Bug Summary

File:lib/IR/Verifier.cpp
Warning:line 2193, column 7
Called C++ object pointer is null

Annotated Source Code

[?] Use j/k keys for keyboard navigation

1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the function verifier interface, that can be used for some
11// sanity checking of input to the system.
12//
13// Note that this does not provide full `Java style' security and verifications,
14// instead it just tries to ensure that code is well-formed.
15//
16// * Both of a binary operator's parameters are of the same type
17// * Verify that the indices of mem access instructions match other operands
18// * Verify that arithmetic and other things are only performed on first-class
19// types. Verify that shifts & logicals only happen on integrals f.e.
20// * All of the constants in a switch statement are of the correct type
21// * The code is in valid SSA form
22// * It should be illegal to put a label into any other type (like a structure)
23// or to return one. [except constant arrays!]
24// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25// * PHI nodes must have an entry for each predecessor, with no extras.
26// * PHI nodes must be the first thing in a basic block, all grouped together
27// * PHI nodes must have at least one entry
28// * All basic blocks should only end with terminator insts, not contain them
29// * The entry node to a function must not have predecessors
30// * All Instructions must be embedded into a basic block
31// * Functions cannot take a void-typed parameter
32// * Verify that a function's argument list agrees with it's declared type.
33// * It is illegal to specify a name for a void value.
34// * It is illegal to have a internal global value with no initializer
35// * It is illegal to have a ret instruction that returns a value that does not
36// agree with the function return value type.
37// * Function call argument types match the function prototype
38// * A landing pad is defined by a landingpad instruction, and can be jumped to
39// only by the unwind edge of an invoke instruction.
40// * A landingpad instruction must be the first non-PHI instruction in the
41// block.
42// * Landingpad instructions must be in a function with a personality function.
43// * All other things that are tested by asserts spread about the code...
44//
45//===----------------------------------------------------------------------===//
46
47#include "llvm/IR/Verifier.h"
48#include "llvm/ADT/APFloat.h"
49#include "llvm/ADT/APInt.h"
50#include "llvm/ADT/ArrayRef.h"
51#include "llvm/ADT/DenseMap.h"
52#include "llvm/ADT/MapVector.h"
53#include "llvm/ADT/Optional.h"
54#include "llvm/ADT/STLExtras.h"
55#include "llvm/ADT/SmallPtrSet.h"
56#include "llvm/ADT/SmallSet.h"
57#include "llvm/ADT/SmallVector.h"
58#include "llvm/ADT/StringMap.h"
59#include "llvm/ADT/StringRef.h"
60#include "llvm/ADT/Twine.h"
61#include "llvm/ADT/ilist.h"
62#include "llvm/BinaryFormat/Dwarf.h"
63#include "llvm/IR/Argument.h"
64#include "llvm/IR/Attributes.h"
65#include "llvm/IR/BasicBlock.h"
66#include "llvm/IR/CFG.h"
67#include "llvm/IR/CallSite.h"
68#include "llvm/IR/CallingConv.h"
69#include "llvm/IR/Comdat.h"
70#include "llvm/IR/Constant.h"
71#include "llvm/IR/ConstantRange.h"
72#include "llvm/IR/Constants.h"
73#include "llvm/IR/DataLayout.h"
74#include "llvm/IR/DebugInfo.h"
75#include "llvm/IR/DebugInfoMetadata.h"
76#include "llvm/IR/DebugLoc.h"
77#include "llvm/IR/DerivedTypes.h"
78#include "llvm/IR/Dominators.h"
79#include "llvm/IR/Function.h"
80#include "llvm/IR/GlobalAlias.h"
81#include "llvm/IR/GlobalValue.h"
82#include "llvm/IR/GlobalVariable.h"
83#include "llvm/IR/InlineAsm.h"
84#include "llvm/IR/InstVisitor.h"
85#include "llvm/IR/InstrTypes.h"
86#include "llvm/IR/Instruction.h"
87#include "llvm/IR/Instructions.h"
88#include "llvm/IR/IntrinsicInst.h"
89#include "llvm/IR/Intrinsics.h"
90#include "llvm/IR/LLVMContext.h"
91#include "llvm/IR/Metadata.h"
92#include "llvm/IR/Module.h"
93#include "llvm/IR/ModuleSlotTracker.h"
94#include "llvm/IR/PassManager.h"
95#include "llvm/IR/Statepoint.h"
96#include "llvm/IR/Type.h"
97#include "llvm/IR/Use.h"
98#include "llvm/IR/User.h"
99#include "llvm/IR/Value.h"
100#include "llvm/Pass.h"
101#include "llvm/Support/AtomicOrdering.h"
102#include "llvm/Support/Casting.h"
103#include "llvm/Support/CommandLine.h"
104#include "llvm/Support/Debug.h"
105#include "llvm/Support/ErrorHandling.h"
106#include "llvm/Support/MathExtras.h"
107#include "llvm/Support/raw_ostream.h"
108#include <algorithm>
109#include <cassert>
110#include <cstdint>
111#include <memory>
112#include <string>
113#include <utility>
114
115using namespace llvm;
116
117namespace llvm {
118
119struct VerifierSupport {
120 raw_ostream *OS;
121 const Module &M;
122 ModuleSlotTracker MST;
123 const DataLayout &DL;
124 LLVMContext &Context;
125
126 /// Track the brokenness of the module while recursively visiting.
127 bool Broken = false;
128 /// Broken debug info can be "recovered" from by stripping the debug info.
129 bool BrokenDebugInfo = false;
130 /// Whether to treat broken debug info as an error.
131 bool TreatBrokenDebugInfoAsError = true;
132
133 explicit VerifierSupport(raw_ostream *OS, const Module &M)
134 : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
135
136private:
137 void Write(const Module *M) {
138 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
139 }
140
141 void Write(const Value *V) {
142 if (!V)
143 return;
144 if (isa<Instruction>(V)) {
145 V->print(*OS, MST);
146 *OS << '\n';
147 } else {
148 V->printAsOperand(*OS, true, MST);
149 *OS << '\n';
150 }
151 }
152
153 void Write(ImmutableCallSite CS) {
154 Write(CS.getInstruction());
155 }
156
157 void Write(const Metadata *MD) {
158 if (!MD)
159 return;
160 MD->print(*OS, MST, &M);
161 *OS << '\n';
162 }
163
164 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
165 Write(MD.get());
166 }
167
168 void Write(const NamedMDNode *NMD) {
169 if (!NMD)
170 return;
171 NMD->print(*OS, MST);
172 *OS << '\n';
173 }
174
175 void Write(Type *T) {
176 if (!T)
177 return;
178 *OS << ' ' << *T;
179 }
180
181 void Write(const Comdat *C) {
182 if (!C)
183 return;
184 *OS << *C;
185 }
186
187 void Write(const APInt *AI) {
188 if (!AI)
189 return;
190 *OS << *AI << '\n';
191 }
192
193 void Write(const unsigned i) { *OS << i << '\n'; }
194
195 template <typename T> void Write(ArrayRef<T> Vs) {
196 for (const T &V : Vs)
197 Write(V);
198 }
199
200 template <typename T1, typename... Ts>
201 void WriteTs(const T1 &V1, const Ts &... Vs) {
202 Write(V1);
203 WriteTs(Vs...);
204 }
205
206 template <typename... Ts> void WriteTs() {}
207
208public:
209 /// \brief A check failed, so printout out the condition and the message.
210 ///
211 /// This provides a nice place to put a breakpoint if you want to see why
212 /// something is not correct.
213 void CheckFailed(const Twine &Message) {
214 if (OS)
215 *OS << Message << '\n';
216 Broken = true;
217 }
218
219 /// \brief A check failed (with values to print).
220 ///
221 /// This calls the Message-only version so that the above is easier to set a
222 /// breakpoint on.
223 template <typename T1, typename... Ts>
224 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
225 CheckFailed(Message);
226 if (OS)
227 WriteTs(V1, Vs...);
228 }
229
230 /// A debug info check failed.
231 void DebugInfoCheckFailed(const Twine &Message) {
232 if (OS)
233 *OS << Message << '\n';
234 Broken |= TreatBrokenDebugInfoAsError;
235 BrokenDebugInfo = true;
236 }
237
238 /// A debug info check failed (with values to print).
239 template <typename T1, typename... Ts>
240 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
241 const Ts &... Vs) {
242 DebugInfoCheckFailed(Message);
243 if (OS)
244 WriteTs(V1, Vs...);
245 }
246};
247
248} // namespace llvm
249
250namespace {
251
252class Verifier : public InstVisitor<Verifier>, VerifierSupport {
253 friend class InstVisitor<Verifier>;
254
255 DominatorTree DT;
256
257 /// \brief When verifying a basic block, keep track of all of the
258 /// instructions we have seen so far.
259 ///
260 /// This allows us to do efficient dominance checks for the case when an
261 /// instruction has an operand that is an instruction in the same block.
262 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
263
264 /// \brief Keep track of the metadata nodes that have been checked already.
265 SmallPtrSet<const Metadata *, 32> MDNodes;
266
267 /// Keep track which DISubprogram is attached to which function.
268 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
269
270 /// Track all DICompileUnits visited.
271 SmallPtrSet<const Metadata *, 2> CUVisited;
272
273 /// \brief The result type for a landingpad.
274 Type *LandingPadResultTy;
275
276 /// \brief Whether we've seen a call to @llvm.localescape in this function
277 /// already.
278 bool SawFrameEscape;
279
280 /// Whether the current function has a DISubprogram attached to it.
281 bool HasDebugInfo = false;
282
283 /// Stores the count of how many objects were passed to llvm.localescape for a
284 /// given function and the largest index passed to llvm.localrecover.
285 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
286
287 // Maps catchswitches and cleanuppads that unwind to siblings to the
288 // terminators that indicate the unwind, used to detect cycles therein.
289 MapVector<Instruction *, TerminatorInst *> SiblingFuncletInfo;
290
291 /// Cache of constants visited in search of ConstantExprs.
292 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
293
294 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
295 SmallVector<const Function *, 4> DeoptimizeDeclarations;
296
297 // Verify that this GlobalValue is only used in this module.
298 // This map is used to avoid visiting uses twice. We can arrive at a user
299 // twice, if they have multiple operands. In particular for very large
300 // constant expressions, we can arrive at a particular user many times.
301 SmallPtrSet<const Value *, 32> GlobalValueVisited;
302
303 // Keeps track of duplicate function argument debug info.
304 SmallVector<const DILocalVariable *, 16> DebugFnArgs;
305
306 TBAAVerifier TBAAVerifyHelper;
307
308 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
309
310public:
311 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
312 const Module &M)
313 : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
314 SawFrameEscape(false), TBAAVerifyHelper(this) {
315 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
316 }
317
318 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
319
320 bool verify(const Function &F) {
321 assert(F.getParent() == &M &&(static_cast <bool> (F.getParent() == &M &&
"An instance of this class only works with a specific module!"
) ? void (0) : __assert_fail ("F.getParent() == &M && \"An instance of this class only works with a specific module!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/IR/Verifier.cpp"
, 322, __extension__ __PRETTY_FUNCTION__))
322 "An instance of this class only works with a specific module!")(static_cast <bool> (F.getParent() == &M &&
"An instance of this class only works with a specific module!"
) ? void (0) : __assert_fail ("F.getParent() == &M && \"An instance of this class only works with a specific module!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/IR/Verifier.cpp"
, 322, __extension__ __PRETTY_FUNCTION__))
;
323
324 // First ensure the function is well-enough formed to compute dominance
325 // information, and directly compute a dominance tree. We don't rely on the
326 // pass manager to provide this as it isolates us from a potentially
327 // out-of-date dominator tree and makes it significantly more complex to run
328 // this code outside of a pass manager.
329 // FIXME: It's really gross that we have to cast away constness here.
330 if (!F.empty())
331 DT.recalculate(const_cast<Function &>(F));
332
333 for (const BasicBlock &BB : F) {
334 if (!BB.empty() && BB.back().isTerminator())
335 continue;
336
337 if (OS) {
338 *OS << "Basic Block in function '" << F.getName()
339 << "' does not have terminator!\n";
340 BB.printAsOperand(*OS, true, MST);
341 *OS << "\n";
342 }
343 return false;
344 }
345
346 Broken = false;
347 // FIXME: We strip const here because the inst visitor strips const.
348 visit(const_cast<Function &>(F));
349 verifySiblingFuncletUnwinds();
350 InstsInThisBlock.clear();
351 DebugFnArgs.clear();
352 LandingPadResultTy = nullptr;
353 SawFrameEscape = false;
354 SiblingFuncletInfo.clear();
355
356 return !Broken;
357 }
358
359 /// Verify the module that this instance of \c Verifier was initialized with.
360 bool verify() {
361 Broken = false;
362
363 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
364 for (const Function &F : M)
365 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
366 DeoptimizeDeclarations.push_back(&F);
367
368 // Now that we've visited every function, verify that we never asked to
369 // recover a frame index that wasn't escaped.
370 verifyFrameRecoverIndices();
371 for (const GlobalVariable &GV : M.globals())
372 visitGlobalVariable(GV);
373
374 for (const GlobalAlias &GA : M.aliases())
375 visitGlobalAlias(GA);
376
377 for (const NamedMDNode &NMD : M.named_metadata())
378 visitNamedMDNode(NMD);
379
380 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
381 visitComdat(SMEC.getValue());
382
383 visitModuleFlags(M);
384 visitModuleIdents(M);
385
386 verifyCompileUnits();
387
388 verifyDeoptimizeCallingConvs();
389 DISubprogramAttachments.clear();
390 return !Broken;
391 }
392
393private:
394 // Verification methods...
395 void visitGlobalValue(const GlobalValue &GV);
396 void visitGlobalVariable(const GlobalVariable &GV);
397 void visitGlobalAlias(const GlobalAlias &GA);
398 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
399 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
400 const GlobalAlias &A, const Constant &C);
401 void visitNamedMDNode(const NamedMDNode &NMD);
402 void visitMDNode(const MDNode &MD);
403 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
404 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
405 void visitComdat(const Comdat &C);
406 void visitModuleIdents(const Module &M);
407 void visitModuleFlags(const Module &M);
408 void visitModuleFlag(const MDNode *Op,
409 DenseMap<const MDString *, const MDNode *> &SeenIDs,
410 SmallVectorImpl<const MDNode *> &Requirements);
411 void visitFunction(const Function &F);
412 void visitBasicBlock(BasicBlock &BB);
413 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
414 void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
415
416 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
417#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
418#include "llvm/IR/Metadata.def"
419 void visitDIScope(const DIScope &N);
420 void visitDIVariable(const DIVariable &N);
421 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
422 void visitDITemplateParameter(const DITemplateParameter &N);
423
424 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
425
426 // InstVisitor overrides...
427 using InstVisitor<Verifier>::visit;
428 void visit(Instruction &I);
429
430 void visitTruncInst(TruncInst &I);
431 void visitZExtInst(ZExtInst &I);
432 void visitSExtInst(SExtInst &I);
433 void visitFPTruncInst(FPTruncInst &I);
434 void visitFPExtInst(FPExtInst &I);
435 void visitFPToUIInst(FPToUIInst &I);
436 void visitFPToSIInst(FPToSIInst &I);
437 void visitUIToFPInst(UIToFPInst &I);
438 void visitSIToFPInst(SIToFPInst &I);
439 void visitIntToPtrInst(IntToPtrInst &I);
440 void visitPtrToIntInst(PtrToIntInst &I);
441 void visitBitCastInst(BitCastInst &I);
442 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
443 void visitPHINode(PHINode &PN);
444 void visitBinaryOperator(BinaryOperator &B);
445 void visitICmpInst(ICmpInst &IC);
446 void visitFCmpInst(FCmpInst &FC);
447 void visitExtractElementInst(ExtractElementInst &EI);
448 void visitInsertElementInst(InsertElementInst &EI);
449 void visitShuffleVectorInst(ShuffleVectorInst &EI);
450 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
451 void visitCallInst(CallInst &CI);
452 void visitInvokeInst(InvokeInst &II);
453 void visitGetElementPtrInst(GetElementPtrInst &GEP);
454 void visitLoadInst(LoadInst &LI);
455 void visitStoreInst(StoreInst &SI);
456 void verifyDominatesUse(Instruction &I, unsigned i);
457 void visitInstruction(Instruction &I);
458 void visitTerminatorInst(TerminatorInst &I);
459 void visitBranchInst(BranchInst &BI);
460 void visitReturnInst(ReturnInst &RI);
461 void visitSwitchInst(SwitchInst &SI);
462 void visitIndirectBrInst(IndirectBrInst &BI);
463 void visitSelectInst(SelectInst &SI);
464 void visitUserOp1(Instruction &I);
465 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
466 void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
467 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
468 void visitDbgIntrinsic(StringRef Kind, DbgInfoIntrinsic &DII);
469 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
470 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
471 void visitFenceInst(FenceInst &FI);
472 void visitAllocaInst(AllocaInst &AI);
473 void visitExtractValueInst(ExtractValueInst &EVI);
474 void visitInsertValueInst(InsertValueInst &IVI);
475 void visitEHPadPredecessors(Instruction &I);
476 void visitLandingPadInst(LandingPadInst &LPI);
477 void visitResumeInst(ResumeInst &RI);
478 void visitCatchPadInst(CatchPadInst &CPI);
479 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
480 void visitCleanupPadInst(CleanupPadInst &CPI);
481 void visitFuncletPadInst(FuncletPadInst &FPI);
482 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
483 void visitCleanupReturnInst(CleanupReturnInst &CRI);
484
485 void verifyCallSite(CallSite CS);
486 void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal);
487 void verifySwiftErrorValue(const Value *SwiftErrorVal);
488 void verifyMustTailCall(CallInst &CI);
489 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
490 unsigned ArgNo, std::string &Suffix);
491 bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
492 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
493 const Value *V);
494 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
495 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
496 const Value *V);
497 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
498
499 void visitConstantExprsRecursively(const Constant *EntryC);
500 void visitConstantExpr(const ConstantExpr *CE);
501 void verifyStatepoint(ImmutableCallSite CS);
502 void verifyFrameRecoverIndices();
503 void verifySiblingFuncletUnwinds();
504
505 void verifyFragmentExpression(const DbgInfoIntrinsic &I);
506 template <typename ValueOrMetadata>
507 void verifyFragmentExpression(const DIVariable &V,
508 DIExpression::FragmentInfo Fragment,
509 ValueOrMetadata *Desc);
510 void verifyFnArgs(const DbgInfoIntrinsic &I);
511
512 /// Module-level debug info verification...
513 void verifyCompileUnits();
514
515 /// Module-level verification that all @llvm.experimental.deoptimize
516 /// declarations share the same calling convention.
517 void verifyDeoptimizeCallingConvs();
518};
519
520} // end anonymous namespace
521
522/// We know that cond should be true, if not print an error message.
523#define Assert(C, ...)do { if (!(C)) { CheckFailed(...); return; } } while (false) \
524 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
525
526/// We know that a debug info condition should be true, if not print
527/// an error message.
528#define AssertDI(C, ...)do { if (!(C)) { DebugInfoCheckFailed(...); return; } } while
(false)
\
529 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
530
531void Verifier::visit(Instruction &I) {
532 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
533 Assert(I.getOperand(i) != nullptr, "Operand is null", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Operand is null"
, &I); return; } } while (false)
;
534 InstVisitor<Verifier>::visit(I);
535}
536
537// Helper to recursively iterate over indirect users. By
538// returning false, the callback can ask to stop recursing
539// further.
540static void forEachUser(const Value *User,
541 SmallPtrSet<const Value *, 32> &Visited,
542 llvm::function_ref<bool(const Value *)> Callback) {
543 if (!Visited.insert(User).second)
544 return;
545 for (const Value *TheNextUser : User->materialized_users())
546 if (Callback(TheNextUser))
547 forEachUser(TheNextUser, Visited, Callback);
548}
549
550void Verifier::visitGlobalValue(const GlobalValue &GV) {
551 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),do { if (!(!GV.isDeclaration() || GV.hasValidDeclarationLinkage
())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (false)
552 "Global is external, but doesn't have external or weak linkage!", &GV)do { if (!(!GV.isDeclaration() || GV.hasValidDeclarationLinkage
())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (false)
;
553
554 Assert(GV.getAlignment() <= Value::MaximumAlignment,do { if (!(GV.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &GV
); return; } } while (false)
555 "huge alignment values are unsupported", &GV)do { if (!(GV.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &GV
); return; } } while (false)
;
556 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (false)
557 "Only global variables can have appending linkage!", &GV)do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (false)
;
558
559 if (GV.hasAppendingLinkage()) {
560 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
561 Assert(GVar && GVar->getValueType()->isArrayTy(),do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (false)
562 "Only global arrays can have appending linkage!", GVar)do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (false)
;
563 }
564
565 if (GV.isDeclarationForLinker())
566 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("Declaration may not be in a Comdat!"
, &GV); return; } } while (false)
;
567
568 if (GV.hasDLLImportStorageClass())
569 Assert(!GV.isDSOLocal(),do { if (!(!GV.isDSOLocal())) { CheckFailed("GlobalValue with DLLImport Storage is dso_local!"
, &GV); return; } } while (false)
570 "GlobalValue with DLLImport Storage is dso_local!", &GV)do { if (!(!GV.isDSOLocal())) { CheckFailed("GlobalValue with DLLImport Storage is dso_local!"
, &GV); return; } } while (false)
;
571
572 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
573 if (const Instruction *I = dyn_cast<Instruction>(V)) {
574 if (!I->getParent() || !I->getParent()->getParent())
575 CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
576 I);
577 else if (I->getParent()->getParent()->getParent() != &M)
578 CheckFailed("Global is referenced in a different module!", &GV, &M, I,
579 I->getParent()->getParent(),
580 I->getParent()->getParent()->getParent());
581 return false;
582 } else if (const Function *F = dyn_cast<Function>(V)) {
583 if (F->getParent() != &M)
584 CheckFailed("Global is used by function in a different module", &GV, &M,
585 F, F->getParent());
586 return false;
587 }
588 return true;
589 });
590}
591
592void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
593 if (GV.hasInitializer()) {
594 Assert(GV.getInitializer()->getType() == GV.getValueType(),do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
595 "Global variable initializer type does not match global "do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
596 "variable type!",do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
597 &GV)do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
;
598 // If the global has common linkage, it must have a zero initializer and
599 // cannot be constant.
600 if (GV.hasCommonLinkage()) {
601 Assert(GV.getInitializer()->isNullValue(),do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (false)
602 "'common' global must have a zero initializer!", &GV)do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (false)
;
603 Assert(!GV.isConstant(), "'common' global may not be marked constant!",do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (false)
604 &GV)do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (false)
;
605 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("'common' global may not be in a Comdat!"
, &GV); return; } } while (false)
;
606 }
607 }
608
609 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
610 GV.getName() == "llvm.global_dtors")) {
611 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
612 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
;
613 // Don't worry about emitting an error for it not being an array,
614 // visitGlobalValue will complain on appending non-array.
615 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
616 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
617 PointerType *FuncPtrTy =
618 FunctionType::get(Type::getVoidTy(Context), false)->getPointerTo();
619 // FIXME: Reject the 2-field form in LLVM 4.0.
620 Assert(STy &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
621 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
622 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
623 STy->getTypeAtIndex(1) == FuncPtrTy,do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
624 "wrong type for intrinsic global variable", &GV)do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
;
625 if (STy->getNumElements() == 3) {
626 Type *ETy = STy->getTypeAtIndex(2);
627 Assert(ETy->isPointerTy() &&do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
628 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
629 "wrong type for intrinsic global variable", &GV)do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
;
630 }
631 }
632 }
633
634 if (GV.hasName() && (GV.getName() == "llvm.used" ||
635 GV.getName() == "llvm.compiler.used")) {
636 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
637 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
;
638 Type *GVType = GV.getValueType();
639 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
640 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
641 Assert(PTy, "wrong type for intrinsic global variable", &GV)do { if (!(PTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
;
642 if (GV.hasInitializer()) {
643 const Constant *Init = GV.getInitializer();
644 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
645 Assert(InitArray, "wrong initalizer for intrinsic global variable",do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (false)
646 Init)do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (false)
;
647 for (Value *Op : InitArray->operands()) {
648 Value *V = Op->stripPointerCastsNoFollowAliases();
649 Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
650 isa<GlobalAlias>(V),do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
651 "invalid llvm.used member", V)do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
;
652 Assert(V->hasName(), "members of llvm.used must be named", V)do { if (!(V->hasName())) { CheckFailed("members of llvm.used must be named"
, V); return; } } while (false)
;
653 }
654 }
655 }
656 }
657
658 Assert(!GV.hasDLLImportStorageClass() ||do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
659 (GV.isDeclaration() && GV.hasExternalLinkage()) ||do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
660 GV.hasAvailableExternallyLinkage(),do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
661 "Global is marked as dllimport, but not external", &GV)do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
;
662
663 // Visit any debug info attachments.
664 SmallVector<MDNode *, 1> MDs;
665 GV.getMetadata(LLVMContext::MD_dbg, MDs);
666 for (auto *MD : MDs) {
667 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
668 visitDIGlobalVariableExpression(*GVE);
669 else
670 AssertDI(false, "!dbg attachment of global variable must be a "do { if (!(false)) { DebugInfoCheckFailed("!dbg attachment of global variable must be a "
"DIGlobalVariableExpression"); return; } } while (false)
671 "DIGlobalVariableExpression")do { if (!(false)) { DebugInfoCheckFailed("!dbg attachment of global variable must be a "
"DIGlobalVariableExpression"); return; } } while (false)
;
672 }
673
674 if (!GV.hasInitializer()) {
675 visitGlobalValue(GV);
676 return;
677 }
678
679 // Walk any aggregate initializers looking for bitcasts between address spaces
680 visitConstantExprsRecursively(GV.getInitializer());
681
682 visitGlobalValue(GV);
683}
684
685void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
686 SmallPtrSet<const GlobalAlias*, 4> Visited;
687 Visited.insert(&GA);
688 visitAliaseeSubExpr(Visited, GA, C);
689}
690
691void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
692 const GlobalAlias &GA, const Constant &C) {
693 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
694 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (false)
695 &GA)do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (false)
;
696
697 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
698 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA)do { if (!(Visited.insert(GA2).second)) { CheckFailed("Aliases cannot form a cycle"
, &GA); return; } } while (false)
;
699
700 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias"
, &GA); return; } } while (false)
701 &GA)do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias"
, &GA); return; } } while (false)
;
702 } else {
703 // Only continue verifying subexpressions of GlobalAliases.
704 // Do not recurse into global initializers.
705 return;
706 }
707 }
708
709 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
710 visitConstantExprsRecursively(CE);
711
712 for (const Use &U : C.operands()) {
713 Value *V = &*U;
714 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
715 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
716 else if (const auto *C2 = dyn_cast<Constant>(V))
717 visitAliaseeSubExpr(Visited, GA, *C2);
718 }
719}
720
721void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
722 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
723 "Alias should have private, internal, linkonce, weak, linkonce_odr, "do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
724 "weak_odr, or external linkage!",do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
725 &GA)do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
;
726 const Constant *Aliasee = GA.getAliasee();
727 Assert(Aliasee, "Aliasee cannot be NULL!", &GA)do { if (!(Aliasee)) { CheckFailed("Aliasee cannot be NULL!",
&GA); return; } } while (false)
;
728 Assert(GA.getType() == Aliasee->getType(),do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (false)
729 "Alias and aliasee types should match!", &GA)do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (false)
;
730
731 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (false)
732 "Aliasee should be either GlobalValue or ConstantExpr", &GA)do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (false)
;
733
734 visitAliaseeSubExpr(GA, *Aliasee);
735
736 visitGlobalValue(GA);
737}
738
739void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
740 // There used to be various other llvm.dbg.* nodes, but we don't support
741 // upgrading them and we want to reserve the namespace for future uses.
742 if (NMD.getName().startswith("llvm.dbg."))
743 AssertDI(NMD.getName() == "llvm.dbg.cu",do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
744 "unrecognized named metadata node in the llvm.dbg namespace",do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
745 &NMD)do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
;
746 for (const MDNode *MD : NMD.operands()) {
747 if (NMD.getName() == "llvm.dbg.cu")
748 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD)do { if (!(MD && isa<DICompileUnit>(MD))) { DebugInfoCheckFailed
("invalid compile unit", &NMD, MD); return; } } while (false
)
;
749
750 if (!MD)
751 continue;
752
753 visitMDNode(*MD);
754 }
755}
756
757void Verifier::visitMDNode(const MDNode &MD) {
758 // Only visit each node once. Metadata can be mutually recursive, so this
759 // avoids infinite recursion here, as well as being an optimization.
