void> (0) : __assert_fail ("F.hasMetadata() != MDs.empty() && \"Bit out-of-sync\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/IR/Verifier.cpp"
, 2040, __PRETTY_FUNCTION__))
;
2041 verifyFunctionMetadata(MDs);
2042
2043 // Check validity of the personality function
2044 if (F.hasPersonalityFn()) {
6
Assuming the condition is false
7
Taking false branch
2045 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2046 if (Per)
2047 Assert(Per->getParent() == F.getParent(),do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
2048 "Referencing personality function in another module!",do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
2049 &F, F.getParent(), Per, Per->getParent())do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
;
2050 }
2051
2052 if (F.isMaterializable()) {
8
Assuming the condition is false
9
Taking false branch
2053 // Function has a body somewhere we can't see.
2054 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (false)
2055 MDs.empty() ? nullptr : MDs.front().second)do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (false)
;
2056 } else if (F.isDeclaration()) {
10
Assuming the condition is false
11
Taking false branch
2057 for (const auto &I : MDs) {
2058 AssertDI(I.first != LLVMContext::MD_dbg,do { if (!(I.first != LLVMContext::MD_dbg)) { DebugInfoCheckFailed
("function declaration may not have a !dbg attachment", &
F); return; } } while (false)
2059 "function declaration may not have a !dbg attachment", &F)do { if (!(I.first != LLVMContext::MD_dbg)) { DebugInfoCheckFailed
("function declaration may not have a !dbg attachment", &
F); return; } } while (false)
;
2060 Assert(I.first != LLVMContext::MD_prof,do { if (!(I.first != LLVMContext::MD_prof)) { CheckFailed("function declaration may not have a !prof attachment"
, &F); return; } } while (false)
2061 "function declaration may not have a !prof attachment", &F)do { if (!(I.first != LLVMContext::MD_prof)) { CheckFailed("function declaration may not have a !prof attachment"
, &F); return; } } while (false)
;
2062
2063 // Verify the metadata itself.
2064 visitMDNode(*I.second);
2065 }
2066 Assert(!F.hasPersonalityFn(),do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (false)
2067 "Function declaration shouldn't have a personality routine", &F)do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (false)
;
2068 } else {
2069 // Verify that this function (which has a body) is not named "llvm.*". It
2070 // is not legal to define intrinsics.
2071 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F)do { if (!(!isLLVMdotName)) { CheckFailed("llvm intrinsics cannot be defined!"
, &F); return; } } while (false)
;
2072
2073 // Check the entry node
2074 const BasicBlock *Entry = &F.getEntryBlock();
2075 Assert(pred_empty(Entry),do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (false)
2076 "Entry block to function must not have predecessors!", Entry)do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (false)
;
2077
2078 // The address of the entry block cannot be taken, unless it is dead.
2079 if (Entry->hasAddressTaken()) {
12
Assuming the condition is false
13
Taking false branch
2080 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (false)
2081 "blockaddress may not be used with the entry block!", Entry)do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (false)
;
2082 }
2083
2084 unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2085 // Visit metadata attachments.
2086 for (const auto &I : MDs) {
14
Assuming '__begin' is equal to '__end'
2087 // Verify that the attachment is legal.
2088 switch (I.first) {
2089 default:
2090 break;
2091 case LLVMContext::MD_dbg: {
2092 ++NumDebugAttachments;
2093 AssertDI(NumDebugAttachments == 1,do { if (!(NumDebugAttachments == 1)) { DebugInfoCheckFailed(
"function must have a single !dbg attachment", &F, I.second
); return; } } while (false)
2094 "function must have a single !dbg attachment", &F, I.second)do { if (!(NumDebugAttachments == 1)) { DebugInfoCheckFailed(
"function must have a single !dbg attachment", &F, I.second
); return; } } while (false)
;
2095 AssertDI(isa<DISubprogram>(I.second),do { if (!(isa<DISubprogram>(I.second))) { DebugInfoCheckFailed
("function !dbg attachment must be a subprogram", &F, I.second
); return; } } while (false)
2096 "function !dbg attachment must be a subprogram", &F, I.second)do { if (!(isa<DISubprogram>(I.second))) { DebugInfoCheckFailed
("function !dbg attachment must be a subprogram", &F, I.second
); return; } } while (false)
;
2097 auto *SP = cast<DISubprogram>(I.second);
2098 const Function *&AttachedTo = DISubprogramAttachments[SP];
2099 AssertDI(!AttachedTo || AttachedTo == &F,do { if (!(!AttachedTo || AttachedTo == &F)) { DebugInfoCheckFailed
("DISubprogram attached to more than one function", SP, &
F); return; } } while (false)
2100 "DISubprogram attached to more than one function", SP, &F)do { if (!(!AttachedTo || AttachedTo == &F)) { DebugInfoCheckFailed
("DISubprogram attached to more than one function", SP, &
F); return; } } while (false)
;
2101 AttachedTo = &F;
2102 break;
2103 }
2104 case LLVMContext::MD_prof:
2105 ++NumProfAttachments;
2106 Assert(NumProfAttachments == 1,do { if (!(NumProfAttachments == 1)) { CheckFailed("function must have a single !prof attachment"
, &F, I.second); return; } } while (false)
2107 "function must have a single !prof attachment", &F, I.second)do { if (!(NumProfAttachments == 1)) { CheckFailed("function must have a single !prof attachment"
, &F, I.second); return; } } while (false)
;
2108 break;
2109 }
2110
2111 // Verify the metadata itself.
2112 visitMDNode(*I.second);
2113 }
2114 }
2115
2116 // If this function is actually an intrinsic, verify that it is only used in
2117 // direct call/invokes, never having its "address taken".
2118 // Only do this if the module is materialized, otherwise we don't have all the
2119 // uses.
2120 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
15
Assuming the condition is false
2121 const User *U;
2122 if (F.hasAddressTaken(&U))
2123 Assert(false, "Invalid user of intrinsic instruction!", U)do { if (!(false)) { CheckFailed("Invalid user of intrinsic instruction!"
, U); return; } } while (false)
;
2124 }
2125
2126 Assert(!F.hasDLLImportStorageClass() ||do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
2127 (F.isDeclaration() && F.hasExternalLinkage()) ||do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
2128 F.hasAvailableExternallyLinkage(),do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
2129 "Function is marked as dllimport, but not external.", &F)do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
;
2130
2131 auto *N = F.getSubprogram();
2132 HasDebugInfo = (N != nullptr);
16
Assuming the condition is true
2133 if (!HasDebugInfo)
17
Taking false branch
2134 return;
2135
2136 // Check that all !dbg attachments lead to back to N (or, at least, another
2137 // subprogram that describes the same function).
2138 //
2139 // FIXME: Check this incrementally while visiting !dbg attachments.
2140 // FIXME: Only check when N is the canonical subprogram for F.
2141 SmallPtrSet<const MDNode *, 32> Seen;
2142 for (auto &BB : F)
2143 for (auto &I : BB) {
2144 // Be careful about using DILocation here since we might be dealing with
2145 // broken code (this is the Verifier after all).
2146 DILocation *DL =
2147 dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
2148 if (!DL)
18
Assuming 'DL' is non-null
19
Taking false branch
2149 continue;
2150 if (!Seen.insert(DL).second)
20
Assuming the condition is false
21
Taking false branch
2151 continue;
2152
2153 DILocalScope *Scope = DL->getInlinedAtScope();
2154 if (Scope && !Seen.insert(Scope).second)
22
Assuming 'Scope' is null
23
Taking false branch
2155 continue;
2156
2157 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
24
'?' condition is false
25
'SP' initialized to a null pointer value
2158
2159 // Scope and SP could be the same MDNode and we don't want to skip
2160 // validation in that case
2161 if (SP && ((Scope != SP) && !Seen.insert(SP).second))
26
Taking false branch
2162 continue;
2163
2164 // FIXME: Once N is canonical, check "SP == &N".
2165 AssertDI(SP->describes(&F),do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
27
Within the expansion of the macro 'AssertDI':
a
Called C++ object pointer is null
2166 "!dbg attachment points at wrong subprogram for function", N, &F,do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
2167 &I, DL, Scope, SP)do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
;
2168 }
2169}
2170
2171// verifyBasicBlock - Verify that a basic block is well formed...
2172//
2173void Verifier::visitBasicBlock(BasicBlock &BB) {
2174 InstsInThisBlock.clear();
2175
2176 // Ensure that basic blocks have terminators!
2177 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB)do { if (!(BB.getTerminator())) { CheckFailed("Basic Block does not have terminator!"
, &BB); return; } } while (false)
;
2178
2179 // Check constraints that this basic block imposes on all of the PHI nodes in
2180 // it.
2181 if (isa<PHINode>(BB.front())) {
2182 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2183 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2184 std::sort(Preds.begin(), Preds.end());
2185 PHINode *PN;
2186 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
2187 // Ensure that PHI nodes have at least one entry!
2188 Assert(PN->getNumIncomingValues() != 0,do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (false)
2189 "PHI nodes must have at least one entry. If the block is dead, "do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (false)
2190 "the PHI should be removed!",do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (false)
2191 PN)do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (false)
;
2192 Assert(PN->getNumIncomingValues() == Preds.size(),do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (false)
2193 "PHINode should have one entry for each predecessor of its "do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (false)
2194 "parent basic block!",do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (false)
2195 PN)do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (false)
;
2196
2197 // Get and sort all incoming values in the PHI node...
2198 Values.clear();
2199 Values.reserve(PN->getNumIncomingValues());
2200 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2201 Values.push_back(std::make_pair(PN->getIncomingBlock(i),
2202 PN->getIncomingValue(i)));
2203 std::sort(Values.begin(), Values.end());
2204
2205 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2206 // Check to make sure that if there is more than one entry for a
2207 // particular basic block in this PHI node, that the incoming values are
2208 // all identical.
2209 //
2210 Assert(i == 0 || Values[i].first != Values[i - 1].first ||do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
2211 Values[i].second == Values[i - 1].second,do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
2212 "PHI node has multiple entries for the same basic block with "do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
2213 "different incoming values!",do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
2214 PN, Values[i].first, Values[i].second, Values[i - 1].second)do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
;
2215
2216 // Check to make sure that the predecessors and PHI node entries are
2217 // matched up.
2218 Assert(Values[i].first == Preds[i],do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, PN, Values[i].first, Preds[i]); return; } } while (false)
2219 "PHI node entries do not match predecessors!", PN,do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, PN, Values[i].first, Preds[i]); return; } } while (false)
2220 Values[i].first, Preds[i])do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, PN, Values[i].first, Preds[i]); return; } } while (false)
;
2221 }
2222 }
2223 }
2224
2225 // Check that all instructions have their parent pointers set up correctly.
2226 for (auto &I : BB)
2227 {
2228 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!")do { if (!(I.getParent() == &BB)) { CheckFailed("Instruction has bogus parent pointer!"
); return; } } while (false)
;
2229 }
2230}
2231
2232void Verifier::visitTerminatorInst(TerminatorInst &I) {
2233 // Ensure that terminators only exist at the end of the basic block.
2234 Assert(&I == I.getParent()->getTerminator(),do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (false)
2235 "Terminator found in the middle of a basic block!", I.getParent())do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (false)
;
2236 visitInstruction(I);
2237}
2238
2239void Verifier::visitBranchInst(BranchInst &BI) {
2240 if (BI.isConditional()) {
2241 Assert(BI.getCondition()->getType()->isIntegerTy(1),do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (false)
2242 "Branch condition is not 'i1' type!", &BI, BI.getCondition())do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (false)
;
2243 }
2244 visitTerminatorInst(BI);
2245}
2246
2247void Verifier::visitReturnInst(ReturnInst &RI) {
2248 Function *F = RI.getParent()->getParent();
2249 unsigned N = RI.getNumOperands();
2250 if (F->getReturnType()->isVoidTy())
2251 Assert(N == 0,do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2252 "Found return instr that returns non-void in Function of void "do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2253 "return type!",do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2254 &RI, F->getReturnType())do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
;
2255 else
2256 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2257 "Function return type does not match operand "do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2258 "type of return inst!",do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2259 &RI, F->getReturnType())do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
;
2260
2261 // Check to make sure that the return value has necessary properties for
2262 // terminators...
2263 visitTerminatorInst(RI);
2264}
2265
2266void Verifier::visitSwitchInst(SwitchInst &SI) {
2267 // Check to make sure that all of the constants in the switch instruction
2268 // have the same type as the switched-on value.
2269 Type *SwitchTy = SI.getCondition()->getType();
2270 SmallPtrSet<ConstantInt*, 32> Constants;
2271 for (auto &Case : SI.cases()) {
2272 Assert(Case.getCaseValue()->getType() == SwitchTy,do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (false)
2273 "Switch constants must all be same type as switch value!", &SI)do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (false)
;
2274 Assert(Constants.insert(Case.getCaseValue()).second,do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, Case.getCaseValue
()); return; } } while (false)
2275 "Duplicate integer as switch case", &SI, Case.getCaseValue())do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, Case.getCaseValue
()); return; } } while (false)
;
2276 }
2277
2278 visitTerminatorInst(SI);
2279}
2280
2281void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2282 Assert(BI.getAddress()->getType()->isPointerTy(),do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (false)
2283 "Indirectbr operand must have pointer type!", &BI)do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (false)
;
2284 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2285 Assert(BI.getDestination(i)->getType()->isLabelTy(),do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (false)
2286 "Indirectbr destinations must all have pointer type!", &BI)do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (false)
;
2287
2288 visitTerminatorInst(BI);
2289}
2290
2291void Verifier::visitSelectInst(SelectInst &SI) {
2292 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
2293 SI.getOperand(2)),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
2294 "Invalid operands for select instruction!", &SI)do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
;
2295
2296 Assert(SI.getTrueValue()->getType() == SI.getType(),do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (false)
2297 "Select values must have same type as select instruction!", &SI)do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (false)
;
2298 visitInstruction(SI);
2299}
2300
2301/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2302/// a pass, if any exist, it's an error.
2303///
2304void Verifier::visitUserOp1(Instruction &I) {
2305 Assert(false, "User-defined operators should not live outside of a pass!", &I)do { if (!(false)) { CheckFailed("User-defined operators should not live outside of a pass!"