760 if (!MDNodes.insert(&MD).second)
761 return;
762
763 switch (MD.getMetadataID()) {
764 default:
765 llvm_unreachable("Invalid MDNode subclass")::llvm::llvm_unreachable_internal("Invalid MDNode subclass", "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/IR/Verifier.cpp"
, 765)
;
766 case Metadata::MDTupleKind:
767 break;
768#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
769 case Metadata::CLASS##Kind: \
770 visit##CLASS(cast<CLASS>(MD)); \
771 break;
772#include "llvm/IR/Metadata.def"
773 }
774
775 for (const Metadata *Op : MD.operands()) {
776 if (!Op)
777 continue;
778 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (false)
779 &MD, Op)do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (false)
;
780 if (auto *N = dyn_cast<MDNode>(Op)) {
781 visitMDNode(*N);
782 continue;
783 }
784 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
785 visitValueAsMetadata(*V, nullptr);
786 continue;
787 }
788 }
789
790 // Check these last, so we diagnose problems in operands first.
791 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD)do { if (!(!MD.isTemporary())) { CheckFailed("Expected no forward declarations!"
, &MD); return; } } while (false)
;
792 Assert(MD.isResolved(), "All nodes should be resolved!", &MD)do { if (!(MD.isResolved())) { CheckFailed("All nodes should be resolved!"
, &MD); return; } } while (false)
;
793}
794
795void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
796 Assert(MD.getValue(), "Expected valid value", &MD)do { if (!(MD.getValue())) { CheckFailed("Expected valid value"
, &MD); return; } } while (false)
;
797 Assert(!MD.getValue()->getType()->isMetadataTy(),do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (false)
798 "Unexpected metadata round-trip through values", &MD, MD.getValue())do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (false)
;
799
800 auto *L = dyn_cast<LocalAsMetadata>(&MD);
801 if (!L)
802 return;
803
804 Assert(F, "function-local metadata used outside a function", L)do { if (!(F)) { CheckFailed("function-local metadata used outside a function"
, L); return; } } while (false)
;
805
806 // If this was an instruction, bb, or argument, verify that it is in the
807 // function that we expect.
808 Function *ActualF = nullptr;
809 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
810 Assert(I->getParent(), "function-local metadata not in basic block", L, I)do { if (!(I->getParent())) { CheckFailed("function-local metadata not in basic block"
, L, I); return; } } while (false)
;
811 ActualF = I->getParent()->getParent();
812 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
813 ActualF = BB->getParent();
814 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
815 ActualF = A->getParent();
816 assert(ActualF && "Unimplemented function local metadata case!")(static_cast <bool> (ActualF && "Unimplemented function local metadata case!"
) ? void (0) : __assert_fail ("ActualF && \"Unimplemented function local metadata case!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/IR/Verifier.cpp"
, 816, __extension__ __PRETTY_FUNCTION__))
;
817
818 Assert(ActualF == F, "function-local metadata used in wrong function", L)do { if (!(ActualF == F)) { CheckFailed("function-local metadata used in wrong function"
, L); return; } } while (false)
;
819}
820
821void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
822 Metadata *MD = MDV.getMetadata();
823 if (auto *N = dyn_cast<MDNode>(MD)) {
824 visitMDNode(*N);
825 return;
826 }
827
828 // Only visit each node once. Metadata can be mutually recursive, so this
829 // avoids infinite recursion here, as well as being an optimization.
830 if (!MDNodes.insert(MD).second)
831 return;
832
833 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
834 visitValueAsMetadata(*V, F);
835}
836
837static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
838static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
839static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
840
841void Verifier::visitDILocation(const DILocation &N) {
842 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
843 "location requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
844 if (auto *IA = N.getRawInlinedAt())
845 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA)do { if (!(isa<DILocation>(IA))) { DebugInfoCheckFailed
("inlined-at should be a location", &N, IA); return; } } while
(false)
;
846 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
847 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N)do { if (!(SP->isDefinition())) { DebugInfoCheckFailed("scope points into the type hierarchy"
, &N); return; } } while (false)
;
848}
849
850void Verifier::visitGenericDINode(const GenericDINode &N) {
851 AssertDI(N.getTag(), "invalid tag", &N)do { if (!(N.getTag())) { DebugInfoCheckFailed("invalid tag",
&N); return; } } while (false)
;
852}
853
854void Verifier::visitDIScope(const DIScope &N) {
855 if (auto *F = N.getRawFile())
856 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
857}
858
859void Verifier::visitDISubrange(const DISubrange &N) {
860 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
861 AssertDI(N.getCount() >= -1, "invalid subrange count", &N)do { if (!(N.getCount() >= -1)) { DebugInfoCheckFailed("invalid subrange count"
, &N); return; } } while (false)
;
862}
863
864void Verifier::visitDIEnumerator(const DIEnumerator &N) {
865 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_enumerator)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
866}
867
868void Verifier::visitDIBasicType(const DIBasicType &N) {
869 AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
870 N.getTag() == dwarf::DW_TAG_unspecified_type,do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
871 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
;
872}
873
874void Verifier::visitDIDerivedType(const DIDerivedType &N) {
875 // Common scope checks.
876 visitDIScope(N);
877
878 AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
879 N.getTag() == dwarf::DW_TAG_pointer_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
880 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
881 N.getTag() == dwarf::DW_TAG_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
882 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
883 N.getTag() == dwarf::DW_TAG_const_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
884 N.getTag() == dwarf::DW_TAG_volatile_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
885 N.getTag() == dwarf::DW_TAG_restrict_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
886 N.getTag() == dwarf::DW_TAG_atomic_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
887 N.getTag() == dwarf::DW_TAG_member ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
888 N.getTag() == dwarf::DW_TAG_inheritance ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
889 N.getTag() == dwarf::DW_TAG_friend,do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
890 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
;
891 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
892 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,do { if (!(isType(N.getRawExtraData()))) { DebugInfoCheckFailed
("invalid pointer to member type", &N, N.getRawExtraData(
)); return; } } while (false)
893 N.getRawExtraData())do { if (!(isType(N.getRawExtraData()))) { DebugInfoCheckFailed
("invalid pointer to member type", &N, N.getRawExtraData(
)); return; } } while (false)
;
894 }
895
896 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
897 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
898 N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
;
899
900 if (N.getDWARFAddressSpace()) {
901 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
902 N.getTag() == dwarf::DW_TAG_reference_type,do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
903 "DWARF address space only applies to pointer or reference types",do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
904 &N)do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
;
905 }
906}
907
908static bool hasConflictingReferenceFlags(unsigned Flags) {
909 return (Flags & DINode::FlagLValueReference) &&
910 (Flags & DINode::FlagRValueReference);
911}
912
913void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
914 auto *Params = dyn_cast<MDTuple>(&RawParams);
915 AssertDI(Params, "invalid template params", &N, &RawParams)do { if (!(Params)) { DebugInfoCheckFailed("invalid template params"
, &N, &RawParams); return; } } while (false)
;
916 for (Metadata *Op : Params->operands()) {
917 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",do { if (!(Op && isa<DITemplateParameter>(Op)))
{ DebugInfoCheckFailed("invalid template parameter", &N,
Params, Op); return; } } while (false)
918 &N, Params, Op)do { if (!(Op && isa<DITemplateParameter>(Op)))
{ DebugInfoCheckFailed("invalid template parameter", &N,
Params, Op); return; } } while (false)
;
919 }
920}
921
922void Verifier::visitDICompositeType(const DICompositeType &N) {
923 // Common scope checks.
924 visitDIScope(N);
925
926 AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
927 N.getTag() == dwarf::DW_TAG_structure_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
928 N.getTag() == dwarf::DW_TAG_union_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
929 N.getTag() == dwarf::DW_TAG_enumeration_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
930 N.getTag() == dwarf::DW_TAG_class_type,do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
931 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
;
932
933 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
934 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
935 N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
;
936
937 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { DebugInfoCheckFailed("invalid composite elements", &
N, N.getRawElements()); return; } } while (false)
938 "invalid composite elements", &N, N.getRawElements())do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { DebugInfoCheckFailed("invalid composite elements", &
N, N.getRawElements()); return; } } while (false)
;
939 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,do { if (!(isType(N.getRawVTableHolder()))) { DebugInfoCheckFailed
("invalid vtable holder", &N, N.getRawVTableHolder()); return
; } } while (false)
940 N.getRawVTableHolder())do { if (!(isType(N.getRawVTableHolder()))) { DebugInfoCheckFailed
("invalid vtable holder", &N, N.getRawVTableHolder()); return
; } } while (false)
;
941 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
942 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
943 if (auto *Params = N.getRawTemplateParams())
944 visitTemplateParams(N, *Params);
945
946 if (N.getTag() == dwarf::DW_TAG_class_type ||
947 N.getTag() == dwarf::DW_TAG_union_type) {
948 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),do { if (!(N.getFile() && !N.getFile()->getFilename
().empty())) { DebugInfoCheckFailed("class/union requires a filename"
, &N, N.getFile()); return; } } while (false)
949 "class/union requires a filename", &N, N.getFile())do { if (!(N.getFile() && !N.getFile()->getFilename
().empty())) { DebugInfoCheckFailed("class/union requires a filename"
, &N, N.getFile()); return; } } while (false)
;
950 }
951}
952
953void Verifier::visitDISubroutineType(const DISubroutineType &N) {
954 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subroutine_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
955 if (auto *Types = N.getRawTypeArray()) {
956 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types)do { if (!(isa<MDTuple>(Types))) { DebugInfoCheckFailed
("invalid composite elements", &N, Types); return; } } while
(false)
;
957 for (Metadata *Ty : N.getTypeArray()->operands()) {
958 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty)do { if (!(isType(Ty))) { DebugInfoCheckFailed("invalid subroutine type ref"
, &N, Types, Ty); return; } } while (false)
;
959 }
960 }
961 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
962 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
963}
964
965void Verifier::visitDIFile(const DIFile &N) {
966 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_file_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
967 AssertDI((N.getChecksumKind() != DIFile::CSK_None ||do { if (!((N.getChecksumKind() != DIFile::CSK_None || N.getChecksum
().empty()))) { DebugInfoCheckFailed("invalid checksum kind",
&N); return; } } while (false)
968 N.getChecksum().empty()), "invalid checksum kind", &N)do { if (!((N.getChecksumKind() != DIFile::CSK_None || N.getChecksum
().empty()))) { DebugInfoCheckFailed("invalid checksum kind",
&N); return; } } while (false)
;
969}
970
971void Verifier::visitDICompileUnit(const DICompileUnit &N) {
972 AssertDI(N.isDistinct(), "compile units must be distinct", &N)do { if (!(N.isDistinct())) { DebugInfoCheckFailed("compile units must be distinct"
, &N); return; } } while (false)
;
973 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_compile_unit)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
974
975 // Don't bother verifying the compilation directory or producer string
976 // as those could be empty.
977 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { DebugInfoCheckFailed("invalid file", &N, N.getRawFile
()); return; } } while (false)
978 N.getRawFile())do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { DebugInfoCheckFailed("invalid file", &N, N.getRawFile
()); return; } } while (false)
;
979 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,do { if (!(!N.getFile()->getFilename().empty())) { DebugInfoCheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
false)
980 N.getFile())do { if (!(!N.getFile()->getFilename().empty())) { DebugInfoCheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
false)
;
981
982 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind
))) { DebugInfoCheckFailed("invalid emission kind", &N); return
; } } while (false)
983 "invalid emission kind", &N)do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind
))) { DebugInfoCheckFailed("invalid emission kind", &N); return
; } } while (false)
;
984
985 if (auto *Array = N.getRawEnumTypes()) {
986 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid enum list", &N, Array); return; } } while (false
)
;
987 for (Metadata *Op : N.getEnumTypes()->operands()) {
988 auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
989 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { DebugInfoCheckFailed("invalid enum type", &N, N.getEnumTypes
(), Op); return; } } while (false)
990 "invalid enum type", &N, N.getEnumTypes(), Op)do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { DebugInfoCheckFailed("invalid enum type", &N, N.getEnumTypes
(), Op); return; } } while (false)
;
991 }
992 }
993 if (auto *Array = N.getRawRetainedTypes()) {
994 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid retained type list", &N, Array); return; } } while
(false)
;
995 for (Metadata *Op : N.getRetainedTypes()->operands()) {
996 AssertDI(Op && (isa<DIType>(Op) ||do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
997 (isa<DISubprogram>(Op) &&do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
998 !cast<DISubprogram>(Op)->isDefinition())),do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
999 "invalid retained type", &N, Op)do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
;
1000 }
1001 }
1002 if (auto *Array = N.getRawGlobalVariables()) {
1003 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid global variable list", &N, Array); return; } } while
(false)
;
1004 for (Metadata *Op : N.getGlobalVariables()->operands()) {
1005 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),do { if (!(Op && (isa<DIGlobalVariableExpression>
(Op)))) { DebugInfoCheckFailed("invalid global variable ref",
&N, Op); return; } } while (false)
1006 "invalid global variable ref", &N, Op)do { if (!(Op && (isa<DIGlobalVariableExpression>
(Op)))) { DebugInfoCheckFailed("invalid global variable ref",
&N, Op); return; } } while (false)
;
1007 }
1008 }
1009 if (auto *Array = N.getRawImportedEntities()) {
1010 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid imported entity list", &N, Array); return; } } while
(false)
;
1011 for (Metadata *Op : N.getImportedEntities()->operands()) {
1012 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",do { if (!(Op && isa<DIImportedEntity>(Op))) { DebugInfoCheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(false)
1013 &N, Op)do { if (!(Op && isa<DIImportedEntity>(Op))) { DebugInfoCheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(false)
;
1014 }
1015 }
1016 if (auto *Array = N.getRawMacros()) {
1017 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid macro list", &N, Array); return; } } while (false
)
;
1018 for (Metadata *Op : N.getMacros()->operands()) {
1019 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { DebugInfoCheckFailed
("invalid macro ref", &N, Op); return; } } while (false)
;
1020 }
1021 }
1022 CUVisited.insert(&N);
1023}
1024
1025void Verifier::visitDISubprogram(const DISubprogram &N) {
1026 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subprogram)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1027 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
1028 if (auto *F = N.getRawFile())
1029 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1030 else
1031 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine())do { if (!(N.getLine() == 0)) { DebugInfoCheckFailed("line specified with no file"
, &N, N.getLine()); return; } } while (false)
;
1032 if (auto *T = N.getRawType())
1033 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T)do { if (!(isa<DISubroutineType>(T))) { DebugInfoCheckFailed
("invalid subroutine type", &N, T); return; } } while (false
)
;
1034 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,do { if (!(isType(N.getRawContainingType()))) { DebugInfoCheckFailed
("invalid containing type", &N, N.getRawContainingType())
; return; } } while (false)
1035 N.getRawContainingType())do { if (!(isType(N.getRawContainingType()))) { DebugInfoCheckFailed
("invalid containing type", &N, N.getRawContainingType())
; return; } } while (false)
;
1036 if (auto *Params = N.getRawTemplateParams())
1037 visitTemplateParams(N, *Params);
1038 if (auto *S = N.getRawDeclaration())
1039 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { DebugInfoCheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (false)
1040 "invalid subprogram declaration", &N, S)do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { DebugInfoCheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (false)
;
1041 if (auto *RawVars = N.getRawVariables()) {
1042 auto *Vars = dyn_cast<MDTuple>(RawVars);
1043 AssertDI(Vars, "invalid variable list", &N, RawVars)do { if (!(Vars)) { DebugInfoCheckFailed("invalid variable list"
, &N, RawVars); return; } } while (false)
;
1044 for (Metadata *Op : Vars->operands()) {
1045 AssertDI(Op && isa<DILocalVariable>(Op), "invalid local variable", &N,do { if (!(Op && isa<DILocalVariable>(Op))) { DebugInfoCheckFailed
("invalid local variable", &N, Vars, Op); return; } } while
(false)
1046 Vars, Op)do { if (!(Op && isa<DILocalVariable>(Op))) { DebugInfoCheckFailed
("invalid local variable", &N, Vars, Op); return; } } while
(false)
;
1047 }
1048 }
1049 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
1050 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
1051
1052 auto *Unit = N.getRawUnit();
1053 if (N.isDefinition()) {
1054 // Subprogram definitions (not part of the type hierarchy).
1055 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N)do { if (!(N.isDistinct())) { DebugInfoCheckFailed("subprogram definitions must be distinct"
, &N); return; } } while (false)
;
1056 AssertDI(Unit, "subprogram definitions must have a compile unit", &N)do { if (!(Unit)) { DebugInfoCheckFailed("subprogram definitions must have a compile unit"
, &N); return; } } while (false)
;
1057 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit)do { if (!(isa<DICompileUnit>(Unit))) { DebugInfoCheckFailed
("invalid unit type", &N, Unit); return; } } while (false
)
;
1058 } else {
1059 // Subprogram declarations (part of the type hierarchy).
1060 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N)do { if (!(!Unit)) { DebugInfoCheckFailed("subprogram declarations must not have a compile unit"
, &N); return; } } while (false)
;
1061 }
1062
1063 if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1064 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1065 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes)do { if (!(ThrownTypes)) { DebugInfoCheckFailed("invalid thrown types list"
, &N, RawThrownTypes); return; } } while (false)
;
1066 for (Metadata *Op : ThrownTypes->operands())
1067 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,do { if (!(Op && isa<DIType>(Op))) { DebugInfoCheckFailed
("invalid thrown type", &N, ThrownTypes, Op); return; } }
while (false)
1068 Op)do { if (!(Op && isa<DIType>(Op))) { DebugInfoCheckFailed
("invalid thrown type", &N, ThrownTypes, Op); return; } }
while (false)
;
1069 }
1070}
1071
1072void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1073 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_lexical_block)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1074 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("invalid local scope"
, &N, N.getRawScope()); return; } } while (false)
1075 "invalid local scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("invalid local scope"
, &N, N.getRawScope()); return; } } while (false)
;
1076 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1077 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N)do { if (!(SP->isDefinition())) { DebugInfoCheckFailed("scope points into the type hierarchy"
, &N); return; } } while (false)
;
1078}
1079
1080void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1081 visitDILexicalBlockBase(N);
1082
1083 AssertDI(N.getLine() || !N.getColumn(),do { if (!(N.getLine() || !N.getColumn())) { DebugInfoCheckFailed
("cannot have column info without line info", &N); return
; } } while (false)
1084 "cannot have column info without line info", &N)do { if (!(N.getLine() || !N.getColumn())) { DebugInfoCheckFailed
("cannot have column info without line info", &N); return
; } } while (false)
;
1085}
1086
1087void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1088 visitDILexicalBlockBase(N);
1089}
1090
1091void Verifier::visitDINamespace(const DINamespace &N) {
1092 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_namespace)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1093 if (auto *S = N.getRawScope())
1094 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope ref"
, &N, S); return; } } while (false)
;
1095}
1096
1097void Verifier::visitDIMacro(const DIMacro &N) {
1098 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
1099 N.getMacinfoType() == dwarf::DW_MACINFO_undef,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
1100 "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
;
1101 AssertDI(!N.getName().empty(), "anonymous macro", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("anonymous macro"
, &N); return; } } while (false)
;
1102 if (!N.getValue().empty()) {
1103 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix")(static_cast <bool> (N.getValue().data()[0] != ' ' &&
"Macro value has a space prefix") ? void (0) : __assert_fail
("N.getValue().data()[0] != ' ' && \"Macro value has a space prefix\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/IR/Verifier.cpp"
, 1103, __extension__ __PRETTY_FUNCTION__))
;
1104 }
1105}
1106
1107void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1108 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file
)) { DebugInfoCheckFailed("invalid macinfo type", &N); return
; } } while (false)
1109 "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file
)) { DebugInfoCheckFailed("invalid macinfo type", &N); return
; } } while (false)
;
1110 if (auto *F = N.getRawFile())
1111 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1112
1113 if (auto *Array = N.getRawElements()) {
1114 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid macro list", &N, Array); return; } } while (false
)
;
1115 for (Metadata *Op : N.getElements()->operands()) {
1116 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { DebugInfoCheckFailed
("invalid macro ref", &N, Op); return; } } while (false)
;
1117 }
1118 }
1119}
1120
1121void Verifier::visitDIModule(const DIModule &N) {
1122 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_module)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1123 AssertDI(!N.getName().empty(), "anonymous module", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("anonymous module"
, &N); return; } } while (false)
;
1124}
1125
1126void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1127 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1128}
1129
1130void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1131 visitDITemplateParameter(N);
1132
1133 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1134 &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
;
1135}
1136
1137void Verifier::visitDITemplateValueParameter(
1138 const DITemplateValueParameter &N) {
1139 visitDITemplateParameter(N);
1140
1141 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1142 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1143 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1144 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1145}
1146
1147void Verifier::visitDIVariable(const DIVariable &N) {
1148 if (auto *S = N.getRawScope())
1149 AssertDI(isa<DIScope>(S), "invalid scope", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope"
, &N, S); return; } } while (false)
;
1150 if (auto *F = N.getRawFile())
1151 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1152}
1153
1154void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1155 // Checks common to all variables.
1156 visitDIVariable(N);
1157
1158 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1159 AssertDI(!N.getName().empty(), "missing global variable name", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("missing global variable name"
, &N); return; } } while (false)
;
1160 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1161 AssertDI(N.getType(), "missing global variable type", &N)do { if (!(N.getType())) { DebugInfoCheckFailed("missing global variable type"
, &N); return; } } while (false)
;
1162 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1163 AssertDI(isa<DIDerivedType>(Member),do { if (!(isa<DIDerivedType>(Member))) { DebugInfoCheckFailed
("invalid static data member declaration", &N, Member); return
; } } while (false)
1164 "invalid static data member declaration", &N, Member)do { if (!(isa<DIDerivedType>(Member))) { DebugInfoCheckFailed
("invalid static data member declaration", &N, Member); return
; } } while (false)
;
1165 }
1166}
1167
1168void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1169 // Checks common to all variables.
1170 visitDIVariable(N);
1171
1172 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1173 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1174 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
1175 "local variable requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
1176}
1177
1178void Verifier::visitDIExpression(const DIExpression &N) {
1179 AssertDI(N.isValid(), "invalid expression", &N)do { if (!(N.isValid())) { DebugInfoCheckFailed("invalid expression"
, &N); return; } } while (false)
;
1180}
1181
1182void Verifier::visitDIGlobalVariableExpression(
1183 const DIGlobalVariableExpression &GVE) {
1184 AssertDI(GVE.getVariable(), "missing variable")do { if (!(GVE.getVariable())) { DebugInfoCheckFailed("missing variable"
); return; } } while (false)
;
1185 if (auto *Var = GVE.getVariable())
1186 visitDIGlobalVariable(*Var);
1187 if (auto *Expr = GVE.getExpression()) {
1188 visitDIExpression(*Expr);
1189 if (auto Fragment = Expr->getFragmentInfo())
1190 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1191 }
1192}
1193
1194void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1195 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_APPLE_property)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1196 if (auto *T = N.getRawType())
1197 AssertDI(isType(T), "invalid type ref", &N, T)do { if (!(isType(T))) { DebugInfoCheckFailed("invalid type ref"
, &N, T); return; } } while (false)
;
1198 if (auto *F = N.getRawFile())
1199 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1200}
1201
1202void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1203 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1204 N.getTag() == dwarf::DW_TAG_imported_declaration,do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1205 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1206 if (auto *S = N.getRawScope())
1207 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope for imported entity"
, &N, S); return; } } while (false)
;
1208 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,do { if (!(isDINode(N.getRawEntity()))) { DebugInfoCheckFailed
("invalid imported entity", &N, N.getRawEntity()); return
; } } while (false)
1209 N.getRawEntity())do { if (!(isDINode(N.getRawEntity()))) { DebugInfoCheckFailed
("invalid imported entity", &N, N.getRawEntity()); return
; } } while (false)
;
1210}
1211
1212void Verifier::visitComdat(const Comdat &C) {
1213 // The Module is invalid if the GlobalValue has private linkage. Entities
1214 // with private linkage don't have entries in the symbol table.
1215 if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1216 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (false)
1217 GV)do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (false)
;
1218}
1219
1220void Verifier::visitModuleIdents(const Module &M) {
1221 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1222 if (!Idents)
1223 return;
1224
1225 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1226 // Scan each llvm.ident entry and make sure that this requirement is met.
1227 for (const MDNode *N : Idents->operands()) {
1228 Assert(N->getNumOperands() == 1,do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (false)
1229 "incorrect number of operands in llvm.ident metadata", N)do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (false)
;
1230 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1231 ("invalid value for llvm.ident metadata entry operand"do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1232 "(the operand should be a string)"),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1233 N->getOperand(0))do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
;
1234 }
1235}
1236
1237void Verifier::visitModuleFlags(const Module &M) {
1238 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1239 if (!Flags) return;
1240
1241 // Scan each flag, and track the flags and requirements.
1242 DenseMap<const MDString*, const MDNode*> SeenIDs;
1243 SmallVector<const MDNode*, 16> Requirements;
1244 for (const MDNode *MDN : Flags->operands())
1245 visitModuleFlag(MDN, SeenIDs, Requirements);
1246
1247 // Validate that the requirements in the module are valid.
1248 for (const MDNode *Requirement : Requirements) {
1249 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1250 const Metadata *ReqValue = Requirement->getOperand(1);
1251
1252 const MDNode *Op = SeenIDs.lookup(Flag);
1253 if (!Op) {
1254 CheckFailed("invalid requirement on flag, flag is not present in module",
1255 Flag);
1256 continue;
1257 }
1258
1259 if (Op->getOperand(2) != ReqValue) {
1260 CheckFailed(("invalid requirement on flag, "
1261 "flag does not have the required value"),
1262 Flag);
1263 continue;
1264 }
1265 }
1266}
1267
1268void
1269Verifier::visitModuleFlag(const MDNode *Op,
1270 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1271 SmallVectorImpl<const MDNode *> &Requirements) {
1272 // Each module flag should have three arguments, the merge behavior (a
1273 // constant int), the flag ID (an MDString), and the value.
1274 Assert(Op->getNumOperands() == 3,do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (false)
1275 "incorrect number of operands in module flag", Op)do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (false)
;
1276 Module::ModFlagBehavior MFB;
1277 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1278 Assert(do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1279 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1280 "invalid behavior operand in module flag (expected constant integer)",do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1281 Op->getOperand(0))do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
;
1282 Assert(false,do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
1283 "invalid behavior operand in module flag (unexpected constant)",do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
1284 Op->getOperand(0))do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
;
1285 }
1286 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1287 Assert(ID, "invalid ID operand in module flag (expected metadata string)",do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (false)
1288 Op->getOperand(1))do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (false)
;
1289
1290 // Sanity check the values for behaviors with additional requirements.
1291 switch (MFB) {
1292 case Module::Error:
1293 case Module::Warning:
1294 case Module::Override:
1295 // These behavior types accept any value.
1296 break;
1297
1298 case Module::Max: {
1299 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(2)))) { CheckFailed("invalid value for 'max' module flag (expected constant integer)"
, Op->getOperand(2)); return; } } while (false)
1300 "invalid value for 'max' module flag (expected constant integer)",do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(2)))) { CheckFailed("invalid value for 'max' module flag (expected constant integer)"
, Op->getOperand(2)); return; } } while (false)
1301 Op->getOperand(2))do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(2)))) { CheckFailed("invalid value for 'max' module flag (expected constant integer)"
, Op->getOperand(2)); return; } } while (false)
;
1302 break;
1303 }
1304
1305 case Module::Require: {
1306 // The value should itself be an MDNode with two operands, a flag ID (an
1307 // MDString), and a value.
1308 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1309 Assert(Value && Value->getNumOperands() == 2,do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
1310 "invalid value for 'require' module flag (expected metadata pair)",do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
1311 Op->getOperand(2))do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
;
1312 Assert(isa<MDString>(Value->getOperand(0)),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1313 ("invalid value for 'require' module flag "do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1314 "(first value operand should be a string)"),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1315 Value->getOperand(0))do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
;
1316
1317 // Append it to the list of requirements, to check once all module flags are
1318 // scanned.
1319 Requirements.push_back(Value);
1320 break;
1321 }
1322
1323 case Module::Append:
1324 case Module::AppendUnique: {
1325 // These behavior types require the operand be an MDNode.
1326 Assert(isa<MDNode>(Op->getOperand(2)),do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1327 "invalid value for 'append'-type module flag "do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1328 "(expected a metadata node)",do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1329 Op->getOperand(2))do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
;
1330 break;
1331 }
1332 }
1333
1334 // Unless this is a "requires" flag, check the ID is unique.
1335 if (MFB != Module::Require) {
1336 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1337 Assert(Inserted,do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (false)
1338 "module flag identifiers must be unique (or of 'require' type)", ID)do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (false)
;
1339 }
1340
1341 if (ID->getString() == "wchar_size") {
1342 ConstantInt *Value
1343 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1344 Assert(Value, "wchar_size metadata requires constant integer argument")do { if (!(Value)) { CheckFailed("wchar_size metadata requires constant integer argument"
); return; } } while (false)
;
1345 }
1346
1347 if (ID->getString() == "Linker Options") {
1348 // If the llvm.linker.options named metadata exists, we assume that the
1349 // bitcode reader has upgraded the module flag. Otherwise the flag might
1350 // have been created by a client directly.
1351 Assert(M.getNamedMetadata("llvm.linker.options"),do { if (!(M.getNamedMetadata("llvm.linker.options"))) { CheckFailed
("'Linker Options' named metadata no longer supported"); return
; } } while (false)
1352 "'Linker Options' named metadata no longer supported")do { if (!(M.getNamedMetadata("llvm.linker.options"))) { CheckFailed
("'Linker Options' named metadata no longer supported"); return
; } } while (false)
;
1353 }
1354}
1355
1356/// Return true if this attribute kind only applies to functions.
1357static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
1358 switch (Kind) {
1359 case Attribute::NoReturn:
1360 case Attribute::NoUnwind:
1361 case Attribute::NoInline:
1362 case Attribute::AlwaysInline:
1363 case Attribute::OptimizeForSize:
1364 case Attribute::StackProtect:
1365 case Attribute::StackProtectReq:
1366 case Attribute::StackProtectStrong:
1367 case Attribute::SafeStack:
1368 case Attribute::NoRedZone:
1369 case Attribute::NoImplicitFloat:
1370 case Attribute::Naked:
1371 case Attribute::InlineHint:
1372 case Attribute::StackAlignment:
1373 case Attribute::UWTable:
1374 case Attribute::NonLazyBind:
1375 case Attribute::ReturnsTwice:
1376 case Attribute::SanitizeAddress:
1377 case Attribute::SanitizeHWAddress:
1378 case Attribute::SanitizeThread:
1379 case Attribute::SanitizeMemory:
1380 case Attribute::MinSize:
1381 case Attribute::NoDuplicate:
1382 case Attribute::Builtin:
1383 case Attribute::NoBuiltin:
1384 case Attribute::Cold:
1385 case Attribute::OptimizeNone:
1386 case Attribute::JumpTable:
1387 case Attribute::Convergent:
1388 case Attribute::ArgMemOnly:
1389 case Attribute::NoRecurse:
1390 case Attribute::InaccessibleMemOnly:
1391 case Attribute::InaccessibleMemOrArgMemOnly:
1392 case Attribute::AllocSize:
1393 case Attribute::Speculatable:
1394 case Attribute::StrictFP:
1395 return true;
1396 default:
1397 break;
1398 }
1399 return false;
1400}
1401
1402/// Return true if this is a function attribute that can also appear on
1403/// arguments.
1404static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
1405 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1406 Kind == Attribute::ReadNone;
1407}
1408
1409void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1410 const Value *V) {
1411 for (Attribute A : Attrs) {
1412 if (A.isStringAttribute())
1413 continue;
1414
1415 if (isFuncOnlyAttr(A.getKindAsEnum())) {
1416 if (!IsFunction) {
1417 CheckFailed("Attribute '" + A.getAsString() +
1418 "' only applies to functions!",
1419 V);
1420 return;
1421 }
1422 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1423 CheckFailed("Attribute '" + A.getAsString() +
1424 "' does not apply to functions!",
1425 V);
1426 return;
1427 }
1428 }
1429}
1430
1431// VerifyParameterAttrs - Check the given attributes for an argument or return
1432// value of the specified type. The value V is printed in error messages.
1433void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1434 const Value *V) {
1435 if (!Attrs.hasAttributes())
1436 return;
1437
1438 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1439
1440 // Check for mutually incompatible attributes. Only inreg is compatible with
1441 // sret.
1442 unsigned AttrCount = 0;
1443 AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1444 AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1445 AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1446 Attrs.hasAttribute(Attribute::InReg);
1447 AttrCount += Attrs.hasAttribute(Attribute::Nest);
1448 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
1449 "and 'sret' are incompatible!",do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
1450 V)do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
;
1451
1452 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1453 Attrs.hasAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1454 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1455 "'inalloca and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1456 V)do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
;
1457
1458 Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1459 Attrs.hasAttribute(Attribute::Returned)),do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1460 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1461 "'sret and returned' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1462 V)do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
;
1463
1464 Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1465 Attrs.hasAttribute(Attribute::SExt)),do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1466 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1467 "'zeroext and signext' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1468 V)do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
;
1469
1470 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1471 Attrs.hasAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1472 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1473 "'readnone and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1474 V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
;
1475
1476 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1477 Attrs.hasAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1478 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1479 "'readnone and writeonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1480 V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
;
1481
1482 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1483 Attrs.hasAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1484 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1485 "'readonly and writeonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1486 V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
;
1487
1488 Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1489 Attrs.hasAttribute(Attribute::AlwaysInline)),do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1490 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1491 "'noinline and alwaysinline' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1492 V)do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
;
1493
1494 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1495 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
1496 "Wrong types for attribute: " +do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
1497 AttributeSet::get(Context, IncompatibleAttrs).getAsString(),do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
1498 V)do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
;
1499
1500 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1501 SmallPtrSet<Type*, 4> Visited;
1502 if (!PTy->getElementType()->isSized(&Visited)) {
1503 Assert(!Attrs.hasAttribute(Attribute::ByVal) &&do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::InAlloca))) { CheckFailed("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1504 !Attrs.hasAttribute(Attribute::InAlloca),do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::InAlloca))) { CheckFailed("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1505 "Attributes 'byval' and 'inalloca' do not support unsized types!",do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::InAlloca))) { CheckFailed("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1506 V)do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::InAlloca))) { CheckFailed("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
;
1507 }
1508 if (!isa<PointerType>(PTy->getElementType()))
1509 Assert(!Attrs.hasAttribute(Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
1510 "Attribute 'swifterror' only applies to parameters "do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
1511 "with pointer to pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
1512 V)do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
;
1513 } else {
1514 Assert(!Attrs.hasAttribute(Attribute::ByVal),do { if (!(!Attrs.hasAttribute(Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
1515 "Attribute 'byval' only applies to parameters with pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
1516 V)do { if (!(!Attrs.hasAttribute(Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
;
1517 Assert(!Attrs.hasAttribute(Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
1518 "Attribute 'swifterror' only applies to parameters "do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
1519 "with pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
1520 V)do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
;
1521 }
1522}
1523
1524// Check parameter attributes against a function type.
1525// The value V is printed in error messages.
1526void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1527 const Value *V) {
1528 if (Attrs.isEmpty())
1529 return;
1530
1531 bool SawNest = false;
1532 bool SawReturned = false;
1533 bool SawSRet = false;
1534 bool SawSwiftSelf = false;
1535 bool SawSwiftError = false;
1536
1537 // Verify return value attributes.
1538 AttributeSet RetAttrs = Attrs.getRetAttributes();
1539 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1540 !RetAttrs.hasAttribute(Attribute::Nest) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1541 !RetAttrs.hasAttribute(Attribute::StructRet) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1542 !RetAttrs.hasAttribute(Attribute::NoCapture) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1543 !RetAttrs.hasAttribute(Attribute::Returned) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1544 !RetAttrs.hasAttribute(Attribute::InAlloca) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1545 !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1546 !RetAttrs.hasAttribute(Attribute::SwiftError)),do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1547 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1548 "'returned', 'swiftself', and 'swifterror' do not apply to return "do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1549 "values!",do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1550 V)do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
;
1551 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1552 !RetAttrs.hasAttribute(Attribute::WriteOnly) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1553 !RetAttrs.hasAttribute(Attribute::ReadNone)),do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1554 "Attribute '" + RetAttrs.getAsString() +do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1555 "' does not apply to function returns",do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1556 V)do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
;
1557 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1558
1559 // Verify parameter attributes.
1560 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1561 Type *Ty = FT->getParamType(i);
1562 AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1563
1564 verifyParameterAttrs(ArgAttrs, Ty, V);
1565
1566 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1567 Assert(!SawNest, "More than one parameter has attribute nest!", V)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, V); return; } } while (false)
;
1568 SawNest = true;
1569 }
1570
1571 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1572 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (false)
1573 V)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (false)
;
1574 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute"
, V); return; } } while (false)
1575 "Incompatible argument and return types for 'returned' attribute",do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute"
, V); return; } } while (false)
1576 V)do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute"
, V); return; } } while (false)
;
1577 SawReturned = true;
1578 }
1579
1580 if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1581 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V)do { if (!(!SawSRet)) { CheckFailed("Cannot have multiple 'sret' parameters!"
, V); return; } } while (false)
;
1582 Assert(i == 0 || i == 1,do { if (!(i == 0 || i == 1)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (false)
1583 "Attribute 'sret' is not on first or second parameter!", V)do { if (!(i == 0 || i == 1)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (false)
;
1584 SawSRet = true;
1585 }
1586
1587 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1588 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V)do { if (!(!SawSwiftSelf)) { CheckFailed("Cannot have multiple 'swiftself' parameters!"
, V); return; } } while (false)
;
1589 SawSwiftSelf = true;
1590 }
1591
1592 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1593 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!"
, V); return; } } while (false)
1594 V)do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!"
, V); return; } } while (false)
;
1595 SawSwiftError = true;
1596 }
1597
1598 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1599 Assert(i == FT->getNumParams() - 1,do { if (!(i == FT->getNumParams() - 1)) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (false)
1600 "inalloca isn't on the last parameter!", V)do { if (!(i == FT->getNumParams() - 1)) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (false)
;
1601 }
1602 }
1603
1604 if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1605 return;
1606
1607 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1608
1609 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1610 Attrs.hasFnAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1611 "Attributes 'readnone and readonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
;
1612
1613 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readnone and writeonly' are incompatible!", V); return
; } } while (false)
1614 Attrs.hasFnAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readnone and writeonly' are incompatible!", V); return
; } } while (false)
1615 "Attributes 'readnone and writeonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readnone and writeonly' are incompatible!", V); return
; } } while (false)
;
1616
1617 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readonly and writeonly' are incompatible!", V); return
; } } while (false)
1618 Attrs.hasFnAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readonly and writeonly' are incompatible!", V); return
; } } while (false)
1619 "Attributes 'readonly and writeonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readonly and writeonly' are incompatible!", V); return
; } } while (false)
;
1620
1621 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1622 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1623 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1624 "incompatible!",do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1625 V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
;
1626
1627 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1628 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1629 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
;
1630
1631 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes 'noinline and alwaysinline' are incompatible!", V
); return; } } while (false)
1632 Attrs.hasFnAttribute(Attribute::AlwaysInline)),do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes 'noinline and alwaysinline' are incompatible!", V
); return; } } while (false)
1633 "Attributes 'noinline and alwaysinline' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes 'noinline and alwaysinline' are incompatible!", V
); return; } } while (false)
;
1634
1635 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1636 Assert(Attrs.hasFnAttribute(Attribute::NoInline),do { if (!(Attrs.hasFnAttribute(Attribute::NoInline))) { CheckFailed
("Attribute 'optnone' requires 'noinline'!", V); return; } } while
(false)
1637 "Attribute 'optnone' requires 'noinline'!", V)do { if (!(Attrs.hasFnAttribute(Attribute::NoInline))) { CheckFailed
("Attribute 'optnone' requires 'noinline'!", V); return; } } while
(false)
;
1638
1639 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),do { if (!(!Attrs.hasFnAttribute(Attribute::OptimizeForSize))
) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
1640 "Attributes 'optsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasFnAttribute(Attribute::OptimizeForSize))
) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
;
1641
1642 Assert(!Attrs.hasFnAttribute(Attribute::MinSize),do { if (!(!Attrs.hasFnAttribute(Attribute::MinSize))) { CheckFailed
("Attributes 'minsize and optnone' are incompatible!", V); return
; } } while (false)
1643 "Attributes 'minsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasFnAttribute(Attribute::MinSize))) { CheckFailed
("Attributes 'minsize and optnone' are incompatible!", V); return
; } } while (false)
;
1644 }
1645
1646 if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1647 const GlobalValue *GV = cast<GlobalValue>(V);
1648 Assert(GV->hasGlobalUnnamedAddr(),do { if (!(GV->hasGlobalUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (false)
1649 "Attribute 'jumptable' requires 'unnamed_addr'", V)do { if (!(GV->hasGlobalUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (false)
;
1650 }
1651
1652 if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1653 std::pair<unsigned, Optional<unsigned>> Args =
1654 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
1655
1656 auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1657 if (ParamNo >= FT->getNumParams()) {
1658 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1659 return false;
1660 }
1661
1662 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1663 CheckFailed("'allocsize' " + Name +
1664 " argument must refer to an integer parameter",
1665 V);
1666 return false;
1667 }
1668
1669 return true;
1670 };
1671
1672 if (!CheckParam("element size", Args.first))
1673 return;
1674
1675 if (Args.second && !CheckParam("number of elements", *Args.second))
1676 return;
1677 }
1678}
1679
1680void Verifier::verifyFunctionMetadata(
1681 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1682 for (const auto &Pair : MDs) {
1683 if (Pair.first == LLVMContext::MD_prof) {
1684 MDNode *MD = Pair.second;
1685 Assert(MD->getNumOperands() >= 2,do { if (!(MD->getNumOperands() >= 2)) { CheckFailed("!prof annotations should have no less than 2 operands"
, MD); return; } } while (false)
1686 "!prof annotations should have no less than 2 operands", MD)do { if (!(MD->getNumOperands() >= 2)) { CheckFailed("!prof annotations should have no less than 2 operands"
, MD); return; } } while (false)
;
1687
1688 // Check first operand.
1689 Assert(MD->getOperand(0) != nullptr, "first operand should not be null",do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (false)
1690 MD)do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (false)
;
1691 Assert(isa<MDString>(MD->getOperand(0)),do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (false)
1692 "expected string with name of the !prof annotation", MD)do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (false)
;
1693 MDString *MDS = cast<MDString>(MD->getOperand(0));
1694 StringRef ProfName = MDS->getString();
1695 Assert(ProfName.equals("function_entry_count"),do { if (!(ProfName.equals("function_entry_count"))) { CheckFailed
("first operand should be 'function_entry_count'", MD); return
; } } while (false)
1696 "first operand should be 'function_entry_count'", MD)do { if (!(ProfName.equals("function_entry_count"))) { CheckFailed
("first operand should be 'function_entry_count'", MD); return
; } } while (false)
;
1697
1698 // Check second operand.
1699 Assert(MD->getOperand(1) != nullptr, "second operand should not be null",do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (false)
1700 MD)do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (false)
;
1701 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (false)
1702 "expected integer argument to function_entry_count", MD)do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (false)
;
1703 }
1704 }
1705}
1706
1707void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1708 if (!ConstantExprVisited.insert(EntryC).second)
1709 return;
1710
1711 SmallVector<const Constant *, 16> Stack;
1712 Stack.push_back(EntryC);
1713
1714 while (!Stack.empty()) {
1715 const Constant *C = Stack.pop_back_val();
1716
1717 // Check this constant expression.
1718 if (const auto *CE = dyn_cast<ConstantExpr>(C))
1719 visitConstantExpr(CE);
1720
1721 if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1722 // Global Values get visited separately, but we do need to make sure
1723 // that the global value is in the correct module
1724 Assert(GV->getParent() == &M, "Referencing global in another module!",do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, EntryC, &M, GV, GV->getParent()); return; } } while (
false)
1725 EntryC, &M, GV, GV->getParent())do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, EntryC, &M, GV, GV->getParent()); return; } } while (
false)
;
1726 continue;
1727 }
1728
1729 // Visit all sub-expressions.
1730 for (const Use &U : C->operands()) {
1731 const auto *OpC = dyn_cast<Constant>(U);
1732 if (!OpC)
1733 continue;
1734 if (!ConstantExprVisited.insert(OpC).second)
1735 continue;
1736 Stack.push_back(OpC);
1737 }
1738 }
1739}
1740
1741void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1742 if (CE->getOpcode() == Instruction::BitCast)
1743 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
1744 CE->getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
1745 "Invalid bitcast", CE)do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
;
1746
1747 if (CE->getOpcode() == Instruction::IntToPtr ||
1748 CE->getOpcode() == Instruction::PtrToInt) {
1749 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1750 ? CE->getType()
1751 : CE->getOperand(0)->getType();
1752 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1753 ? "inttoptr not supported for non-integral pointers"
1754 : "ptrtoint not supported for non-integral pointers";
1755 Assert(do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
1756 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
1757 Msg)do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
;
1758 }
1759}
1760
1761bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
1762 // There shouldn't be more attribute sets than there are parameters plus the
1763 // function and return value.
1764 return Attrs.getNumAttrSets() <= Params + 2;
1765}
1766
1767/// Verify that statepoint intrinsic is well formed.
1768void Verifier::verifyStatepoint(ImmutableCallSite CS) {
1769 assert(CS.getCalledFunction() &&(static_cast <bool> (CS.getCalledFunction() && CS
.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
) ? void (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/IR/Verifier.cpp"
, 1771, __extension__ __PRETTY_FUNCTION__))
1770 CS.getCalledFunction()->getIntrinsicID() ==(static_cast <bool> (CS.getCalledFunction() && CS
.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
) ? void (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/IR/Verifier.cpp"
, 1771, __extension__ __PRETTY_FUNCTION__))
1771 Intrinsic::experimental_gc_statepoint)(static_cast <bool> (CS.getCalledFunction() && CS
.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
) ? void (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/IR/Verifier.cpp"
, 1771, __extension__ __PRETTY_FUNCTION__))
;
1772
1773 const Instruction &CI = *CS.getInstruction();
1774
1775 Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1776 !CS.onlyAccessesArgMemory(),do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1777 "gc.statepoint must read and write all memory to preserve "do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1778 "reordering restrictions required by safepoint semantics",do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1779 &CI)do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
;
1780
1781 const Value *IDV = CS.getArgument(0);
1782 Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",do { if (!(isa<ConstantInt>(IDV))) { CheckFailed("gc.statepoint ID must be a constant integer"
, &CI); return; } } while (false)
1783 &CI)do { if (!(isa<ConstantInt>(IDV))) { CheckFailed("gc.statepoint ID must be a constant integer"
, &CI); return; } } while (false)
;
1784
1785 const Value *NumPatchBytesV = CS.getArgument(1);
1786 Assert(isa<ConstantInt>(NumPatchBytesV),do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (false)
1787 "gc.statepoint number of patchable bytes must be a constant integer",do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (false)
1788 &CI)do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (false)
;
1789 const int64_t NumPatchBytes =
1790 cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1791 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!")(static_cast <bool> (isInt<32>(NumPatchBytes) &&
"NumPatchBytesV is an i32!") ? void (0) : __assert_fail ("isInt<32>(NumPatchBytes) && \"NumPatchBytesV is an i32!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/IR/Verifier.cpp"
, 1791, __extension__ __PRETTY_FUNCTION__))
;
1792 Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (false)
1793 "positive",do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (false)
1794 &CI)do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (false)
;
1795
1796 const Value *Target = CS.getArgument(2);
1797 auto *PT = dyn_cast<PointerType>(Target->getType());
1798 Assert(PT && PT->getElementType()->isFunctionTy(),do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, &CI, Target); return; } } while (false)
1799 "gc.statepoint callee must be of function pointer type", &CI, Target)do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, &CI, Target); return; } } while (false)
;
1800 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1801
1802 const Value *NumCallArgsV = CS.getArgument(3);
1803 Assert(isa<ConstantInt>(NumCallArgsV),do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
1804 "gc.statepoint number of arguments to underlying call "do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
1805 "must be constant integer",do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
1806 &CI)do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
;
1807 const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1808 Assert(NumCallArgs >= 0,do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
1809 "gc.statepoint number of arguments to underlying call "do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
1810 "must be positive",do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
1811 &CI)do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
;
1812 const int NumParams = (int)TargetFuncType->getNumParams();
1813 if (TargetFuncType->isVarArg()) {
1814 Assert(NumCallArgs >= NumParams,do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, &CI); return; } } while (false)
1815 "gc.statepoint mismatch in number of vararg call args", &CI)do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, &CI); return; } } while (false)
;
1816
1817 // TODO: Remove this limitation
1818 Assert(TargetFuncType->getReturnType()->isVoidTy(),do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
1819 "gc.statepoint doesn't support wrapping non-void "do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
1820 "vararg functions yet",do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
1821 &CI)do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
;
1822 } else
1823 Assert(NumCallArgs == NumParams,do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, &CI); return; } } while (false)
1824 "gc.statepoint mismatch in number of call args", &CI)do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, &CI); return; } } while (false)
;
1825
1826 const Value *FlagsV = CS.getArgument(4);
1827 Assert(isa<ConstantInt>(FlagsV),do { if (!(isa<ConstantInt>(FlagsV))) { CheckFailed("gc.statepoint flags must be constant integer"
, &CI); return; } } while (false)
1828 "gc.statepoint flags must be constant integer", &CI)do { if (!(isa<ConstantInt>(FlagsV))) { CheckFailed("gc.statepoint flags must be constant integer"
, &CI); return; } } while (false)
;
1829 const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1830 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, &CI); return; } } while (false)
1831 "unknown flag used in gc.statepoint flags argument", &CI)do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, &CI); return; } } while (false)
;
1832
1833 // Verify that the types of the call parameter arguments match
1834 // the type of the wrapped callee.
1835 for (int i = 0; i < NumParams; i++) {
1836 Type *ParamType = TargetFuncType->getParamType(i);
1837 Type *ArgType = CS.getArgument(5 + i)->getType();
1838 Assert(ArgType == ParamType,do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
1839 "gc.statepoint call argument does not match wrapped "do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
1840 "function type",do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
1841 &CI)do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
;
1842 }
1843
1844 const int EndCallArgsInx = 4 + NumCallArgs;
1845
1846 const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1847 Assert(isa<ConstantInt>(NumTransitionArgsV),do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
1848 "gc.statepoint number of transition arguments "do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
1849 "must be constant integer",do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
1850 &CI)do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
;
1851 const int NumTransitionArgs =
1852 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1853 Assert(NumTransitionArgs >= 0,do { if (!(NumTransitionArgs >= 0)) { CheckFailed("gc.statepoint number of transition arguments must be positive"
, &CI); return; } } while (false)
1854 "gc.statepoint number of transition arguments must be positive", &CI)do { if (!(NumTransitionArgs >= 0)) { CheckFailed("gc.statepoint number of transition arguments must be positive"
, &CI); return; } } while (false)
;
1855 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1856
1857 const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1858 Assert(isa<ConstantInt>(NumDeoptArgsV),do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
1859 "gc.statepoint number of deoptimization arguments "do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
1860 "must be constant integer",do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
1861 &CI)do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
;
1862 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1863 Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (false)
1864 "must be positive",do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (false)
1865 &CI)do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (false)
;
1866
1867 const int ExpectedNumArgs =
1868 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1869 Assert(ExpectedNumArgs <= (int)CS.arg_size(),do { if (!(ExpectedNumArgs <= (int)CS.arg_size())) { CheckFailed
("gc.statepoint too few arguments according to length fields"
, &CI); return; } } while (false)
1870 "gc.statepoint too few arguments according to length fields", &CI)do { if (!(ExpectedNumArgs <= (int)CS.arg_size())) { CheckFailed
("gc.statepoint too few arguments according to length fields"
, &CI); return; } } while (false)
;
1871
1872 // Check that the only uses of this gc.statepoint are gc.result or
1873 // gc.relocate calls which are tied to this statepoint and thus part
1874 // of the same statepoint sequence
1875 for (const User *U : CI.users()) {
1876 const CallInst *Call = dyn_cast<const CallInst>(U);
1877 Assert(Call, "illegal use of statepoint token", &CI, U)do { if (!(Call)) { CheckFailed("illegal use of statepoint token"
, &CI, U); return; } } while (false)
;
1878 if (!Call) continue;
1879 Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call),do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
1880 "gc.result or gc.relocate are the only value uses "do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
1881 "of a gc.statepoint",do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
1882 &CI, U)do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
;
1883 if (isa<GCResultInst>(Call)) {
1884 Assert(Call->getArgOperand(0) == &CI,do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.result connected to wrong gc.statepoint", &CI, Call)
; return; } } while (false)
1885 "gc.result connected to wrong gc.statepoint", &CI, Call)do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.result connected to wrong gc.statepoint", &CI, Call)
; return; } } while (false)
;
1886 } else if (isa<GCRelocateInst>(Call)) {
1887 Assert(Call->getArgOperand(0) == &CI,do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", &CI, Call
); return; } } while (false)
1888 "gc.relocate connected to wrong gc.statepoint", &CI, Call)do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", &CI, Call
); return; } } while (false)
;
1889 }
1890 }
1891
1892 // Note: It is legal for a single derived pointer to be listed multiple
1893 // times. It's non-optimal, but it is legal. It can also happen after
1894 // insertion if we strip a bitcast away.
1895 // Note: It is really tempting to check that each base is relocated and
1896 // that a derived pointer is never reused as a base pointer. This turns
1897 // out to be problematic since optimizations run after safepoint insertion
1898 // can recognize equality properties that the insertion logic doesn't know
1899 // about. See example statepoint.ll in the verifier subdirectory
1900}
1901
1902void Verifier::verifyFrameRecoverIndices() {
1903 for (auto &Counts : FrameEscapeInfo) {
1904 Function *F = Counts.first;
1905 unsigned EscapedObjectCount = Counts.second.first;
1906 unsigned MaxRecoveredIndex = Counts.second.second;
1907 Assert(MaxRecoveredIndex <= EscapedObjectCount,do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1908 "all indices passed to llvm.localrecover must be less than the "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1909 "number of arguments passed ot llvm.localescape in the parent "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1910 "function",do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1911 F)do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
;
1912 }
1913}
1914
1915static Instruction *getSuccPad(TerminatorInst *Terminator) {
1916 BasicBlock *UnwindDest;
1917 if (auto *II = dyn_cast<InvokeInst>(Terminator))
1918 UnwindDest = II->getUnwindDest();
1919 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
1920 UnwindDest = CSI->getUnwindDest();
1921 else
1922 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
1923 return UnwindDest->getFirstNonPHI();
1924}
1925
1926void Verifier::verifySiblingFuncletUnwinds() {
1927 SmallPtrSet<Instruction *, 8> Visited;
1928 SmallPtrSet<Instruction *, 8> Active;
1929 for (const auto &Pair : SiblingFuncletInfo) {
1930 Instruction *PredPad = Pair.first;
1931 if (Visited.count(PredPad))
1932 continue;
1933 Active.insert(PredPad);
1934 TerminatorInst *Terminator = Pair.second;
1935 do {
1936 Instruction *SuccPad = getSuccPad(Terminator);
1937 if (Active.count(SuccPad)) {
1938 // Found a cycle; report error
1939 Instruction *CyclePad = SuccPad;
1940 SmallVector<Instruction *, 8> CycleNodes;
1941 do {
1942 CycleNodes.push_back(CyclePad);
1943 TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
1944 if (CycleTerminator != CyclePad)
1945 CycleNodes.push_back(CycleTerminator);
1946 CyclePad = getSuccPad(CycleTerminator);
1947 } while (CyclePad != SuccPad);
1948 Assert(false, "EH pads can't handle each other's exceptions",do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions"
, ArrayRef<Instruction *>(CycleNodes)); return; } } while
(false)
1949 ArrayRef<Instruction *>(CycleNodes))do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions"
, ArrayRef<Instruction *>(CycleNodes)); return; } } while
(false)
;
1950 }
1951 // Don't re-walk a node we've already checked
1952 if (!Visited.insert(SuccPad).second)
1953 break;
1954 // Walk to this successor if it has a map entry.
1955 PredPad = SuccPad;
1956 auto TermI = SiblingFuncletInfo.find(PredPad);
1957 if (TermI == SiblingFuncletInfo.end())
1958 break;
1959 Terminator = TermI->second;
1960 Active.insert(PredPad);
1961 } while (true);
1962 // Each node only has one successor, so we've walked all the active
1963 // nodes' successors.
1964 Active.clear();
1965 }
1966}
1967
1968// visitFunction - Verify that a function is ok.
1969//
1970void Verifier::visitFunction(const Function &F) {
1971 visitGlobalValue(F);
1972
1973 // Check function arguments.
1974 FunctionType *FT = F.getFunctionType();
1975 unsigned NumArgs = F.arg_size();
1976
1977 Assert(&Context == &F.getContext(),do { if (!(&Context == &F.getContext())) { CheckFailed
("Function context does not match Module context!", &F); return
; } } while (false)
1978 "Function context does not match Module context!", &F)do { if (!(&Context == &F.getContext())) { CheckFailed
("Function context does not match Module context!", &F); return
; } } while (false)
;
1979
1980 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F)do { if (!(!F.hasCommonLinkage())) { CheckFailed("Functions may not have common linkage"
, &F); return; } } while (false)
;
1981 Assert(FT->getNumParams() == NumArgs,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
1982 "# formal arguments must match # of arguments for function type!", &F,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
1983 FT)do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
;
1984 Assert(F.getReturnType()->isFirstClassType() ||do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
1985 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
1986 "Functions cannot return aggregate values!", &F)do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
;
1987
1988 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (false)
1989 "Invalid struct return type!", &F)do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (false)
;
1990
1991 AttributeList Attrs = F.getAttributes();
1992
1993 Assert(verifyAttributeCount(Attrs, FT->getNumParams()),do { if (!(verifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (false)
1994 "Attribute after last parameter!", &F)do { if (!(verifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (false)
;
1995
1996 // Check function attributes.