, &I); return; } } while (false)
;
2306}
2307
2308void Verifier::visitTruncInst(TruncInst &I) {
2309 // Get the source and destination types
2310 Type *SrcTy = I.getOperand(0)->getType();
2311 Type *DestTy = I.getType();
2312
2313 // Get the size of the types in bits, we'll need this later
2314 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2315 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2316
2317 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only operates on integer"
, &I); return; } } while (false)
;
2318 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only produces integer"
, &I); return; } } while (false)
;
2319 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
2320 "trunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2321 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for Trunc"
, &I); return; } } while (false)
;
2322
2323 visitInstruction(I);
2324}
2325
2326void Verifier::visitZExtInst(ZExtInst &I) {
2327 // Get the source and destination types
2328 Type *SrcTy = I.getOperand(0)->getType();
2329 Type *DestTy = I.getType();
2330
2331 // Get the size of the types in bits, we'll need this later
2332 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only operates on integer"
, &I); return; } } while (false)
;
2333 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only produces an integer"
, &I); return; } } while (false)
;
2334 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2335 "zext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2336 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2337 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2338
2339 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for ZExt"
, &I); return; } } while (false)
;
2340
2341 visitInstruction(I);
2342}
2343
2344void Verifier::visitSExtInst(SExtInst &I) {
2345 // Get the source and destination types
2346 Type *SrcTy = I.getOperand(0)->getType();
2347 Type *DestTy = I.getType();
2348
2349 // Get the size of the types in bits, we'll need this later
2350 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2351 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2352
2353 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SExt only operates on integer"
, &I); return; } } while (false)
;
2354 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("SExt only produces an integer"
, &I); return; } } while (false)
;
2355 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2356 "sext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2357 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for SExt"
, &I); return; } } while (false)
;
2358
2359 visitInstruction(I);
2360}
2361
2362void Verifier::visitFPTruncInst(FPTruncInst &I) {
2363 // Get the source and destination types
2364 Type *SrcTy = I.getOperand(0)->getType();
2365 Type *DestTy = I.getType();
2366 // Get the size of the types in bits, we'll need this later
2367 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2368 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2369
2370 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only operates on FP"
, &I); return; } } while (false)
;
2371 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only produces an FP"
, &I); return; } } while (false)
;
2372 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
2373 "fptrunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2374 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for FPTrunc"
, &I); return; } } while (false)
;
2375
2376 visitInstruction(I);
2377}
2378
2379void Verifier::visitFPExtInst(FPExtInst &I) {
2380 // Get the source and destination types
2381 Type *SrcTy = I.getOperand(0)->getType();
2382 Type *DestTy = I.getType();
2383
2384 // Get the size of the types in bits, we'll need this later
2385 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2386 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2387
2388 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only operates on FP"
, &I); return; } } while (false)
;
2389 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only produces an FP"
, &I); return; } } while (false)
;
2390 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2391 "fpext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2392 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("DestTy too small for FPExt"
, &I); return; } } while (false)
;
2393
2394 visitInstruction(I);
2395}
2396
2397void Verifier::visitUIToFPInst(UIToFPInst &I) {
2398 // Get the source and destination types
2399 Type *SrcTy = I.getOperand(0)->getType();
2400 Type *DestTy = I.getType();
2401
2402 bool SrcVec = SrcTy->isVectorTy();
2403 bool DstVec = DestTy->isVectorTy();
2404
2405 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
2406 "UIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2407 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (false)
2408 "UIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (false)
;
2409 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (false)
2410 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (false)
;
2411
2412 if (SrcVec && DstVec)
2413 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2414 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2415 "UIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
;
2416
2417 visitInstruction(I);
2418}
2419
2420void Verifier::visitSIToFPInst(SIToFPInst &I) {
2421 // Get the source and destination types
2422 Type *SrcTy = I.getOperand(0)->getType();
2423 Type *DestTy = I.getType();
2424
2425 bool SrcVec = SrcTy->isVectorTy();
2426 bool DstVec = DestTy->isVectorTy();
2427
2428 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
2429 "SIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2430 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (false)
2431 "SIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (false)
;
2432 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (false)
2433 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (false)
;
2434
2435 if (SrcVec && DstVec)
2436 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2437 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2438 "SIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
;
2439
2440 visitInstruction(I);
2441}
2442
2443void Verifier::visitFPToUIInst(FPToUIInst &I) {
2444 // Get the source and destination types
2445 Type *SrcTy = I.getOperand(0)->getType();
2446 Type *DestTy = I.getType();
2447
2448 bool SrcVec = SrcTy->isVectorTy();
2449 bool DstVec = DestTy->isVectorTy();
2450
2451 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (false)
2452 "FPToUI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2453 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (false)
2454 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (false)
;
2455 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (false)
2456 "FPToUI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (false)
;
2457
2458 if (SrcVec && DstVec)
2459 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
2460 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
2461 "FPToUI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
;
2462
2463 visitInstruction(I);
2464}
2465
2466void Verifier::visitFPToSIInst(FPToSIInst &I) {
2467 // Get the source and destination types
2468 Type *SrcTy = I.getOperand(0)->getType();
2469 Type *DestTy = I.getType();
2470
2471 bool SrcVec = SrcTy->isVectorTy();
2472 bool DstVec = DestTy->isVectorTy();
2473
2474 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (false)
2475 "FPToSI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2476 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (false)
2477 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (false)
;
2478 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (false)
2479 "FPToSI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (false)
;
2480
2481 if (SrcVec && DstVec)
2482 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
2483 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
2484 "FPToSI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
;
2485
2486 visitInstruction(I);
2487}
2488
2489void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2490 // Get the source and destination types
2491 Type *SrcTy = I.getOperand(0)->getType();
2492 Type *DestTy = I.getType();
2493
2494 Assert(SrcTy->getScalarType()->isPointerTy(),do { if (!(SrcTy->getScalarType()->isPointerTy())) { CheckFailed
("PtrToInt source must be pointer", &I); return; } } while
(false)
2495 "PtrToInt source must be pointer", &I)do { if (!(SrcTy->getScalarType()->isPointerTy())) { CheckFailed
("PtrToInt source must be pointer", &I); return; } } while
(false)
;
2496
2497 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2498 Assert(!DL.isNonIntegralPointerType(PTy),do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"ptrtoint not supported for non-integral pointers"); return; }
} while (false)
2499 "ptrtoint not supported for non-integral pointers")do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"ptrtoint not supported for non-integral pointers"); return; }
} while (false)
;
2500
2501 Assert(DestTy->getScalarType()->isIntegerTy(),do { if (!(DestTy->getScalarType()->isIntegerTy())) { CheckFailed
("PtrToInt result must be integral", &I); return; } } while
(false)
2502 "PtrToInt result must be integral", &I)do { if (!(DestTy->getScalarType()->isIntegerTy())) { CheckFailed
("PtrToInt result must be integral", &I); return; } } while
(false)
;
2503 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (false)
2504 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (false)
;
2505
2506 if (SrcTy->isVectorTy()) {
2507 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2508 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2509 Assert(VSrc->getNumElements() == VDest->getNumElements(),do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (false)
2510 "PtrToInt Vector width mismatch", &I)do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (false)
;
2511 }
2512
2513 visitInstruction(I);
2514}
2515
2516void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2517 // Get the source and destination types
2518 Type *SrcTy = I.getOperand(0)->getType();
2519 Type *DestTy = I.getType();
2520
2521 Assert(SrcTy->getScalarType()->isIntegerTy(),do { if (!(SrcTy->getScalarType()->isIntegerTy())) { CheckFailed
("IntToPtr source must be an integral", &I); return; } } while
(false)
2522 "IntToPtr source must be an integral", &I)do { if (!(SrcTy->getScalarType()->isIntegerTy())) { CheckFailed
("IntToPtr source must be an integral", &I); return; } } while
(false)
;
2523 Assert(DestTy->getScalarType()->isPointerTy(),do { if (!(DestTy->getScalarType()->isPointerTy())) { CheckFailed
("IntToPtr result must be a pointer", &I); return; } } while
(false)
2524 "IntToPtr result must be a pointer", &I)do { if (!(DestTy->getScalarType()->isPointerTy())) { CheckFailed
("IntToPtr result must be a pointer", &I); return; } } while
(false)
;
2525
2526 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2527 Assert(!DL.isNonIntegralPointerType(PTy),do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"inttoptr not supported for non-integral pointers"); return; }
} while (false)
2528 "inttoptr not supported for non-integral pointers")do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"inttoptr not supported for non-integral pointers"); return; }
} while (false)
;
2529
2530 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (false)
2531 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (false)
;
2532 if (SrcTy->isVectorTy()) {
2533 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2534 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2535 Assert(VSrc->getNumElements() == VDest->getNumElements(),do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (false)
2536 "IntToPtr Vector width mismatch", &I)do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (false)
;
2537 }
2538 visitInstruction(I);
2539}
2540
2541void Verifier::visitBitCastInst(BitCastInst &I) {
2542 Assert(do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
2543 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
2544 "Invalid bitcast", &I)do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
;
2545 visitInstruction(I);
2546}
2547
2548void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2549 Type *SrcTy = I.getOperand(0)->getType();
2550 Type *DestTy = I.getType();
2551
2552 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (false)
2553 &I)do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (false)
;
2554 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (false)
2555 &I)do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (false)
;
2556 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (false)
2557 "AddrSpaceCast must be between different address spaces", &I)do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (false)
;
2558 if (SrcTy->isVectorTy())
2559 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),do { if (!(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements
())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
2560 "AddrSpaceCast vector pointer number of elements mismatch", &I)do { if (!(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements
())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
;
2561 visitInstruction(I);
2562}
2563
2564/// visitPHINode - Ensure that a PHI node is well formed.
2565///
2566void Verifier::visitPHINode(PHINode &PN) {
2567 // Ensure that the PHI nodes are all grouped together at the top of the block.
2568 // This can be tested by checking whether the instruction before this is
2569 // either nonexistent (because this is begin()) or is a PHI node. If not,
2570 // then there is some other instruction before a PHI.
2571 Assert(&PN == &PN.getParent()->front() ||do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
2572 isa<PHINode>(--BasicBlock::iterator(&PN)),do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
2573 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent())do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
;
2574
2575 // Check that a PHI doesn't yield a Token.
2576 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!")do { if (!(!PN.getType()->isTokenTy())) { CheckFailed("PHI nodes cannot have token type!"
); return; } } while (false)
;
2577
2578 // Check that all of the values of the PHI node have the same type as the
2579 // result, and that the incoming blocks are really basic blocks.
2580 for (Value *IncValue : PN.incoming_values()) {
2581 Assert(PN.getType() == IncValue->getType(),do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (false)
2582 "PHI node operands are not the same type as the result!", &PN)do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (false)
;
2583 }
2584
2585 // All other PHI node constraints are checked in the visitBasicBlock method.
2586
2587 visitInstruction(PN);
2588}
2589
2590void Verifier::verifyCallSite(CallSite CS) {
2591 Instruction *I = CS.getInstruction();
2592
2593 Assert(CS.getCalledValue()->getType()->isPointerTy(),do { if (!(CS.getCalledValue()->getType()->isPointerTy(
))) { CheckFailed("Called function must be a pointer!", I); return
; } } while (false)
2594 "Called function must be a pointer!", I)do { if (!(CS.getCalledValue()->getType()->isPointerTy(
))) { CheckFailed("Called function must be a pointer!", I); return
; } } while (false)
;
2595 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2596
2597 Assert(FPTy->getElementType()->isFunctionTy(),do { if (!(FPTy->getElementType()->isFunctionTy())) { CheckFailed
("Called function is not pointer to function type!", I); return
; } } while (false)
2598 "Called function is not pointer to function type!", I)do { if (!(FPTy->getElementType()->isFunctionTy())) { CheckFailed
("Called function is not pointer to function type!", I); return
; } } while (false)
;
2599
2600 Assert(FPTy->getElementType() == CS.getFunctionType(),do { if (!(FPTy->getElementType() == CS.getFunctionType())
) { CheckFailed("Called function is not the same type as the call!"
, I); return; } } while (false)
2601 "Called function is not the same type as the call!", I)do { if (!(FPTy->getElementType() == CS.getFunctionType())
) { CheckFailed("Called function is not the same type as the call!"
, I); return; } } while (false)
;
2602
2603 FunctionType *FTy = CS.getFunctionType();
2604
2605 // Verify that the correct number of arguments are being passed
2606 if (FTy->isVarArg())
2607 Assert(CS.arg_size() >= FTy->getNumParams(),do { if (!(CS.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, I); return; } } while (false)
2608 "Called function requires more parameters than were provided!", I)do { if (!(CS.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, I); return; } } while (false)
;
2609 else
2610 Assert(CS.arg_size() == FTy->getNumParams(),do { if (!(CS.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", I
); return; } } while (false)
2611 "Incorrect number of arguments passed to called function!", I)do { if (!(CS.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", I
); return; } } while (false)
;
2612
2613 // Verify that all arguments to the call match the function type.
2614 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2615 Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (false)
2616 "Call parameter type does not match function signature!",do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (false)
2617 CS.getArgument(i), FTy->getParamType(i), I)do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (false)
;
2618
2619 AttributeList Attrs = CS.getAttributes();
2620
2621 Assert(verifyAttributeCount(Attrs, CS.arg_size()),do { if (!(verifyAttributeCount(Attrs, CS.arg_size()))) { CheckFailed
("Attribute after last parameter!", I); return; } } while (false
)
2622 "Attribute after last parameter!", I)do { if (!(verifyAttributeCount(Attrs, CS.arg_size()))) { CheckFailed
("Attribute after last parameter!", I); return; } } while (false
)
;
2623
2624 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
2625 // Don't allow speculatable on call sites, unless the underlying function
2626 // declaration is also speculatable.
2627 Function *Callee
2628 = dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
2629 Assert(Callee && Callee->isSpeculatable(),do { if (!(Callee && Callee->isSpeculatable())) { CheckFailed
("speculatable attribute may not apply to call sites", I); return
; } } while (false)
2630 "speculatable attribute may not apply to call sites", I)do { if (!(Callee && Callee->isSpeculatable())) { CheckFailed
("speculatable attribute may not apply to call sites", I); return
; } } while (false)
;
2631 }
2632
2633 // Verify call attributes.
2634 verifyFunctionAttrs(FTy, Attrs, I);
2635
2636 // Conservatively check the inalloca argument.
2637 // We have a bug if we can find that there is an underlying alloca without
2638 // inalloca.
2639 if (CS.hasInAllocaArgument()) {
2640 Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2641 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2642 Assert(AI->isUsedWithInAlloca(),do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, I); return; } } while (false)
2643 "inalloca argument for call has mismatched alloca", AI, I)do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, I); return; } } while (false)
;
2644 }
2645
2646 // For each argument of the callsite, if it has the swifterror argument,
2647 // make sure the underlying alloca/parameter it comes from has a swifterror as
2648 // well.
2649 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2650 if (CS.paramHasAttr(i, Attribute::SwiftError)) {
2651 Value *SwiftErrorArg = CS.getArgument(i);
2652 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2653 Assert(AI->isSwiftError(),do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca"
, AI, I); return; } } while (false)
2654 "swifterror argument for call has mismatched alloca", AI, I)do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca"
, AI, I); return; } } while (false)
;
2655 continue;
2656 }
2657 auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2658 Assert(ArgI, "swifterror argument should come from an alloca or parameter", SwiftErrorArg, I)do { if (!(ArgI)) { CheckFailed("swifterror argument should come from an alloca or parameter"
, SwiftErrorArg, I); return; } } while (false)
;
2659 Assert(ArgI->hasSwiftErrorAttr(),do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, I); return; } } while (false)
2660 "swifterror argument for call has mismatched parameter", ArgI, I)do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, I); return; } } while (false)
;
2661 }
2662
2663 if (FTy->isVarArg()) {
2664 // FIXME? is 'nest' even legal here?
2665 bool SawNest = false;
2666 bool SawReturned = false;
2667
2668 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
2669 if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
2670 SawNest = true;
2671 if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
2672 SawReturned = true;
2673 }
2674
2675 // Check attributes on the varargs part.
2676 for (unsigned Idx = FTy->getNumParams(); Idx < CS.arg_size(); ++Idx) {
2677 Type *Ty = CS.getArgument(Idx)->getType();
2678 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
2679 verifyParameterAttrs(ArgAttrs, Ty, I);
2680
2681 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2682 Assert(!SawNest, "More than one parameter has attribute nest!", I)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, I); return; } } while (false)
;
2683 SawNest = true;
2684 }
2685
2686 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2687 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, I); return; } } while (false)
2688 I)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, I); return; } } while (false)
;
2689 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
2690 "Incompatible argument and return types for 'returned' "do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
2691 "attribute",do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
2692 I)do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
;
2693 SawReturned = true;
2694 }
2695
2696 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, I); return; } } while (false)
2697 "Attribute 'sret' cannot be used for vararg call arguments!", I)do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, I); return; } } while (false)
;
2698
2699 if (ArgAttrs.hasAttribute(Attribute::InAlloca))
2700 Assert(Idx == CS.arg_size() - 1, "inalloca isn't on the last argument!",do { if (!(Idx == CS.arg_size() - 1)) { CheckFailed("inalloca isn't on the last argument!"
, I); return; } } while (false)
2701 I)do { if (!(Idx == CS.arg_size() - 1)) { CheckFailed("inalloca isn't on the last argument!"
, I); return; } } while (false)
;
2702 }
2703 }
2704
2705 // Verify that there's no metadata unless it's a direct call to an intrinsic.
2706 if (CS.getCalledFunction() == nullptr ||
2707 !CS.getCalledFunction()->getName().startswith("llvm.")) {
2708 for (Type *ParamTy : FTy->params()) {
2709 Assert(!ParamTy->isMetadataTy(),do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, I); return; } } while (false)
2710 "Function has metadata parameter but isn't an intrinsic", I)do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, I); return; } } while (false)
;
2711 Assert(!ParamTy->isTokenTy(),do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, I); return; } } while (false)
2712 "Function has token parameter but isn't an intrinsic", I)do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, I); return; } } while (false)
;
2713 }
2714 }
2715
2716 // Verify that indirect calls don't return tokens.
2717 if (CS.getCalledFunction() == nullptr)
2718 Assert(!FTy->getReturnType()->isTokenTy(),do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (false)
2719 "Return type cannot be token for indirect call!")do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (false)
;
2720
2721 if (Function *F = CS.getCalledFunction())
2722 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2723 visitIntrinsicCallSite(ID, CS);
2724
2725 // Verify that a callsite has at most one "deopt", at most one "funclet" and
2726 // at most one "gc-transition" operand bundle.
2727 bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2728 FoundGCTransitionBundle = false;
2729 for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
2730 OperandBundleUse BU = CS.getOperandBundleAt(i);
2731 uint32_t Tag = BU.getTagID();
2732 if (Tag == LLVMContext::OB_deopt) {
2733 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I)do { if (!(!FoundDeoptBundle)) { CheckFailed("Multiple deopt operand bundles"
, I); return; } } while (false)
;
2734 FoundDeoptBundle = true;
2735 } else if (Tag == LLVMContext::OB_gc_transition) {
2736 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles"
, I); return; } } while (false)
2737 I)do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles"
, I); return; } } while (false)
;
2738 FoundGCTransitionBundle = true;
2739 } else if (Tag == LLVMContext::OB_funclet) {
2740 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I)do { if (!(!FoundFuncletBundle)) { CheckFailed("Multiple funclet operand bundles"
, I); return; } } while (false)
;
2741 FoundFuncletBundle = true;
2742 Assert(BU.Inputs.size() == 1,do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand"
, I); return; } } while (false)
2743 "Expected exactly one funclet bundle operand", I)do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand"
, I); return; } } while (false)
;
2744 Assert(isa<FuncletPadInst>(BU.Inputs.front()),do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, I); return; } } while (false)
2745 "Funclet bundle operands should correspond to a FuncletPadInst",do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, I); return; } } while (false)
2746 I)do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, I); return; } } while (false)
;
2747 }
2748 }
2749
2750 // Verify that each inlinable callsite of a debug-info-bearing function in a
2751 // debug-info-bearing function has a debug location attached to it. Failure to
2752 // do so causes assertion failures when the inliner sets up inline scope info.
2753 if (I->getFunction()->getSubprogram() && CS.getCalledFunction() &&
2754 CS.getCalledFunction()->getSubprogram())
2755 AssertDI(I->getDebugLoc(), "inlinable function call in a function with "do { if (!(I->getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", I); return; } } while
(false)
2756 "debug info must have a !dbg location",do { if (!(I->getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", I); return; } } while
(false)
2757 I)do { if (!(I->getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", I); return; } } while
(false)
;
2758
2759 visitInstruction(*I);
2760}
2761
2762/// Two types are "congruent" if they are identical, or if they are both pointer
2763/// types with different pointee types and the same address space.
2764static bool isTypeCongruent(Type *L, Type *R) {
2765 if (L == R)
2766 return true;
2767 PointerType *PL = dyn_cast<PointerType>(L);
2768 PointerType *PR = dyn_cast<PointerType>(R);
2769 if (!PL || !PR)
2770 return false;
2771 return PL->getAddressSpace() == PR->getAddressSpace();
2772}
2773
2774static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
2775 static const Attribute::AttrKind ABIAttrs[] = {
2776 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2777 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
2778 Attribute::SwiftError};
2779 AttrBuilder Copy;
2780 for (auto AK : ABIAttrs) {
2781 if (Attrs.hasParamAttribute(I, AK))
2782 Copy.addAttribute(AK);
2783 }
2784 if (Attrs.hasParamAttribute(I, Attribute::Alignment))
2785 Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
2786 return Copy;
2787}
2788
2789void Verifier::verifyMustTailCall(CallInst &CI) {
2790 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI)do { if (!(!CI.isInlineAsm())) { CheckFailed("cannot use musttail call with inline asm"
, &CI); return; } } while (false)
;
2791
2792 // - The caller and callee prototypes must match. Pointer types of
2793 // parameters or return types may differ in pointee type, but not
2794 // address space.
2795 Function *F = CI.getParent()->getParent();
2796 FunctionType *CallerTy = F->getFunctionType();
2797 FunctionType *CalleeTy = CI.getFunctionType();
2798 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
2799 "cannot guarantee tail call due to mismatched parameter counts", &CI)do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
;
2800 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (false)
2801 "cannot guarantee tail call due to mismatched varargs", &CI)do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (false)
;
2802 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (false)
2803 "cannot guarantee tail call due to mismatched return types", &CI)do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (false)
;
2804 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2805 Assert(do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
2806 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
2807 "cannot guarantee tail call due to mismatched parameter types", &CI)do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
;
2808 }
2809
2810 // - The calling conventions of the caller and callee must match.