1997 verifyFunctionAttrs(FT, Attrs, &F);
1998
1999 // On function declarations/definitions, we do not support the builtin
2000 // attribute. We do not check this in VerifyFunctionAttrs since that is
2001 // checking for Attributes that can/can not ever be on functions.
2002 Assert(!Attrs.hasFnAttribute(Attribute::Builtin),do { if (!(!Attrs.hasFnAttribute(Attribute::Builtin))) { CheckFailed
("Attribute 'builtin' can only be applied to a callsite.", &
F); return; } } while (false)
2003 "Attribute 'builtin' can only be applied to a callsite.", &F)do { if (!(!Attrs.hasFnAttribute(Attribute::Builtin))) { CheckFailed
("Attribute 'builtin' can only be applied to a callsite.", &
F); return; } } while (false)
;
2004
2005 // Check that this function meets the restrictions on this calling convention.
2006 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2007 // restrictions can be lifted.
2008 switch (F.getCallingConv()) {
1
Control jumps to the 'default' case at line 2009
2009 default:
2010 case CallingConv::C:
2011 break;
2
Execution continues on line 2036
2012 case CallingConv::AMDGPU_KERNEL:
2013 case CallingConv::SPIR_KERNEL:
2014 Assert(F.getReturnType()->isVoidTy(),do { if (!(F.getReturnType()->isVoidTy())) { CheckFailed("Calling convention requires void return type"
, &F); return; } } while (false)
2015 "Calling convention requires void return type", &F)do { if (!(F.getReturnType()->isVoidTy())) { CheckFailed("Calling convention requires void return type"
, &F); return; } } while (false)
;
2016 LLVM_FALLTHROUGH[[clang::fallthrough]];
2017 case CallingConv::AMDGPU_VS:
2018 case CallingConv::AMDGPU_HS:
2019 case CallingConv::AMDGPU_GS:
2020 case CallingConv::AMDGPU_PS:
2021 case CallingConv::AMDGPU_CS:
2022 Assert(!F.hasStructRetAttr(),do { if (!(!F.hasStructRetAttr())) { CheckFailed("Calling convention does not allow sret"
, &F); return; } } while (false)
2023 "Calling convention does not allow sret", &F)do { if (!(!F.hasStructRetAttr())) { CheckFailed("Calling convention does not allow sret"
, &F); return; } } while (false)
;
2024 LLVM_FALLTHROUGH[[clang::fallthrough]];
2025 case CallingConv::Fast:
2026 case CallingConv::Cold:
2027 case CallingConv::Intel_OCL_BI:
2028 case CallingConv::PTX_Kernel:
2029 case CallingConv::PTX_Device:
2030 Assert(!F.isVarArg(), "Calling convention does not support varargs or "do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
2031 "perfect forwarding!",do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
2032 &F)do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
;
2033 break;
2034 }
2035
2036 bool isLLVMdotName = F.getName().size() >= 5 &&
3
Assuming the condition is false
2037 F.getName().substr(0, 5) == "llvm.";
2038
2039 // Check that the argument values match the function type for this function...
2040 unsigned i = 0;
2041 for (const Argument &Arg : F.args()) {
4
Assuming '__begin' is equal to '__end'
2042 Assert(Arg.getType() == FT->getParamType(i),do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
2043 "Argument value does not match function argument type!", &Arg,do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
2044 FT->getParamType(i))do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
;
2045 Assert(Arg.getType()->isFirstClassType(),do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", &Arg)
; return; } } while (false)
2046 "Function arguments must have first-class types!", &Arg)do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", &Arg)
; return; } } while (false)
;
2047 if (!isLLVMdotName) {
2048 Assert(!Arg.getType()->isMetadataTy(),do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed(
"Function takes metadata but isn't an intrinsic", &Arg, &
F); return; } } while (false)
2049 "Function takes metadata but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed(
"Function takes metadata but isn't an intrinsic", &Arg, &
F); return; } } while (false)
;
2050 Assert(!Arg.getType()->isTokenTy(),do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, &Arg, &F); return; } } while (false)
2051 "Function takes token but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, &Arg, &F); return; } } while (false)
;
2052 }
2053
2054 // Check that swifterror argument is only used by loads and stores.
2055 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2056 verifySwiftErrorValue(&Arg);
2057 }
2058 ++i;
2059 }
2060
2061 if (!isLLVMdotName)
5
Taking true branch
2062 Assert(!F.getReturnType()->isTokenTy(),do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Functions returns a token but isn't an intrinsic", &F);
return; } } while (false)
2063 "Functions returns a token but isn't an intrinsic", &F)do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Functions returns a token but isn't an intrinsic", &F);
return; } } while (false)
;
2064
2065 // Get the function metadata attachments.
2066 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2067 F.getAllMetadata(MDs);
2068 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync")(static_cast <bool> (F.hasMetadata() != MDs.empty() &&
"Bit out-of-sync") ? void (0) : __assert_fail ("F.hasMetadata() != MDs.empty() && \"Bit out-of-sync\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/IR/Verifier.cpp"
, 2068, __extension__ __PRETTY_FUNCTION__))
;
2069 verifyFunctionMetadata(MDs);
2070
2071 // Check validity of the personality function
2072 if (F.hasPersonalityFn()) {
6
Assuming the condition is false
7
Taking false branch
2073 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2074 if (Per)
2075 Assert(Per->getParent() == F.getParent(),do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
2076 "Referencing personality function in another module!",do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
2077 &F, F.getParent(), Per, Per->getParent())do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
;
2078 }
2079
2080 if (F.isMaterializable()) {
8
Assuming the condition is false
9
Taking false branch
2081 // Function has a body somewhere we can't see.
2082 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (false)
2083 MDs.empty() ? nullptr : MDs.front().second)do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (false)
;
2084 } else if (F.isDeclaration()) {
10
Assuming the condition is false
11
Taking false branch
2085 for (const auto &I : MDs) {
2086 AssertDI(I.first != LLVMContext::MD_dbg,do { if (!(I.first != LLVMContext::MD_dbg)) { DebugInfoCheckFailed
("function declaration may not have a !dbg attachment", &
F); return; } } while (false)
2087 "function declaration may not have a !dbg attachment", &F)do { if (!(I.first != LLVMContext::MD_dbg)) { DebugInfoCheckFailed
("function declaration may not have a !dbg attachment", &
F); return; } } while (false)
;
2088 Assert(I.first != LLVMContext::MD_prof,do { if (!(I.first != LLVMContext::MD_prof)) { CheckFailed("function declaration may not have a !prof attachment"
, &F); return; } } while (false)
2089 "function declaration may not have a !prof attachment", &F)do { if (!(I.first != LLVMContext::MD_prof)) { CheckFailed("function declaration may not have a !prof attachment"
, &F); return; } } while (false)
;
2090
2091 // Verify the metadata itself.
2092 visitMDNode(*I.second);
2093 }
2094 Assert(!F.hasPersonalityFn(),do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (false)
2095 "Function declaration shouldn't have a personality routine", &F)do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (false)
;
2096 } else {
2097 // Verify that this function (which has a body) is not named "llvm.*". It
2098 // is not legal to define intrinsics.
2099 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F)do { if (!(!isLLVMdotName)) { CheckFailed("llvm intrinsics cannot be defined!"
, &F); return; } } while (false)
;
2100
2101 // Check the entry node
2102 const BasicBlock *Entry = &F.getEntryBlock();
2103 Assert(pred_empty(Entry),do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (false)
2104 "Entry block to function must not have predecessors!", Entry)do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (false)
;
2105
2106 // The address of the entry block cannot be taken, unless it is dead.
2107 if (Entry->hasAddressTaken()) {
12
Assuming the condition is false
13
Taking false branch
2108 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (false)
2109 "blockaddress may not be used with the entry block!", Entry)do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (false)
;
2110 }
2111
2112 unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2113 // Visit metadata attachments.
2114 for (const auto &I : MDs) {
14
Assuming '__begin' is equal to '__end'
2115 // Verify that the attachment is legal.
2116 switch (I.first) {
2117 default:
2118 break;
2119 case LLVMContext::MD_dbg: {
2120 ++NumDebugAttachments;
2121 AssertDI(NumDebugAttachments == 1,do { if (!(NumDebugAttachments == 1)) { DebugInfoCheckFailed(
"function must have a single !dbg attachment", &F, I.second
); return; } } while (false)
2122 "function must have a single !dbg attachment", &F, I.second)do { if (!(NumDebugAttachments == 1)) { DebugInfoCheckFailed(
"function must have a single !dbg attachment", &F, I.second
); return; } } while (false)
;
2123 AssertDI(isa<DISubprogram>(I.second),do { if (!(isa<DISubprogram>(I.second))) { DebugInfoCheckFailed
("function !dbg attachment must be a subprogram", &F, I.second
); return; } } while (false)
2124 "function !dbg attachment must be a subprogram", &F, I.second)do { if (!(isa<DISubprogram>(I.second))) { DebugInfoCheckFailed
("function !dbg attachment must be a subprogram", &F, I.second
); return; } } while (false)
;
2125 auto *SP = cast<DISubprogram>(I.second);
2126 const Function *&AttachedTo = DISubprogramAttachments[SP];
2127 AssertDI(!AttachedTo || AttachedTo == &F,do { if (!(!AttachedTo || AttachedTo == &F)) { DebugInfoCheckFailed
("DISubprogram attached to more than one function", SP, &
F); return; } } while (false)
2128 "DISubprogram attached to more than one function", SP, &F)do { if (!(!AttachedTo || AttachedTo == &F)) { DebugInfoCheckFailed
("DISubprogram attached to more than one function", SP, &
F); return; } } while (false)
;
2129 AttachedTo = &F;
2130 break;
2131 }
2132 case LLVMContext::MD_prof:
2133 ++NumProfAttachments;
2134 Assert(NumProfAttachments == 1,do { if (!(NumProfAttachments == 1)) { CheckFailed("function must have a single !prof attachment"
, &F, I.second); return; } } while (false)
2135 "function must have a single !prof attachment", &F, I.second)do { if (!(NumProfAttachments == 1)) { CheckFailed("function must have a single !prof attachment"
, &F, I.second); return; } } while (false)
;
2136 break;
2137 }
2138
2139 // Verify the metadata itself.
2140 visitMDNode(*I.second);
2141 }
2142 }
2143
2144 // If this function is actually an intrinsic, verify that it is only used in
2145 // direct call/invokes, never having its "address taken".
2146 // Only do this if the module is materialized, otherwise we don't have all the
2147 // uses.
2148 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
15
Assuming the condition is false
2149 const User *U;
2150 if (F.hasAddressTaken(&U))
2151 Assert(false, "Invalid user of intrinsic instruction!", U)do { if (!(false)) { CheckFailed("Invalid user of intrinsic instruction!"
, U); return; } } while (false)
;
2152 }
2153
2154 Assert(!F.hasDLLImportStorageClass() ||do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
2155 (F.isDeclaration() && F.hasExternalLinkage()) ||do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
2156 F.hasAvailableExternallyLinkage(),do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
2157 "Function is marked as dllimport, but not external.", &F)do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
;
2158
2159 auto *N = F.getSubprogram();
2160 HasDebugInfo = (N != nullptr);
16
Assuming the condition is true
2161 if (!HasDebugInfo)
17
Taking false branch
2162 return;
2163
2164 // Check that all !dbg attachments lead to back to N (or, at least, another
2165 // subprogram that describes the same function).
2166 //
2167 // FIXME: Check this incrementally while visiting !dbg attachments.
2168 // FIXME: Only check when N is the canonical subprogram for F.
2169 SmallPtrSet<const MDNode *, 32> Seen;
2170 for (auto &BB : F)
2171 for (auto &I : BB) {
2172 // Be careful about using DILocation here since we might be dealing with
2173 // broken code (this is the Verifier after all).
2174 DILocation *DL =
2175 dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
2176 if (!DL)
18
Assuming 'DL' is non-null
19
Taking false branch
2177 continue;
2178 if (!Seen.insert(DL).second)
20
Assuming the condition is false
21
Taking false branch
2179 continue;
2180
2181 DILocalScope *Scope = DL->getInlinedAtScope();
2182 if (Scope && !Seen.insert(Scope).second)
22
Assuming 'Scope' is null
23
Taking false branch
2183 continue;
2184
2185 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
24
'?' condition is false
25
'SP' initialized to a null pointer value
2186
2187 // Scope and SP could be the same MDNode and we don't want to skip
2188 // validation in that case
2189 if (SP && ((Scope != SP) && !Seen.insert(SP).second))
26
Taking false branch
2190 continue;
2191
2192 // FIXME: Once N is canonical, check "SP == &N".
2193 AssertDI(SP->describes(&F),do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
27
Within the expansion of the macro 'AssertDI':
a
Called C++ object pointer is null
2194 "!dbg attachment points at wrong subprogram for function", N, &F,do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
2195 &I, DL, Scope, SP)do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
;
2196 }
2197}
2198
2199// verifyBasicBlock - Verify that a basic block is well formed...
2200//
2201void Verifier::visitBasicBlock(BasicBlock &BB) {
2202 InstsInThisBlock.clear();
2203
2204 // Ensure that basic blocks have terminators!
2205 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB)do { if (!(BB.getTerminator())) { CheckFailed("Basic Block does not have terminator!"
, &BB); return; } } while (false)
;
2206
2207 // Check constraints that this basic block imposes on all of the PHI nodes in
2208 // it.
2209 if (isa<PHINode>(BB.front())) {
2210 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2211 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2212 std::sort(Preds.begin(), Preds.end());
2213 for (const PHINode &PN : BB.phis()) {
2214 // Ensure that PHI nodes have at least one entry!
2215 Assert(PN.getNumIncomingValues() != 0,do { if (!(PN.getNumIncomingValues() != 0)) { CheckFailed("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", &PN); return; } } while (false
)
2216 "PHI nodes must have at least one entry. If the block is dead, "do { if (!(PN.getNumIncomingValues() != 0)) { CheckFailed("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", &PN); return; } } while (false
)
2217 "the PHI should be removed!",do { if (!(PN.getNumIncomingValues() != 0)) { CheckFailed("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", &PN); return; } } while (false
)
2218 &PN)do { if (!(PN.getNumIncomingValues() != 0)) { CheckFailed("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", &PN); return; } } while (false
)
;
2219 Assert(PN.getNumIncomingValues() == Preds.size(),do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", &PN); return; } } while (false)
2220 "PHINode should have one entry for each predecessor of its "do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", &PN); return; } } while (false)
2221 "parent basic block!",do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", &PN); return; } } while (false)
2222 &PN)do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", &PN); return; } } while (false)
;
2223
2224 // Get and sort all incoming values in the PHI node...
2225 Values.clear();
2226 Values.reserve(PN.getNumIncomingValues());
2227 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2228 Values.push_back(
2229 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2230 std::sort(Values.begin(), Values.end());
2231
2232 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2233 // Check to make sure that if there is more than one entry for a
2234 // particular basic block in this PHI node, that the incoming values are
2235 // all identical.
2236 //
2237 Assert(i == 0 || Values[i].first != Values[i - 1].first ||do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
2238 Values[i].second == Values[i - 1].second,do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
2239 "PHI node has multiple entries for the same basic block with "do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
2240 "different incoming values!",do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
2241 &PN, Values[i].first, Values[i].second, Values[i - 1].second)do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
;
2242
2243 // Check to make sure that the predecessors and PHI node entries are
2244 // matched up.
2245 Assert(Values[i].first == Preds[i],do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, &PN, Values[i].first, Preds[i]); return; } } while (false
)
2246 "PHI node entries do not match predecessors!", &PN,do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, &PN, Values[i].first, Preds[i]); return; } } while (false
)
2247 Values[i].first, Preds[i])do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, &PN, Values[i].first, Preds[i]); return; } } while (false
)
;
2248 }
2249 }
2250 }
2251
2252 // Check that all instructions have their parent pointers set up correctly.
2253 for (auto &I : BB)
2254 {
2255 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!")do { if (!(I.getParent() == &BB)) { CheckFailed("Instruction has bogus parent pointer!"
); return; } } while (false)
;
2256 }
2257}
2258
2259void Verifier::visitTerminatorInst(TerminatorInst &I) {
2260 // Ensure that terminators only exist at the end of the basic block.
2261 Assert(&I == I.getParent()->getTerminator(),do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (false)
2262 "Terminator found in the middle of a basic block!", I.getParent())do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (false)
;
2263 visitInstruction(I);
2264}
2265
2266void Verifier::visitBranchInst(BranchInst &BI) {
2267 if (BI.isConditional()) {
2268 Assert(BI.getCondition()->getType()->isIntegerTy(1),do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (false)
2269 "Branch condition is not 'i1' type!", &BI, BI.getCondition())do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (false)
;
2270 }
2271 visitTerminatorInst(BI);
2272}
2273
2274void Verifier::visitReturnInst(ReturnInst &RI) {
2275 Function *F = RI.getParent()->getParent();
2276 unsigned N = RI.getNumOperands();
2277 if (F->getReturnType()->isVoidTy())
2278 Assert(N == 0,do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2279 "Found return instr that returns non-void in Function of void "do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2280 "return type!",do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2281 &RI, F->getReturnType())do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
;
2282 else
2283 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2284 "Function return type does not match operand "do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2285 "type of return inst!",do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2286 &RI, F->getReturnType())do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
;
2287
2288 // Check to make sure that the return value has necessary properties for
2289 // terminators...
2290 visitTerminatorInst(RI);
2291}
2292
2293void Verifier::visitSwitchInst(SwitchInst &SI) {
2294 // Check to make sure that all of the constants in the switch instruction
2295 // have the same type as the switched-on value.
2296 Type *SwitchTy = SI.getCondition()->getType();
2297 SmallPtrSet<ConstantInt*, 32> Constants;
2298 for (auto &Case : SI.cases()) {
2299 Assert(Case.getCaseValue()->getType() == SwitchTy,do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (false)
2300 "Switch constants must all be same type as switch value!", &SI)do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (false)
;
2301 Assert(Constants.insert(Case.getCaseValue()).second,do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, Case.getCaseValue
()); return; } } while (false)
2302 "Duplicate integer as switch case", &SI, Case.getCaseValue())do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, Case.getCaseValue
()); return; } } while (false)
;
2303 }
2304
2305 visitTerminatorInst(SI);
2306}
2307
2308void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2309 Assert(BI.getAddress()->getType()->isPointerTy(),do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (false)
2310 "Indirectbr operand must have pointer type!", &BI)do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (false)
;
2311 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2312 Assert(BI.getDestination(i)->getType()->isLabelTy(),do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (false)
2313 "Indirectbr destinations must all have pointer type!", &BI)do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (false)
;
2314
2315 visitTerminatorInst(BI);
2316}
2317
2318void Verifier::visitSelectInst(SelectInst &SI) {
2319 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
2320 SI.getOperand(2)),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
2321 "Invalid operands for select instruction!", &SI)do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
;
2322
2323 Assert(SI.getTrueValue()->getType() == SI.getType(),do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (false)
2324 "Select values must have same type as select instruction!", &SI)do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (false)
;
2325 visitInstruction(SI);
2326}
2327
2328/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2329/// a pass, if any exist, it's an error.
2330///
2331void Verifier::visitUserOp1(Instruction &I) {
2332 Assert(false, "User-defined operators should not live outside of a pass!", &I)do { if (!(false)) { CheckFailed("User-defined operators should not live outside of a pass!"
, &I); return; } } while (false)
;
2333}
2334
2335void Verifier::visitTruncInst(TruncInst &I) {
2336 // Get the source and destination types
2337 Type *SrcTy = I.getOperand(0)->getType();
2338 Type *DestTy = I.getType();
2339
2340 // Get the size of the types in bits, we'll need this later
2341 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2342 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2343
2344 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only operates on integer"
, &I); return; } } while (false)
;
2345 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only produces integer"
, &I); return; } } while (false)
;
2346 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
2347 "trunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2348 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for Trunc"
, &I); return; } } while (false)
;
2349
2350 visitInstruction(I);
2351}
2352
2353void Verifier::visitZExtInst(ZExtInst &I) {
2354 // Get the source and destination types
2355 Type *SrcTy = I.getOperand(0)->getType();
2356 Type *DestTy = I.getType();
2357
2358 // Get the size of the types in bits, we'll need this later
2359 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only operates on integer"
, &I); return; } } while (false)
;
2360 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only produces an integer"
, &I); return; } } while (false)
;
2361 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2362 "zext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2363 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2364 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2365
2366 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for ZExt"
, &I); return; } } while (false)
;
2367
2368 visitInstruction(I);
2369}
2370
2371void Verifier::visitSExtInst(SExtInst &I) {
2372 // Get the source and destination types
2373 Type *SrcTy = I.getOperand(0)->getType();
2374 Type *DestTy = I.getType();
2375
2376 // Get the size of the types in bits, we'll need this later
2377 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2378 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2379
2380 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SExt only operates on integer"
, &I); return; } } while (false)
;
2381 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("SExt only produces an integer"
, &I); return; } } while (false)
;
2382 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2383 "sext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2384 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for SExt"
, &I); return; } } while (false)
;
2385
2386 visitInstruction(I);
2387}
2388
2389void Verifier::visitFPTruncInst(FPTruncInst &I) {
2390 // Get the source and destination types
2391 Type *SrcTy = I.getOperand(0)->getType();
2392 Type *DestTy = I.getType();
2393 // Get the size of the types in bits, we'll need this later
2394 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2395 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2396
2397 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only operates on FP"
, &I); return; } } while (false)
;
2398 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only produces an FP"
, &I); return; } } while (false)
;
2399 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
2400 "fptrunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2401 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for FPTrunc"
, &I); return; } } while (false)
;
2402
2403 visitInstruction(I);
2404}
2405
2406void Verifier::visitFPExtInst(FPExtInst &I) {
2407 // Get the source and destination types
2408 Type *SrcTy = I.getOperand(0)->getType();
2409 Type *DestTy = I.getType();
2410
2411 // Get the size of the types in bits, we'll need this later
2412 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2413 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2414
2415 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only operates on FP"
, &I); return; } } while (false)
;
2416 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only produces an FP"
, &I); return; } } while (false)
;
2417 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2418 "fpext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2419 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("DestTy too small for FPExt"
, &I); return; } } while (false)
;
2420
2421 visitInstruction(I);
2422}
2423
2424void Verifier::visitUIToFPInst(UIToFPInst &I) {
2425 // Get the source and destination types
2426 Type *SrcTy = I.getOperand(0)->getType();
2427 Type *DestTy = I.getType();
2428
2429 bool SrcVec = SrcTy->isVectorTy();
2430 bool DstVec = DestTy->isVectorTy();
2431
2432 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
2433 "UIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2434 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (false)
2435 "UIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (false)
;
2436 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (false)
2437 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (false)
;
2438
2439 if (SrcVec && DstVec)
2440 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2441 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2442 "UIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
;
2443
2444 visitInstruction(I);
2445}
2446
2447void Verifier::visitSIToFPInst(SIToFPInst &I) {
2448 // Get the source and destination types
2449 Type *SrcTy = I.getOperand(0)->getType();
2450 Type *DestTy = I.getType();
2451
2452 bool SrcVec = SrcTy->isVectorTy();
2453 bool DstVec = DestTy->isVectorTy();
2454
2455 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
2456 "SIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2457 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (false)
2458 "SIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (false)
;
2459 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (false)
2460 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (false)
;
2461
2462 if (SrcVec && DstVec)
2463 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2464 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2465 "SIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
;
2466
2467 visitInstruction(I);
2468}
2469
2470void Verifier::visitFPToUIInst(FPToUIInst &I) {
2471 // Get the source and destination types
2472 Type *SrcTy = I.getOperand(0)->getType();
2473 Type *DestTy = I.getType();
2474
2475 bool SrcVec = SrcTy->isVectorTy();
2476 bool DstVec = DestTy->isVectorTy();
2477
2478 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (false)
2479 "FPToUI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2480 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (false)
2481 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (false)
;
2482 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (false)
2483 "FPToUI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (false)
;
2484
2485 if (SrcVec && DstVec)
2486 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
2487 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
2488 "FPToUI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
;
2489
2490 visitInstruction(I);
2491}
2492
2493void Verifier::visitFPToSIInst(FPToSIInst &I) {
2494 // Get the source and destination types
2495 Type *SrcTy = I.getOperand(0)->getType();
2496 Type *DestTy = I.getType();
2497
2498 bool SrcVec = SrcTy->isVectorTy();
2499 bool DstVec = DestTy->isVectorTy();
2500
2501 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (false)
2502 "FPToSI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2503 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (false)
2504 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (false)
;
2505 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (false)
2506 "FPToSI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (false)
;
2507
2508 if (SrcVec && DstVec)
2509 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
2510 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
2511 "FPToSI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
;
2512
2513 visitInstruction(I);
2514}
2515
2516void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2517 // Get the source and destination types
2518 Type *SrcTy = I.getOperand(0)->getType();
2519 Type *DestTy = I.getType();
2520
2521 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I)do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("PtrToInt source must be pointer"
, &I); return; } } while (false)
;
2522
2523 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2524 Assert(!DL.isNonIntegralPointerType(PTy),do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"ptrtoint not supported for non-integral pointers"); return; }
} while (false)
2525 "ptrtoint not supported for non-integral pointers")do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"ptrtoint not supported for non-integral pointers"); return; }
} while (false)
;
2526
2527 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("PtrToInt result must be integral"
, &I); return; } } while (false)
;
2528 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (false)
2529 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (false)
;
2530
2531 if (SrcTy->isVectorTy()) {
2532 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2533 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2534 Assert(VSrc->getNumElements() == VDest->getNumElements(),do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (false)
2535 "PtrToInt Vector width mismatch", &I)do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (false)
;
2536 }
2537
2538 visitInstruction(I);
2539}
2540
2541void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2542 // Get the source and destination types
2543 Type *SrcTy = I.getOperand(0)->getType();
2544 Type *DestTy = I.getType();
2545
2546 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("IntToPtr source must be an integral"
, &I); return; } } while (false)
2547 "IntToPtr source must be an integral", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("IntToPtr source must be an integral"
, &I); return; } } while (false)
;
2548 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I)do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("IntToPtr result must be a pointer"
, &I); return; } } while (false)
;
2549
2550 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2551 Assert(!DL.isNonIntegralPointerType(PTy),do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"inttoptr not supported for non-integral pointers"); return; }
} while (false)
2552 "inttoptr not supported for non-integral pointers")do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"inttoptr not supported for non-integral pointers"); return; }
} while (false)
;
2553
2554 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (false)
2555 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (false)
;
2556 if (SrcTy->isVectorTy()) {
2557 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2558 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2559 Assert(VSrc->getNumElements() == VDest->getNumElements(),do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (false)
2560 "IntToPtr Vector width mismatch", &I)do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (false)
;
2561 }
2562 visitInstruction(I);
2563}
2564
2565void Verifier::visitBitCastInst(BitCastInst &I) {
2566 Assert(do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
2567 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
2568 "Invalid bitcast", &I)do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
;
2569 visitInstruction(I);
2570}
2571
2572void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2573 Type *SrcTy = I.getOperand(0)->getType();
2574 Type *DestTy = I.getType();
2575
2576 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (false)
2577 &I)do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (false)
;
2578 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (false)
2579 &I)do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (false)
;
2580 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (false)
2581 "AddrSpaceCast must be between different address spaces", &I)do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (false)
;
2582 if (SrcTy->isVectorTy())
2583 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),do { if (!(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements
())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
2584 "AddrSpaceCast vector pointer number of elements mismatch", &I)do { if (!(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements
())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
;
2585 visitInstruction(I);
2586}
2587
2588/// visitPHINode - Ensure that a PHI node is well formed.
2589///
2590void Verifier::visitPHINode(PHINode &PN) {
2591 // Ensure that the PHI nodes are all grouped together at the top of the block.
2592 // This can be tested by checking whether the instruction before this is
2593 // either nonexistent (because this is begin()) or is a PHI node. If not,
2594 // then there is some other instruction before a PHI.
2595 Assert(&PN == &PN.getParent()->front() ||do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
2596 isa<PHINode>(--BasicBlock::iterator(&PN)),do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
2597 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent())do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
;
2598
2599 // Check that a PHI doesn't yield a Token.
2600 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!")do { if (!(!PN.getType()->isTokenTy())) { CheckFailed("PHI nodes cannot have token type!"
); return; } } while (false)
;
2601
2602 // Check that all of the values of the PHI node have the same type as the
2603 // result, and that the incoming blocks are really basic blocks.