2811 Assert(F->getCallingConv() == CI.getCallingConv(),do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (false)
2812 "cannot guarantee tail call due to mismatched calling conv", &CI)do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (false)
;
2813
2814 // - All ABI-impacting function attributes, such as sret, byval, inreg,
2815 // returned, and inalloca, must match.
2816 AttributeList CallerAttrs = F->getAttributes();
2817 AttributeList CalleeAttrs = CI.getAttributes();
2818 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2819 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2820 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2821 Assert(CallerABIAttrs == CalleeABIAttrs,do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
2822 "cannot guarantee tail call due to mismatched ABI impacting "do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
2823 "function attributes",do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
2824 &CI, CI.getOperand(I))do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
;
2825 }
2826
2827 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2828 // or a pointer bitcast followed by a ret instruction.
2829 // - The ret instruction must return the (possibly bitcasted) value
2830 // produced by the call or void.
2831 Value *RetVal = &CI;
2832 Instruction *Next = CI.getNextNode();
2833
2834 // Handle the optional bitcast.
2835 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2836 Assert(BI->getOperand(0) == RetVal,do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (false)
2837 "bitcast following musttail call must use the call", BI)do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (false)
;
2838 RetVal = BI;
2839 Next = BI->getNextNode();
2840 }
2841
2842 // Check the return.
2843 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2844 Assert(Ret, "musttail call must be precede a ret with an optional bitcast",do { if (!(Ret)) { CheckFailed("musttail call must be precede a ret with an optional bitcast"
, &CI); return; } } while (false)
2845 &CI)do { if (!(Ret)) { CheckFailed("musttail call must be precede a ret with an optional bitcast"
, &CI); return; } } while (false)
;
2846 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal)) { CheckFailed("musttail call result must be returned"
, Ret); return; } } while (false)
2847 "musttail call result must be returned", Ret)do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal)) { CheckFailed("musttail call result must be returned"
, Ret); return; } } while (false)
;
2848}
2849
2850void Verifier::visitCallInst(CallInst &CI) {
2851 verifyCallSite(&CI);
2852
2853 if (CI.isMustTailCall())
2854 verifyMustTailCall(CI);
2855}
2856
2857void Verifier::visitInvokeInst(InvokeInst &II) {
2858 verifyCallSite(&II);
2859
2860 // Verify that the first non-PHI instruction of the unwind destination is an
2861 // exception handling instruction.
2862 Assert(do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
2863 II.getUnwindDest()->isEHPad(),do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
2864 "The unwind destination does not have an exception handling instruction!",do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
2865 &II)do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
;
2866
2867 visitTerminatorInst(II);
2868}
2869
2870/// visitBinaryOperator - Check that both arguments to the binary operator are
2871/// of the same type!
2872///
2873void Verifier::visitBinaryOperator(BinaryOperator &B) {
2874 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (false)
2875 "Both operands to a binary operator are not of the same type!", &B)do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (false)
;
2876
2877 switch (B.getOpcode()) {
2878 // Check that integer arithmetic operators are only used with
2879 // integral operands.
2880 case Instruction::Add:
2881 case Instruction::Sub:
2882 case Instruction::Mul:
2883 case Instruction::SDiv:
2884 case Instruction::UDiv:
2885 case Instruction::SRem:
2886 case Instruction::URem:
2887 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (false)
2888 "Integer arithmetic operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (false)
;
2889 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2890 "Integer arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2891 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2892 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
;
2893 break;
2894 // Check that floating-point arithmetic operators are only used with
2895 // floating-point operands.
2896 case Instruction::FAdd:
2897 case Instruction::FSub:
2898 case Instruction::FMul:
2899 case Instruction::FDiv:
2900 case Instruction::FRem:
2901 Assert(B.getType()->isFPOrFPVectorTy(),do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
2902 "Floating-point arithmetic operators only work with "do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
2903 "floating-point types!",do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
2904 &B)do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
;
2905 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2906 "Floating-point arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2907 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2908 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
;
2909 break;
2910 // Check that logical operators are only used with integral operands.
2911 case Instruction::And:
2912 case Instruction::Or:
2913 case Instruction::Xor:
2914 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (false)
2915 "Logical operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (false)
;
2916 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
2917 "Logical operators must have same type for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
2918 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
;
2919 break;
2920 case Instruction::Shl:
2921 case Instruction::LShr:
2922 case Instruction::AShr:
2923 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (false)
2924 "Shifts only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (false)
;
2925 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (false)
2926 "Shift return type must be same as operands!", &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (false)
;
2927 break;
2928 default:
2929 llvm_unreachable("Unknown BinaryOperator opcode!")::llvm::llvm_unreachable_internal("Unknown BinaryOperator opcode!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/IR/Verifier.cpp"
, 2929)
;
2930 }
2931
2932 visitInstruction(B);
2933}
2934
2935void Verifier::visitICmpInst(ICmpInst &IC) {
2936 // Check that the operands are the same type
2937 Type *Op0Ty = IC.getOperand(0)->getType();
2938 Type *Op1Ty = IC.getOperand(1)->getType();
2939 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (false)
2940 "Both operands to ICmp instruction are not of the same type!", &IC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (false)
;
2941 // Check that the operands are the right type
2942 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType
()->isPointerTy())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (false)
2943 "Invalid operand types for ICmp instruction", &IC)do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType
()->isPointerTy())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (false)
;
2944 // Check that the predicate is valid.
2945 Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&do { if (!(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE
&& IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE
)) { CheckFailed("Invalid predicate in ICmp instruction!", &
IC); return; } } while (false)
2946 IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,do { if (!(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE
&& IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE
)) { CheckFailed("Invalid predicate in ICmp instruction!", &
IC); return; } } while (false)
2947 "Invalid predicate in ICmp instruction!", &IC)do { if (!(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE
&& IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE
)) { CheckFailed("Invalid predicate in ICmp instruction!", &
IC); return; } } while (false)
;
2948
2949 visitInstruction(IC);
2950}
2951
2952void Verifier::visitFCmpInst(FCmpInst &FC) {
2953 // Check that the operands are the same type
2954 Type *Op0Ty = FC.getOperand(0)->getType();
2955 Type *Op1Ty = FC.getOperand(1)->getType();
2956 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (false)
2957 "Both operands to FCmp instruction are not of the same type!", &FC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (false)
;
2958 // Check that the operands are the right type
2959 Assert(Op0Ty->isFPOrFPVectorTy(),do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (false)
2960 "Invalid operand types for FCmp instruction", &FC)do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (false)
;
2961 // Check that the predicate is valid.
2962 Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&do { if (!(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE
&& FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE
)) { CheckFailed("Invalid predicate in FCmp instruction!", &
FC); return; } } while (false)
2963 FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,do { if (!(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE
&& FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE
)) { CheckFailed("Invalid predicate in FCmp instruction!", &
FC); return; } } while (false)
2964 "Invalid predicate in FCmp instruction!", &FC)do { if (!(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE
&& FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE
)) { CheckFailed("Invalid predicate in FCmp instruction!", &
FC); return; } } while (false)
;
2965
2966 visitInstruction(FC);
2967}
2968
2969void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
2970 Assert(do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
2971 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
2972 "Invalid extractelement operands!", &EI)do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
;
2973 visitInstruction(EI);
2974}
2975
2976void Verifier::visitInsertElementInst(InsertElementInst &IE) {
2977 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
2978 IE.getOperand(2)),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
2979 "Invalid insertelement operands!", &IE)do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
;
2980 visitInstruction(IE);
2981}
2982
2983void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
2984 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
2985 SV.getOperand(2)),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
2986 "Invalid shufflevector operands!", &SV)do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
;
2987 visitInstruction(SV);
2988}
2989
2990void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2991 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
2992
2993 Assert(isa<PointerType>(TargetTy),do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (false)
2994 "GEP base pointer is not a vector or a vector of pointers", &GEP)do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (false)
;
2995 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP)do { if (!(GEP.getSourceElementType()->isSized())) { CheckFailed
("GEP into unsized type!", &GEP); return; } } while (false
)
;
2996 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
2997 Type *ElTy =
2998 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
2999 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP)do { if (!(ElTy)) { CheckFailed("Invalid indices for GEP pointer type!"
, &GEP); return; } } while (false)
;
3000
3001 Assert(GEP.getType()->getScalarType()->isPointerTy() &&do { if (!(GEP.getType()->getScalarType()->isPointerTy(
) && GEP.getResultElementType() == ElTy)) { CheckFailed
("GEP is not of right type for indices!", &GEP, ElTy); return
; } } while (false)
3002 GEP.getResultElementType() == ElTy,do { if (!(GEP.getType()->getScalarType()->isPointerTy(
) && GEP.getResultElementType() == ElTy)) { CheckFailed
("GEP is not of right type for indices!", &GEP, ElTy); return
; } } while (false)
3003 "GEP is not of right type for indices!", &GEP, ElTy)do { if (!(GEP.getType()->getScalarType()->isPointerTy(
) && GEP.getResultElementType() == ElTy)) { CheckFailed
("GEP is not of right type for indices!", &GEP, ElTy); return
; } } while (false)
;
3004
3005 if (GEP.getType()->isVectorTy()) {
3006 // Additional checks for vector GEPs.
3007 unsigned GEPWidth = GEP.getType()->getVectorNumElements();
3008 if (GEP.getPointerOperandType()->isVectorTy())
3009 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),do { if (!(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements
())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
3010 "Vector GEP result width doesn't match operand's", &GEP)do { if (!(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements
())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
;
3011 for (Value *Idx : Idxs) {
3012 Type *IndexTy = Idx->getType();
3013 if (IndexTy->isVectorTy()) {
3014 unsigned IndexWidth = IndexTy->getVectorNumElements();
3015 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP)do { if (!(IndexWidth == GEPWidth)) { CheckFailed("Invalid GEP index vector width"
, &GEP); return; } } while (false)
;
3016 }
3017 Assert(IndexTy->getScalarType()->isIntegerTy(),do { if (!(IndexTy->getScalarType()->isIntegerTy())) { CheckFailed
("All GEP indices should be of integer type"); return; } } while
(false)
3018 "All GEP indices should be of integer type")do { if (!(IndexTy->getScalarType()->isIntegerTy())) { CheckFailed
("All GEP indices should be of integer type"); return; } } while
(false)
;
3019 }
3020 }
3021 visitInstruction(GEP);
3022}
3023
3024static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3025 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3026}
3027
3028void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3029 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&((Range && Range == I.getMetadata(LLVMContext::MD_range
) && "precondition violation") ? static_cast<void>
(0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/IR/Verifier.cpp"
, 3030, __PRETTY_FUNCTION__))
3030 "precondition violation")((Range && Range == I.getMetadata(LLVMContext::MD_range
) && "precondition violation") ? static_cast<void>
(0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/IR/Verifier.cpp"
, 3030, __PRETTY_FUNCTION__))
;
3031
3032 unsigned NumOperands = Range->getNumOperands();
3033 Assert(NumOperands % 2 == 0, "Unfinished range!", Range)do { if (!(NumOperands % 2 == 0)) { CheckFailed("Unfinished range!"
, Range); return; } } while (false)
;
3034 unsigned NumRanges = NumOperands / 2;
3035 Assert(NumRanges >= 1, "It should have at least one range!", Range)do { if (!(NumRanges >= 1)) { CheckFailed("It should have at least one range!"
, Range); return; } } while (false)
;
3036
3037 ConstantRange LastRange(1); // Dummy initial value
3038 for (unsigned i = 0; i < NumRanges; ++i) {
3039 ConstantInt *Low =
3040 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3041 Assert(Low, "The lower limit must be an integer!", Low)do { if (!(Low)) { CheckFailed("The lower limit must be an integer!"
, Low); return; } } while (false)
;
3042 ConstantInt *High =
3043 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3044 Assert(High, "The upper limit must be an integer!", High)do { if (!(High)) { CheckFailed("The upper limit must be an integer!"
, High); return; } } while (false)
;
3045 Assert(High->getType() == Low->getType() && High->getType() == Ty,do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (false)
3046 "Range types must match instruction type!", &I)do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (false)
;
3047
3048 APInt HighV = High->getValue();
3049 APInt LowV = Low->getValue();
3050 ConstantRange CurRange(LowV, HighV);
3051 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (false)
3052 "Range must not be empty!", Range)do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (false)
;
3053 if (i != 0) {
3054 Assert(CurRange.intersectWith(LastRange).isEmptySet(),do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (false)
3055 "Intervals are overlapping", Range)do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (false)
;
3056 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (false)
3057 Range)do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (false)
;
3058 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
3059 Range)do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
;
3060 }
3061 LastRange = ConstantRange(LowV, HighV);
3062 }
3063 if (NumRanges > 2) {
3064 APInt FirstLow =
3065 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3066 APInt FirstHigh =
3067 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3068 ConstantRange FirstRange(FirstLow, FirstHigh);
3069 Assert(FirstRange.intersectWith(LastRange).isEmptySet(),do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (false)
3070 "Intervals are overlapping", Range)do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (false)
;
3071 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
3072 Range)do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
;
3073 }
3074}
3075
3076void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3077 unsigned Size = DL.getTypeSizeInBits(Ty);
3078 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I)do { if (!(Size >= 8)) { CheckFailed("atomic memory access' size must be byte-sized"
, Ty, I); return; } } while (false)
;
3079 Assert(!(Size & (Size - 1)),do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size"
, Ty, I); return; } } while (false)
3080 "atomic memory access' operand must have a power-of-two size", Ty, I)do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size"
, Ty, I); return; } } while (false)
;
3081}
3082
3083void Verifier::visitLoadInst(LoadInst &LI) {
3084 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3085 Assert(PTy, "Load operand must be a pointer.", &LI)do { if (!(PTy)) { CheckFailed("Load operand must be a pointer."
, &LI); return; } } while (false)
;
3086 Type *ElTy = LI.getType();
3087 Assert(LI.getAlignment() <= Value::MaximumAlignment,do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (false)
3088 "huge alignment values are unsupported", &LI)do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (false)
;
3089 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI)do { if (!(ElTy->isSized())) { CheckFailed("loading unsized types is not allowed"
, &LI); return; } } while (false)
;
3090 if (LI.isAtomic()) {
3091 Assert(LI.getOrdering() != AtomicOrdering::Release &&do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
3092 LI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
3093 "Load cannot have Release ordering", &LI)do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
;
3094 Assert(LI.getAlignment() != 0,do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (false)
3095 "Atomic load must specify explicit alignment", &LI)do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (false)
;
3096 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3097 ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3098 "atomic load operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3099 "type!",do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3100 ElTy, &LI)do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
;
3101 checkAtomicMemAccessSize(ElTy, &LI);
3102 } else {
3103 Assert(LI.getSynchScope() == CrossThread,do { if (!(LI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic load cannot have SynchronizationScope specified",
&LI); return; } } while (false)
3104 "Non-atomic load cannot have SynchronizationScope specified", &LI)do { if (!(LI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic load cannot have SynchronizationScope specified",
&LI); return; } } while (false)
;
3105 }
3106
3107 visitInstruction(LI);
3108}
3109
3110void Verifier::visitStoreInst(StoreInst &SI) {
3111 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3112 Assert(PTy, "Store operand must be a pointer.", &SI)do { if (!(PTy)) { CheckFailed("Store operand must be a pointer."
, &SI); return; } } while (false)
;
3113 Type *ElTy = PTy->getElementType();
3114 Assert(ElTy == SI.getOperand(0)->getType(),do { if (!(ElTy == SI.getOperand(0)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (false)
3115 "Stored value type does not match pointer operand type!", &SI, ElTy)do { if (!(ElTy == SI.getOperand(0)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (false)
;
3116 Assert(SI.getAlignment() <= Value::MaximumAlignment,do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (false)
3117 "huge alignment values are unsupported", &SI)do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (false)
;
3118 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI)do { if (!(ElTy->isSized())) { CheckFailed("storing unsized types is not allowed"
, &SI); return; } } while (false)
;
3119 if (SI.isAtomic()) {
3120 Assert(SI.getOrdering() != AtomicOrdering::Acquire &&do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
3121 SI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
3122 "Store cannot have Acquire ordering", &SI)do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
;
3123 Assert(SI.getAlignment() != 0,do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (false)
3124 "Atomic store must specify explicit alignment", &SI)do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (false)
;
3125 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3126 ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3127 "atomic store operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3128 "type!",do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3129 ElTy, &SI)do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
;
3130 checkAtomicMemAccessSize(ElTy, &SI);
3131 } else {
3132 Assert(SI.getSynchScope() == CrossThread,do { if (!(SI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (false)
3133 "Non-atomic store cannot have SynchronizationScope specified", &SI)do { if (!(SI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (false)
;
3134 }
3135 visitInstruction(SI);
3136}
3137
3138/// Check that SwiftErrorVal is used as a swifterror argument in CS.
3139void Verifier::verifySwiftErrorCallSite(CallSite CS,
3140 const Value *SwiftErrorVal) {
3141 unsigned Idx = 0;
3142 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
3143 I != E; ++I, ++Idx) {
3144 if (*I == SwiftErrorVal) {
3145 Assert(CS.paramHasAttr(Idx, Attribute::SwiftError),do { if (!(CS.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
3146 "swifterror value when used in a callsite should be marked "do { if (!(CS.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
3147 "with swifterror attribute",do { if (!(CS.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
3148 SwiftErrorVal, CS)do { if (!(CS.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
;
3149 }
3150 }
3151}
3152
3153void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3154 // Check that swifterror value is only used by loads, stores, or as
3155 // a swifterror argument.
3156 for (const User *U : SwiftErrorVal->users()) {
3157 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3158 isa<InvokeInst>(U),do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3159 "swifterror value can only be loaded and stored from, or "do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3160 "as a swifterror argument!",do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3161 SwiftErrorVal, U)do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
;
3162 // If it is used by a store, check it is the second operand.