2604 for (Value *IncValue : PN.incoming_values()) {
2605 Assert(PN.getType() == IncValue->getType(),do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (false)
2606 "PHI node operands are not the same type as the result!", &PN)do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (false)
;
2607 }
2608
2609 // All other PHI node constraints are checked in the visitBasicBlock method.
2610
2611 visitInstruction(PN);
2612}
2613
2614void Verifier::verifyCallSite(CallSite CS) {
2615 Instruction *I = CS.getInstruction();
2616
2617 Assert(CS.getCalledValue()->getType()->isPointerTy(),do { if (!(CS.getCalledValue()->getType()->isPointerTy(
))) { CheckFailed("Called function must be a pointer!", I); return
; } } while (false)
2618 "Called function must be a pointer!", I)do { if (!(CS.getCalledValue()->getType()->isPointerTy(
))) { CheckFailed("Called function must be a pointer!", I); return
; } } while (false)
;
2619 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2620
2621 Assert(FPTy->getElementType()->isFunctionTy(),do { if (!(FPTy->getElementType()->isFunctionTy())) { CheckFailed
("Called function is not pointer to function type!", I); return
; } } while (false)
2622 "Called function is not pointer to function type!", I)do { if (!(FPTy->getElementType()->isFunctionTy())) { CheckFailed
("Called function is not pointer to function type!", I); return
; } } while (false)
;
2623
2624 Assert(FPTy->getElementType() == CS.getFunctionType(),do { if (!(FPTy->getElementType() == CS.getFunctionType())
) { CheckFailed("Called function is not the same type as the call!"
, I); return; } } while (false)
2625 "Called function is not the same type as the call!", I)do { if (!(FPTy->getElementType() == CS.getFunctionType())
) { CheckFailed("Called function is not the same type as the call!"
, I); return; } } while (false)
;
2626
2627 FunctionType *FTy = CS.getFunctionType();
2628
2629 // Verify that the correct number of arguments are being passed
2630 if (FTy->isVarArg())
2631 Assert(CS.arg_size() >= FTy->getNumParams(),do { if (!(CS.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, I); return; } } while (false)
2632 "Called function requires more parameters than were provided!", I)do { if (!(CS.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, I); return; } } while (false)
;
2633 else
2634 Assert(CS.arg_size() == FTy->getNumParams(),do { if (!(CS.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", I
); return; } } while (false)
2635 "Incorrect number of arguments passed to called function!", I)do { if (!(CS.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", I
); return; } } while (false)
;
2636
2637 // Verify that all arguments to the call match the function type.
2638 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2639 Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (false)
2640 "Call parameter type does not match function signature!",do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (false)
2641 CS.getArgument(i), FTy->getParamType(i), I)do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (false)
;
2642
2643 AttributeList Attrs = CS.getAttributes();
2644
2645 Assert(verifyAttributeCount(Attrs, CS.arg_size()),do { if (!(verifyAttributeCount(Attrs, CS.arg_size()))) { CheckFailed
("Attribute after last parameter!", I); return; } } while (false
)
2646 "Attribute after last parameter!", I)do { if (!(verifyAttributeCount(Attrs, CS.arg_size()))) { CheckFailed
("Attribute after last parameter!", I); return; } } while (false
)
;
2647
2648 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
2649 // Don't allow speculatable on call sites, unless the underlying function
2650 // declaration is also speculatable.
2651 Function *Callee
2652 = dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
2653 Assert(Callee && Callee->isSpeculatable(),do { if (!(Callee && Callee->isSpeculatable())) { CheckFailed
("speculatable attribute may not apply to call sites", I); return
; } } while (false)
2654 "speculatable attribute may not apply to call sites", I)do { if (!(Callee && Callee->isSpeculatable())) { CheckFailed
("speculatable attribute may not apply to call sites", I); return
; } } while (false)
;
2655 }
2656
2657 // Verify call attributes.
2658 verifyFunctionAttrs(FTy, Attrs, I);
2659
2660 // Conservatively check the inalloca argument.
2661 // We have a bug if we can find that there is an underlying alloca without
2662 // inalloca.
2663 if (CS.hasInAllocaArgument()) {
2664 Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2665 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2666 Assert(AI->isUsedWithInAlloca(),do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, I); return; } } while (false)
2667 "inalloca argument for call has mismatched alloca", AI, I)do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, I); return; } } while (false)
;
2668 }
2669
2670 // For each argument of the callsite, if it has the swifterror argument,
2671 // make sure the underlying alloca/parameter it comes from has a swifterror as
2672 // well.
2673 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2674 if (CS.paramHasAttr(i, Attribute::SwiftError)) {
2675 Value *SwiftErrorArg = CS.getArgument(i);
2676 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2677 Assert(AI->isSwiftError(),do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca"
, AI, I); return; } } while (false)
2678 "swifterror argument for call has mismatched alloca", AI, I)do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca"
, AI, I); return; } } while (false)
;
2679 continue;
2680 }
2681 auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2682 Assert(ArgI, "swifterror argument should come from an alloca or parameter", SwiftErrorArg, I)do { if (!(ArgI)) { CheckFailed("swifterror argument should come from an alloca or parameter"
, SwiftErrorArg, I); return; } } while (false)
;
2683 Assert(ArgI->hasSwiftErrorAttr(),do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, I); return; } } while (false)
2684 "swifterror argument for call has mismatched parameter", ArgI, I)do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, I); return; } } while (false)
;
2685 }
2686
2687 if (FTy->isVarArg()) {
2688 // FIXME? is 'nest' even legal here?
2689 bool SawNest = false;
2690 bool SawReturned = false;
2691
2692 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
2693 if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
2694 SawNest = true;
2695 if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
2696 SawReturned = true;
2697 }
2698
2699 // Check attributes on the varargs part.
2700 for (unsigned Idx = FTy->getNumParams(); Idx < CS.arg_size(); ++Idx) {
2701 Type *Ty = CS.getArgument(Idx)->getType();
2702 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
2703 verifyParameterAttrs(ArgAttrs, Ty, I);
2704
2705 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2706 Assert(!SawNest, "More than one parameter has attribute nest!", I)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, I); return; } } while (false)
;
2707 SawNest = true;
2708 }
2709
2710 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2711 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, I); return; } } while (false)
2712 I)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, I); return; } } while (false)
;
2713 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
2714 "Incompatible argument and return types for 'returned' "do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
2715 "attribute",do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
2716 I)do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
;
2717 SawReturned = true;
2718 }
2719
2720 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, I); return; } } while (false)
2721 "Attribute 'sret' cannot be used for vararg call arguments!", I)do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, I); return; } } while (false)
;
2722
2723 if (ArgAttrs.hasAttribute(Attribute::InAlloca))
2724 Assert(Idx == CS.arg_size() - 1, "inalloca isn't on the last argument!",do { if (!(Idx == CS.arg_size() - 1)) { CheckFailed("inalloca isn't on the last argument!"
, I); return; } } while (false)
2725 I)do { if (!(Idx == CS.arg_size() - 1)) { CheckFailed("inalloca isn't on the last argument!"
, I); return; } } while (false)
;
2726 }
2727 }
2728
2729 // Verify that there's no metadata unless it's a direct call to an intrinsic.
2730 if (CS.getCalledFunction() == nullptr ||
2731 !CS.getCalledFunction()->getName().startswith("llvm.")) {
2732 for (Type *ParamTy : FTy->params()) {
2733 Assert(!ParamTy->isMetadataTy(),do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, I); return; } } while (false)
2734 "Function has metadata parameter but isn't an intrinsic", I)do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, I); return; } } while (false)
;
2735 Assert(!ParamTy->isTokenTy(),do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, I); return; } } while (false)
2736 "Function has token parameter but isn't an intrinsic", I)do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, I); return; } } while (false)
;
2737 }
2738 }
2739
2740 // Verify that indirect calls don't return tokens.
2741 if (CS.getCalledFunction() == nullptr)
2742 Assert(!FTy->getReturnType()->isTokenTy(),do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (false)
2743 "Return type cannot be token for indirect call!")do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (false)
;
2744
2745 if (Function *F = CS.getCalledFunction())
2746 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2747 visitIntrinsicCallSite(ID, CS);
2748
2749 // Verify that a callsite has at most one "deopt", at most one "funclet" and
2750 // at most one "gc-transition" operand bundle.
2751 bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2752 FoundGCTransitionBundle = false;
2753 for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
2754 OperandBundleUse BU = CS.getOperandBundleAt(i);
2755 uint32_t Tag = BU.getTagID();
2756 if (Tag == LLVMContext::OB_deopt) {
2757 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I)do { if (!(!FoundDeoptBundle)) { CheckFailed("Multiple deopt operand bundles"
, I); return; } } while (false)
;
2758 FoundDeoptBundle = true;
2759 } else if (Tag == LLVMContext::OB_gc_transition) {
2760 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles"
, I); return; } } while (false)
2761 I)do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles"
, I); return; } } while (false)
;
2762 FoundGCTransitionBundle = true;
2763 } else if (Tag == LLVMContext::OB_funclet) {
2764 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I)do { if (!(!FoundFuncletBundle)) { CheckFailed("Multiple funclet operand bundles"
, I); return; } } while (false)
;
2765 FoundFuncletBundle = true;
2766 Assert(BU.Inputs.size() == 1,do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand"
, I); return; } } while (false)
2767 "Expected exactly one funclet bundle operand", I)do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand"
, I); return; } } while (false)
;
2768 Assert(isa<FuncletPadInst>(BU.Inputs.front()),do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, I); return; } } while (false)
2769 "Funclet bundle operands should correspond to a FuncletPadInst",do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, I); return; } } while (false)
2770 I)do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, I); return; } } while (false)
;
2771 }
2772 }
2773
2774 // Verify that each inlinable callsite of a debug-info-bearing function in a
2775 // debug-info-bearing function has a debug location attached to it. Failure to
2776 // do so causes assertion failures when the inliner sets up inline scope info.
2777 if (I->getFunction()->getSubprogram() && CS.getCalledFunction() &&
2778 CS.getCalledFunction()->getSubprogram())
2779 AssertDI(I->getDebugLoc(), "inlinable function call in a function with "do { if (!(I->getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", I); return; } } while
(false)
2780 "debug info must have a !dbg location",do { if (!(I->getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", I); return; } } while
(false)
2781 I)do { if (!(I->getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", I); return; } } while
(false)
;
2782
2783 visitInstruction(*I);
2784}
2785
2786/// Two types are "congruent" if they are identical, or if they are both pointer
2787/// types with different pointee types and the same address space.
2788static bool isTypeCongruent(Type *L, Type *R) {
2789 if (L == R)
2790 return true;
2791 PointerType *PL = dyn_cast<PointerType>(L);
2792 PointerType *PR = dyn_cast<PointerType>(R);
2793 if (!PL || !PR)
2794 return false;
2795 return PL->getAddressSpace() == PR->getAddressSpace();
2796}
2797
2798static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
2799 static const Attribute::AttrKind ABIAttrs[] = {
2800 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2801 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
2802 Attribute::SwiftError};
2803 AttrBuilder Copy;
2804 for (auto AK : ABIAttrs) {
2805 if (Attrs.hasParamAttribute(I, AK))
2806 Copy.addAttribute(AK);
2807 }
2808 if (Attrs.hasParamAttribute(I, Attribute::Alignment))
2809 Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
2810 return Copy;
2811}
2812
2813void Verifier::verifyMustTailCall(CallInst &CI) {
2814 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI)do { if (!(!CI.isInlineAsm())) { CheckFailed("cannot use musttail call with inline asm"
, &CI); return; } } while (false)
;
2815
2816 // - The caller and callee prototypes must match. Pointer types of
2817 // parameters or return types may differ in pointee type, but not
2818 // address space.
2819 Function *F = CI.getParent()->getParent();
2820 FunctionType *CallerTy = F->getFunctionType();
2821 FunctionType *CalleeTy = CI.getFunctionType();
2822 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
2823 "cannot guarantee tail call due to mismatched parameter counts", &CI)do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
;
2824 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (false)
2825 "cannot guarantee tail call due to mismatched varargs", &CI)do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (false)
;
2826 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (false)
2827 "cannot guarantee tail call due to mismatched return types", &CI)do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (false)
;
2828 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2829 Assert(do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
2830 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
2831 "cannot guarantee tail call due to mismatched parameter types", &CI)do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
;
2832 }
2833
2834 // - The calling conventions of the caller and callee must match.
2835 Assert(F->getCallingConv() == CI.getCallingConv(),do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (false)
2836 "cannot guarantee tail call due to mismatched calling conv", &CI)do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (false)
;
2837
2838 // - All ABI-impacting function attributes, such as sret, byval, inreg,
2839 // returned, and inalloca, must match.
2840 AttributeList CallerAttrs = F->getAttributes();
2841 AttributeList CalleeAttrs = CI.getAttributes();
2842 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2843 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2844 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2845 Assert(CallerABIAttrs == CalleeABIAttrs,do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
2846 "cannot guarantee tail call due to mismatched ABI impacting "do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
2847 "function attributes",do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
2848 &CI, CI.getOperand(I))do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
;
2849 }
2850
2851 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2852 // or a pointer bitcast followed by a ret instruction.
2853 // - The ret instruction must return the (possibly bitcasted) value
2854 // produced by the call or void.
2855 Value *RetVal = &CI;
2856 Instruction *Next = CI.getNextNode();
2857
2858 // Handle the optional bitcast.
2859 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2860 Assert(BI->getOperand(0) == RetVal,do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (false)
2861 "bitcast following musttail call must use the call", BI)do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (false)
;
2862 RetVal = BI;
2863 Next = BI->getNextNode();
2864 }
2865
2866 // Check the return.
2867 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2868 Assert(Ret, "musttail call must be precede a ret with an optional bitcast",do { if (!(Ret)) { CheckFailed("musttail call must be precede a ret with an optional bitcast"
, &CI); return; } } while (false)
2869 &CI)do { if (!(Ret)) { CheckFailed("musttail call must be precede a ret with an optional bitcast"
, &CI); return; } } while (false)
;
2870 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal)) { CheckFailed("musttail call result must be returned"
, Ret); return; } } while (false)
2871 "musttail call result must be returned", Ret)do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal)) { CheckFailed("musttail call result must be returned"
, Ret); return; } } while (false)
;
2872}
2873
2874void Verifier::visitCallInst(CallInst &CI) {
2875 verifyCallSite(&CI);
2876
2877 if (CI.isMustTailCall())
2878 verifyMustTailCall(CI);
2879}
2880
2881void Verifier::visitInvokeInst(InvokeInst &II) {
2882 verifyCallSite(&II);
2883
2884 // Verify that the first non-PHI instruction of the unwind destination is an
2885 // exception handling instruction.
2886 Assert(do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
2887 II.getUnwindDest()->isEHPad(),do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
2888 "The unwind destination does not have an exception handling instruction!",do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
2889 &II)do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
;
2890
2891 visitTerminatorInst(II);
2892}
2893
2894/// visitBinaryOperator - Check that both arguments to the binary operator are
2895/// of the same type!
2896///
2897void Verifier::visitBinaryOperator(BinaryOperator &B) {
2898 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (false)
2899 "Both operands to a binary operator are not of the same type!", &B)do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (false)
;
2900
2901 switch (B.getOpcode()) {
2902 // Check that integer arithmetic operators are only used with
2903 // integral operands.
2904 case Instruction::Add:
2905 case Instruction::Sub:
2906 case Instruction::Mul:
2907 case Instruction::SDiv:
2908 case Instruction::UDiv:
2909 case Instruction::SRem:
2910 case Instruction::URem:
2911 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (false)
2912 "Integer arithmetic operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (false)
;
2913 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2914 "Integer arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2915 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2916 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
;
2917 break;
2918 // Check that floating-point arithmetic operators are only used with
2919 // floating-point operands.
2920 case Instruction::FAdd:
2921 case Instruction::FSub:
2922 case Instruction::FMul:
2923 case Instruction::FDiv:
2924 case Instruction::FRem:
2925 Assert(B.getType()->isFPOrFPVectorTy(),do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
2926 "Floating-point arithmetic operators only work with "do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
2927 "floating-point types!",do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
2928 &B)do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
;
2929 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2930 "Floating-point arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2931 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2932 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
;
2933 break;
2934 // Check that logical operators are only used with integral operands.
2935 case Instruction::And:
2936 case Instruction::Or:
2937 case Instruction::Xor:
2938 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (false)
2939 "Logical operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (false)
;
2940 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
2941 "Logical operators must have same type for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
2942 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
;
2943 break;
2944 case Instruction::Shl:
2945 case Instruction::LShr:
2946 case Instruction::AShr:
2947 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (false)
2948 "Shifts only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (false)
;
2949 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (false)
2950 "Shift return type must be same as operands!", &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (false)
;
2951 break;
2952 default:
2953 llvm_unreachable("Unknown BinaryOperator opcode!")::llvm::llvm_unreachable_internal("Unknown BinaryOperator opcode!"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/IR/Verifier.cpp"
, 2953)
;
2954 }
2955
2956 visitInstruction(B);
2957}
2958
2959void Verifier::visitICmpInst(ICmpInst &IC) {
2960 // Check that the operands are the same type
2961 Type *Op0Ty = IC.getOperand(0)->getType();
2962 Type *Op1Ty = IC.getOperand(1)->getType();
2963 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (false)
2964 "Both operands to ICmp instruction are not of the same type!", &IC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (false)
;
2965 // Check that the operands are the right type
2966 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy
())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (false)
2967 "Invalid operand types for ICmp instruction", &IC)do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy
())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (false)
;
2968 // Check that the predicate is valid.
2969 Assert(IC.isIntPredicate(),do { if (!(IC.isIntPredicate())) { CheckFailed("Invalid predicate in ICmp instruction!"
, &IC); return; } } while (false)
2970 "Invalid predicate in ICmp instruction!", &IC)do { if (!(IC.isIntPredicate())) { CheckFailed("Invalid predicate in ICmp instruction!"
, &IC); return; } } while (false)
;
2971
2972 visitInstruction(IC);
2973}
2974
2975void Verifier::visitFCmpInst(FCmpInst &FC) {
2976 // Check that the operands are the same type
2977 Type *Op0Ty = FC.getOperand(0)->getType();
2978 Type *Op1Ty = FC.getOperand(1)->getType();
2979 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (false)
2980 "Both operands to FCmp instruction are not of the same type!", &FC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (false)
;
2981 // Check that the operands are the right type
2982 Assert(Op0Ty->isFPOrFPVectorTy(),do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (false)
2983 "Invalid operand types for FCmp instruction", &FC)do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (false)
;
2984 // Check that the predicate is valid.
2985 Assert(FC.isFPPredicate(),do { if (!(FC.isFPPredicate())) { CheckFailed("Invalid predicate in FCmp instruction!"
, &FC); return; } } while (false)
2986 "Invalid predicate in FCmp instruction!", &FC)do { if (!(FC.isFPPredicate())) { CheckFailed("Invalid predicate in FCmp instruction!"
, &FC); return; } } while (false)
;
2987
2988 visitInstruction(FC);
2989}
2990
2991void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
2992 Assert(do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
2993 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
2994 "Invalid extractelement operands!", &EI)do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
;
2995 visitInstruction(EI);
2996}
2997
2998void Verifier::visitInsertElementInst(InsertElementInst &IE) {
2999 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
3000 IE.getOperand(2)),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
3001 "Invalid insertelement operands!", &IE)do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
;
3002 visitInstruction(IE);
3003}
3004
3005void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3006 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
3007 SV.getOperand(2)),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
3008 "Invalid shufflevector operands!", &SV)do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
;
3009 visitInstruction(SV);
3010}
3011
3012void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3013 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3014
3015 Assert(isa<PointerType>(TargetTy),do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (false)
3016 "GEP base pointer is not a vector or a vector of pointers", &GEP)do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (false)
;
3017 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP)do { if (!(GEP.getSourceElementType()->isSized())) { CheckFailed
("GEP into unsized type!", &GEP); return; } } while (false
)
;
3018
3019 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3020 Assert(all_of(do { if (!(all_of( Idxs, [](Value* V) { return V->getType(
)->isIntOrIntVectorTy(); }))) { CheckFailed("GEP indexes must be integers"
, &GEP); return; } } while (false)
3021 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),do { if (!(all_of( Idxs, [](Value* V) { return V->getType(
)->isIntOrIntVectorTy(); }))) { CheckFailed("GEP indexes must be integers"
, &GEP); return; } } while (false)
3022 "GEP indexes must be integers", &GEP)do { if (!(all_of( Idxs, [](Value* V) { return V->getType(
)->isIntOrIntVectorTy(); }))) { CheckFailed("GEP indexes must be integers"
, &GEP); return; } } while (false)
;
3023 Type *ElTy =
3024 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3025 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP)do { if (!(ElTy)) { CheckFailed("Invalid indices for GEP pointer type!"
, &GEP); return; } } while (false)
;
3026
3027 Assert(GEP.getType()->isPtrOrPtrVectorTy() &&do { if (!(GEP.getType()->isPtrOrPtrVectorTy() && GEP
.getResultElementType() == ElTy)) { CheckFailed("GEP is not of right type for indices!"
, &GEP, ElTy); return; } } while (false)
3028 GEP.getResultElementType() == ElTy,do { if (!(GEP.getType()->isPtrOrPtrVectorTy() && GEP
.getResultElementType() == ElTy)) { CheckFailed("GEP is not of right type for indices!"
, &GEP, ElTy); return; } } while (false)
3029 "GEP is not of right type for indices!", &GEP, ElTy)do { if (!(GEP.getType()->isPtrOrPtrVectorTy() && GEP
.getResultElementType() == ElTy)) { CheckFailed("GEP is not of right type for indices!"
, &GEP, ElTy); return; } } while (false)
;
3030
3031 if (GEP.getType()->isVectorTy()) {
3032 // Additional checks for vector GEPs.
3033 unsigned GEPWidth = GEP.getType()->getVectorNumElements();
3034 if (GEP.getPointerOperandType()->isVectorTy())
3035 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),do { if (!(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements
())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
3036 "Vector GEP result width doesn't match operand's", &GEP)do { if (!(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements
())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
;
3037 for (Value *Idx : Idxs) {
3038 Type *IndexTy = Idx->getType();
3039 if (IndexTy->isVectorTy()) {
3040 unsigned IndexWidth = IndexTy->getVectorNumElements();
3041 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP)do { if (!(IndexWidth == GEPWidth)) { CheckFailed("Invalid GEP index vector width"
, &GEP); return; } } while (false)
;
3042 }
3043 Assert(IndexTy->isIntOrIntVectorTy(),do { if (!(IndexTy->isIntOrIntVectorTy())) { CheckFailed("All GEP indices should be of integer type"
); return; } } while (false)
3044 "All GEP indices should be of integer type")do { if (!(IndexTy->isIntOrIntVectorTy())) { CheckFailed("All GEP indices should be of integer type"
); return; } } while (false)
;
3045 }
3046 }
3047 visitInstruction(GEP);
3048}
3049
3050static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3051 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3052}
3053
3054void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3055 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&(static_cast <bool> (Range && Range == I.getMetadata
(LLVMContext::MD_range) && "precondition violation") ?
void (0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/IR/Verifier.cpp"
, 3056, __extension__ __PRETTY_FUNCTION__))
3056 "precondition violation")(static_cast <bool> (Range && Range == I.getMetadata
(LLVMContext::MD_range) && "precondition violation") ?
void (0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/IR/Verifier.cpp"
, 3056, __extension__ __PRETTY_FUNCTION__))
;
3057
3058 unsigned NumOperands = Range->getNumOperands();
3059 Assert(NumOperands % 2 == 0, "Unfinished range!", Range)do { if (!(NumOperands % 2 == 0)) { CheckFailed("Unfinished range!"
, Range); return; } } while (false)
;
3060 unsigned NumRanges = NumOperands / 2;
3061 Assert(NumRanges >= 1, "It should have at least one range!", Range)do { if (!(NumRanges >= 1)) { CheckFailed("It should have at least one range!"
, Range); return; } } while (false)
;
3062
3063 ConstantRange LastRange(1); // Dummy initial value
3064 for (unsigned i = 0; i < NumRanges; ++i) {
3065 ConstantInt *Low =
3066 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3067 Assert(Low, "The lower limit must be an integer!", Low)do { if (!(Low)) { CheckFailed("The lower limit must be an integer!"
, Low); return; } } while (false)
;
3068 ConstantInt *High =
3069 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3070 Assert(High, "The upper limit must be an integer!", High)do { if (!(High)) { CheckFailed("The upper limit must be an integer!"
, High); return; } } while (false)
;
3071 Assert(High->getType() == Low->getType() && High->getType() == Ty,do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (false)
3072 "Range types must match instruction type!", &I)do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (false)
;
3073
3074 APInt HighV = High->getValue();
3075 APInt LowV = Low->getValue();
3076 ConstantRange CurRange(LowV, HighV);
3077 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (false)
3078 "Range must not be empty!", Range)do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (false)
;
3079 if (i != 0) {
3080 Assert(CurRange.intersectWith(LastRange).isEmptySet(),do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (false)
3081 "Intervals are overlapping", Range)do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (false)
;
3082 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (false)
3083 Range)do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (false)
;
3084 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
3085 Range)do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
;
3086 }
3087 LastRange = ConstantRange(LowV, HighV);
3088 }
3089 if (NumRanges > 2) {
3090 APInt FirstLow =
3091 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3092 APInt FirstHigh =
3093 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3094 ConstantRange FirstRange(FirstLow, FirstHigh);
3095 Assert(FirstRange.intersectWith(LastRange).isEmptySet(),do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (false)
3096 "Intervals are overlapping", Range)do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (false)
;
3097 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
3098 Range)do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
;
3099 }
3100}
3101
3102void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3103 unsigned Size = DL.getTypeSizeInBits(Ty);
3104 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I)do { if (!(Size >= 8)) { CheckFailed("atomic memory access' size must be byte-sized"
, Ty, I); return; } } while (false)
;
3105 Assert(!(Size & (Size - 1)),do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size"
, Ty, I); return; } } while (false)
3106 "atomic memory access' operand must have a power-of-two size", Ty, I)do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size"
, Ty, I); return; } } while (false)
;
3107}
3108
3109void Verifier::visitLoadInst(LoadInst &LI) {
3110 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3111 Assert(PTy, "Load operand must be a pointer.", &LI)do { if (!(PTy)) { CheckFailed("Load operand must be a pointer."
, &LI); return; } } while (false)
;
3112 Type *ElTy = LI.getType();
3113 Assert(LI.getAlignment() <= Value::MaximumAlignment,do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (false)
3114 "huge alignment values are unsupported", &LI)do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (false)
;
3115 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI)do { if (!(ElTy->isSized())) { CheckFailed("loading unsized types is not allowed"
, &LI); return; } } while (false)
;
3116 if (LI.isAtomic()) {
3117 Assert(LI.getOrdering() != AtomicOrdering::Release &&do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
3118 LI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
3119 "Load cannot have Release ordering", &LI)do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
;
3120 Assert(LI.getAlignment() != 0,do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (false)
3121 "Atomic load must specify explicit alignment", &LI)do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (false)
;
3122 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3123 ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3124 "atomic load operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3125 "type!",do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3126 ElTy, &LI)do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
;
3127 checkAtomicMemAccessSize(ElTy, &LI);
3128 } else {
3129 Assert(LI.getSyncScopeID() == SyncScope::System,do { if (!(LI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic load cannot have SynchronizationScope specified"
, &LI); return; } } while (false)
3130 "Non-atomic load cannot have SynchronizationScope specified", &LI)do { if (!(LI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic load cannot have SynchronizationScope specified"
, &LI); return; } } while (false)
;
3131 }
3132
3133 visitInstruction(LI);
3134}
3135
3136void Verifier::visitStoreInst(StoreInst &SI) {
3137 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3138 Assert(PTy, "Store operand must be a pointer.", &SI)do { if (!(PTy)) { CheckFailed("Store operand must be a pointer."
, &SI); return; } } while (false)
;
3139 Type *ElTy = PTy->getElementType();
3140 Assert(ElTy == SI.getOperand(0)->getType(),do { if (!(ElTy == SI.getOperand(0)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (false)
3141 "Stored value type does not match pointer operand type!", &SI, ElTy)do { if (!(ElTy == SI.getOperand(0)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (false)
;
3142 Assert(SI.getAlignment() <= Value::MaximumAlignment,do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (false)
3143 "huge alignment values are unsupported", &SI)do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (false)
;
3144 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI)do { if (!(ElTy->isSized())) { CheckFailed("storing unsized types is not allowed"
, &SI); return; } } while (false)
;
3145 if (SI.isAtomic()) {
3146 Assert(SI.getOrdering() != AtomicOrdering::Acquire &&do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
3147 SI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
3148 "Store cannot have Acquire ordering", &SI)do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
;
3149 Assert(SI.getAlignment() != 0,do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (false)
3150 "Atomic store must specify explicit alignment", &SI)do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (false)
;
3151 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3152 ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3153 "atomic store operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3154 "type!",do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3155 ElTy, &SI)do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
;
3156 checkAtomicMemAccessSize(ElTy, &SI);
3157 } else {
3158 Assert(SI.getSyncScopeID() == SyncScope::System,do { if (!(SI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (false)
3159 "Non-atomic store cannot have SynchronizationScope specified", &SI)do { if (!(SI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (false)
;
3160 }
3161 visitInstruction(SI);
3162}
3163
3164/// Check that SwiftErrorVal is used as a swifterror argument in CS.
3165void Verifier::verifySwiftErrorCallSite(CallSite CS,
3166 const Value *SwiftErrorVal) {
3167 unsigned Idx = 0;
3168 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
3169 I != E; ++I, ++Idx) {
3170 if (*I == SwiftErrorVal) {
3171 Assert(CS.paramHasAttr(Idx, Attribute::SwiftError),do { if (!(CS.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
3172 "swifterror value when used in a callsite should be marked "do { if (!(CS.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
3173 "with swifterror attribute",do { if (!(CS.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
3174 SwiftErrorVal, CS)do { if (!(CS.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
;
3175 }
3176 }
3177}
3178
3179void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3180 // Check that swifterror value is only used by loads, stores, or as
3181 // a swifterror argument.
3182 for (const User *U : SwiftErrorVal->users()) {
3183 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3184 isa<InvokeInst>(U),do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3185 "swifterror value can only be loaded and stored from, or "do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3186 "as a swifterror argument!",do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3187 SwiftErrorVal, U)do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
;
3188 // If it is used by a store, check it is the second operand.
3189 if (auto StoreI = dyn_cast<StoreInst>(U))
3190 Assert(StoreI->getOperand(1) == SwiftErrorVal,do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
3191 "swifterror value should be the second operand when used "do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
3192 "by stores", SwiftErrorVal, U)do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
;
3193 if (auto CallI = dyn_cast<CallInst>(U))
3194 verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal);
3195 if (auto II = dyn_cast<InvokeInst>(U))
3196 verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal);
3197 }
3198}
3199
3200void Verifier::visitAllocaInst(AllocaInst &AI) {
3201 SmallPtrSet<Type*, 4> Visited;
3202 PointerType *PTy = AI.getType();
3203 // TODO: Relax this restriction?
3204 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),do { if (!(PTy->getAddressSpace() == DL.getAllocaAddrSpace
())) { CheckFailed("Allocation instruction pointer not in the stack address space!"
, &AI); return; } } while (false)
3205 "Allocation instruction pointer not in the stack address space!",do { if (!(PTy->getAddressSpace() == DL.getAllocaAddrSpace
())) { CheckFailed("Allocation instruction pointer not in the stack address space!"
, &AI); return; } } while (false)
3206 &AI)do { if (!(PTy->getAddressSpace() == DL.getAllocaAddrSpace
())) { CheckFailed("Allocation instruction pointer not in the stack address space!"
, &AI); return; } } while (false)
;
3207 Assert(AI.getAllocatedType()->isSized(&Visited),do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (false)
3208 "Cannot allocate unsized type", &AI)do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (false)
;
3209 Assert(AI.getArraySize()->getType()->isIntegerTy(),do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (false)
3210 "Alloca array size must have integer type", &AI)do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (false)
;
3211 Assert(AI.getAlignment() <= Value::MaximumAlignment,do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (false)
3212 "huge alignment values are unsupported", &AI)do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (false)
;
3213
3214 if (AI.isSwiftError()) {
3215 verifySwiftErrorValue(&AI);
3216 }
3217
3218 visitInstruction(AI);
3219}
3220
3221void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3222
3223 // FIXME: more conditions???
3224 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
3225 "cmpxchg instructions must be atomic.", &CXI)do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
;
3226 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
3227 "cmpxchg instructions must be atomic.", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
;
3228 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
3229 "cmpxchg instructions cannot be unordered.", &CXI)do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
;
3230 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
3231 "cmpxchg instructions cannot be unordered.", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
;
3232 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3233 "cmpxchg instructions failure argument shall be no stronger than the "do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3234 "success argument",do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3235 &CXI)do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
;
3236 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
3237 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
3238 "cmpxchg failure ordering cannot include release semantics", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
;
3239
3240 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3241 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI)do { if (!(PTy)) { CheckFailed("First cmpxchg operand must be a pointer."
, &CXI); return; } } while (false)
;
3242 Type *ElTy = PTy->getElementType();
3243 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy(),do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy()))
{ CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
3244 "cmpxchg operand must have integer or pointer type",do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy()))
{ CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
3245 ElTy, &CXI)do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy()))
{ CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
;
3246 checkAtomicMemAccessSize(ElTy, &CXI);
3247 Assert(ElTy == CXI.getOperand(1)->getType(),do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3248 "Expected value type does not match pointer operand type!", &CXI,do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3249 ElTy)do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
;
3250 Assert(ElTy == CXI.getOperand(2)->getType(),do { if (!(ElTy == CXI.getOperand(2)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3251 "Stored value type does not match pointer operand type!", &CXI, ElTy)do { if (!(ElTy == CXI.getOperand(2)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
;
3252 visitInstruction(CXI);
3253}
3254
3255void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3256 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,do { if (!(RMWI.getOrdering() != AtomicOrdering::NotAtomic)) {
CheckFailed("atomicrmw instructions must be atomic.", &RMWI
); return; } } while (false)
3257 "atomicrmw instructions must be atomic.", &RMWI)do { if (!(RMWI.getOrdering() != AtomicOrdering::NotAtomic)) {
CheckFailed("atomicrmw instructions must be atomic.", &RMWI
); return; } } while (false)
;
3258 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) {
CheckFailed("atomicrmw instructions cannot be unordered.", &
RMWI); return; } } while (false)
3259 "atomicrmw instructions cannot be unordered.", &RMWI)do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) {
CheckFailed("atomicrmw instructions cannot be unordered.", &
RMWI); return; } } while (false)
;
3260 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3261 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI)do { if (!(PTy)) { CheckFailed("First atomicrmw operand must be a pointer."
, &RMWI); return; } } while (false)
;
3262 Type *ElTy = PTy->getElementType();
3263 Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
3264 &RMWI, ElTy)do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
;
3265 checkAtomicMemAccessSize(ElTy, &RMWI);
3266 Assert(ElTy == RMWI.getOperand(1)->getType(),do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
3267 "Argument value type does not match pointer operand type!", &RMWI,do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
3268 ElTy)do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
;
3269 Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (false)
3270 RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (false)
3271 "Invalid binary operation!", &RMWI)do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (false)
;
3272 visitInstruction(RMWI);
3273}
3274
3275void Verifier::visitFenceInst(FenceInst &FI) {
3276 const AtomicOrdering Ordering = FI.getOrdering();
3277 Assert(Ordering == AtomicOrdering::Acquire ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3278 Ordering == AtomicOrdering::Release ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3279 Ordering == AtomicOrdering::AcquireRelease ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3280 Ordering == AtomicOrdering::SequentiallyConsistent,do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3281 "fence instructions may only have acquire, release, acq_rel, or "do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3282 "seq_cst ordering.",do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3283 &FI)do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
;
3284 visitInstruction(FI);
3285}
3286
3287void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3288 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
3289 EVI.getIndices()) == EVI.getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
3290 "Invalid ExtractValueInst operands!", &EVI)do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
;
3291
3292 visitInstruction(EVI);
3293}
3294
3295void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3296 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3297 IVI.getIndices()) ==do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3298 IVI.getOperand(1)->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3299 "Invalid InsertValueInst operands!", &IVI)do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
;
3300
3301 visitInstruction(IVI);
3302}
3303
3304static Value *getParentPad(Value *EHPad) {
3305 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3306 return FPI->getParentPad();
3307
3308 return cast<CatchSwitchInst>(EHPad)->getParentPad();
3309}
3310
3311void Verifier::visitEHPadPredecessors(Instruction &I) {
3312 assert(I.isEHPad())(static_cast <bool> (I.isEHPad()) ? void (0) : __assert_fail
("I.isEHPad()", "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/IR/Verifier.cpp"
, 3312, __extension__ __PRETTY_FUNCTION__))
;
3313
3314 BasicBlock *BB = I.getParent();
3315 Function *F = BB->getParent();
3316
3317 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I)do { if (!(BB != &F->getEntryBlock())) { CheckFailed("EH pad cannot be in entry block."
, &I); return; } } while (false)
;
3318
3319 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3320 // The landingpad instruction defines its parent as a landing pad block. The
3321 // landing pad block may be branched to only by the unwind edge of an
3322 // invoke.
3323 for (BasicBlock *PredBB : predecessors(BB)) {
3324 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3325 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3326 "Block containing LandingPadInst must be jumped to "do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3327 "only by the unwind edge of an invoke.",do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3328 LPI)do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
;
3329 }
3330 return;
3331 }
3332 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3333 if (!pred_empty(BB))
3334 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3335 "Block containg CatchPadInst must be jumped to "do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3336 "only by its catchswitch.",do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3337 CPI)do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
;
3338 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
3339 "Catchswitch cannot unwind to one of its catchpads",do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
3340 CPI->getCatchSwitch(), CPI)do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
;
3341 return;
3342 }
3343
3344 // Verify that each pred has a legal terminator with a legal to/from EH
3345 // pad relationship.
3346 Instruction *ToPad = &I;
3347 Value *ToPadParent = getParentPad(ToPad);
3348 for (BasicBlock *PredBB : predecessors(BB)) {
3349 TerminatorInst *TI = PredBB->getTerminator();
3350 Value *FromPad;
3351 if (auto *II = dyn_cast<InvokeInst>(TI)) {
3352 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, II); return; } } while (false)
3353 "EH pad must be jumped to via an unwind edge", ToPad, II)do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, II); return; } } while (false)
;
3354 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3355 FromPad = Bundle->Inputs[0];
3356 else
3357 FromPad = ConstantTokenNone::get(II->getContext());
3358 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3359 FromPad = CRI->getOperand(0);
3360 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI)do { if (!(FromPad != ToPadParent)) { CheckFailed("A cleanupret must exit its cleanup"
, CRI); return; } } while (false)
;
3361 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3362 FromPad = CSI;
3363 } else {
3364 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI)do { if (!(false)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, TI); return; } } while (false)
;
3365 }
3366
3367 // The edge may exit from zero or more nested pads.
3368 SmallSet<Value *, 8> Seen;
3369 for (;; FromPad = getParentPad(FromPad)) {
3370 Assert(FromPad != ToPad,do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it"
, FromPad, TI); return; } } while (false)
3371 "EH pad cannot handle exceptions raised within it", FromPad, TI)do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it"
, FromPad, TI); return; } } while (false)
;
3372 if (FromPad == ToPadParent) {
3373 // This is a legal unwind edge.
3374 break;
3375 }
3376 Assert(!isa<ConstantTokenNone>(FromPad),do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed
("A single unwind edge may only enter one EH pad", TI); return
; } } while (false)
3377 "A single unwind edge may only enter one EH pad", TI)do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed
("A single unwind edge may only enter one EH pad", TI); return
; } } while (false)
;
3378 Assert(Seen.insert(FromPad).second,do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads"
, FromPad); return; } } while (false)
3379 "EH pad jumps through a cycle of pads", FromPad)do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads"
, FromPad); return; } } while (false)
;
3380 }
3381 }
3382}
3383
3384void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3385 // The landingpad instruction is ill-formed if it doesn't have any clauses and
3386 // isn't a cleanup.
3387 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (false)
3388 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI)do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (false)
;
3389
3390 visitEHPadPredecessors(LPI);
3391
3392 if (!LandingPadResultTy)
3393 LandingPadResultTy = LPI.getType();
3394 else
3395 Assert(LandingPadResultTy == LPI.getType(),do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3396 "The landingpad instruction should have a consistent result type "do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3397 "inside a function.",do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3398 &LPI)do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
;
3399
3400 Function *F = LPI.getParent()->getParent();
3401 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (false)
3402 "LandingPadInst needs to be in a function with a personality.", &LPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (false)
;
3403
3404 // The landingpad instruction must be the first non-PHI instruction in the
3405 // block.
3406 Assert(LPI.getParent()->getLandingPadInst() == &LPI,do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
3407 "LandingPadInst not the first non-PHI instruction in the block.",do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
3408 &LPI)do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
;
3409
3410 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3411 Constant *Clause = LPI.getClause(i);
3412 if (LPI.isCatch(i)) {
3413 Assert(isa<PointerType>(Clause->getType()),do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (false)
3414 "Catch operand does not have pointer type!", &LPI)do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (false)
;
3415 } else {
3416 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI)do { if (!(LPI.isFilter(i))) { CheckFailed("Clause is neither catch nor filter!"
, &LPI); return; } } while (false)
;
3417 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (false)
3418 "Filter operand is not an array of constants!", &LPI)do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (false)
;
3419 }
3420 }
3421
3422 visitInstruction(LPI);
3423}
3424
3425void Verifier::visitResumeInst(ResumeInst &RI) {
3426 Assert(RI.getFunction()->hasPersonalityFn(),do { if (!(RI.getFunction()->hasPersonalityFn())) { CheckFailed
("ResumeInst needs to be in a function with a personality.", &
RI); return; } } while (false)
3427 "ResumeInst needs to be in a function with a personality.", &RI)do { if (!(RI.getFunction()->hasPersonalityFn())) { CheckFailed
("ResumeInst needs to be in a function with a personality.", &
RI); return; } } while (false)
;
3428
3429 if (!LandingPadResultTy)
3430 LandingPadResultTy = RI.getValue()->getType();
3431 else
3432 Assert(LandingPadResultTy == RI.getValue()->getType(),do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3433 "The resume instruction should have a consistent result type "do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3434 "inside a function.",do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3435 &RI)do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
;
3436
3437 visitTerminatorInst(RI);
3438}
3439
3440void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3441 BasicBlock *BB = CPI.getParent();
3442
3443 Function *F = BB->getParent();
3444 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
3445 "CatchPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
;
3446
3447 Assert(isa<CatchSwitchInst>(CPI.getParentPad()),do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
3448 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
3449 CPI.getParentPad())do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
;
3450
3451 // The catchpad instruction must be the first non-PHI instruction in the
3452 // block.
3453 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3454 "CatchPadInst not the first non-PHI instruction in the block.", &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
;
3455
3456 visitEHPadPredecessors(CPI);
3457 visitFuncletPadInst(CPI);
3458}
3459
3460void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3461 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
3462 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
3463 CatchReturn.getOperand(0))do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
;
3464
3465 visitTerminatorInst(CatchReturn);
3466}
3467
3468void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3469 BasicBlock *BB = CPI.getParent();
3470
3471 Function *F = BB->getParent();
3472 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
3473 "CleanupPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
;
3474
3475 // The cleanuppad instruction must be the first non-PHI instruction in the
3476 // block.
3477 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3478 "CleanupPadInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3479 &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
;
3480
3481 auto *ParentPad = CPI.getParentPad();
3482 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent."
, &CPI); return; } } while (false)
3483 "CleanupPadInst has an invalid parent.", &CPI)do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent."
, &CPI); return; } } while (false)
;
3484
3485 visitEHPadPredecessors(CPI);
3486 visitFuncletPadInst(CPI);
3487}
3488
3489void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3490 User *FirstUser = nullptr;
3491 Value *FirstUnwindPad = nullptr;
3492 SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3493 SmallSet<FuncletPadInst *, 8> Seen;
3494
3495 while (!Worklist.empty()) {
3496 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3497 Assert(Seen.insert(CurrentPad).second,do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself"
, CurrentPad); return; } } while (false)
3498 "FuncletPadInst must not be nested within itself", CurrentPad)do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself"
, CurrentPad); return; } } while (false)
;
3499 Value *UnresolvedAncestorPad = nullptr;
3500 for (User *U : CurrentPad->users()) {
3501 BasicBlock *UnwindDest;
3502 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3503 UnwindDest = CRI->getUnwindDest();
3504 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3505 // We allow catchswitch unwind to caller to nest
3506 // within an outer pad that unwinds somewhere else,
3507 // because catchswitch doesn't have a nounwind variant.
3508 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3509 if (CSI->unwindsToCaller())
3510 continue;
3511 UnwindDest = CSI->getUnwindDest();
3512 } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3513 UnwindDest = II->getUnwindDest();
3514 } else if (isa<CallInst>(U)) {
3515 // Calls which don't unwind may be found inside funclet
3516 // pads that unwind somewhere else. We don't *require*
3517 // such calls to be annotated nounwind.
3518 continue;
3519 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3520 // The unwind dest for a cleanup can only be found by
3521 // recursive search. Add it to the worklist, and we'll
3522 // search for its first use that determines where it unwinds.
3523 Worklist.push_back(CPI);
3524 continue;
3525 } else {
3526 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U)do { if (!(isa<CatchReturnInst>(U))) { CheckFailed("Bogus funclet pad use"
, U); return; } } while (false)
;
3527 continue;
3528 }
3529
3530 Value *UnwindPad;
3531 bool ExitsFPI;
3532 if (UnwindDest) {
3533 UnwindPad = UnwindDest->getFirstNonPHI();
3534 if (!cast<Instruction>(UnwindPad)->isEHPad())
3535 continue;
3536 Value *UnwindParent = getParentPad(UnwindPad);
3537 // Ignore unwind edges that don't exit CurrentPad.
3538 if (UnwindParent == CurrentPad)
3539 continue;
3540 // Determine whether the original funclet pad is exited,
3541 // and if we are scanning nested pads determine how many
3542 // of them are exited so we can stop searching their
3543 // children.
3544 Value *ExitedPad = CurrentPad;
3545 ExitsFPI = false;
3546 do {
3547 if (ExitedPad == &FPI) {
3548 ExitsFPI = true;
3549 // Now we can resolve any ancestors of CurrentPad up to
3550 // FPI, but not including FPI since we need to make sure
3551 // to check all direct users of FPI for consistency.
3552 UnresolvedAncestorPad = &FPI;
3553 break;
3554 }
3555 Value *ExitedParent = getParentPad(ExitedPad);
3556 if (ExitedParent == UnwindParent) {
3557 // ExitedPad is the ancestor-most pad which this unwind
3558 // edge exits, so we can resolve up to it, meaning that
3559 // ExitedParent is the first ancestor still unresolved.
3560 UnresolvedAncestorPad = ExitedParent;
3561 break;
3562 }
3563 ExitedPad = ExitedParent;
3564 } while (!isa<ConstantTokenNone>(ExitedPad));
3565 } else {
3566 // Unwinding to caller exits all pads.
3567 UnwindPad = ConstantTokenNone::get(FPI.getContext());
3568 ExitsFPI = true;
3569 UnresolvedAncestorPad = &FPI;
3570 }
3571
3572 if (ExitsFPI) {
3573 // This unwind edge exits FPI. Make sure it agrees with other
3574 // such edges.
3575 if (FirstUser) {
3576 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3577 "pad must have the same unwind "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3578 "dest",do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3579 &FPI, U, FirstUser)do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
;
3580 } else {
3581 FirstUser = U;
3582 FirstUnwindPad = UnwindPad;
3583 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3584 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3585 getParentPad(UnwindPad) == getParentPad(&FPI))
3586 SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
3587 }
3588 }
3589 // Make sure we visit all uses of FPI, but for nested pads stop as
3590 // soon as we know where they unwind to.
3591 if (CurrentPad != &FPI)
3592 break;
3593 }
3594 if (UnresolvedAncestorPad) {
3595 if (CurrentPad == UnresolvedAncestorPad) {
3596 // When CurrentPad is FPI itself, we don't mark it as resolved even if
3597 // we've found an unwind edge that exits it, because we need to verify
3598 // all direct uses of FPI.
3599 assert(CurrentPad == &FPI)(static_cast <bool> (CurrentPad == &FPI) ? void (0)
: __assert_fail ("CurrentPad == &FPI", "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/IR/Verifier.cpp"
, 3599, __extension__ __PRETTY_FUNCTION__))
;
3600 continue;
3601 }
3602 // Pop off the worklist any nested pads that we've found an unwind
3603 // destination for. The pads on the worklist are the uncles,
3604 // great-uncles, etc. of CurrentPad. We've found an unwind destination
3605 // for all ancestors of CurrentPad up to but not including
3606 // UnresolvedAncestorPad.
3607 Value *ResolvedPad = CurrentPad;
3608 while (!Worklist.empty()) {
3609 Value *UnclePad = Worklist.back();
3610 Value *AncestorPad = getParentPad(UnclePad);
3611 // Walk ResolvedPad up the ancestor list until we either find the
3612 // uncle's parent or the last resolved ancestor.
3613 while (ResolvedPad != AncestorPad) {
3614 Value *ResolvedParent = getParentPad(ResolvedPad);
3615 if (ResolvedParent == UnresolvedAncestorPad) {
3616 break;
3617 }
3618 ResolvedPad = ResolvedParent;
3619 }
3620 // If the resolved ancestor search didn't find the uncle's parent,
3621 // then the uncle is not yet resolved.
3622 if (ResolvedPad != AncestorPad)
3623 break;
3624 // This uncle is resolved, so pop it from the worklist.
3625 Worklist.pop_back();
3626 }
3627 }
3628 }
3629
3630 if (FirstUnwindPad) {
3631 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3632 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3633 Value *SwitchUnwindPad;
3634 if (SwitchUnwindDest)
3635 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3636 else
3637 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3638 Assert(SwitchUnwindPad == FirstUnwindPad,do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3639 "Unwind edges out of a catch must have the same unwind dest as "do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3640 "the parent catchswitch",do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3641 &FPI, FirstUser, CatchSwitch)do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
;
3642 }
3643 }
3644
3645 visitInstruction(FPI);
3646}
3647
3648void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3649 BasicBlock *BB = CatchSwitch.getParent();
3650
3651 Function *F = BB->getParent();
3652 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
3653 "CatchSwitchInst needs to be in a function with a personality.",do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
3654 &CatchSwitch)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
;
3655
3656 // The catchswitch instruction must be the first non-PHI instruction in the
3657 // block.
3658 Assert(BB->getFirstNonPHI() == &CatchSwitch,do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
3659 "CatchSwitchInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
3660 &CatchSwitch)do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
;
3661
3662 auto *ParentPad = CatchSwitch.getParentPad();
3663 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CatchSwitchInst has an invalid parent."
, ParentPad); return; } } while (false)
3664 "CatchSwitchInst has an invalid parent.", ParentPad)do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CatchSwitchInst has an invalid parent."
, ParentPad); return; } } while (false)
;
3665
3666 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3667 Instruction *I = UnwindDest->getFirstNonPHI();
3668 Assert(I->isEHPad() && !isa<LandingPadInst>(I),do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3669 "CatchSwitchInst must unwind to an EH block which is not a "do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3670 "landingpad.",do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3671 &CatchSwitch)do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
;
3672
3673 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3674 if (getParentPad(I) == ParentPad)
3675 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3676 }
3677
3678 Assert(CatchSwitch.getNumHandlers() != 0,do { if (!(CatchSwitch.getNumHandlers() != 0)) { CheckFailed(
"CatchSwitchInst cannot have empty handler list", &CatchSwitch
); return; } } while (false)
3679 "CatchSwitchInst cannot have empty handler list", &CatchSwitch)do { if (!(CatchSwitch.getNumHandlers() != 0)) { CheckFailed(
"CatchSwitchInst cannot have empty handler list", &CatchSwitch
); return; } } while (false)
;
3680
3681 for (BasicBlock *Handler : CatchSwitch.handlers()) {
3682 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),do { if (!(isa<CatchPadInst>(Handler->getFirstNonPHI
()))) { CheckFailed("CatchSwitchInst handlers must be catchpads"
, &CatchSwitch, Handler); return; } } while (false)
3683 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler)do { if (!(isa<CatchPadInst>(Handler->getFirstNonPHI
()))) { CheckFailed("CatchSwitchInst handlers must be catchpads"
, &CatchSwitch, Handler); return; } } while (false)
;
3684 }
3685
3686 visitEHPadPredecessors(CatchSwitch);
3687 visitTerminatorInst(CatchSwitch);
3688}
3689
3690void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3691 Assert(isa<CleanupPadInst>(CRI.getOperand(0)),do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
3692 "CleanupReturnInst needs to be provided a CleanupPad", &CRI,do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
3693 CRI.getOperand(0))do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
;
3694
3695 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3696 Instruction *I = UnwindDest->getFirstNonPHI();
3697 Assert(I->isEHPad() && !isa<LandingPadInst>(I),do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
3698 "CleanupReturnInst must unwind to an EH block which is not a "do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
3699 "landingpad.",do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
3700 &CRI)do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
;
3701 }
3702
3703 visitTerminatorInst(CRI);
3704}
3705
3706void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3707 Instruction *Op = cast<Instruction>(I.getOperand(i));
3708 // If the we have an invalid invoke, don't try to compute the dominance.
3709 // We already reject it in the invoke specific checks and the dominance
3710 // computation doesn't handle multiple edges.
3711 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3712 if (II->getNormalDest() == II->getUnwindDest())
3713 return;
3714 }
3715
3716 // Quick check whether the def has already been encountered in the same block.
3717 // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI
3718 // uses are defined to happen on the incoming edge, not at the instruction.
3719 //
3720 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3721 // wrapping an SSA value, assert that we've already encountered it. See
3722 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3723 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3724 return;
3725
3726 const Use &U = I.getOperandUse(i);
3727 Assert(DT.dominates(Op, U),do { if (!(DT.dominates(Op, U))) { CheckFailed("Instruction does not dominate all uses!"
, Op, &I); return; } } while (false)
3728 "Instruction does not dominate all uses!", Op, &I)do { if (!(DT.dominates(Op, U))) { CheckFailed("Instruction does not dominate all uses!"
, Op, &I); return; } } while (false)
;
3729}
3730
3731void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3732 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "do { if (!(I.getType()->isPointerTy())) { CheckFailed("dereferenceable, dereferenceable_or_null "
"apply only to pointer types", &I); return; } } while (false
)
3733 "apply only to pointer types", &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("dereferenceable, dereferenceable_or_null "
"apply only to pointer types", &I); return; } } while (false
)
;
3734 Assert(isa<LoadInst>(I),do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (false)
3735 "dereferenceable, dereferenceable_or_null apply only to load"do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (false)
3736 " instructions, use attributes for calls or invokes", &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (false)
;
3737 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "do { if (!(MD->getNumOperands() == 1)) { CheckFailed("dereferenceable, dereferenceable_or_null "
"take one operand!", &I); return; } } while (false)
3738 "take one operand!", &I)do { if (!(MD->getNumOperands() == 1)) { CheckFailed("dereferenceable, dereferenceable_or_null "
"take one operand!", &I); return; } } while (false)
;
3739 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3740 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("dereferenceable, " "dereferenceable_or_null metadata value must be an i64!"
, &I); return; } } while (false)
3741 "dereferenceable_or_null metadata value must be an i64!", &I)do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("dereferenceable, " "dereferenceable_or_null metadata value must be an i64!"
, &I); return; } } while (false)
;
3742}
3743
3744/// verifyInstruction - Verify that an instruction is well formed.
3745///
3746void Verifier::visitInstruction(Instruction &I) {
3747 BasicBlock *BB = I.getParent();
3748 Assert(BB, "Instruction not embedded in basic block!", &I)do { if (!(BB)) { CheckFailed("Instruction not embedded in basic block!"
, &I); return; } } while (false)
;
3749
3750 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
3751 for (User *U : I.users()) {
3752 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),do { if (!(U != (User *)&I || !DT.isReachableFromEntry(BB
))) { CheckFailed("Only PHI nodes may reference their own value!"
, &I); return; } } while (false)
3753 "Only PHI nodes may reference their own value!", &I)do { if (!(U != (User *)&I || !DT.isReachableFromEntry(BB
))) { CheckFailed("Only PHI nodes may reference their own value!"
, &I); return; } } while (false)
;
3754 }
3755 }
3756
3757 // Check that void typed values don't have names
3758 Assert(!I.getType()->isVoidTy() || !I.hasName(),do { if (!(!I.getType()->isVoidTy() || !I.hasName())) { CheckFailed
("Instruction has a name, but provides a void value!", &I
); return; } } while (false)
3759 "Instruction has a name, but provides a void value!", &I)do { if (!(!I.getType()->isVoidTy() || !I.hasName())) { CheckFailed
("Instruction has a name, but provides a void value!", &I
); return; } } while (false)
;
3760
3761 // Check that the return value of the instruction is either void or a legal
3762 // value type.
3763 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),do { if (!(I.getType()->isVoidTy() || I.getType()->isFirstClassType
())) { CheckFailed("Instruction returns a non-scalar type!", &
I); return; } } while (false)
3764 "Instruction returns a non-scalar type!", &I)do { if (!(I.getType()->isVoidTy() || I.getType()->isFirstClassType
())) { CheckFailed("Instruction returns a non-scalar type!", &
I); return; } } while (false)
;
3765
3766 // Check that the instruction doesn't produce metadata. Calls are already
3767 // checked against the callee type.