3163 if (auto StoreI = dyn_cast<StoreInst>(U))
3164 Assert(StoreI->getOperand(1) == SwiftErrorVal,do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
3165 "swifterror value should be the second operand when used "do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
3166 "by stores", SwiftErrorVal, U)do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
;
3167 if (auto CallI = dyn_cast<CallInst>(U))
3168 verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal);
3169 if (auto II = dyn_cast<InvokeInst>(U))
3170 verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal);
3171 }
3172}
3173
3174void Verifier::visitAllocaInst(AllocaInst &AI) {
3175 SmallPtrSet<Type*, 4> Visited;
3176 PointerType *PTy = AI.getType();
3177 // TODO: Relax this restriction?
3178 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),do { if (!(PTy->getAddressSpace() == DL.getAllocaAddrSpace
())) { CheckFailed("Allocation instruction pointer not in the stack address space!"
, &AI); return; } } while (false)
3179 "Allocation instruction pointer not in the stack address space!",do { if (!(PTy->getAddressSpace() == DL.getAllocaAddrSpace
())) { CheckFailed("Allocation instruction pointer not in the stack address space!"
, &AI); return; } } while (false)
3180 &AI)do { if (!(PTy->getAddressSpace() == DL.getAllocaAddrSpace
())) { CheckFailed("Allocation instruction pointer not in the stack address space!"
, &AI); return; } } while (false)
;
3181 Assert(AI.getAllocatedType()->isSized(&Visited),do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (false)
3182 "Cannot allocate unsized type", &AI)do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (false)
;
3183 Assert(AI.getArraySize()->getType()->isIntegerTy(),do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (false)
3184 "Alloca array size must have integer type", &AI)do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (false)
;
3185 Assert(AI.getAlignment() <= Value::MaximumAlignment,do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (false)
3186 "huge alignment values are unsupported", &AI)do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (false)
;
3187
3188 if (AI.isSwiftError()) {
3189 verifySwiftErrorValue(&AI);
3190 }
3191
3192 visitInstruction(AI);
3193}
3194
3195void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3196
3197 // FIXME: more conditions???
3198 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
3199 "cmpxchg instructions must be atomic.", &CXI)do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
;
3200 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
3201 "cmpxchg instructions must be atomic.", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
;
3202 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
3203 "cmpxchg instructions cannot be unordered.", &CXI)do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
;
3204 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
3205 "cmpxchg instructions cannot be unordered.", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
;
3206 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3207 "cmpxchg instructions failure argument shall be no stronger than the "do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3208 "success argument",do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3209 &CXI)do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
;
3210 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
3211 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
3212 "cmpxchg failure ordering cannot include release semantics", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
;
3213
3214 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3215 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI)do { if (!(PTy)) { CheckFailed("First cmpxchg operand must be a pointer."
, &CXI); return; } } while (false)
;
3216 Type *ElTy = PTy->getElementType();
3217 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy(),do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy()))
{ CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
3218 "cmpxchg operand must have integer or pointer type",do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy()))
{ CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
3219 ElTy, &CXI)do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy()))
{ CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
;
3220 checkAtomicMemAccessSize(ElTy, &CXI);
3221 Assert(ElTy == CXI.getOperand(1)->getType(),do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3222 "Expected value type does not match pointer operand type!", &CXI,do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3223 ElTy)do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
;
3224 Assert(ElTy == CXI.getOperand(2)->getType(),do { if (!(ElTy == CXI.getOperand(2)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3225 "Stored value type does not match pointer operand type!", &CXI, ElTy)do { if (!(ElTy == CXI.getOperand(2)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
;
3226 visitInstruction(CXI);
3227}
3228
3229void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3230 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,do { if (!(RMWI.getOrdering() != AtomicOrdering::NotAtomic)) {
CheckFailed("atomicrmw instructions must be atomic.", &RMWI
); return; } } while (false)
3231 "atomicrmw instructions must be atomic.", &RMWI)do { if (!(RMWI.getOrdering() != AtomicOrdering::NotAtomic)) {
CheckFailed("atomicrmw instructions must be atomic.", &RMWI
); return; } } while (false)
;
3232 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) {
CheckFailed("atomicrmw instructions cannot be unordered.", &
RMWI); return; } } while (false)
3233 "atomicrmw instructions cannot be unordered.", &RMWI)do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) {
CheckFailed("atomicrmw instructions cannot be unordered.", &
RMWI); return; } } while (false)
;
3234 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3235 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI)do { if (!(PTy)) { CheckFailed("First atomicrmw operand must be a pointer."
, &RMWI); return; } } while (false)
;
3236 Type *ElTy = PTy->getElementType();
3237 Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
3238 &RMWI, ElTy)do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
;
3239 checkAtomicMemAccessSize(ElTy, &RMWI);
3240 Assert(ElTy == RMWI.getOperand(1)->getType(),do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
3241 "Argument value type does not match pointer operand type!", &RMWI,do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
3242 ElTy)do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
;
3243 Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (false)
3244 RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (false)
3245 "Invalid binary operation!", &RMWI)do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (false)
;
3246 visitInstruction(RMWI);
3247}
3248
3249void Verifier::visitFenceInst(FenceInst &FI) {
3250 const AtomicOrdering Ordering = FI.getOrdering();
3251 Assert(Ordering == AtomicOrdering::Acquire ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3252 Ordering == AtomicOrdering::Release ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3253 Ordering == AtomicOrdering::AcquireRelease ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3254 Ordering == AtomicOrdering::SequentiallyConsistent,do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3255 "fence instructions may only have acquire, release, acq_rel, or "do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3256 "seq_cst ordering.",do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3257 &FI)do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
;
3258 visitInstruction(FI);
3259}
3260
3261void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3262 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
3263 EVI.getIndices()) == EVI.getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
3264 "Invalid ExtractValueInst operands!", &EVI)do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
;
3265
3266 visitInstruction(EVI);
3267}
3268
3269void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3270 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3271 IVI.getIndices()) ==do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3272 IVI.getOperand(1)->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3273 "Invalid InsertValueInst operands!", &IVI)do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
;
3274
3275 visitInstruction(IVI);
3276}
3277
3278static Value *getParentPad(Value *EHPad) {
3279 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3280 return FPI->getParentPad();
3281
3282 return cast<CatchSwitchInst>(EHPad)->getParentPad();
3283}
3284
3285void Verifier::visitEHPadPredecessors(Instruction &I) {
3286 assert(I.isEHPad())((I.isEHPad()) ? static_cast<void> (0) : __assert_fail (
"I.isEHPad()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/IR/Verifier.cpp"
, 3286, __PRETTY_FUNCTION__))
;
3287
3288 BasicBlock *BB = I.getParent();
3289 Function *F = BB->getParent();
3290
3291 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I)do { if (!(BB != &F->getEntryBlock())) { CheckFailed("EH pad cannot be in entry block."
, &I); return; } } while (false)
;
3292
3293 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3294 // The landingpad instruction defines its parent as a landing pad block. The
3295 // landing pad block may be branched to only by the unwind edge of an
3296 // invoke.
3297 for (BasicBlock *PredBB : predecessors(BB)) {
3298 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3299 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3300 "Block containing LandingPadInst must be jumped to "do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3301 "only by the unwind edge of an invoke.",do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3302 LPI)do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
;
3303 }
3304 return;
3305 }
3306 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3307 if (!pred_empty(BB))
3308 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3309 "Block containg CatchPadInst must be jumped to "do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3310 "only by its catchswitch.",do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3311 CPI)do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
;
3312 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
3313 "Catchswitch cannot unwind to one of its catchpads",do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
3314 CPI->getCatchSwitch(), CPI)do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
;
3315 return;
3316 }
3317
3318 // Verify that each pred has a legal terminator with a legal to/from EH
3319 // pad relationship.
3320 Instruction *ToPad = &I;
3321 Value *ToPadParent = getParentPad(ToPad);
3322 for (BasicBlock *PredBB : predecessors(BB)) {
3323 TerminatorInst *TI = PredBB->getTerminator();
3324 Value *FromPad;
3325 if (auto *II = dyn_cast<InvokeInst>(TI)) {
3326 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, II); return; } } while (false)
3327 "EH pad must be jumped to via an unwind edge", ToPad, II)do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, II); return; } } while (false)
;
3328 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3329 FromPad = Bundle->Inputs[0];
3330 else
3331 FromPad = ConstantTokenNone::get(II->getContext());
3332 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3333 FromPad = CRI->getOperand(0);
3334 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI)do { if (!(FromPad != ToPadParent)) { CheckFailed("A cleanupret must exit its cleanup"
, CRI); return; } } while (false)
;
3335 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3336 FromPad = CSI;
3337 } else {
3338 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI)do { if (!(false)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, TI); return; } } while (false)
;
3339 }
3340
3341 // The edge may exit from zero or more nested pads.
3342 SmallSet<Value *, 8> Seen;
3343 for (;; FromPad = getParentPad(FromPad)) {
3344 Assert(FromPad != ToPad,do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it"
, FromPad, TI); return; } } while (false)
3345 "EH pad cannot handle exceptions raised within it", FromPad, TI)do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it"
, FromPad, TI); return; } } while (false)
;
3346 if (FromPad == ToPadParent) {
3347 // This is a legal unwind edge.
3348 break;
3349 }
3350 Assert(!isa<ConstantTokenNone>(FromPad),do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed
("A single unwind edge may only enter one EH pad", TI); return
; } } while (false)
3351 "A single unwind edge may only enter one EH pad", TI)do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed
("A single unwind edge may only enter one EH pad", TI); return
; } } while (false)
;
3352 Assert(Seen.insert(FromPad).second,do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads"
, FromPad); return; } } while (false)
3353 "EH pad jumps through a cycle of pads", FromPad)do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads"
, FromPad); return; } } while (false)
;
3354 }
3355 }
3356}
3357
3358void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3359 // The landingpad instruction is ill-formed if it doesn't have any clauses and
3360 // isn't a cleanup.
3361 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (false)
3362 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI)do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (false)
;
3363
3364 visitEHPadPredecessors(LPI);
3365
3366 if (!LandingPadResultTy)
3367 LandingPadResultTy = LPI.getType();
3368 else
3369 Assert(LandingPadResultTy == LPI.getType(),do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3370 "The landingpad instruction should have a consistent result type "do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3371 "inside a function.",do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3372 &LPI)do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
;
3373
3374 Function *F = LPI.getParent()->getParent();
3375 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (false)
3376 "LandingPadInst needs to be in a function with a personality.", &LPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (false)
;
3377
3378 // The landingpad instruction must be the first non-PHI instruction in the
3379 // block.
3380 Assert(LPI.getParent()->getLandingPadInst() == &LPI,do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
3381 "LandingPadInst not the first non-PHI instruction in the block.",do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
3382 &LPI)do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
;
3383
3384 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3385 Constant *Clause = LPI.getClause(i);
3386 if (LPI.isCatch(i)) {
3387 Assert(isa<PointerType>(Clause->getType()),do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (false)
3388 "Catch operand does not have pointer type!", &LPI)do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (false)
;
3389 } else {
3390 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI)do { if (!(LPI.isFilter(i))) { CheckFailed("Clause is neither catch nor filter!"
, &LPI); return; } } while (false)
;
3391 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (false)
3392 "Filter operand is not an array of constants!", &LPI)do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (false)
;
3393 }
3394 }
3395
3396 visitInstruction(LPI);
3397}
3398
3399void Verifier::visitResumeInst(ResumeInst &RI) {
3400 Assert(RI.getFunction()->hasPersonalityFn(),do { if (!(RI.getFunction()->hasPersonalityFn())) { CheckFailed
("ResumeInst needs to be in a function with a personality.", &
RI); return; } } while (false)
3401 "ResumeInst needs to be in a function with a personality.", &RI)do { if (!(RI.getFunction()->hasPersonalityFn())) { CheckFailed
("ResumeInst needs to be in a function with a personality.", &
RI); return; } } while (false)
;
3402
3403 if (!LandingPadResultTy)
3404 LandingPadResultTy = RI.getValue()->getType();
3405 else
3406 Assert(LandingPadResultTy == RI.getValue()->getType(),do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3407 "The resume instruction should have a consistent result type "do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3408 "inside a function.",do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3409 &RI)do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
;
3410
3411 visitTerminatorInst(RI);
3412}
3413
3414void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3415 BasicBlock *BB = CPI.getParent();
3416
3417 Function *F = BB->getParent();
3418 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
3419 "CatchPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
;
3420
3421 Assert(isa<CatchSwitchInst>(CPI.getParentPad()),do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
3422 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
3423 CPI.getParentPad())do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
;
3424
3425 // The catchpad instruction must be the first non-PHI instruction in the
3426 // block.
3427 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3428 "CatchPadInst not the first non-PHI instruction in the block.", &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
;
3429
3430 visitEHPadPredecessors(CPI);
3431 visitFuncletPadInst(CPI);
3432}
3433
3434void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3435 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
3436 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
3437 CatchReturn.getOperand(0))do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
;
3438
3439 visitTerminatorInst(CatchReturn);
3440}
3441
3442void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3443 BasicBlock *BB = CPI.getParent();
3444
3445 Function *F = BB->getParent();
3446 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
3447 "CleanupPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
;
3448
3449 // The cleanuppad instruction must be the first non-PHI instruction in the
3450 // block.
3451 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3452 "CleanupPadInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3453 &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
;
3454
3455 auto *ParentPad = CPI.getParentPad();
3456 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent."
, &CPI); return; } } while (false)
3457 "CleanupPadInst has an invalid parent.", &CPI)do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent."
, &CPI); return; } } while (false)
;
3458
3459 visitEHPadPredecessors(CPI);
3460 visitFuncletPadInst(CPI);
3461}
3462
3463void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3464 User *FirstUser = nullptr;
3465 Value *FirstUnwindPad = nullptr;
3466 SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3467 SmallSet<FuncletPadInst *, 8> Seen;
3468
3469 while (!Worklist.empty()) {
3470 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3471 Assert(Seen.insert(CurrentPad).second,do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself"
, CurrentPad); return; } } while (false)
3472 "FuncletPadInst must not be nested within itself", CurrentPad)do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself"
, CurrentPad); return; } } while (false)
;
3473 Value *UnresolvedAncestorPad = nullptr;
3474 for (User *U : CurrentPad->users()) {
3475 BasicBlock *UnwindDest;
3476 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3477 UnwindDest = CRI->getUnwindDest();
3478 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3479 // We allow catchswitch unwind to caller to nest
3480 // within an outer pad that unwinds somewhere else,
3481 // because catchswitch doesn't have a nounwind variant.
3482 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3483 if (CSI->unwindsToCaller())
3484 continue;
3485 UnwindDest = CSI->getUnwindDest();
3486 } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3487 UnwindDest = II->getUnwindDest();
3488 } else if (isa<CallInst>(U)) {
3489 // Calls which don't unwind may be found inside funclet
3490 // pads that unwind somewhere else. We don't *require*
3491 // such calls to be annotated nounwind.
3492 continue;
3493 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3494 // The unwind dest for a cleanup can only be found by
3495 // recursive search. Add it to the worklist, and we'll
3496 // search for its first use that determines where it unwinds.
3497 Worklist.push_back(CPI);
3498 continue;
3499 } else {
3500 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U)do { if (!(isa<CatchReturnInst>(U))) { CheckFailed("Bogus funclet pad use"
, U); return; } } while (false)
;
3501 continue;
3502 }
3503
3504 Value *UnwindPad;
3505 bool ExitsFPI;
3506 if (UnwindDest) {
3507 UnwindPad = UnwindDest->getFirstNonPHI();
3508 if (!cast<Instruction>(UnwindPad)->isEHPad())
3509 continue;
3510 Value *UnwindParent = getParentPad(UnwindPad);
3511 // Ignore unwind edges that don't exit CurrentPad.
3512 if (UnwindParent == CurrentPad)
3513 continue;
3514 // Determine whether the original funclet pad is exited,
3515 // and if we are scanning nested pads determine how many
3516 // of them are exited so we can stop searching their
3517 // children.
3518 Value *ExitedPad = CurrentPad;
3519 ExitsFPI = false;
3520 do {
3521 if (ExitedPad == &FPI) {
3522 ExitsFPI = true;
3523 // Now we can resolve any ancestors of CurrentPad up to
3524 // FPI, but not including FPI since we need to make sure
3525 // to check all direct users of FPI for consistency.
3526 UnresolvedAncestorPad = &FPI;
3527 break;
3528 }
3529 Value *ExitedParent = getParentPad(ExitedPad);
3530 if (ExitedParent == UnwindParent) {
3531 // ExitedPad is the ancestor-most pad which this unwind
3532 // edge exits, so we can resolve up to it, meaning that
3533 // ExitedParent is the first ancestor still unresolved.
3534 UnresolvedAncestorPad = ExitedParent;
3535 break;
3536 }
3537 ExitedPad = ExitedParent;
3538 } while (!isa<ConstantTokenNone>(ExitedPad));
3539 } else {
3540 // Unwinding to caller exits all pads.
3541 UnwindPad = ConstantTokenNone::get(FPI.getContext());
3542 ExitsFPI = true;
3543 UnresolvedAncestorPad = &FPI;
3544 }
3545
3546 if (ExitsFPI) {
3547 // This unwind edge exits FPI. Make sure it agrees with other
3548 // such edges.
3549 if (FirstUser) {
3550 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3551 "pad must have the same unwind "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3552 "dest",do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3553 &FPI, U, FirstUser)do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
;
3554 } else {
3555 FirstUser = U;
3556 FirstUnwindPad = UnwindPad;
3557 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3558 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3559 getParentPad(UnwindPad) == getParentPad(&FPI))
3560 SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
3561 }
3562 }
3563 // Make sure we visit all uses of FPI, but for nested pads stop as
3564 // soon as we know where they unwind to.
3565 if (CurrentPad != &FPI)
3566 break;
3567 }
3568 if (UnresolvedAncestorPad) {
3569 if (CurrentPad == UnresolvedAncestorPad) {
3570 // When CurrentPad is FPI itself, we don't mark it as resolved even if
3571 // we've found an unwind edge that exits it, because we need to verify
3572 // all direct uses of FPI.
3573 assert(CurrentPad == &FPI)((CurrentPad == &FPI) ? static_cast<void> (0) : __assert_fail
("CurrentPad == &FPI", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/IR/Verifier.cpp"
, 3573, __PRETTY_FUNCTION__))
;
3574 continue;
3575 }
3576 // Pop off the worklist any nested pads that we've found an unwind
3577 // destination for. The pads on the worklist are the uncles,
3578 // great-uncles, etc. of CurrentPad. We've found an unwind destination
3579 // for all ancestors of CurrentPad up to but not including
3580 // UnresolvedAncestorPad.