3768 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),do { if (!(!I.getType()->isMetadataTy() || isa<CallInst
>(I) || isa<InvokeInst>(I))) { CheckFailed("Invalid use of metadata!"
, &I); return; } } while (false)
3769 "Invalid use of metadata!", &I)do { if (!(!I.getType()->isMetadataTy() || isa<CallInst
>(I) || isa<InvokeInst>(I))) { CheckFailed("Invalid use of metadata!"
, &I); return; } } while (false)
;
3770
3771 // Check that all uses of the instruction, if they are instructions
3772 // themselves, actually have parent basic blocks. If the use is not an
3773 // instruction, it is an error!
3774 for (Use &U : I.uses()) {
3775 if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
3776 Assert(Used->getParent() != nullptr,do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
3777 "Instruction referencing"do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
3778 " instruction not embedded in a basic block!",do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
3779 &I, Used)do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
;
3780 else {
3781 CheckFailed("Use of instruction is not an instruction!", U);
3782 return;
3783 }
3784 }
3785
3786 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
3787 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Instruction has null operand!"
, &I); return; } } while (false)
;
3788
3789 // Check to make sure that only first-class-values are operands to
3790 // instructions.
3791 if (!I.getOperand(i)->getType()->isFirstClassType()) {
3792 Assert(false, "Instruction operands must be first-class values!", &I)do { if (!(false)) { CheckFailed("Instruction operands must be first-class values!"
, &I); return; } } while (false)
;
3793 }
3794
3795 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
3796 // Check to make sure that the "address of" an intrinsic function is never
3797 // taken.
3798 Assert(do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
3799 !F->isIntrinsic() ||do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
3800 i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
3801 "Cannot take the address of an intrinsic!", &I)do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
;
3802 Assert(do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3803 !F->isIntrinsic() || isa<CallInst>(I) ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3804 F->getIntrinsicID() == Intrinsic::donothing ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3805 F->getIntrinsicID() == Intrinsic::coro_resume ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3806 F->getIntrinsicID() == Intrinsic::coro_destroy ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3807 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3808 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3809 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3810 "Cannot invoke an intrinsic other than donothing, patchpoint, "do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3811 "statepoint, coro_resume or coro_destroy",do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3812 &I)do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
;
3813 Assert(F->getParent() == &M, "Referencing function in another module!",do { if (!(F->getParent() == &M)) { CheckFailed("Referencing function in another module!"
, &I, &M, F, F->getParent()); return; } } while (false
)
3814 &I, &M, F, F->getParent())do { if (!(F->getParent() == &M)) { CheckFailed("Referencing function in another module!"
, &I, &M, F, F->getParent()); return; } } while (false
)
;
3815 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
3816 Assert(OpBB->getParent() == BB->getParent(),do { if (!(OpBB->getParent() == BB->getParent())) { CheckFailed
("Referring to a basic block in another function!", &I); return
; } } while (false)
3817 "Referring to a basic block in another function!", &I)do { if (!(OpBB->getParent() == BB->getParent())) { CheckFailed
("Referring to a basic block in another function!", &I); return
; } } while (false)
;
3818 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
3819 Assert(OpArg->getParent() == BB->getParent(),do { if (!(OpArg->getParent() == BB->getParent())) { CheckFailed
("Referring to an argument in another function!", &I); return
; } } while (false)
3820 "Referring to an argument in another function!", &I)do { if (!(OpArg->getParent() == BB->getParent())) { CheckFailed
("Referring to an argument in another function!", &I); return
; } } while (false)
;
3821 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
3822 Assert(GV->getParent() == &M, "Referencing global in another module!", &I,do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, &I, &M, GV, GV->getParent()); return; } } while (
false)
3823 &M, GV, GV->getParent())do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, &I, &M, GV, GV->getParent()); return; } } while (
false)
;
3824 } else if (isa<Instruction>(I.getOperand(i))) {
3825 verifyDominatesUse(I, i);
3826 } else if (isa<InlineAsm>(I.getOperand(i))) {
3827 Assert((i + 1 == e && isa<CallInst>(I)) ||do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (false)
3828 (i + 3 == e && isa<InvokeInst>(I)),do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (false)
3829 "Cannot take the address of an inline asm!", &I)do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (false)
;
3830 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
3831 if (CE->getType()->isPtrOrPtrVectorTy() ||
3832 !DL.getNonIntegralAddressSpaces().empty()) {
3833 // If we have a ConstantExpr pointer, we need to see if it came from an
3834 // illegal bitcast. If the datalayout string specifies non-integral
3835 // address spaces then we also need to check for illegal ptrtoint and
3836 // inttoptr expressions.
3837 visitConstantExprsRecursively(CE);
3838 }
3839 }
3840 }
3841
3842 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
3843 Assert(I.getType()->isFPOrFPVectorTy(),do { if (!(I.getType()->isFPOrFPVectorTy())) { CheckFailed
("fpmath requires a floating point result!", &I); return;
} } while (false)
3844 "fpmath requires a floating point result!", &I)do { if (!(I.getType()->isFPOrFPVectorTy())) { CheckFailed
("fpmath requires a floating point result!", &I); return;
} } while (false)
;
3845 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I)do { if (!(MD->getNumOperands() == 1)) { CheckFailed("fpmath takes one operand!"
, &I); return; } } while (false)
;
3846 if (ConstantFP *CFP0 =
3847 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
3848 const APFloat &Accuracy = CFP0->getValueAPF();
3849 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),do { if (!(&Accuracy.getSemantics() == &APFloat::IEEEsingle
())) { CheckFailed("fpmath accuracy must have float type", &
I); return; } } while (false)
3850 "fpmath accuracy must have float type", &I)do { if (!(&Accuracy.getSemantics() == &APFloat::IEEEsingle
())) { CheckFailed("fpmath accuracy must have float type", &
I); return; } } while (false)
;
3851 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),do { if (!(Accuracy.isFiniteNonZero() && !Accuracy.isNegative
())) { CheckFailed("fpmath accuracy not a positive number!", &
I); return; } } while (false)
3852 "fpmath accuracy not a positive number!", &I)do { if (!(Accuracy.isFiniteNonZero() && !Accuracy.isNegative
())) { CheckFailed("fpmath accuracy not a positive number!", &
I); return; } } while (false)
;
3853 } else {
3854 Assert(false, "invalid fpmath accuracy!", &I)do { if (!(false)) { CheckFailed("invalid fpmath accuracy!", &
I); return; } } while (false)
;
3855 }
3856 }
3857
3858 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
3859 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),do { if (!(isa<LoadInst>(I) || isa<CallInst>(I) ||
isa<InvokeInst>(I))) { CheckFailed("Ranges are only for loads, calls and invokes!"
, &I); return; } } while (false)
3860 "Ranges are only for loads, calls and invokes!", &I)do { if (!(isa<LoadInst>(I) || isa<CallInst>(I) ||
isa<InvokeInst>(I))) { CheckFailed("Ranges are only for loads, calls and invokes!"
, &I); return; } } while (false)
;
3861 visitRangeMetadata(I, Range, I.getType());
3862 }
3863
3864 if (I.getMetadata(LLVMContext::MD_nonnull)) {
3865 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",do { if (!(I.getType()->isPointerTy())) { CheckFailed("nonnull applies only to pointer types"
, &I); return; } } while (false)
3866 &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("nonnull applies only to pointer types"
, &I); return; } } while (false)
;
3867 Assert(isa<LoadInst>(I),do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
3868 "nonnull applies only to load instructions, use attributes"do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
3869 " for calls or invokes",do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
3870 &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
;
3871 }
3872
3873 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
3874 visitDereferenceableMetadata(I, MD);
3875
3876 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
3877 visitDereferenceableMetadata(I, MD);
3878
3879 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
3880 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
3881
3882 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
3883 Assert(I.getType()->isPointerTy(), "align applies only to pointer types",do { if (!(I.getType()->isPointerTy())) { CheckFailed("align applies only to pointer types"
, &I); return; } } while (false)
3884 &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("align applies only to pointer types"
, &I); return; } } while (false)
;
3885 Assert(isa<LoadInst>(I), "align applies only to load instructions, "do { if (!(isa<LoadInst>(I))) { CheckFailed("align applies only to load instructions, "
"use attributes for calls or invokes", &I); return; } } while
(false)
3886 "use attributes for calls or invokes", &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("align applies only to load instructions, "
"use attributes for calls or invokes", &I); return; } } while
(false)
;
3887 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I)do { if (!(AlignMD->getNumOperands() == 1)) { CheckFailed(
"align takes one operand!", &I); return; } } while (false
)
;
3888 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
3889 Assert(CI && CI->getType()->isIntegerTy(64),do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("align metadata value must be an i64!", &
I); return; } } while (false)
3890 "align metadata value must be an i64!", &I)do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("align metadata value must be an i64!", &
I); return; } } while (false)
;
3891 uint64_t Align = CI->getZExtValue();
3892 Assert(isPowerOf2_64(Align),do { if (!(isPowerOf2_64(Align))) { CheckFailed("align metadata value must be a power of 2!"
, &I); return; } } while (false)
3893 "align metadata value must be a power of 2!", &I)do { if (!(isPowerOf2_64(Align))) { CheckFailed("align metadata value must be a power of 2!"
, &I); return; } } while (false)
;
3894 Assert(Align <= Value::MaximumAlignment,do { if (!(Align <= Value::MaximumAlignment)) { CheckFailed
("alignment is larger that implementation defined limit", &
I); return; } } while (false)
3895 "alignment is larger that implementation defined limit", &I)do { if (!(Align <= Value::MaximumAlignment)) { CheckFailed
("alignment is larger that implementation defined limit", &
I); return; } } while (false)
;
3896 }
3897
3898 if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
3899 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N)do { if (!(isa<DILocation>(N))) { DebugInfoCheckFailed(
"invalid !dbg metadata attachment", &I, N); return; } } while
(false)
;
3900 visitMDNode(*N);
3901 }
3902
3903 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
3904 verifyFragmentExpression(*DII);
3905
3906 InstsInThisBlock.insert(&I);
3907}
3908
3909/// Allow intrinsics to be verified in different ways.
3910void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
3911 Function *IF = CS.getCalledFunction();
3912 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",do { if (!(IF->isDeclaration())) { CheckFailed("Intrinsic functions should never be defined!"
, IF); return; } } while (false)
3913 IF)do { if (!(IF->isDeclaration())) { CheckFailed("Intrinsic functions should never be defined!"
, IF); return; } } while (false)
;
3914
3915 // Verify that the intrinsic prototype lines up with what the .td files
3916 // describe.
3917 FunctionType *IFTy = IF->getFunctionType();
3918 bool IsVarArg = IFTy->isVarArg();
3919
3920 SmallVector<Intrinsic::IITDescriptor, 8> Table;
3921 getIntrinsicInfoTableEntries(ID, Table);
3922 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
3923
3924 SmallVector<Type *, 4> ArgTys;
3925 Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getReturnType
(), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (false)
3926 TableRef, ArgTys),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getReturnType
(), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (false)
3927 "Intrinsic has incorrect return type!", IF)do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getReturnType
(), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (false)
;
3928 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
3929 Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getParamType
(i), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (false)
3930 TableRef, ArgTys),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getParamType
(i), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (false)
3931 "Intrinsic has incorrect argument type!", IF)do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getParamType
(i), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (false)
;
3932
3933 // Verify if the intrinsic call matches the vararg property.
3934 if (IsVarArg)
3935 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Intrinsic was not defined with variable arguments!"
, IF); return; } } while (false)
3936 "Intrinsic was not defined with variable arguments!", IF)do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Intrinsic was not defined with variable arguments!"
, IF); return; } } while (false)
;
3937 else
3938 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Callsite was not defined with variable arguments!"
, IF); return; } } while (false)
3939 "Callsite was not defined with variable arguments!", IF)do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Callsite was not defined with variable arguments!"
, IF); return; } } while (false)
;
3940
3941 // All descriptors should be absorbed by now.
3942 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF)do { if (!(TableRef.empty())) { CheckFailed("Intrinsic has too few arguments!"
, IF); return; } } while (false)
;
3943
3944 // Now that we have the intrinsic ID and the actual argument types (and we
3945 // know they are legal for the intrinsic!) get the intrinsic name through the
3946 // usual means. This allows us to verify the mangling of argument types into
3947 // the name.
3948 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
3949 Assert(ExpectedName == IF->getName(),do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3950 "Intrinsic name not mangled correctly for type arguments! "do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3951 "Should be: " +do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3952 ExpectedName,do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3953 IF)do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
;
3954
3955 // If the intrinsic takes MDNode arguments, verify that they are either global
3956 // or are local to *this* function.
3957 for (Value *V : CS.args())
3958 if (auto *MD = dyn_cast<MetadataAsValue>(V))
3959 visitMetadataAsValue(*MD, CS.getCaller());
3960
3961 switch (ID) {
3962 default:
3963 break;
3964 case Intrinsic::coro_id: {
3965 auto *InfoArg = CS.getArgOperand(3)->stripPointerCasts();
3966 if (isa<ConstantPointerNull>(InfoArg))
3967 break;
3968 auto *GV = dyn_cast<GlobalVariable>(InfoArg);
3969 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
3970 "info argument of llvm.coro.begin must refer to an initialized "do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
3971 "constant")do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
;
3972 Constant *Init = GV->getInitializer();
3973 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
3974 "info argument of llvm.coro.begin must refer to either a struct or "do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
3975 "an array")do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
;
3976 break;
3977 }
3978 case Intrinsic::ctlz: // llvm.ctlz
3979 case Intrinsic::cttz: // llvm.cttz
3980 Assert(isa<ConstantInt>(CS.getArgOperand(1)),do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
3981 "is_zero_undef argument of bit counting intrinsics must be a "do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
3982 "constant int",do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
3983 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
;
3984 break;
3985 case Intrinsic::experimental_constrained_fadd:
3986 case Intrinsic::experimental_constrained_fsub:
3987 case Intrinsic::experimental_constrained_fmul:
3988 case Intrinsic::experimental_constrained_fdiv:
3989 case Intrinsic::experimental_constrained_frem:
3990 case Intrinsic::experimental_constrained_fma:
3991 case Intrinsic::experimental_constrained_sqrt:
3992 case Intrinsic::experimental_constrained_pow:
3993 case Intrinsic::experimental_constrained_powi:
3994 case Intrinsic::experimental_constrained_sin:
3995 case Intrinsic::experimental_constrained_cos:
3996 case Intrinsic::experimental_constrained_exp:
3997 case Intrinsic::experimental_constrained_exp2:
3998 case Intrinsic::experimental_constrained_log:
3999 case Intrinsic::experimental_constrained_log10:
4000 case Intrinsic::experimental_constrained_log2:
4001 case Intrinsic::experimental_constrained_rint:
4002 case Intrinsic::experimental_constrained_nearbyint:
4003 visitConstrainedFPIntrinsic(
4004 cast<ConstrainedFPIntrinsic>(*CS.getInstruction()));
4005 break;
4006 case Intrinsic::dbg_declare: // llvm.dbg.declare
4007 Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),do { if (!(isa<MetadataAsValue>(CS.getArgOperand(0)))) {
CheckFailed("invalid llvm.dbg.declare intrinsic call 1", CS)
; return; } } while (false)
4008 "invalid llvm.dbg.declare intrinsic call 1", CS)do { if (!(isa<MetadataAsValue>(CS.getArgOperand(0)))) {
CheckFailed("invalid llvm.dbg.declare intrinsic call 1", CS)
; return; } } while (false)
;
4009 visitDbgIntrinsic("declare", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
4010 break;
4011 case Intrinsic::dbg_addr: // llvm.dbg.addr
4012 visitDbgIntrinsic("addr", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
4013 break;
4014 case Intrinsic::dbg_value: // llvm.dbg.value
4015 visitDbgIntrinsic("value", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
4016 break;
4017 case Intrinsic::memcpy:
4018 case Intrinsic::memmove:
4019 case Intrinsic::memset: {
4020 ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
4021 Assert(AlignCI,do { if (!(AlignCI)) { CheckFailed("alignment argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
4022 "alignment argument of memory intrinsics must be a constant int",do { if (!(AlignCI)) { CheckFailed("alignment argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
4023 CS)do { if (!(AlignCI)) { CheckFailed("alignment argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
;
4024 const APInt &AlignVal = AlignCI->getValue();
4025 Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),do { if (!(AlignCI->isZero() || AlignVal.isPowerOf2())) { CheckFailed
("alignment argument of memory intrinsics must be a power of 2"
, CS); return; } } while (false)
4026 "alignment argument of memory intrinsics must be a power of 2", CS)do { if (!(AlignCI->isZero() || AlignVal.isPowerOf2())) { CheckFailed
("alignment argument of memory intrinsics must be a power of 2"
, CS); return; } } while (false)
;
4027 Assert(isa<ConstantInt>(CS.getArgOperand(4)),do { if (!(isa<ConstantInt>(CS.getArgOperand(4)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
4028 "isvolatile argument of memory intrinsics must be a constant int",do { if (!(isa<ConstantInt>(CS.getArgOperand(4)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
4029 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(4)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
;
4030 break;
4031 }
4032 case Intrinsic::memcpy_element_unordered_atomic: {
4033 const AtomicMemCpyInst *MI = cast<AtomicMemCpyInst>(CS.getInstruction());
4034
4035 ConstantInt *ElementSizeCI =
4036 dyn_cast<ConstantInt>(MI->getRawElementSizeInBytes());
4037 Assert(ElementSizeCI,do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise unordered atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
4038 "element size of the element-wise unordered atomic memory "do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise unordered atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
4039 "intrinsic must be a constant int",do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise unordered atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
4040 CS)do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise unordered atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
;
4041 const APInt &ElementSizeVal = ElementSizeCI->getValue();
4042 Assert(ElementSizeVal.isPowerOf2(),do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
4043 "element size of the element-wise atomic memory intrinsic "do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
4044 "must be a power of 2",do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
4045 CS)do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
;
4046
4047 if (auto *LengthCI = dyn_cast<ConstantInt>(MI->getLength())) {
4048 uint64_t Length = LengthCI->getZExtValue();
4049 uint64_t ElementSize = MI->getElementSizeInBytes();
4050 Assert((Length % ElementSize) == 0,do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", CS); return; } } while
(false)
4051 "constant length must be a multiple of the element size in the "do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", CS); return; } } while
(false)
4052 "element-wise atomic memory intrinsic",do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", CS); return; } } while
(false)
4053 CS)do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", CS); return; } } while
(false)
;
4054 }
4055
4056 auto IsValidAlignment = [&](uint64_t Alignment) {
4057 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4058 };
4059 uint64_t DstAlignment = CS.getParamAlignment(0),
4060 SrcAlignment = CS.getParamAlignment(1);
4061 Assert(IsValidAlignment(DstAlignment),do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
4062 "incorrect alignment of the destination argument", CS)do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
;
4063 Assert(IsValidAlignment(SrcAlignment),do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, CS); return; } } while (false)
4064 "incorrect alignment of the source argument", CS)do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, CS); return; } } while (false)
;
4065 break;
4066 }
4067 case Intrinsic::memmove_element_unordered_atomic: {
4068 auto *MI = cast<AtomicMemMoveInst>(CS.getInstruction());
4069
4070 ConstantInt *ElementSizeCI =
4071 dyn_cast<ConstantInt>(MI->getRawElementSizeInBytes());
4072 Assert(ElementSizeCI,do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise unordered atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
4073 "element size of the element-wise unordered atomic memory "do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise unordered atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
4074 "intrinsic must be a constant int",do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise unordered atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
4075 CS)do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise unordered atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
;
4076 const APInt &ElementSizeVal = ElementSizeCI->getValue();
4077 Assert(ElementSizeVal.isPowerOf2(),do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
4078 "element size of the element-wise atomic memory intrinsic "do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
4079 "must be a power of 2",do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
4080 CS)do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
;
4081
4082 if (auto *LengthCI = dyn_cast<ConstantInt>(MI->getLength())) {
4083 uint64_t Length = LengthCI->getZExtValue();
4084 uint64_t ElementSize = MI->getElementSizeInBytes();
4085 Assert((Length % ElementSize) == 0,do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", CS); return; } } while
(false)
4086 "constant length must be a multiple of the element size in the "do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", CS); return; } } while
(false)
4087 "element-wise atomic memory intrinsic",do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", CS); return; } } while
(false)
4088 CS)do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", CS); return; } } while
(false)
;
4089 }
4090
4091 auto IsValidAlignment = [&](uint64_t Alignment) {
4092 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4093 };
4094 uint64_t DstAlignment = CS.getParamAlignment(0),
4095 SrcAlignment = CS.getParamAlignment(1);
4096 Assert(IsValidAlignment(DstAlignment),do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
4097 "incorrect alignment of the destination argument", CS)do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
;
4098 Assert(IsValidAlignment(SrcAlignment),do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, CS); return; } } while (false)
4099 "incorrect alignment of the source argument", CS)do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, CS); return; } } while (false)
;
4100 break;
4101 }
4102 case Intrinsic::memset_element_unordered_atomic: {
4103 auto *MI = cast<AtomicMemSetInst>(CS.getInstruction());
4104
4105 ConstantInt *ElementSizeCI =
4106 dyn_cast<ConstantInt>(MI->getRawElementSizeInBytes());
4107 Assert(ElementSizeCI,do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise unordered atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
4108 "element size of the element-wise unordered atomic memory "do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise unordered atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
4109 "intrinsic must be a constant int",do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise unordered atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
4110 CS)do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise unordered atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
;
4111 const APInt &ElementSizeVal = ElementSizeCI->getValue();
4112 Assert(ElementSizeVal.isPowerOf2(),do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
4113 "element size of the element-wise atomic memory intrinsic "do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
4114 "must be a power of 2",do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
4115 CS)do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
;
4116
4117 if (auto *LengthCI = dyn_cast<ConstantInt>(MI->getLength())) {
4118 uint64_t Length = LengthCI->getZExtValue();
4119 uint64_t ElementSize = MI->getElementSizeInBytes();
4120 Assert((Length % ElementSize) == 0,do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", CS); return; } } while
(false)
4121 "constant length must be a multiple of the element size in the "do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", CS); return; } } while
(false)
4122 "element-wise atomic memory intrinsic",do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", CS); return; } } while
(false)
4123 CS)do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", CS); return; } } while
(false)
;
4124 }
4125
4126 auto IsValidAlignment = [&](uint64_t Alignment) {
4127 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4128 };
4129 uint64_t DstAlignment = CS.getParamAlignment(0);
4130 Assert(IsValidAlignment(DstAlignment),do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
4131 "incorrect alignment of the destination argument", CS)do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
;
4132 break;
4133 }
4134 case Intrinsic::gcroot:
4135 case Intrinsic::gcwrite:
4136 case Intrinsic::gcread:
4137 if (ID == Intrinsic::gcroot) {
4138 AllocaInst *AI =
4139 dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
4140 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS)do { if (!(AI)) { CheckFailed("llvm.gcroot parameter #1 must be an alloca."
, CS); return; } } while (false)
;
4141 Assert(isa<Constant>(CS.getArgOperand(1)),do { if (!(isa<Constant>(CS.getArgOperand(1)))) { CheckFailed
("llvm.gcroot parameter #2 must be a constant.", CS); return;
} } while (false)
4142 "llvm.gcroot parameter #2 must be a constant.", CS)do { if (!(isa<Constant>(CS.getArgOperand(1)))) { CheckFailed
("llvm.gcroot parameter #2 must be a constant.", CS); return;
} } while (false)
;
4143 if (!AI->getAllocatedType()->isPointerTy()) {
4144 Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
4145 "llvm.gcroot parameter #1 must either be a pointer alloca, "do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
4146 "or argument #2 must be a non-null constant.",do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
4147 CS)do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
;
4148 }
4149 }
4150
4151 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
4152 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
;
4153 break;
4154 case Intrinsic::init_trampoline:
4155 Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (false)
4156 "llvm.init_trampoline parameter #2 must resolve to a function.",do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (false)
4157 CS)do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (false)
;
4158 break;
4159 case Intrinsic::prefetch:
4160 Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4161 isa<ConstantInt>(CS.getArgOperand(2)) &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4162 cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4163 cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4164 "invalid arguments to llvm.prefetch", CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
;
4165 break;
4166 case Intrinsic::stackprotector:
4167 Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),do { if (!(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.stackprotector parameter #2 must resolve to an alloca."
, CS); return; } } while (false)
4168 "llvm.stackprotector parameter #2 must resolve to an alloca.", CS)do { if (!(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.stackprotector parameter #2 must resolve to an alloca."
, CS); return; } } while (false)
;
4169 break;
4170 case Intrinsic::lifetime_start:
4171 case Intrinsic::lifetime_end:
4172 case Intrinsic::invariant_start:
4173 Assert(isa<ConstantInt>(CS.getArgOperand(0)),do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (false)
4174 "size argument of memory use markers must be a constant integer",do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (false)
4175 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (false)
;
4176 break;
4177 case Intrinsic::invariant_end:
4178 Assert(isa<ConstantInt>(CS.getArgOperand(1)),do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("llvm.invariant.end parameter #2 must be a constant integer"
, CS); return; } } while (false)
4179 "llvm.invariant.end parameter #2 must be a constant integer", CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("llvm.invariant.end parameter #2 must be a constant integer"
, CS); return; } } while (false)
;
4180 break;
4181
4182 case Intrinsic::localescape: {
4183 BasicBlock *BB = CS.getParent();
4184 Assert(BB == &BB->getParent()->front(),do { if (!(BB == &BB->getParent()->front())) { CheckFailed
("llvm.localescape used outside of entry block", CS); return;
} } while (false)
4185 "llvm.localescape used outside of entry block", CS)do { if (!(BB == &BB->getParent()->front())) { CheckFailed
("llvm.localescape used outside of entry block", CS); return;
} } while (false)
;
4186 Assert(!SawFrameEscape,do { if (!(!SawFrameEscape)) { CheckFailed("multiple calls to llvm.localescape in one function"
, CS); return; } } while (false)
4187 "multiple calls to llvm.localescape in one function", CS)do { if (!(!SawFrameEscape)) { CheckFailed("multiple calls to llvm.localescape in one function"
, CS); return; } } while (false)
;
4188 for (Value *Arg : CS.args()) {
4189 if (isa<ConstantPointerNull>(Arg))
4190 continue; // Null values are allowed as placeholders.
4191 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4192 Assert(AI && AI->isStaticAlloca(),do { if (!(AI && AI->isStaticAlloca())) { CheckFailed
("llvm.localescape only accepts static allocas", CS); return;
} } while (false)
4193 "llvm.localescape only accepts static allocas", CS)do { if (!(AI && AI->isStaticAlloca())) { CheckFailed
("llvm.localescape only accepts static allocas", CS); return;
} } while (false)
;
4194 }
4195 FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
4196 SawFrameEscape = true;
4197 break;
4198 }
4199 case Intrinsic::localrecover: {
4200 Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
4201 Function *Fn = dyn_cast<Function>(FnArg);
4202 Assert(Fn && !Fn->isDeclaration(),do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
4203 "llvm.localrecover first "do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
4204 "argument must be function defined in this module",do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
4205 CS)do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
;
4206 auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
4207 Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",do { if (!(IdxArg)) { CheckFailed("idx argument of llvm.localrecover must be a constant int"
, CS); return; } } while (false)
4208 CS)do { if (!(IdxArg)) { CheckFailed("idx argument of llvm.localrecover must be a constant int"
, CS); return; } } while (false)
;
4209 auto &Entry = FrameEscapeInfo[Fn];
4210 Entry.second = unsigned(
4211 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4212 break;
4213 }
4214
4215 case Intrinsic::experimental_gc_statepoint:
4216 Assert(!CS.isInlineAsm(),do { if (!(!CS.isInlineAsm())) { CheckFailed("gc.statepoint support for inline assembly unimplemented"
, CS); return; } } while (false)
4217 "gc.statepoint support for inline assembly unimplemented", CS)do { if (!(!CS.isInlineAsm())) { CheckFailed("gc.statepoint support for inline assembly unimplemented"
, CS); return; } } while (false)
;
4218 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
4219 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
;
4220
4221 verifyStatepoint(CS);
4222 break;
4223 case Intrinsic::experimental_gc_result: {
4224 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
4225 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
;
4226 // Are we tied to a statepoint properly?
4227 CallSite StatepointCS(CS.getArgOperand(0));
4228 const Function *StatepointFn =
4229 StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
4230 Assert(StatepointFn && StatepointFn->isDeclaration() &&do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4231 StatepointFn->getIntrinsicID() ==do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4232 Intrinsic::experimental_gc_statepoint,do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4233 "gc.result operand #1 must be from a statepoint", CS,do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4234 CS.getArgOperand(0))do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
;
4235
4236 // Assert that result type matches wrapped callee.