3581 Value *ResolvedPad = CurrentPad;
3582 while (!Worklist.empty()) {
3583 Value *UnclePad = Worklist.back();
3584 Value *AncestorPad = getParentPad(UnclePad);
3585 // Walk ResolvedPad up the ancestor list until we either find the
3586 // uncle's parent or the last resolved ancestor.
3587 while (ResolvedPad != AncestorPad) {
3588 Value *ResolvedParent = getParentPad(ResolvedPad);
3589 if (ResolvedParent == UnresolvedAncestorPad) {
3590 break;
3591 }
3592 ResolvedPad = ResolvedParent;
3593 }
3594 // If the resolved ancestor search didn't find the uncle's parent,
3595 // then the uncle is not yet resolved.
3596 if (ResolvedPad != AncestorPad)
3597 break;
3598 // This uncle is resolved, so pop it from the worklist.
3599 Worklist.pop_back();
3600 }
3601 }
3602 }
3603
3604 if (FirstUnwindPad) {
3605 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3606 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3607 Value *SwitchUnwindPad;
3608 if (SwitchUnwindDest)
3609 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3610 else
3611 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3612 Assert(SwitchUnwindPad == FirstUnwindPad,do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3613 "Unwind edges out of a catch must have the same unwind dest as "do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3614 "the parent catchswitch",do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3615 &FPI, FirstUser, CatchSwitch)do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
;
3616 }
3617 }
3618
3619 visitInstruction(FPI);
3620}
3621
3622void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3623 BasicBlock *BB = CatchSwitch.getParent();
3624
3625 Function *F = BB->getParent();
3626 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
3627 "CatchSwitchInst needs to be in a function with a personality.",do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
3628 &CatchSwitch)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
;
3629
3630 // The catchswitch instruction must be the first non-PHI instruction in the
3631 // block.
3632 Assert(BB->getFirstNonPHI() == &CatchSwitch,do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
3633 "CatchSwitchInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
3634 &CatchSwitch)do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
;
3635
3636 auto *ParentPad = CatchSwitch.getParentPad();
3637 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CatchSwitchInst has an invalid parent."
, ParentPad); return; } } while (false)
3638 "CatchSwitchInst has an invalid parent.", ParentPad)do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CatchSwitchInst has an invalid parent."
, ParentPad); return; } } while (false)
;
3639
3640 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3641 Instruction *I = UnwindDest->getFirstNonPHI();
3642 Assert(I->isEHPad() && !isa<LandingPadInst>(I),do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3643 "CatchSwitchInst must unwind to an EH block which is not a "do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3644 "landingpad.",do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3645 &CatchSwitch)do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
;
3646
3647 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3648 if (getParentPad(I) == ParentPad)
3649 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3650 }
3651
3652 Assert(CatchSwitch.getNumHandlers() != 0,do { if (!(CatchSwitch.getNumHandlers() != 0)) { CheckFailed(
"CatchSwitchInst cannot have empty handler list", &CatchSwitch
); return; } } while (false)
3653 "CatchSwitchInst cannot have empty handler list", &CatchSwitch)do { if (!(CatchSwitch.getNumHandlers() != 0)) { CheckFailed(
"CatchSwitchInst cannot have empty handler list", &CatchSwitch
); return; } } while (false)
;
3654
3655 for (BasicBlock *Handler : CatchSwitch.handlers()) {
3656 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),do { if (!(isa<CatchPadInst>(Handler->getFirstNonPHI
()))) { CheckFailed("CatchSwitchInst handlers must be catchpads"
, &CatchSwitch, Handler); return; } } while (false)
3657 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler)do { if (!(isa<CatchPadInst>(Handler->getFirstNonPHI
()))) { CheckFailed("CatchSwitchInst handlers must be catchpads"
, &CatchSwitch, Handler); return; } } while (false)
;
3658 }
3659
3660 visitEHPadPredecessors(CatchSwitch);
3661 visitTerminatorInst(CatchSwitch);
3662}
3663
3664void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3665 Assert(isa<CleanupPadInst>(CRI.getOperand(0)),do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
3666 "CleanupReturnInst needs to be provided a CleanupPad", &CRI,do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
3667 CRI.getOperand(0))do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
;
3668
3669 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3670 Instruction *I = UnwindDest->getFirstNonPHI();
3671 Assert(I->isEHPad() && !isa<LandingPadInst>(I),do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
3672 "CleanupReturnInst must unwind to an EH block which is not a "do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
3673 "landingpad.",do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
3674 &CRI)do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
;
3675 }
3676
3677 visitTerminatorInst(CRI);
3678}
3679
3680void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3681 Instruction *Op = cast<Instruction>(I.getOperand(i));
3682 // If the we have an invalid invoke, don't try to compute the dominance.
3683 // We already reject it in the invoke specific checks and the dominance
3684 // computation doesn't handle multiple edges.
3685 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3686 if (II->getNormalDest() == II->getUnwindDest())
3687 return;
3688 }
3689
3690 // Quick check whether the def has already been encountered in the same block.
3691 // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI
3692 // uses are defined to happen on the incoming edge, not at the instruction.
3693 //
3694 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3695 // wrapping an SSA value, assert that we've already encountered it. See
3696 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3697 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3698 return;
3699
3700 const Use &U = I.getOperandUse(i);
3701 Assert(DT.dominates(Op, U),do { if (!(DT.dominates(Op, U))) { CheckFailed("Instruction does not dominate all uses!"
, Op, &I); return; } } while (false)
3702 "Instruction does not dominate all uses!", Op, &I)do { if (!(DT.dominates(Op, U))) { CheckFailed("Instruction does not dominate all uses!"
, Op, &I); return; } } while (false)
;
3703}
3704
3705void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3706 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "do { if (!(I.getType()->isPointerTy())) { CheckFailed("dereferenceable, dereferenceable_or_null "
"apply only to pointer types", &I); return; } } while (false
)
3707 "apply only to pointer types", &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("dereferenceable, dereferenceable_or_null "
"apply only to pointer types", &I); return; } } while (false
)
;
3708 Assert(isa<LoadInst>(I),do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (false)
3709 "dereferenceable, dereferenceable_or_null apply only to load"do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (false)
3710 " instructions, use attributes for calls or invokes", &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (false)
;
3711 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "do { if (!(MD->getNumOperands() == 1)) { CheckFailed("dereferenceable, dereferenceable_or_null "
"take one operand!", &I); return; } } while (false)
3712 "take one operand!", &I)do { if (!(MD->getNumOperands() == 1)) { CheckFailed("dereferenceable, dereferenceable_or_null "
"take one operand!", &I); return; } } while (false)
;
3713 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3714 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("dereferenceable, " "dereferenceable_or_null metadata value must be an i64!"
, &I); return; } } while (false)
3715 "dereferenceable_or_null metadata value must be an i64!", &I)do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("dereferenceable, " "dereferenceable_or_null metadata value must be an i64!"
, &I); return; } } while (false)
;
3716}
3717
3718/// verifyInstruction - Verify that an instruction is well formed.
3719///
3720void Verifier::visitInstruction(Instruction &I) {
3721 BasicBlock *BB = I.getParent();
3722 Assert(BB, "Instruction not embedded in basic block!", &I)do { if (!(BB)) { CheckFailed("Instruction not embedded in basic block!"
, &I); return; } } while (false)
;
3723
3724 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
3725 for (User *U : I.users()) {
3726 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),do { if (!(U != (User *)&I || !DT.isReachableFromEntry(BB
))) { CheckFailed("Only PHI nodes may reference their own value!"
, &I); return; } } while (false)
3727 "Only PHI nodes may reference their own value!", &I)do { if (!(U != (User *)&I || !DT.isReachableFromEntry(BB
))) { CheckFailed("Only PHI nodes may reference their own value!"
, &I); return; } } while (false)
;
3728 }
3729 }
3730
3731 // Check that void typed values don't have names
3732 Assert(!I.getType()->isVoidTy() || !I.hasName(),do { if (!(!I.getType()->isVoidTy() || !I.hasName())) { CheckFailed
("Instruction has a name, but provides a void value!", &I
); return; } } while (false)
3733 "Instruction has a name, but provides a void value!", &I)do { if (!(!I.getType()->isVoidTy() || !I.hasName())) { CheckFailed
("Instruction has a name, but provides a void value!", &I
); return; } } while (false)
;
3734
3735 // Check that the return value of the instruction is either void or a legal
3736 // value type.
3737 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),do { if (!(I.getType()->isVoidTy() || I.getType()->isFirstClassType
())) { CheckFailed("Instruction returns a non-scalar type!", &
I); return; } } while (false)
3738 "Instruction returns a non-scalar type!", &I)do { if (!(I.getType()->isVoidTy() || I.getType()->isFirstClassType
())) { CheckFailed("Instruction returns a non-scalar type!", &
I); return; } } while (false)
;
3739
3740 // Check that the instruction doesn't produce metadata. Calls are already
3741 // checked against the callee type.
3742 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),do { if (!(!I.getType()->isMetadataTy() || isa<CallInst
>(I) || isa<InvokeInst>(I))) { CheckFailed("Invalid use of metadata!"
, &I); return; } } while (false)
3743 "Invalid use of metadata!", &I)do { if (!(!I.getType()->isMetadataTy() || isa<CallInst
>(I) || isa<InvokeInst>(I))) { CheckFailed("Invalid use of metadata!"
, &I); return; } } while (false)
;
3744
3745 // Check that all uses of the instruction, if they are instructions
3746 // themselves, actually have parent basic blocks. If the use is not an
3747 // instruction, it is an error!
3748 for (Use &U : I.uses()) {
3749 if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
3750 Assert(Used->getParent() != nullptr,do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
3751 "Instruction referencing"do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
3752 " instruction not embedded in a basic block!",do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
3753 &I, Used)do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
;
3754 else {
3755 CheckFailed("Use of instruction is not an instruction!", U);
3756 return;
3757 }
3758 }
3759
3760 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
3761 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Instruction has null operand!"
, &I); return; } } while (false)
;
3762
3763 // Check to make sure that only first-class-values are operands to
3764 // instructions.
3765 if (!I.getOperand(i)->getType()->isFirstClassType()) {
3766 Assert(false, "Instruction operands must be first-class values!", &I)do { if (!(false)) { CheckFailed("Instruction operands must be first-class values!"
, &I); return; } } while (false)
;
3767 }
3768
3769 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
3770 // Check to make sure that the "address of" an intrinsic function is never
3771 // taken.
3772 Assert(do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
3773 !F->isIntrinsic() ||do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
3774 i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
3775 "Cannot take the address of an intrinsic!", &I)do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
;
3776 Assert(do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3777 !F->isIntrinsic() || isa<CallInst>(I) ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3778 F->getIntrinsicID() == Intrinsic::donothing ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3779 F->getIntrinsicID() == Intrinsic::coro_resume ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3780 F->getIntrinsicID() == Intrinsic::coro_destroy ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3781 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3782 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3783 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3784 "Cannot invoke an intrinsic other than donothing, patchpoint, "do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3785 "statepoint, coro_resume or coro_destroy",do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3786 &I)do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
;
3787 Assert(F->getParent() == &M, "Referencing function in another module!",do { if (!(F->getParent() == &M)) { CheckFailed("Referencing function in another module!"
, &I, &M, F, F->getParent()); return; } } while (false
)
3788 &I, &M, F, F->getParent())do { if (!(F->getParent() == &M)) { CheckFailed("Referencing function in another module!"
, &I, &M, F, F->getParent()); return; } } while (false
)
;
3789 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
3790 Assert(OpBB->getParent() == BB->getParent(),do { if (!(OpBB->getParent() == BB->getParent())) { CheckFailed
("Referring to a basic block in another function!", &I); return
; } } while (false)
3791 "Referring to a basic block in another function!", &I)do { if (!(OpBB->getParent() == BB->getParent())) { CheckFailed
("Referring to a basic block in another function!", &I); return
; } } while (false)
;
3792 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
3793 Assert(OpArg->getParent() == BB->getParent(),do { if (!(OpArg->getParent() == BB->getParent())) { CheckFailed
("Referring to an argument in another function!", &I); return
; } } while (false)
3794 "Referring to an argument in another function!", &I)do { if (!(OpArg->getParent() == BB->getParent())) { CheckFailed
("Referring to an argument in another function!", &I); return
; } } while (false)
;
3795 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
3796 Assert(GV->getParent() == &M, "Referencing global in another module!", &I,do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, &I, &M, GV, GV->getParent()); return; } } while (
false)
3797 &M, GV, GV->getParent())do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, &I, &M, GV, GV->getParent()); return; } } while (
false)
;
3798 } else if (isa<Instruction>(I.getOperand(i))) {
3799 verifyDominatesUse(I, i);
3800 } else if (isa<InlineAsm>(I.getOperand(i))) {
3801 Assert((i + 1 == e && isa<CallInst>(I)) ||do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (false)
3802 (i + 3 == e && isa<InvokeInst>(I)),do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (false)
3803 "Cannot take the address of an inline asm!", &I)do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (false)
;
3804 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
3805 if (CE->getType()->isPtrOrPtrVectorTy() ||
3806 !DL.getNonIntegralAddressSpaces().empty()) {
3807 // If we have a ConstantExpr pointer, we need to see if it came from an
3808 // illegal bitcast. If the datalayout string specifies non-integral
3809 // address spaces then we also need to check for illegal ptrtoint and
3810 // inttoptr expressions.
3811 visitConstantExprsRecursively(CE);
3812 }
3813 }
3814 }
3815
3816 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
3817 Assert(I.getType()->isFPOrFPVectorTy(),do { if (!(I.getType()->isFPOrFPVectorTy())) { CheckFailed
("fpmath requires a floating point result!", &I); return;
} } while (false)
3818 "fpmath requires a floating point result!", &I)do { if (!(I.getType()->isFPOrFPVectorTy())) { CheckFailed
("fpmath requires a floating point result!", &I); return;
} } while (false)
;
3819 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I)do { if (!(MD->getNumOperands() == 1)) { CheckFailed("fpmath takes one operand!"
, &I); return; } } while (false)
;
3820 if (ConstantFP *CFP0 =
3821 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
3822 const APFloat &Accuracy = CFP0->getValueAPF();
3823 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),do { if (!(&Accuracy.getSemantics() == &APFloat::IEEEsingle
())) { CheckFailed("fpmath accuracy must have float type", &
I); return; } } while (false)
3824 "fpmath accuracy must have float type", &I)do { if (!(&Accuracy.getSemantics() == &APFloat::IEEEsingle
())) { CheckFailed("fpmath accuracy must have float type", &
I); return; } } while (false)
;
3825 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),do { if (!(Accuracy.isFiniteNonZero() && !Accuracy.isNegative
())) { CheckFailed("fpmath accuracy not a positive number!", &
I); return; } } while (false)
3826 "fpmath accuracy not a positive number!", &I)do { if (!(Accuracy.isFiniteNonZero() && !Accuracy.isNegative
())) { CheckFailed("fpmath accuracy not a positive number!", &
I); return; } } while (false)
;
3827 } else {
3828 Assert(false, "invalid fpmath accuracy!", &I)do { if (!(false)) { CheckFailed("invalid fpmath accuracy!", &
I); return; } } while (false)
;
3829 }
3830 }
3831
3832 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
3833 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),do { if (!(isa<LoadInst>(I) || isa<CallInst>(I) ||
isa<InvokeInst>(I))) { CheckFailed("Ranges are only for loads, calls and invokes!"
, &I); return; } } while (false)
3834 "Ranges are only for loads, calls and invokes!", &I)do { if (!(isa<LoadInst>(I) || isa<CallInst>(I) ||
isa<InvokeInst>(I))) { CheckFailed("Ranges are only for loads, calls and invokes!"
, &I); return; } } while (false)
;
3835 visitRangeMetadata(I, Range, I.getType());
3836 }
3837
3838 if (I.getMetadata(LLVMContext::MD_nonnull)) {
3839 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",do { if (!(I.getType()->isPointerTy())) { CheckFailed("nonnull applies only to pointer types"
, &I); return; } } while (false)
3840 &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("nonnull applies only to pointer types"
, &I); return; } } while (false)
;
3841 Assert(isa<LoadInst>(I),do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
3842 "nonnull applies only to load instructions, use attributes"do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
3843 " for calls or invokes",do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
3844 &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
;
3845 }
3846
3847 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
3848 visitDereferenceableMetadata(I, MD);
3849
3850 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
3851 visitDereferenceableMetadata(I, MD);
3852
3853 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
3854 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
3855
3856 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
3857 Assert(I.getType()->isPointerTy(), "align applies only to pointer types",do { if (!(I.getType()->isPointerTy())) { CheckFailed("align applies only to pointer types"
, &I); return; } } while (false)
3858 &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("align applies only to pointer types"
, &I); return; } } while (false)
;
3859 Assert(isa<LoadInst>(I), "align applies only to load instructions, "do { if (!(isa<LoadInst>(I))) { CheckFailed("align applies only to load instructions, "
"use attributes for calls or invokes", &I); return; } } while
(false)
3860 "use attributes for calls or invokes", &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("align applies only to load instructions, "
"use attributes for calls or invokes", &I); return; } } while
(false)
;
3861 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I)do { if (!(AlignMD->getNumOperands() == 1)) { CheckFailed(
"align takes one operand!", &I); return; } } while (false
)
;
3862 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
3863 Assert(CI && CI->getType()->isIntegerTy(64),do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("align metadata value must be an i64!", &
I); return; } } while (false)
3864 "align metadata value must be an i64!", &I)do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("align metadata value must be an i64!", &
I); return; } } while (false)
;
3865 uint64_t Align = CI->getZExtValue();
3866 Assert(isPowerOf2_64(Align),do { if (!(isPowerOf2_64(Align))) { CheckFailed("align metadata value must be a power of 2!"
, &I); return; } } while (false)
3867 "align metadata value must be a power of 2!", &I)do { if (!(isPowerOf2_64(Align))) { CheckFailed("align metadata value must be a power of 2!"
, &I); return; } } while (false)
;
3868 Assert(Align <= Value::MaximumAlignment,do { if (!(Align <= Value::MaximumAlignment)) { CheckFailed
("alignment is larger that implementation defined limit", &
I); return; } } while (false)
3869 "alignment is larger that implementation defined limit", &I)do { if (!(Align <= Value::MaximumAlignment)) { CheckFailed
("alignment is larger that implementation defined limit", &
I); return; } } while (false)
;
3870 }
3871
3872 if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
3873 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N)do { if (!(isa<DILocation>(N))) { DebugInfoCheckFailed(
"invalid !dbg metadata attachment", &I, N); return; } } while
(false)
;
3874 visitMDNode(*N);
3875 }
3876
3877 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
3878 verifyFragmentExpression(*DII);
3879
3880 InstsInThisBlock.insert(&I);
3881}
3882
3883/// Allow intrinsics to be verified in different ways.
3884void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
3885 Function *IF = CS.getCalledFunction();
3886 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",do { if (!(IF->isDeclaration())) { CheckFailed("Intrinsic functions should never be defined!"
, IF); return; } } while (false)
3887 IF)do { if (!(IF->isDeclaration())) { CheckFailed("Intrinsic functions should never be defined!"
, IF); return; } } while (false)
;
3888
3889 // Verify that the intrinsic prototype lines up with what the .td files
3890 // describe.
3891 FunctionType *IFTy = IF->getFunctionType();
3892 bool IsVarArg = IFTy->isVarArg();
3893
3894 SmallVector<Intrinsic::IITDescriptor, 8> Table;
3895 getIntrinsicInfoTableEntries(ID, Table);
3896 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
3897
3898 SmallVector<Type *, 4> ArgTys;
3899 Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getReturnType
(), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (false)
3900 TableRef, ArgTys),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getReturnType
(), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (false)
3901 "Intrinsic has incorrect return type!", IF)do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getReturnType
(), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (false)
;
3902 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
3903 Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getParamType
(i), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (false)
3904 TableRef, ArgTys),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getParamType
(i), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (false)
3905 "Intrinsic has incorrect argument type!", IF)do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getParamType
(i), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (false)
;
3906
3907 // Verify if the intrinsic call matches the vararg property.
3908 if (IsVarArg)
3909 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Intrinsic was not defined with variable arguments!"
, IF); return; } } while (false)
3910 "Intrinsic was not defined with variable arguments!", IF)do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Intrinsic was not defined with variable arguments!"
, IF); return; } } while (false)
;
3911 else
3912 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Callsite was not defined with variable arguments!"
, IF); return; } } while (false)
3913 "Callsite was not defined with variable arguments!", IF)do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Callsite was not defined with variable arguments!"
, IF); return; } } while (false)
;
3914
3915 // All descriptors should be absorbed by now.
3916 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF)do { if (!(TableRef.empty())) { CheckFailed("Intrinsic has too few arguments!"
, IF); return; } } while (false)
;
3917
3918 // Now that we have the intrinsic ID and the actual argument types (and we
3919 // know they are legal for the intrinsic!) get the intrinsic name through the
3920 // usual means. This allows us to verify the mangling of argument types into
3921 // the name.
3922 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
3923 Assert(ExpectedName == IF->getName(),do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3924 "Intrinsic name not mangled correctly for type arguments! "do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3925 "Should be: " +do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3926 ExpectedName,do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3927 IF)do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
;
3928
3929 // If the intrinsic takes MDNode arguments, verify that they are either global
3930 // or are local to *this* function.
3931 for (Value *V : CS.args())
3932 if (auto *MD = dyn_cast<MetadataAsValue>(V))
3933 visitMetadataAsValue(*MD, CS.getCaller());
3934
3935 switch (ID) {
3936 default:
3937 break;
3938 case Intrinsic::coro_id: {
3939 auto *InfoArg = CS.getArgOperand(3)->stripPointerCasts();
3940 if (isa<ConstantPointerNull>(InfoArg))
3941 break;
3942 auto *GV = dyn_cast<GlobalVariable>(InfoArg);
3943 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
3944 "info argument of llvm.coro.begin must refer to an initialized "do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
3945 "constant")do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
;
3946 Constant *Init = GV->getInitializer();
3947 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
3948 "info argument of llvm.coro.begin must refer to either a struct or "do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
3949 "an array")do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
;
3950 break;
3951 }
3952 case Intrinsic::ctlz: // llvm.ctlz
3953 case Intrinsic::cttz: // llvm.cttz
3954 Assert(isa<ConstantInt>(CS.getArgOperand(1)),do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
3955 "is_zero_undef argument of bit counting intrinsics must be a "do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
3956 "constant int",do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
3957 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
;
3958 break;
3959 case Intrinsic::experimental_constrained_fadd:
3960 case Intrinsic::experimental_constrained_fsub:
3961 case Intrinsic::experimental_constrained_fmul:
3962 case Intrinsic::experimental_constrained_fdiv:
3963 case Intrinsic::experimental_constrained_frem:
3964 visitConstrainedFPIntrinsic(
3965 cast<ConstrainedFPIntrinsic>(*CS.getInstruction()));
3966 break;
3967 case Intrinsic::dbg_declare: // llvm.dbg.declare
3968 Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),do { if (!(isa<MetadataAsValue>(CS.getArgOperand(0)))) {
CheckFailed("invalid llvm.dbg.declare intrinsic call 1", CS)
; return; } } while (false)
3969 "invalid llvm.dbg.declare intrinsic call 1", CS)do { if (!(isa<MetadataAsValue>(CS.getArgOperand(0)))) {
CheckFailed("invalid llvm.dbg.declare intrinsic call 1", CS)
; return; } } while (false)
;
3970 visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction()));
3971 break;
3972 case Intrinsic::dbg_value: // llvm.dbg.value
3973 visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction()));
3974 break;
3975 case Intrinsic::memcpy:
3976 case Intrinsic::memmove:
3977 case Intrinsic::memset: {
3978 ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
3979 Assert(AlignCI,do { if (!(AlignCI)) { CheckFailed("alignment argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
3980 "alignment argument of memory intrinsics must be a constant int",do { if (!(AlignCI)) { CheckFailed("alignment argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
3981 CS)do { if (!(AlignCI)) { CheckFailed("alignment argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
;
3982 const APInt &AlignVal = AlignCI->getValue();
3983 Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),do { if (!(AlignCI->isZero() || AlignVal.isPowerOf2())) { CheckFailed
("alignment argument of memory intrinsics must be a power of 2"
, CS); return; } } while (false)
3984 "alignment argument of memory intrinsics must be a power of 2", CS)do { if (!(AlignCI->isZero() || AlignVal.isPowerOf2())) { CheckFailed
("alignment argument of memory intrinsics must be a power of 2"
, CS); return; } } while (false)
;
3985 Assert(isa<ConstantInt>(CS.getArgOperand(4)),do { if (!(isa<ConstantInt>(CS.getArgOperand(4)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
3986 "isvolatile argument of memory intrinsics must be a constant int",do { if (!(isa<ConstantInt>(CS.getArgOperand(4)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
3987 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(4)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
;
3988 break;
3989 }
3990 case Intrinsic::memcpy_element_atomic: {
3991 ConstantInt *ElementSizeCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
3992 Assert(ElementSizeCI, "element size of the element-wise atomic memory "do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
3993 "intrinsic must be a constant int",do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
3994 CS)do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
;
3995 const APInt &ElementSizeVal = ElementSizeCI->getValue();
3996 Assert(ElementSizeVal.isPowerOf2(),do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
3997 "element size of the element-wise atomic memory intrinsic "do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
3998 "must be a power of 2",do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
3999 CS)do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
;
4000
4001 auto IsValidAlignment = [&](uint64_t Alignment) {
4002 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4003 };
4004
4005 uint64_t DstAlignment = CS.getParamAlignment(0),
4006 SrcAlignment = CS.getParamAlignment(1);
4007
4008 Assert(IsValidAlignment(DstAlignment),do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
4009 "incorrect alignment of the destination argument",do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
4010 CS)do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
;
4011 Assert(IsValidAlignment(SrcAlignment),do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, CS); return; } } while (false)
4012 "incorrect alignment of the source argument",do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, CS); return; } } while (false)
4013 CS)do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, CS); return; } } while (false)
;
4014 break;
4015 }
4016 case Intrinsic::gcroot:
4017 case Intrinsic::gcwrite:
4018 case Intrinsic::gcread:
4019 if (ID == Intrinsic::gcroot) {
4020 AllocaInst *AI =
4021 dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
4022 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS)do { if (!(AI)) { CheckFailed("llvm.gcroot parameter #1 must be an alloca."
, CS); return; } } while (false)
;
4023 Assert(isa<Constant>(CS.getArgOperand(1)),do { if (!(isa<Constant>(CS.getArgOperand(1)))) { CheckFailed
("llvm.gcroot parameter #2 must be a constant.", CS); return;
} } while (false)
4024 "llvm.gcroot parameter #2 must be a constant.", CS)do { if (!(isa<Constant>(CS.getArgOperand(1)))) { CheckFailed
("llvm.gcroot parameter #2 must be a constant.", CS); return;
} } while (false)
;
4025 if (!AI->getAllocatedType()->isPointerTy()) {
4026 Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
4027 "llvm.gcroot parameter #1 must either be a pointer alloca, "do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
4028 "or argument #2 must be a non-null constant.",do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
4029 CS)do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
;
4030 }
4031 }
4032
4033 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
4034 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
;
4035 break;
4036 case Intrinsic::init_trampoline:
4037 Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (false)
4038 "llvm.init_trampoline parameter #2 must resolve to a function.",do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (false)
4039 CS)do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (false)
;
4040 break;
4041 case Intrinsic::prefetch:
4042 Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4043 isa<ConstantInt>(CS.getArgOperand(2)) &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4044 cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4045 cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4046 "invalid arguments to llvm.prefetch", CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
;
4047 break;
4048 case Intrinsic::stackprotector:
4049 Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),do { if (!(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.stackprotector parameter #2 must resolve to an alloca."
, CS); return; } } while (false)
4050 "llvm.stackprotector parameter #2 must resolve to an alloca.", CS)do { if (!(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.stackprotector parameter #2 must resolve to an alloca."
, CS); return; } } while (false)
;
4051 break;
4052 case Intrinsic::lifetime_start:
4053 case Intrinsic::lifetime_end:
4054 case Intrinsic::invariant_start:
4055 Assert(isa<ConstantInt>(CS.getArgOperand(0)),do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (false)
4056 "size argument of memory use markers must be a constant integer",do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (false)
4057 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (false)
;
4058 break;
4059 case Intrinsic::invariant_end:
4060 Assert(isa<ConstantInt>(CS.getArgOperand(1)),do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("llvm.invariant.end parameter #2 must be a constant integer"
, CS); return; } } while (false)
4061 "llvm.invariant.end parameter #2 must be a constant integer", CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("llvm.invariant.end parameter #2 must be a constant integer"
, CS); return; } } while (false)
;
4062 break;
4063
4064 case Intrinsic::localescape: {
4065 BasicBlock *BB = CS.getParent();
4066 Assert(BB == &BB->getParent()->front(),do { if (!(BB == &BB->getParent()->front())) { CheckFailed
("llvm.localescape used outside of entry block", CS); return;
} } while (false)
4067 "llvm.localescape used outside of entry block", CS)do { if (!(BB == &BB->getParent()->front())) { CheckFailed
("llvm.localescape used outside of entry block", CS); return;
} } while (false)
;
4068 Assert(!SawFrameEscape,do { if (!(!SawFrameEscape)) { CheckFailed("multiple calls to llvm.localescape in one function"
, CS); return; } } while (false)
4069 "multiple calls to llvm.localescape in one function", CS)do { if (!(!SawFrameEscape)) { CheckFailed("multiple calls to llvm.localescape in one function"
, CS); return; } } while (false)
;
4070 for (Value *Arg : CS.args()) {
4071 if (isa<ConstantPointerNull>(Arg))
4072 continue; // Null values are allowed as placeholders.
4073 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4074 Assert(AI && AI->isStaticAlloca(),do { if (!(AI && AI->isStaticAlloca())) { CheckFailed
("llvm.localescape only accepts static allocas", CS); return;
} } while (false)
4075 "llvm.localescape only accepts static allocas", CS)do { if (!(AI && AI->isStaticAlloca())) { CheckFailed
("llvm.localescape only accepts static allocas", CS); return;
} } while (false)
;
4076 }
4077 FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
4078 SawFrameEscape = true;
4079 break;
4080 }
4081 case Intrinsic::localrecover: {
4082 Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
4083 Function *Fn = dyn_cast<Function>(FnArg);
4084 Assert(Fn && !Fn->isDeclaration(),do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
4085 "llvm.localrecover first "do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
4086 "argument must be function defined in this module",do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
4087 CS)do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
;
4088 auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
4089 Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",do { if (!(IdxArg)) { CheckFailed("idx argument of llvm.localrecover must be a constant int"
, CS); return; } } while (false)
4090 CS)do { if (!(IdxArg)) { CheckFailed("idx argument of llvm.localrecover must be a constant int"
, CS); return; } } while (false)
;
4091 auto &Entry = FrameEscapeInfo[Fn];
4092 Entry.second = unsigned(
4093 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4094 break;
4095 }
4096
4097 case Intrinsic::experimental_gc_statepoint:
4098 Assert(!CS.isInlineAsm(),do { if (!(!CS.isInlineAsm())) { CheckFailed("gc.statepoint support for inline assembly unimplemented"
, CS); return; } } while (false)
4099 "gc.statepoint support for inline assembly unimplemented", CS)do { if (!(!CS.isInlineAsm())) { CheckFailed("gc.statepoint support for inline assembly unimplemented"
, CS); return; } } while (false)
;
4100 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
4101 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
;
4102
4103 verifyStatepoint(CS);
4104 break;
4105 case Intrinsic::experimental_gc_result: {
4106 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
4107 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
;
4108 // Are we tied to a statepoint properly?
4109 CallSite StatepointCS(CS.getArgOperand(0));
4110 const Function *StatepointFn =
4111 StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
4112 Assert(StatepointFn && StatepointFn->isDeclaration() &&do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4113 StatepointFn->getIntrinsicID() ==do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4114 Intrinsic::experimental_gc_statepoint,do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4115 "gc.result operand #1 must be from a statepoint", CS,do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4116 CS.getArgOperand(0))do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
;
4117
4118 // Assert that result type matches wrapped callee.
4119 const Value *Target = StatepointCS.getArgument(2);
4120 auto *PT = cast<PointerType>(Target->getType());
4121 auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4122 Assert(CS.getType() == TargetFuncType->getReturnType(),do { if (!(CS.getType() == TargetFuncType->getReturnType()
)) { CheckFailed("gc.result result type does not match wrapped callee"
, CS); return; } } while (false)
4123 "gc.result result type does not match wrapped callee", CS)do { if (!(CS.getType() == TargetFuncType->getReturnType()
)) { CheckFailed("gc.result result type does not match wrapped callee"
, CS); return; } } while (false)
;
4124 break;
4125 }
4126 case Intrinsic::experimental_gc_relocate: {
4127 Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS)do { if (!(CS.getNumArgOperands() == 3)) { CheckFailed("wrong number of arguments"
, CS); return; } } while (false)
;
4128
4129 Assert(isa<PointerType>(CS.getType()->getScalarType()),do { if (!(isa<PointerType>(CS.getType()->getScalarType
()))) { CheckFailed("gc.relocate must return a pointer or a vector of pointers"
, CS); return; } } while (false)
4130 "gc.relocate must return a pointer or a vector of pointers", CS)do { if (!(isa<PointerType>(CS.getType()->getScalarType
()))) { CheckFailed("gc.relocate must return a pointer or a vector of pointers"
, CS); return; } } while (false)
;
4131
4132 // Check that this relocate is correctly tied to the statepoint
4133
4134 // This is case for relocate on the unwinding path of an invoke statepoint
4135 if (LandingPadInst *LandingPad =
4136 dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
4137
4138 const BasicBlock *InvokeBB =
4139 LandingPad->getParent()->getUniquePredecessor();
4140
4141 // Landingpad relocates should have only one predecessor with invoke
4142 // statepoint terminator
4143 Assert(InvokeBB, "safepoints should have unique landingpads",do { if (!(InvokeBB)) { CheckFailed("safepoints should have unique landingpads"
, LandingPad->getParent()); return; } } while (false)
4144 LandingPad->getParent())do { if (!(InvokeBB)) { CheckFailed("safepoints should have unique landingpads"
, LandingPad->getParent()); return; } } while (false)
;
4145 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",do { if (!(InvokeBB->getTerminator())) { CheckFailed("safepoint block should be well formed"
, InvokeBB); return; } } while (false)
4146 InvokeBB)do { if (!(InvokeBB->getTerminator())) { CheckFailed("safepoint block should be well formed"
, InvokeBB); return; } } while (false)
;
4147 Assert(isStatepoint(InvokeBB->getTerminator()),do { if (!(isStatepoint(InvokeBB->getTerminator()))) { CheckFailed
("gc relocate should be linked to a statepoint", InvokeBB); return
; } } while (false)
4148 "gc relocate should be linked to a statepoint", InvokeBB)do { if (!(isStatepoint(InvokeBB->getTerminator()))) { CheckFailed
("gc relocate should be linked to a statepoint", InvokeBB); return
; } } while (false)
;
4149 }
4150 else {
4151 // In all other cases relocate should be tied to the statepoint directly.
4152 // This covers relocates on a normal return path of invoke statepoint and
4153 // relocates of a call statepoint.
4154 auto Token = CS.getArgOperand(0);
4155 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),do { if (!(isa<Instruction>(Token) && isStatepoint
(cast<Instruction>(Token)))) { CheckFailed("gc relocate is incorrectly tied to the statepoint"
, CS, Token); return; } } while (false)
4156 "gc relocate is incorrectly tied to the statepoint", CS, Token)do { if (!(isa<Instruction>(Token) && isStatepoint
(cast<Instruction>(Token)))) { CheckFailed("gc relocate is incorrectly tied to the statepoint"
, CS, Token); return; } } while (false)
;
4157 }
4158
4159 // Verify rest of the relocate arguments.
4160
4161 ImmutableCallSite StatepointCS(
4162 cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint());
4163
4164 // Both the base and derived must be piped through the safepoint.
4165 Value* Base = CS.getArgOperand(1);
4166 Assert(isa<ConstantInt>(Base),do { if (!(isa<ConstantInt>(Base))) { CheckFailed("gc.relocate operand #2 must be integer offset"
, CS); return; } } while (false)
4167 "gc.relocate operand #2 must be integer offset", CS)do { if (!(isa<ConstantInt>(Base))) { CheckFailed("gc.relocate operand #2 must be integer offset"
, CS); return; } } while (false)
;
4168
4169 Value* Derived = CS.getArgOperand(2);
4170 Assert(isa<ConstantInt>(Derived),do { if (!(isa<ConstantInt>(Derived))) { CheckFailed("gc.relocate operand #3 must be integer offset"
, CS); return; } } while (false)
4171 "gc.relocate operand #3 must be integer offset", CS)do { if (!(isa<ConstantInt>(Derived))) { CheckFailed("gc.relocate operand #3 must be integer offset"
, CS); return; } } while (false)
;
4172
4173 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4174 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4175 // Check the bounds
4176 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),do { if (!(0 <= BaseIndex && BaseIndex < (int)StatepointCS
.arg_size())) { CheckFailed("gc.relocate: statepoint base index out of bounds"
, CS); return; } } while (false)
4177 "gc.relocate: statepoint base index out of bounds", CS)do { if (!(0 <= BaseIndex && BaseIndex < (int)StatepointCS
.arg_size())) { CheckFailed("gc.relocate: statepoint base index out of bounds"
, CS); return; } } while (false)
;
4178 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),do { if (!(0 <= DerivedIndex && DerivedIndex < (
int)StatepointCS.arg_size())) { CheckFailed("gc.relocate: statepoint derived index out of bounds"
, CS); return; } } while (false)
4179 "gc.relocate: statepoint derived index out of bounds", CS)do { if (!(0 <= DerivedIndex && DerivedIndex < (
int)StatepointCS.arg_size())) { CheckFailed("gc.relocate: statepoint derived index out of bounds"
, CS); return; } } while (false)
;
4180
4181 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4182 // section of the statepoint's argument.
4183 Assert(StatepointCS.arg_size() > 0,do { if (!(StatepointCS.arg_size() > 0)) { CheckFailed("gc.statepoint: insufficient arguments"
); return; } } while (false)
4184 "gc.statepoint: insufficient arguments")do { if (!(StatepointCS.arg_size() > 0)) { CheckFailed("gc.statepoint: insufficient arguments"
); return; } } while (false)
;
4185 Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(3)
))) { CheckFailed("gc.statement: number of call arguments must be constant integer"
); return; } } while (false)
4186 "gc.statement: number of call arguments must be constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(3)
))) { CheckFailed("gc.statement: number of call arguments must be constant integer"
); return; } } while (false)
;
4187 const unsigned NumCallArgs =
4188 cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
4189 Assert(StatepointCS.arg_size() > NumCallArgs + 5,do { if (!(StatepointCS.arg_size() > NumCallArgs + 5)) { CheckFailed
("gc.statepoint: mismatch in number of call arguments"); return
; } } while (false)
4190 "gc.statepoint: mismatch in number of call arguments")do { if (!(StatepointCS.arg_size() > NumCallArgs + 5)) { CheckFailed
("gc.statepoint: mismatch in number of call arguments"); return
; } } while (false)
;
4191 Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
4192 "gc.statepoint: number of transition arguments must be "do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
4193 "a constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
;
4194 const int NumTransitionArgs =
4195 cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
4196 ->getZExtValue();
4197 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4198 Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
4199 "gc.statepoint: number of deoptimization arguments must be "do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
4200 "a constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
;
4201 const int NumDeoptArgs =
4202 cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))
4203 ->getZExtValue();
4204 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4205 const int GCParamArgsEnd = StatepointCS.arg_size();
4206 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4207 "gc.relocate: statepoint base index doesn't fall within the "do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4208 "'gc parameters' section of the statepoint call",do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4209 CS)do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
;
4210 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4211 "gc.relocate: statepoint derived index doesn't fall within the "do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4212 "'gc parameters' section of the statepoint call",do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4213 CS)do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
;
4214
4215 // Relocated value must be either a pointer type or vector-of-pointer type,
4216 // but gc_relocate does not need to return the same pointer type as the
4217 // relocated pointer. It can be casted to the correct type later if it's
4218 // desired. However, they must have the same address space and 'vectorness'
4219 GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction());
4220 Assert(Relocate.getDerivedPtr()->getType()->getScalarType()->isPointerTy(),do { if (!(Relocate.getDerivedPtr()->getType()->getScalarType
()->isPointerTy())) { CheckFailed("gc.relocate: relocated value must be a gc pointer"
, CS); return; } } while (false)
4221 "gc.relocate: relocated value must be a gc pointer", CS)do { if (!(Relocate.getDerivedPtr()->getType()->getScalarType
()->isPointerTy())) { CheckFailed("gc.relocate: relocated value must be a gc pointer"
, CS); return; } } while (false)
;
4222
4223 auto ResultType = CS.getType();
4224 auto DerivedType = Relocate.getDerivedPtr()->getType();
4225 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, CS); return; } } while (false)
4226 "gc.relocate: vector relocates to vector and pointer to pointer",do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, CS); return; } } while (false)
4227 CS)do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, CS); return; } } while (false)
;
4228 Assert(do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4229 ResultType->getPointerAddressSpace() ==do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4230 DerivedType->getPointerAddressSpace(),do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4231 "gc.relocate: relocating a pointer shouldn't change its address space",do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4232 CS)do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
;
4233 break;
4234 }
4235 case Intrinsic::eh_exceptioncode:
4236 case Intrinsic::eh_exceptionpointer: {
4237 Assert(isa<CatchPadInst>(CS.getArgOperand(0)),do { if (!(isa<CatchPadInst>(CS.getArgOperand(0)))) { CheckFailed
("eh.exceptionpointer argument must be a catchpad", CS); return
; } } while (false)
4238 "eh.exceptionpointer argument must be a catchpad", CS)do { if (!(isa<CatchPadInst>(CS.getArgOperand(0)))) { CheckFailed
("eh.exceptionpointer argument must be a catchpad", CS); return
; } } while (false)
;
4239 break;
4240 }
4241 case Intrinsic::masked_load: {
4242 Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS)do { if (!(CS.getType()->isVectorTy())) { CheckFailed("masked_load: must return a vector"
, CS); return; } } while (false)
;
4243
4244 Value *Ptr = CS.getArgOperand(0);
4245 //Value *Alignment = CS.getArgOperand(1);
4246 Value *Mask = CS.getArgOperand(2);
4247 Value *PassThru = CS.getArgOperand(3);
4248 Assert(Mask->getType()->isVectorTy(),do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_load: mask must be vector", CS); return; } } while (
false)
4249 "masked_load: mask must be vector", CS)do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_load: mask must be vector", CS); return; } } while (
false)
;
4250
4251 // DataTy is the overloaded type
4252 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4253 Assert(DataTy == CS.getType(),do { if (!(DataTy == CS.getType())) { CheckFailed("masked_load: return must match pointer type"
, CS); return; } } while (false)
4254 "masked_load: return must match pointer type", CS)do { if (!(DataTy == CS.getType())) { CheckFailed("masked_load: return must match pointer type"
, CS); return; } } while (false)
;
4255 Assert(PassThru->getType() == DataTy,do { if (!(PassThru->getType() == DataTy)) { CheckFailed("masked_load: pass through and data type must match"
, CS); return; } } while (false)
4256 "masked_load: pass through and data type must match", CS)do { if (!(PassThru->getType() == DataTy)) { CheckFailed("masked_load: pass through and data type must match"
, CS); return; } } while (false)
;
4257 Assert(Mask->getType()->getVectorNumElements() ==do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, CS); return; } } while (false)
4258 DataTy->getVectorNumElements(),do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, CS); return; } } while (false)
4259 "masked_load: vector mask must be same length as data", CS)do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, CS); return; } } while (false)
;
4260 break;
4261 }
4262 case Intrinsic::masked_store: {
4263 Value *Val = CS.getArgOperand(0);
4264 Value *Ptr = CS.getArgOperand(1);
4265 //Value *Alignment = CS.getArgOperand(2);
4266 Value *Mask = CS.getArgOperand(3);
4267 Assert(Mask->getType()->isVectorTy(),do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_store: mask must be vector", CS); return; } } while (
false)
4268 "masked_store: mask must be vector", CS)do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_store: mask must be vector", CS); return; } } while (
false)
;
4269
4270 // DataTy is the overloaded type
4271 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4272 Assert(DataTy == Val->getType(),do { if (!(DataTy == Val->getType())) { CheckFailed("masked_store: storee must match pointer type"
, CS); return; } } while (false)
4273 "masked_store: storee must match pointer type", CS)do { if (!(DataTy == Val->getType())) { CheckFailed("masked_store: storee must match pointer type"
, CS); return; } } while (false)
;
4274 Assert(Mask->getType()->getVectorNumElements() ==do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, CS); return; } } while (false)
4275 DataTy->getVectorNumElements(),do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, CS); return; } } while (false)
4276 "masked_store: vector mask must be same length as data", CS)do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, CS); return; } } while (false)
;
4277 break;
4278 }
4279
4280 case Intrinsic::experimental_guard: {
4281 Assert(CS.isCall(), "experimental_guard cannot be invoked", CS)do { if (!(CS.isCall())) { CheckFailed("experimental_guard cannot be invoked"
, CS); return; } } while (false)
;
4282 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4283 "experimental_guard must have exactly one "do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4284 "\"deopt\" operand bundle")do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
;
4285 break;
4286 }
4287
4288 case Intrinsic::experimental_deoptimize: {
4289 Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS)do { if (!(CS.isCall())) { CheckFailed("experimental_deoptimize cannot be invoked"
, CS); return; } } while (false)
;
4290 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4291 "experimental_deoptimize must have exactly one "do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4292 "\"deopt\" operand bundle")do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
;
4293 Assert(CS.getType() == CS.getInstruction()->getFunction()->getReturnType(),do { if (!(CS.getType() == CS.getInstruction()->getFunction
()->getReturnType())) { CheckFailed("experimental_deoptimize return type must match caller return type"
); return; } } while (false)
4294 "experimental_deoptimize return type must match caller return type")do { if (!(CS.getType() == CS.getInstruction()->getFunction
()->getReturnType())) { CheckFailed("experimental_deoptimize return type must match caller return type"
); return; } } while (false)
;
4295
4296 if (CS.isCall()) {
4297 auto *DeoptCI = CS.getInstruction();
4298 auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode());
4299 Assert(RI,do { if (!(RI)) { CheckFailed("calls to experimental_deoptimize must be followed by a return"
); return; } } while (false)
4300 "calls to experimental_deoptimize must be followed by a return")do { if (!(RI)) { CheckFailed("calls to experimental_deoptimize must be followed by a return"
); return; } } while (false)
;
4301
4302 if (!CS.getType()->isVoidTy() && RI)
4303 Assert(RI->getReturnValue() == DeoptCI,do { if (!(RI->getReturnValue() == DeoptCI)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
4304 "calls to experimental_deoptimize must be followed by a return "do { if (!(RI->getReturnValue() == DeoptCI)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
4305 "of the value computed by experimental_deoptimize")do { if (!(RI->getReturnValue() == DeoptCI)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
;
4306 }
4307
4308 break;
4309 }
4310 };
4311}
4312
4313/// \brief Carefully grab the subprogram from a local scope.
4314///
4315/// This carefully grabs the subprogram from a local scope, avoiding the
4316/// built-in assertions that would typically fire.
4317static DISubprogram *getSubprogram(Metadata *LocalScope) {
4318 if (!LocalScope)
4319 return nullptr;
4320
4321 if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4322 return SP;
4323
4324 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4325 return getSubprogram(LB->getRawScope());
4326
4327 // Just return null; broken scope chains are checked elsewhere.
4328 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope")((!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"
) ? static_cast<void> (0) : __assert_fail ("!isa<DILocalScope>(LocalScope) && \"Unknown type of local scope\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/IR/Verifier.cpp"
, 4328, __PRETTY_FUNCTION__))
;
4329 return nullptr;
4330}
4331
4332void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4333 Assert(isa<MetadataAsValue>(FPI.getOperand(2)),do { if (!(isa<MetadataAsValue>(FPI.getOperand(2)))) { CheckFailed
("invalid rounding mode argument", &FPI); return; } } while
(false)
4334 "invalid rounding mode argument", &FPI)do { if (!(isa<MetadataAsValue>(FPI.getOperand(2)))) { CheckFailed
("invalid rounding mode argument", &FPI); return; } } while
(false)
;
4335 Assert(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid,do { if (!(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid
)) { CheckFailed("invalid rounding mode argument", &FPI);
return; } } while (false)
4336 "invalid rounding mode argument", &FPI)do { if (!(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid
)) { CheckFailed("invalid rounding mode argument", &FPI);
return; } } while (false)
;
4337 Assert(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic::ebInvalid,do { if (!(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic
::ebInvalid)) { CheckFailed("invalid exception behavior argument"
, &FPI); return; } } while (false)
4338 "invalid exception behavior argument", &FPI)do { if (!(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic
::ebInvalid)) { CheckFailed("invalid exception behavior argument"
, &FPI); return; } } while (false)
;
4339}
4340
4341template <class DbgIntrinsicTy>
4342void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
4343 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4344 AssertDI(isa<ValueAsMetadata>(MD) ||do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
4345 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
4346 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD)do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
;
4347 AssertDI(isa<DILocalVariable>(DII.getRawVariable()),do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
4348 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
4349 DII.getRawVariable())do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
;
4350 AssertDI(isa<DIExpression>(DII.getRawExpression()),do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
4351 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
4352 DII.getRawExpression())do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
;
4353
4354 // Ignore broken !dbg attachments; they're checked elsewhere.
4355 if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4356 if (!isa<DILocation>(N))
4357 return;
4358
4359 BasicBlock *BB = DII.getParent();
4360 Function *F = BB ? BB->getParent() : nullptr;
4361
4362 // The scopes for variables and !dbg attachments must agree.
4363 DILocalVariable *Var = DII.getVariable();
4364 DILocation *Loc = DII.getDebugLoc();
4365 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",do { if (!(Loc)) { CheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DII, BB, F); return; } } while (false)
4366 &DII, BB, F)do { if (!(Loc)) { CheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DII, BB, F); return; } } while (false)
;
4367
4368 DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4369 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4370 if (!VarSP || !LocSP)
4371 return; // Broken scope chains are checked elsewhere.
4372
4373 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4374 " variable and !dbg attachment",do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4375 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4376 Loc->getScope()->getSubprogram())do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
;
4377
4378 verifyFnArgs(DII);
4379}
4380
4381static uint64_t getVariableSize(const DILocalVariable &V) {
4382 // Be careful of broken types (checked elsewhere).
4383 const Metadata *RawType = V.getRawType();
4384 while (RawType) {
4385 // Try to get the size directly.
4386 if (auto *T = dyn_cast<DIType>(RawType))
4387 if (uint64_t Size = T->getSizeInBits())
4388 return Size;
4389
4390 if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
4391 // Look at the base type.
4392 RawType = DT->getRawBaseType();
4393 continue;
4394 }
4395
4396 // Missing type or size.
4397 break;
4398 }
4399
4400 // Fail gracefully.
4401 return 0;
4402}
4403
4404void Verifier::verifyFragmentExpression(const DbgInfoIntrinsic &I) {
4405 DILocalVariable *V;
4406 DIExpression *E;
4407 if (auto *DVI = dyn_cast<DbgValueInst>(&I)) {
4408 V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable());
4409 E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression());
4410 } else {
4411 auto *DDI = cast<DbgDeclareInst>(&I);
4412 V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable());
4413 E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression());
4414 }
4415
4416 // We don't know whether this intrinsic verified correctly.
4417 if (!V || !E || !E->isValid())
4418 return;
4419
4420 // Nothing to do if this isn't a bit piece expression.
4421 auto Fragment = E->getFragmentInfo();
4422 if (!Fragment)
4423 return;
4424
4425 // The frontend helps out GDB by emitting the members of local anonymous
4426 // unions as artificial local variables with shared storage. When SROA splits
4427 // the storage for artificial local variables that are smaller than the entire
4428 // union, the overhang piece will be outside of the allotted space for the
4429 // variable and this check fails.
4430 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4431 if (V->isArtificial())
4432 return;
4433
4434 // If there's no size, the type is broken, but that should be checked
4435 // elsewhere.
4436 uint64_t VarSize = getVariableSize(*V);
4437 if (!VarSize)
4438 return;
4439
4440 unsigned FragSize = Fragment->SizeInBits;
4441 unsigned FragOffset = Fragment->OffsetInBits;
4442 AssertDI(FragSize + FragOffset <= VarSize,do { if (!(FragSize + FragOffset <= VarSize)) { DebugInfoCheckFailed
("fragment is larger than or outside of variable", &I, V,
E); return; } } while (false)
4443 "fragment is larger than or outside of variable", &I, V, E)do { if (!(FragSize + FragOffset <= VarSize)) { DebugInfoCheckFailed
("fragment is larger than or outside of variable", &I, V,
E); return; } } while (false)
;
4444 AssertDI(FragSize != VarSize, "fragment covers entire variable", &I, V, E)do { if (!(FragSize != VarSize)) { DebugInfoCheckFailed("fragment covers entire variable"
, &I, V, E); return; } } while (false)
;
4445}
4446
4447void Verifier::verifyFnArgs(const DbgInfoIntrinsic &I) {
4448 // This function does not take the scope of noninlined function arguments into
4449 // account. Don't run it if current function is nodebug, because it may
4450 // contain inlined debug intrinsics.
4451 if (!HasDebugInfo)
4452 return;
4453
4454 DILocalVariable *Var;
4455 if (auto *DV = dyn_cast<DbgValueInst>(&I)) {
4456 // For performance reasons only check non-inlined ones.
4457 if (DV->getDebugLoc()->getInlinedAt())
4458 return;
4459 Var = DV->getVariable();
4460 } else {
4461 auto *DD = cast<DbgDeclareInst>(&I);
4462 if (DD->getDebugLoc()->getInlinedAt())
4463 return;
4464 Var = DD->getVariable();
4465 }
4466 AssertDI(Var, "dbg intrinsic without variable")do { if (!(Var)) { DebugInfoCheckFailed("dbg intrinsic without variable"
); return; } } while (false)
;
4467
4468 unsigned ArgNo = Var->getArg();
4469 if (!ArgNo)
4470 return;
4471
4472 // Verify there are no duplicate function argument debug info entries.
4473 // These will cause hard-to-debug assertions in the DWARF backend.
4474 if (DebugFnArgs.size() < ArgNo)
4475 DebugFnArgs.resize(ArgNo, nullptr);
4476
4477 auto *Prev = DebugFnArgs[ArgNo - 1];
4478 DebugFnArgs[ArgNo - 1] = Var;
4479 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,do { if (!(!Prev || (Prev == Var))) { DebugInfoCheckFailed("conflicting debug info for argument"
, &I, Prev, Var); return; } } while (false)
4480 Prev, Var)do { if (!(!Prev || (Prev == Var))) { DebugInfoCheckFailed("conflicting debug info for argument"
, &I, Prev, Var); return; } } while (false)
;
4481}
4482
4483void Verifier::verifyCompileUnits() {
4484 auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
4485 SmallPtrSet<const Metadata *, 2> Listed;
4486 if (CUs)
4487 Listed.insert(CUs->op_begin(), CUs->op_end());
4488 for (auto *CU : CUVisited)
4489 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU)do { if (!(Listed.count(CU))) { DebugInfoCheckFailed("DICompileUnit not listed in llvm.dbg.cu"
, CU); return; } } while (false)
;
4490 CUVisited.clear();
4491}
4492
4493void Verifier::verifyDeoptimizeCallingConvs() {
4494 if (DeoptimizeDeclarations.empty())
4495 return;
4496
4497 const Function *First = DeoptimizeDeclarations[0];
4498 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4499 Assert(First->getCallingConv() == F->getCallingConv(),do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
4500 "All llvm.experimental.deoptimize declarations must have the same "do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
4501 "calling convention",do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
4502 First, F)do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
;
4503 }
4504}
4505
4506//===----------------------------------------------------------------------===//
4507// Implement the public interfaces to this file...
4508//===----------------------------------------------------------------------===//
4509
4510bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
4511 Function &F = const_cast<Function &>(f);
4512
4513 // Don't use a raw_null_ostream. Printing IR is expensive.
4514 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
4515
4516 // Note that this function's return value is inverted from what you would
4517 // expect of a function called "verify".
4518 return !V.verify(F);
4519}
4520
4521bool llvm::verifyModule(const Module &M, raw_ostream *OS,
4522 bool *BrokenDebugInfo) {
4523 // Don't use a raw_null_ostream. Printing IR is expensive.
4524 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
4525
4526 bool Broken = false;
4527 for (const Function &F : M)
4528 Broken |= !V.verify(F);
4529
4530 Broken |= !V.verify();
4531 if (BrokenDebugInfo)
4532 *BrokenDebugInfo = V.hasBrokenDebugInfo();
4533 // Note that this function's return value is inverted from what you would
4534 // expect of a function called "verify".
4535 return Broken;
4536}
4537
4538namespace {
4539
4540struct VerifierLegacyPass : public FunctionPass {
4541 static char ID;
4542
4543 std::unique_ptr<Verifier> V;
4544 bool FatalErrors = true;
4545
4546 VerifierLegacyPass() : FunctionPass(ID) {
4547 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4548 }
4549 explicit VerifierLegacyPass(bool FatalErrors)
4550 : FunctionPass(ID),
4551 FatalErrors(FatalErrors) {
4552 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4553 }
4554
4555 bool doInitialization(Module &M) override {
4556 V = llvm::make_unique<Verifier>(
4557 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
4558 return false;
4559 }
4560
4561 bool runOnFunction(Function &F) override {
4562 if (!V->verify(F) && FatalErrors)
4563 report_fatal_error("Broken function found, compilation aborted!");
4564
4565 return false;
4566 }
4567
4568 bool doFinalization(Module &M) override {
4569 bool HasErrors = false;
4570 for (Function &F : M)
4571 if (F.isDeclaration())
4572 HasErrors |= !V->verify(F);
4573
4574 HasErrors |= !V->verify();
4575 if (FatalErrors) {
4576 if (HasErrors)
4577 report_fatal_error("Broken module found, compilation aborted!");
4578 assert(!V->hasBrokenDebugInfo() && "Module contains invalid debug info")((!V->hasBrokenDebugInfo() && "Module contains invalid debug info"
) ? static_cast<void> (0) : __assert_fail ("!V->hasBrokenDebugInfo() && \"Module contains invalid debug info\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/IR/Verifier.cpp"
, 4578, __PRETTY_FUNCTION__))
;
4579 }
4580
4581 // Strip broken debug info.
4582 if (V->hasBrokenDebugInfo()) {
4583 DiagnosticInfoIgnoringInvalidDebugMetadata DiagInvalid(M);
4584 M.getContext().diagnose(DiagInvalid);
4585 if (!StripDebugInfo(M))
4586 report_fatal_error("Failed to strip malformed debug info");
4587 }
4588 return false;
4589 }
4590
4591 void getAnalysisUsage(AnalysisUsage &AU) const override {
4592 AU.setPreservesAll();
4593 }
4594};
4595
4596} // end anonymous namespace
4597
4598/// Helper to issue failure from the TBAA verification
4599template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
4600 if (Diagnostic)
4601 return Diagnostic->CheckFailed(Args...);
4602}
4603
4604#define AssertTBAA(C, ...)do { if (!(C)) { CheckFailed(...); return false; } } while (false
)
\
4605 do { \
4606 if (!(C)) { \
4607 CheckFailed(__VA_ARGS__); \
4608 return false; \
4609 } \
4610 } while (false)
4611
4612/// Verify that \p BaseNode can be used as the "base type" in the struct-path
4613/// TBAA scheme. This means \p BaseNode is either a scalar node, or a
4614/// struct-type node describing an aggregate data structure (like a struct).
4615TBAAVerifier::TBAABaseNodeSummary
4616TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode) {
4617 if (BaseNode->getNumOperands() < 2) {
4618 CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
4619 return {true, ~0u};
4620 }
4621
4622 auto Itr = TBAABaseNodes.find(BaseNode);
4623 if (Itr != TBAABaseNodes.end())
4624 return Itr->second;
4625
4626 auto Result = verifyTBAABaseNodeImpl(I, BaseNode);
4627 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
4628 (void)InsertResult;
4629 assert(InsertResult.second && "We just checked!")((InsertResult.second && "We just checked!") ? static_cast
<void> (0) : __assert_fail ("InsertResult.second && \"We just checked!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/IR/Verifier.cpp"
, 4629, __PRETTY_FUNCTION__))
;
4630 return Result;
4631}
4632
4633TBAAVerifier::TBAABaseNodeSummary
4634TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode) {
4635 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
4636
4637 if (BaseNode->getNumOperands() == 2) {
4638 // Scalar nodes can only be accessed at offset 0.
4639 return isValidScalarTBAANode(BaseNode)
4640 ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
4641 : InvalidNode;
4642 }
4643
4644 if (BaseNode->getNumOperands() % 2 != 1) {
4645 CheckFailed("Struct tag nodes must have an odd number of operands!",
4646 BaseNode);
4647 return InvalidNode;
4648 }
4649
4650 if (!isa<MDString>(BaseNode->getOperand(0))) {
4651 CheckFailed("Struct tag nodes have a string as their first operand",
4652 BaseNode);
4653 return InvalidNode;
4654 }
4655
4656 bool Failed = false;
4657
4658 Optional<APInt> PrevOffset;
4659 unsigned BitWidth = ~0u;
4660
4661 // We've already checked that BaseNode is not a degenerate root node with one
4662 // operand in \c verifyTBAABaseNode, so this loop should run at least once.
4663 for (unsigned Idx = 1; Idx < BaseNode->getNumOperands(); Idx += 2) {
4664 const MDOperand &FieldTy = BaseNode->getOperand(Idx);
4665 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
4666 if (!isa<MDNode>(FieldTy)) {
4667 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
4668 Failed = true;
4669 continue;
4670 }
4671
4672 auto *OffsetEntryCI =
4673 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
4674 if (!OffsetEntryCI) {
4675 CheckFailed("Offset entries must be constants!", &I, BaseNode);
4676 Failed = true;
4677 continue;
4678 }
4679
4680 if (BitWidth == ~0u)
4681 BitWidth = OffsetEntryCI->getBitWidth();
4682
4683 if (OffsetEntryCI->getBitWidth() != BitWidth) {
4684 CheckFailed(
4685 "Bitwidth between the offsets and struct type entries must match", &I,
4686 BaseNode);
4687 Failed = true;
4688 continue;
4689 }
4690
4691 // NB! As far as I can tell, we generate a non-strictly increasing offset
4692 // sequence only from structs that have zero size bit fields. When
4693 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
4694 // pick the field lexically the latest in struct type metadata node. This
4695 // mirrors the actual behavior of the alias analysis implementation.
4696 bool IsAscending =
4697 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
4698
4699 if (!IsAscending) {
4700 CheckFailed("Offsets must be increasing!", &I, BaseNode);
4701 Failed = true;
4702 }
4703
4704 PrevOffset = OffsetEntryCI->getValue();
4705 }
4706
4707 return Failed ? InvalidNode
4708 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
4709}
4710
4711static bool IsRootTBAANode(const MDNode *MD) {
4712 return MD->getNumOperands() < 2;
4713}
4714
4715static bool IsScalarTBAANodeImpl(const MDNode *MD,
4716 SmallPtrSetImpl<const MDNode *> &Visited) {
4717 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
4718 return false;
4719
4720 if (!isa<MDString>(MD->getOperand(0)))
4721 return false;
4722
4723 if (MD->getNumOperands() == 3) {
4724 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
4725 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
4726 return false;
4727 }
4728
4729 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4730 return Parent && Visited.insert(Parent).second &&
4731 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
4732}
4733
4734bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
4735 auto ResultIt = TBAAScalarNodes.find(MD);
4736 if (ResultIt != TBAAScalarNodes.end())
4737 return ResultIt->second;
4738
4739 SmallPtrSet<const MDNode *, 4> Visited;
4740 bool Result = IsScalarTBAANodeImpl(MD, Visited);
4741 auto InsertResult = TBAAScalarNodes.insert({MD, Result});
4742 (void)InsertResult;
4743 assert(InsertResult.second && "Just checked!")((InsertResult.second && "Just checked!") ? static_cast
<void> (0) : __assert_fail ("InsertResult.second && \"Just checked!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/IR/Verifier.cpp"
, 4743, __PRETTY_FUNCTION__))
;
4744
4745 return Result;
4746}
4747
4748/// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
4749/// Offset in place to be the offset within the field node returned.
4750///
4751/// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
4752MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
4753 const MDNode *BaseNode,
4754 APInt &Offset) {
4755 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!")((BaseNode->getNumOperands() >= 2 && "Invalid base node!"
) ? static_cast<void> (0) : __assert_fail ("BaseNode->getNumOperands() >= 2 && \"Invalid base node!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/IR/Verifier.cpp"
, 4755, __PRETTY_FUNCTION__))
;
4756
4757 // Scalar nodes have only one possible "field" -- their parent in the access
4758 // hierarchy. Offset must be zero at this point, but our caller is supposed
4759 // to Assert that.
4760 if (BaseNode->getNumOperands() == 2)
4761 return cast<MDNode>(BaseNode->getOperand(1));
4762
4763 for (unsigned Idx = 1; Idx < BaseNode->getNumOperands(); Idx += 2) {
4764 auto *OffsetEntryCI =
4765 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
4766 if (OffsetEntryCI->getValue().ugt(Offset)) {
4767 if (Idx == 1) {
4768 CheckFailed("Could not find TBAA parent in struct type node", &I,
4769 BaseNode, &Offset);
4770 return nullptr;
4771 }
4772
4773 auto *PrevOffsetEntryCI =
4774 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx - 1));
4775 Offset -= PrevOffsetEntryCI->getValue();
4776 return cast<MDNode>(BaseNode->getOperand(Idx - 2));
4777 }
4778 }
4779
4780 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
4781 BaseNode->getOperand(BaseNode->getNumOperands() - 1));
4782
4783 Offset -= LastOffsetEntryCI->getValue();
4784 return cast<MDNode>(BaseNode->getOperand(BaseNode->getNumOperands() - 2));
4785}
4786
4787bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
4788 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("TBAA is only for loads, stores and calls!", &I); return
false; } } while (false)
4789 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("TBAA is only for loads, stores and calls!", &I); return
false; } } while (false)
4790 isa<AtomicCmpXchgInst>(I),do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("TBAA is only for loads, stores and calls!", &I); return
false; } } while (false)
4791 "TBAA is only for loads, stores and calls!", &I)do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("TBAA is only for loads, stores and calls!", &I); return
false; } } while (false)
;
4792
4793 bool IsStructPathTBAA =
4794 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
4795
4796 AssertTBAA(do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
4797 IsStructPathTBAA,do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
4798 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I)do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
;
4799
4800 AssertTBAA(MD->getNumOperands() < 5,do { if (!(MD->getNumOperands() < 5)) { CheckFailed("Struct tag metadata must have either 3 or 4 operands"
, &I, MD); return false; } } while (false)
4801 "Struct tag metadata must have either 3 or 4 operands", &I, MD)do { if (!(MD->getNumOperands() < 5)) { CheckFailed("Struct tag metadata must have either 3 or 4 operands"
, &I, MD); return false; } } while (false)
;
4802
4803 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
4804 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4805
4806 if (MD->getNumOperands() == 4) {
4807 auto *IsImmutableCI =
4808 mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(3));
4809 AssertTBAA(IsImmutableCI,do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
4810 "Immutability tag on struct tag metadata must be a constant", &I,do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
4811 MD)do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
;
4812 AssertTBAA(do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
4813 IsImmutableCI->isZero() || IsImmutableCI->isOne(),do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
4814 "Immutability part of the struct tag metadata must be either 0 or 1",do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
4815 &I, MD)do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
;
4816 }
4817
4818 AssertTBAA(BaseNode && AccessType,do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
4819 "Malformed struct tag metadata: base and access-type "do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
4820 "should be non-null and point to Metadata nodes",do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
4821 &I, MD, BaseNode, AccessType)do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
;
4822
4823 AssertTBAA(isValidScalarTBAANode(AccessType),do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
4824 "Access type node must be a valid scalar type", &I, MD,do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
4825 AccessType)do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
;
4826
4827 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
4828 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD)do { if (!(OffsetCI)) { CheckFailed("Offset must be constant integer"
, &I, MD); return false; } } while (false)
;
4829
4830 APInt Offset = OffsetCI->getValue();
4831 bool SeenAccessTypeInPath = false;
4832
4833 SmallPtrSet<MDNode *, 4> StructPath;
4834
4835 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
4836 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset)) {
4837 if (!StructPath.insert(BaseNode).second) {
4838 CheckFailed("Cycle detected in struct path", &I, MD);
4839 return false;
4840 }
4841
4842 bool Invalid;
4843 unsigned BaseNodeBitWidth;
4844 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode);
4845
4846 // If the base node is invalid in itself, then we've already printed all the
4847 // errors we wanted to print.
4848 if (Invalid)
4849 return false;
4850
4851 SeenAccessTypeInPath |= BaseNode == AccessType;
4852
4853 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
4854 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",do { if (!(Offset == 0)) { CheckFailed("Offset not zero at the point of scalar access"
, &I, MD, &Offset); return false; } } while (false)
4855 &I, MD, &Offset)do { if (!(Offset == 0)) { CheckFailed("Offset not zero at the point of scalar access"
, &I, MD, &Offset); return false; } } while (false)
;
4856
4857 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
4858 (BaseNodeBitWidth == 0 && Offset == 0),do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
4859 "Access bit-width not the same as description bit-width", &I, MD,do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
4860 BaseNodeBitWidth, Offset.getBitWidth())do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
;
4861 }
4862
4863 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",do { if (!(SeenAccessTypeInPath)) { CheckFailed("Did not see access type in access path!"
, &I, MD); return false; } } while (false)
4864 &I, MD)do { if (!(SeenAccessTypeInPath)) { CheckFailed("Did not see access type in access path!"
, &I, MD); return false; } } while (false)
;
4865 return true;
4866}
4867
4868char VerifierLegacyPass::ID = 0;
4869INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)static void *initializeVerifierLegacyPassPassOnce(PassRegistry
&Registry) { PassInfo *PI = new PassInfo( "Module Verifier"
, "verify", &VerifierLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<VerifierLegacyPass>), false, false); Registry
.registerPass(*PI, true); return PI; } static llvm::once_flag
InitializeVerifierLegacyPassPassFlag; void llvm::initializeVerifierLegacyPassPass
(PassRegistry &Registry) { llvm::call_once(InitializeVerifierLegacyPassPassFlag
, initializeVerifierLegacyPassPassOnce, std::ref(Registry)); }
4870
4871FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
4872 return new VerifierLegacyPass(FatalErrors);
4873}
4874
4875AnalysisKey VerifierAnalysis::Key;
4876VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
4877 ModuleAnalysisManager &) {
4878 Result Res;
4879 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
4880 return Res;
4881}
4882
4883VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
4884 FunctionAnalysisManager &) {
4885 return { llvm::verifyFunction(F, &dbgs()), false };
4886}
4887
4888PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
4889 auto Res = AM.getResult<VerifierAnalysis>(M);
4890 if (FatalErrors) {
4891 if (Res.IRBroken)
4892 report_fatal_error("Broken module found, compilation aborted!");
4893 assert(!Res.DebugInfoBroken && "Module contains invalid debug info")((!Res.DebugInfoBroken && "Module contains invalid debug info"
) ? static_cast<void> (0) : __assert_fail ("!Res.DebugInfoBroken && \"Module contains invalid debug info\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/IR/Verifier.cpp"
, 4893, __PRETTY_FUNCTION__))
;
4894 }
4895
4896 // Strip broken debug info.
4897 if (Res.DebugInfoBroken) {
4898 DiagnosticInfoIgnoringInvalidDebugMetadata DiagInvalid(M);
4899 M.getContext().diagnose(DiagInvalid);
4900 if (!StripDebugInfo(M))
4901 report_fatal_error("Failed to strip malformed debug info");
4902 }
4903 return PreservedAnalyses::all();
4904}
4905
4906PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
4907 auto res = AM.getResult<VerifierAnalysis>(F);
4908 if (res.IRBroken && FatalErrors)
4909 report_fatal_error("Broken function found, compilation aborted!");
4910
4911 return PreservedAnalyses::all();
4912}