4237 const Value *Target = StatepointCS.getArgument(2);
4238 auto *PT = cast<PointerType>(Target->getType());
4239 auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4240 Assert(CS.getType() == TargetFuncType->getReturnType(),do { if (!(CS.getType() == TargetFuncType->getReturnType()
)) { CheckFailed("gc.result result type does not match wrapped callee"
, CS); return; } } while (false)
4241 "gc.result result type does not match wrapped callee", CS)do { if (!(CS.getType() == TargetFuncType->getReturnType()
)) { CheckFailed("gc.result result type does not match wrapped callee"
, CS); return; } } while (false)
;
4242 break;
4243 }
4244 case Intrinsic::experimental_gc_relocate: {
4245 Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS)do { if (!(CS.getNumArgOperands() == 3)) { CheckFailed("wrong number of arguments"
, CS); return; } } while (false)
;
4246
4247 Assert(isa<PointerType>(CS.getType()->getScalarType()),do { if (!(isa<PointerType>(CS.getType()->getScalarType
()))) { CheckFailed("gc.relocate must return a pointer or a vector of pointers"
, CS); return; } } while (false)
4248 "gc.relocate must return a pointer or a vector of pointers", CS)do { if (!(isa<PointerType>(CS.getType()->getScalarType
()))) { CheckFailed("gc.relocate must return a pointer or a vector of pointers"
, CS); return; } } while (false)
;
4249
4250 // Check that this relocate is correctly tied to the statepoint
4251
4252 // This is case for relocate on the unwinding path of an invoke statepoint
4253 if (LandingPadInst *LandingPad =
4254 dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
4255
4256 const BasicBlock *InvokeBB =
4257 LandingPad->getParent()->getUniquePredecessor();
4258
4259 // Landingpad relocates should have only one predecessor with invoke
4260 // statepoint terminator
4261 Assert(InvokeBB, "safepoints should have unique landingpads",do { if (!(InvokeBB)) { CheckFailed("safepoints should have unique landingpads"
, LandingPad->getParent()); return; } } while (false)
4262 LandingPad->getParent())do { if (!(InvokeBB)) { CheckFailed("safepoints should have unique landingpads"
, LandingPad->getParent()); return; } } while (false)
;
4263 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",do { if (!(InvokeBB->getTerminator())) { CheckFailed("safepoint block should be well formed"
, InvokeBB); return; } } while (false)
4264 InvokeBB)do { if (!(InvokeBB->getTerminator())) { CheckFailed("safepoint block should be well formed"
, InvokeBB); return; } } while (false)
;
4265 Assert(isStatepoint(InvokeBB->getTerminator()),do { if (!(isStatepoint(InvokeBB->getTerminator()))) { CheckFailed
("gc relocate should be linked to a statepoint", InvokeBB); return
; } } while (false)
4266 "gc relocate should be linked to a statepoint", InvokeBB)do { if (!(isStatepoint(InvokeBB->getTerminator()))) { CheckFailed
("gc relocate should be linked to a statepoint", InvokeBB); return
; } } while (false)
;
4267 }
4268 else {
4269 // In all other cases relocate should be tied to the statepoint directly.
4270 // This covers relocates on a normal return path of invoke statepoint and
4271 // relocates of a call statepoint.
4272 auto Token = CS.getArgOperand(0);
4273 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),do { if (!(isa<Instruction>(Token) && isStatepoint
(cast<Instruction>(Token)))) { CheckFailed("gc relocate is incorrectly tied to the statepoint"
, CS, Token); return; } } while (false)
4274 "gc relocate is incorrectly tied to the statepoint", CS, Token)do { if (!(isa<Instruction>(Token) && isStatepoint
(cast<Instruction>(Token)))) { CheckFailed("gc relocate is incorrectly tied to the statepoint"
, CS, Token); return; } } while (false)
;
4275 }
4276
4277 // Verify rest of the relocate arguments.
4278
4279 ImmutableCallSite StatepointCS(
4280 cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint());
4281
4282 // Both the base and derived must be piped through the safepoint.
4283 Value* Base = CS.getArgOperand(1);
4284 Assert(isa<ConstantInt>(Base),do { if (!(isa<ConstantInt>(Base))) { CheckFailed("gc.relocate operand #2 must be integer offset"
, CS); return; } } while (false)
4285 "gc.relocate operand #2 must be integer offset", CS)do { if (!(isa<ConstantInt>(Base))) { CheckFailed("gc.relocate operand #2 must be integer offset"
, CS); return; } } while (false)
;
4286
4287 Value* Derived = CS.getArgOperand(2);
4288 Assert(isa<ConstantInt>(Derived),do { if (!(isa<ConstantInt>(Derived))) { CheckFailed("gc.relocate operand #3 must be integer offset"
, CS); return; } } while (false)
4289 "gc.relocate operand #3 must be integer offset", CS)do { if (!(isa<ConstantInt>(Derived))) { CheckFailed("gc.relocate operand #3 must be integer offset"
, CS); return; } } while (false)
;
4290
4291 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4292 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4293 // Check the bounds
4294 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),do { if (!(0 <= BaseIndex && BaseIndex < (int)StatepointCS
.arg_size())) { CheckFailed("gc.relocate: statepoint base index out of bounds"
, CS); return; } } while (false)
4295 "gc.relocate: statepoint base index out of bounds", CS)do { if (!(0 <= BaseIndex && BaseIndex < (int)StatepointCS
.arg_size())) { CheckFailed("gc.relocate: statepoint base index out of bounds"
, CS); return; } } while (false)
;
4296 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),do { if (!(0 <= DerivedIndex && DerivedIndex < (
int)StatepointCS.arg_size())) { CheckFailed("gc.relocate: statepoint derived index out of bounds"
, CS); return; } } while (false)
4297 "gc.relocate: statepoint derived index out of bounds", CS)do { if (!(0 <= DerivedIndex && DerivedIndex < (
int)StatepointCS.arg_size())) { CheckFailed("gc.relocate: statepoint derived index out of bounds"
, CS); return; } } while (false)
;
4298
4299 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4300 // section of the statepoint's argument.
4301 Assert(StatepointCS.arg_size() > 0,do { if (!(StatepointCS.arg_size() > 0)) { CheckFailed("gc.statepoint: insufficient arguments"
); return; } } while (false)
4302 "gc.statepoint: insufficient arguments")do { if (!(StatepointCS.arg_size() > 0)) { CheckFailed("gc.statepoint: insufficient arguments"
); return; } } while (false)
;
4303 Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(3)
))) { CheckFailed("gc.statement: number of call arguments must be constant integer"
); return; } } while (false)
4304 "gc.statement: number of call arguments must be constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(3)
))) { CheckFailed("gc.statement: number of call arguments must be constant integer"
); return; } } while (false)
;
4305 const unsigned NumCallArgs =
4306 cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
4307 Assert(StatepointCS.arg_size() > NumCallArgs + 5,do { if (!(StatepointCS.arg_size() > NumCallArgs + 5)) { CheckFailed
("gc.statepoint: mismatch in number of call arguments"); return
; } } while (false)
4308 "gc.statepoint: mismatch in number of call arguments")do { if (!(StatepointCS.arg_size() > NumCallArgs + 5)) { CheckFailed
("gc.statepoint: mismatch in number of call arguments"); return
; } } while (false)
;
4309 Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
4310 "gc.statepoint: number of transition arguments must be "do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
4311 "a constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
;
4312 const int NumTransitionArgs =
4313 cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
4314 ->getZExtValue();
4315 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4316 Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
4317 "gc.statepoint: number of deoptimization arguments must be "do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
4318 "a constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
;
4319 const int NumDeoptArgs =
4320 cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))
4321 ->getZExtValue();
4322 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4323 const int GCParamArgsEnd = StatepointCS.arg_size();
4324 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4325 "gc.relocate: statepoint base index doesn't fall within the "do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4326 "'gc parameters' section of the statepoint call",do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4327 CS)do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
;
4328 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4329 "gc.relocate: statepoint derived index doesn't fall within the "do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4330 "'gc parameters' section of the statepoint call",do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4331 CS)do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
;
4332
4333 // Relocated value must be either a pointer type or vector-of-pointer type,
4334 // but gc_relocate does not need to return the same pointer type as the
4335 // relocated pointer. It can be casted to the correct type later if it's
4336 // desired. However, they must have the same address space and 'vectorness'
4337 GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction());
4338 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),do { if (!(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy
())) { CheckFailed("gc.relocate: relocated value must be a gc pointer"
, CS); return; } } while (false)
4339 "gc.relocate: relocated value must be a gc pointer", CS)do { if (!(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy
())) { CheckFailed("gc.relocate: relocated value must be a gc pointer"
, CS); return; } } while (false)
;
4340
4341 auto ResultType = CS.getType();
4342 auto DerivedType = Relocate.getDerivedPtr()->getType();
4343 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, CS); return; } } while (false)
4344 "gc.relocate: vector relocates to vector and pointer to pointer",do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, CS); return; } } while (false)
4345 CS)do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, CS); return; } } while (false)
;
4346 Assert(do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4347 ResultType->getPointerAddressSpace() ==do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4348 DerivedType->getPointerAddressSpace(),do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4349 "gc.relocate: relocating a pointer shouldn't change its address space",do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4350 CS)do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
;
4351 break;
4352 }
4353 case Intrinsic::eh_exceptioncode:
4354 case Intrinsic::eh_exceptionpointer: {
4355 Assert(isa<CatchPadInst>(CS.getArgOperand(0)),do { if (!(isa<CatchPadInst>(CS.getArgOperand(0)))) { CheckFailed
("eh.exceptionpointer argument must be a catchpad", CS); return
; } } while (false)
4356 "eh.exceptionpointer argument must be a catchpad", CS)do { if (!(isa<CatchPadInst>(CS.getArgOperand(0)))) { CheckFailed
("eh.exceptionpointer argument must be a catchpad", CS); return
; } } while (false)
;
4357 break;
4358 }
4359 case Intrinsic::masked_load: {
4360 Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS)do { if (!(CS.getType()->isVectorTy())) { CheckFailed("masked_load: must return a vector"
, CS); return; } } while (false)
;
4361
4362 Value *Ptr = CS.getArgOperand(0);
4363 //Value *Alignment = CS.getArgOperand(1);
4364 Value *Mask = CS.getArgOperand(2);
4365 Value *PassThru = CS.getArgOperand(3);
4366 Assert(Mask->getType()->isVectorTy(),do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_load: mask must be vector", CS); return; } } while (
false)
4367 "masked_load: mask must be vector", CS)do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_load: mask must be vector", CS); return; } } while (
false)
;
4368
4369 // DataTy is the overloaded type
4370 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4371 Assert(DataTy == CS.getType(),do { if (!(DataTy == CS.getType())) { CheckFailed("masked_load: return must match pointer type"
, CS); return; } } while (false)
4372 "masked_load: return must match pointer type", CS)do { if (!(DataTy == CS.getType())) { CheckFailed("masked_load: return must match pointer type"
, CS); return; } } while (false)
;
4373 Assert(PassThru->getType() == DataTy,do { if (!(PassThru->getType() == DataTy)) { CheckFailed("masked_load: pass through and data type must match"
, CS); return; } } while (false)
4374 "masked_load: pass through and data type must match", CS)do { if (!(PassThru->getType() == DataTy)) { CheckFailed("masked_load: pass through and data type must match"
, CS); return; } } while (false)
;
4375 Assert(Mask->getType()->getVectorNumElements() ==do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, CS); return; } } while (false)
4376 DataTy->getVectorNumElements(),do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, CS); return; } } while (false)
4377 "masked_load: vector mask must be same length as data", CS)do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, CS); return; } } while (false)
;
4378 break;
4379 }
4380 case Intrinsic::masked_store: {
4381 Value *Val = CS.getArgOperand(0);
4382 Value *Ptr = CS.getArgOperand(1);
4383 //Value *Alignment = CS.getArgOperand(2);
4384 Value *Mask = CS.getArgOperand(3);
4385 Assert(Mask->getType()->isVectorTy(),do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_store: mask must be vector", CS); return; } } while (
false)
4386 "masked_store: mask must be vector", CS)do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_store: mask must be vector", CS); return; } } while (
false)
;
4387
4388 // DataTy is the overloaded type
4389 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4390 Assert(DataTy == Val->getType(),do { if (!(DataTy == Val->getType())) { CheckFailed("masked_store: storee must match pointer type"
, CS); return; } } while (false)
4391 "masked_store: storee must match pointer type", CS)do { if (!(DataTy == Val->getType())) { CheckFailed("masked_store: storee must match pointer type"
, CS); return; } } while (false)
;
4392 Assert(Mask->getType()->getVectorNumElements() ==do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, CS); return; } } while (false)
4393 DataTy->getVectorNumElements(),do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, CS); return; } } while (false)
4394 "masked_store: vector mask must be same length as data", CS)do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, CS); return; } } while (false)
;
4395 break;
4396 }
4397
4398 case Intrinsic::experimental_guard: {
4399 Assert(CS.isCall(), "experimental_guard cannot be invoked", CS)do { if (!(CS.isCall())) { CheckFailed("experimental_guard cannot be invoked"
, CS); return; } } while (false)
;
4400 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4401 "experimental_guard must have exactly one "do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4402 "\"deopt\" operand bundle")do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
;
4403 break;
4404 }
4405
4406 case Intrinsic::experimental_deoptimize: {
4407 Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS)do { if (!(CS.isCall())) { CheckFailed("experimental_deoptimize cannot be invoked"
, CS); return; } } while (false)
;
4408 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4409 "experimental_deoptimize must have exactly one "do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4410 "\"deopt\" operand bundle")do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
;
4411 Assert(CS.getType() == CS.getInstruction()->getFunction()->getReturnType(),do { if (!(CS.getType() == CS.getInstruction()->getFunction
()->getReturnType())) { CheckFailed("experimental_deoptimize return type must match caller return type"
); return; } } while (false)
4412 "experimental_deoptimize return type must match caller return type")do { if (!(CS.getType() == CS.getInstruction()->getFunction
()->getReturnType())) { CheckFailed("experimental_deoptimize return type must match caller return type"
); return; } } while (false)
;
4413
4414 if (CS.isCall()) {
4415 auto *DeoptCI = CS.getInstruction();
4416 auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode());
4417 Assert(RI,do { if (!(RI)) { CheckFailed("calls to experimental_deoptimize must be followed by a return"
); return; } } while (false)
4418 "calls to experimental_deoptimize must be followed by a return")do { if (!(RI)) { CheckFailed("calls to experimental_deoptimize must be followed by a return"
); return; } } while (false)
;
4419
4420 if (!CS.getType()->isVoidTy() && RI)
4421 Assert(RI->getReturnValue() == DeoptCI,do { if (!(RI->getReturnValue() == DeoptCI)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
4422 "calls to experimental_deoptimize must be followed by a return "do { if (!(RI->getReturnValue() == DeoptCI)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
4423 "of the value computed by experimental_deoptimize")do { if (!(RI->getReturnValue() == DeoptCI)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
;
4424 }
4425
4426 break;
4427 }
4428 };
4429}
4430
4431/// \brief Carefully grab the subprogram from a local scope.
4432///
4433/// This carefully grabs the subprogram from a local scope, avoiding the
4434/// built-in assertions that would typically fire.
4435static DISubprogram *getSubprogram(Metadata *LocalScope) {
4436 if (!LocalScope)
4437 return nullptr;
4438
4439 if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4440 return SP;
4441
4442 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4443 return getSubprogram(LB->getRawScope());
4444
4445 // Just return null; broken scope chains are checked elsewhere.
4446 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope")(static_cast <bool> (!isa<DILocalScope>(LocalScope
) && "Unknown type of local scope") ? void (0) : __assert_fail
("!isa<DILocalScope>(LocalScope) && \"Unknown type of local scope\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/IR/Verifier.cpp"
, 4446, __extension__ __PRETTY_FUNCTION__))
;
4447 return nullptr;
4448}
4449
4450void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4451 unsigned NumOperands = FPI.getNumArgOperands();
4452 Assert(((NumOperands == 5 && FPI.isTernaryOp()) ||do { if (!(((NumOperands == 5 && FPI.isTernaryOp()) ||
(NumOperands == 3 && FPI.isUnaryOp()) || (NumOperands
== 4)))) { CheckFailed("invalid arguments for constrained FP intrinsic"
, &FPI); return; } } while (false)
4453 (NumOperands == 3 && FPI.isUnaryOp()) || (NumOperands == 4)),do { if (!(((NumOperands == 5 && FPI.isTernaryOp()) ||
(NumOperands == 3 && FPI.isUnaryOp()) || (NumOperands
== 4)))) { CheckFailed("invalid arguments for constrained FP intrinsic"
, &FPI); return; } } while (false)
4454 "invalid arguments for constrained FP intrinsic", &FPI)do { if (!(((NumOperands == 5 && FPI.isTernaryOp()) ||
(NumOperands == 3 && FPI.isUnaryOp()) || (NumOperands
== 4)))) { CheckFailed("invalid arguments for constrained FP intrinsic"
, &FPI); return; } } while (false)
;
4455 Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-1)),do { if (!(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands
-1)))) { CheckFailed("invalid exception behavior argument", &
FPI); return; } } while (false)
4456 "invalid exception behavior argument", &FPI)do { if (!(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands
-1)))) { CheckFailed("invalid exception behavior argument", &
FPI); return; } } while (false)
;
4457 Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-2)),do { if (!(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands
-2)))) { CheckFailed("invalid rounding mode argument", &FPI
); return; } } while (false)
4458 "invalid rounding mode argument", &FPI)do { if (!(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands
-2)))) { CheckFailed("invalid rounding mode argument", &FPI
); return; } } while (false)
;
4459 Assert(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid,do { if (!(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid
)) { CheckFailed("invalid rounding mode argument", &FPI);
return; } } while (false)
4460 "invalid rounding mode argument", &FPI)do { if (!(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid
)) { CheckFailed("invalid rounding mode argument", &FPI);
return; } } while (false)
;
4461 Assert(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic::ebInvalid,do { if (!(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic
::ebInvalid)) { CheckFailed("invalid exception behavior argument"
, &FPI); return; } } while (false)
4462 "invalid exception behavior argument", &FPI)do { if (!(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic
::ebInvalid)) { CheckFailed("invalid exception behavior argument"
, &FPI); return; } } while (false)
;
4463}
4464
4465void Verifier::visitDbgIntrinsic(StringRef Kind, DbgInfoIntrinsic &DII) {
4466 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4467 AssertDI(isa<ValueAsMetadata>(MD) ||do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
4468 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
4469 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD)do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
;
4470 AssertDI(isa<DILocalVariable>(DII.getRawVariable()),do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
4471 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
4472 DII.getRawVariable())do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
;
4473 AssertDI(isa<DIExpression>(DII.getRawExpression()),do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
4474 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
4475 DII.getRawExpression())do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
;
4476
4477 // Ignore broken !dbg attachments; they're checked elsewhere.
4478 if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4479 if (!isa<DILocation>(N))
4480 return;
4481
4482 BasicBlock *BB = DII.getParent();
4483 Function *F = BB ? BB->getParent() : nullptr;
4484
4485 // The scopes for variables and !dbg attachments must agree.
4486 DILocalVariable *Var = DII.getVariable();
4487 DILocation *Loc = DII.getDebugLoc();
4488 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",do { if (!(Loc)) { CheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DII, BB, F); return; } } while (false)
4489 &DII, BB, F)do { if (!(Loc)) { CheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DII, BB, F); return; } } while (false)
;
4490
4491 DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4492 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4493 if (!VarSP || !LocSP)
4494 return; // Broken scope chains are checked elsewhere.
4495
4496 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4497 " variable and !dbg attachment",do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4498 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4499 Loc->getScope()->getSubprogram())do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
;
4500
4501 verifyFnArgs(DII);
4502}
4503
4504void Verifier::verifyFragmentExpression(const DbgInfoIntrinsic &I) {
4505 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
4506 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
4507
4508 // We don't know whether this intrinsic verified correctly.
4509 if (!V || !E || !E->isValid())
4510 return;
4511
4512 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
4513 auto Fragment = E->getFragmentInfo();
4514 if (!Fragment)
4515 return;
4516
4517 // The frontend helps out GDB by emitting the members of local anonymous
4518 // unions as artificial local variables with shared storage. When SROA splits
4519 // the storage for artificial local variables that are smaller than the entire
4520 // union, the overhang piece will be outside of the allotted space for the
4521 // variable and this check fails.
4522 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4523 if (V->isArtificial())
4524 return;
4525
4526 verifyFragmentExpression(*V, *Fragment, &I);
4527}
4528
4529template <typename ValueOrMetadata>
4530void Verifier::verifyFragmentExpression(const DIVariable &V,
4531 DIExpression::FragmentInfo Fragment,
4532 ValueOrMetadata *Desc) {
4533 // If there's no size, the type is broken, but that should be checked
4534 // elsewhere.
4535 auto VarSize = V.getSizeInBits();
4536 if (!VarSize)
4537 return;
4538
4539 unsigned FragSize = Fragment.SizeInBits;
4540 unsigned FragOffset = Fragment.OffsetInBits;
4541 AssertDI(FragSize + FragOffset <= *VarSize,do { if (!(FragSize + FragOffset <= *VarSize)) { DebugInfoCheckFailed
("fragment is larger than or outside of variable", Desc, &
V); return; } } while (false)
4542 "fragment is larger than or outside of variable", Desc, &V)do { if (!(FragSize + FragOffset <= *VarSize)) { DebugInfoCheckFailed
("fragment is larger than or outside of variable", Desc, &
V); return; } } while (false)
;
4543 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V)do { if (!(FragSize != *VarSize)) { DebugInfoCheckFailed("fragment covers entire variable"
, Desc, &V); return; } } while (false)
;
4544}
4545
4546void Verifier::verifyFnArgs(const DbgInfoIntrinsic &I) {
4547 // This function does not take the scope of noninlined function arguments into
4548 // account. Don't run it if current function is nodebug, because it may
4549 // contain inlined debug intrinsics.
4550 if (!HasDebugInfo)
4551 return;
4552
4553 // For performance reasons only check non-inlined ones.
4554 if (I.getDebugLoc()->getInlinedAt())
4555 return;
4556
4557 DILocalVariable *Var = I.getVariable();
4558 AssertDI(Var, "dbg intrinsic without variable")do { if (!(Var)) { DebugInfoCheckFailed("dbg intrinsic without variable"
); return; } } while (false)
;
4559
4560 unsigned ArgNo = Var->getArg();
4561 if (!ArgNo)
4562 return;
4563
4564 // Verify there are no duplicate function argument debug info entries.
4565 // These will cause hard-to-debug assertions in the DWARF backend.
4566 if (DebugFnArgs.size() < ArgNo)
4567 DebugFnArgs.resize(ArgNo, nullptr);
4568
4569 auto *Prev = DebugFnArgs[ArgNo - 1];
4570 DebugFnArgs[ArgNo - 1] = Var;
4571 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,do { if (!(!Prev || (Prev == Var))) { DebugInfoCheckFailed("conflicting debug info for argument"
, &I, Prev, Var); return; } } while (false)
4572 Prev, Var)do { if (!(!Prev || (Prev == Var))) { DebugInfoCheckFailed("conflicting debug info for argument"
, &I, Prev, Var); return; } } while (false)
;
4573}
4574
4575void Verifier::verifyCompileUnits() {
4576 // When more than one Module is imported into the same context, such as during
4577 // an LTO build before linking the modules, ODR type uniquing may cause types
4578 // to point to a different CU. This check does not make sense in this case.
4579 if (M.getContext().isODRUniquingDebugTypes())
4580 return;
4581 auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
4582 SmallPtrSet<const Metadata *, 2> Listed;
4583 if (CUs)
4584 Listed.insert(CUs->op_begin(), CUs->op_end());
4585 for (auto *CU : CUVisited)
4586 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU)do { if (!(Listed.count(CU))) { DebugInfoCheckFailed("DICompileUnit not listed in llvm.dbg.cu"
, CU); return; } } while (false)
;
4587 CUVisited.clear();
4588}
4589
4590void Verifier::verifyDeoptimizeCallingConvs() {
4591 if (DeoptimizeDeclarations.empty())
4592 return;
4593
4594 const Function *First = DeoptimizeDeclarations[0];
4595 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4596 Assert(First->getCallingConv() == F->getCallingConv(),do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
4597 "All llvm.experimental.deoptimize declarations must have the same "do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
4598 "calling convention",do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
4599 First, F)do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
;
4600 }
4601}
4602
4603//===----------------------------------------------------------------------===//
4604// Implement the public interfaces to this file...
4605//===----------------------------------------------------------------------===//
4606
4607bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
4608 Function &F = const_cast<Function &>(f);
4609
4610 // Don't use a raw_null_ostream. Printing IR is expensive.
4611 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
4612
4613 // Note that this function's return value is inverted from what you would
4614 // expect of a function called "verify".
4615 return !V.verify(F);
4616}
4617
4618bool llvm::verifyModule(const Module &M, raw_ostream *OS,
4619 bool *BrokenDebugInfo) {
4620 // Don't use a raw_null_ostream. Printing IR is expensive.
4621 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
4622
4623 bool Broken = false;
4624 for (const Function &F : M)
4625 Broken |= !V.verify(F);
4626
4627 Broken |= !V.verify();
4628 if (BrokenDebugInfo)
4629 *BrokenDebugInfo = V.hasBrokenDebugInfo();
4630 // Note that this function's return value is inverted from what you would
4631 // expect of a function called "verify".
4632 return Broken;
4633}
4634
4635namespace {
4636
4637struct VerifierLegacyPass : public FunctionPass {
4638 static char ID;
4639
4640 std::unique_ptr<Verifier> V;
4641 bool FatalErrors = true;
4642
4643 VerifierLegacyPass() : FunctionPass(ID) {
4644 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4645 }
4646 explicit VerifierLegacyPass(bool FatalErrors)
4647 : FunctionPass(ID),
4648 FatalErrors(FatalErrors) {
4649 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4650 }
4651
4652 bool doInitialization(Module &M) override {
4653 V = llvm::make_unique<Verifier>(
4654 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
4655 return false;
4656 }
4657
4658 bool runOnFunction(Function &F) override {
4659 if (!V->verify(F) && FatalErrors)
4660 report_fatal_error("Broken function found, compilation aborted!");
4661
4662 return false;
4663 }
4664
4665 bool doFinalization(Module &M) override {
4666 bool HasErrors = false;
4667 for (Function &F : M)
4668 if (F.isDeclaration())
4669 HasErrors |= !V->verify(F);
4670
4671 HasErrors |= !V->verify();
4672 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
4673 report_fatal_error("Broken module found, compilation aborted!");
4674 return false;
4675 }
4676
4677 void getAnalysisUsage(AnalysisUsage &AU) const override {
4678 AU.setPreservesAll();
4679 }
4680};
4681
4682} // end anonymous namespace
4683
4684/// Helper to issue failure from the TBAA verification
4685template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
4686 if (Diagnostic)
4687 return Diagnostic->CheckFailed(Args...);
4688}
4689
4690#define AssertTBAA(C, ...)do { if (!(C)) { CheckFailed(...); return false; } } while (false
)
\
4691 do { \
4692 if (!(C)) { \
4693 CheckFailed(__VA_ARGS__); \
4694 return false; \
4695 } \
4696 } while (false)
4697
4698/// Verify that \p BaseNode can be used as the "base type" in the struct-path
4699/// TBAA scheme. This means \p BaseNode is either a scalar node, or a
4700/// struct-type node describing an aggregate data structure (like a struct).
4701TBAAVerifier::TBAABaseNodeSummary
4702TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
4703 bool IsNewFormat) {
4704 if (BaseNode->getNumOperands() < 2) {
4705 CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
4706 return {true, ~0u};
4707 }
4708
4709 auto Itr = TBAABaseNodes.find(BaseNode);
4710 if (Itr != TBAABaseNodes.end())
4711 return Itr->second;
4712
4713 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
4714 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
4715 (void)InsertResult;
4716 assert(InsertResult.second && "We just checked!")(static_cast <bool> (InsertResult.second && "We just checked!"
) ? void (0) : __assert_fail ("InsertResult.second && \"We just checked!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/IR/Verifier.cpp"
, 4716, __extension__ __PRETTY_FUNCTION__))
;
4717 return Result;
4718}
4719
4720TBAAVerifier::TBAABaseNodeSummary
4721TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
4722 bool IsNewFormat) {
4723 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
4724
4725 if (BaseNode->getNumOperands() == 2) {
4726 // Scalar nodes can only be accessed at offset 0.
4727 return isValidScalarTBAANode(BaseNode)
4728 ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
4729 : InvalidNode;
4730 }
4731
4732 if (IsNewFormat) {
4733 if (BaseNode->getNumOperands() % 3 != 0) {
4734 CheckFailed("Access tag nodes must have the number of operands that is a "
4735 "multiple of 3!", BaseNode);
4736 return InvalidNode;
4737 }
4738 } else {
4739 if (BaseNode->getNumOperands() % 2 != 1) {
4740 CheckFailed("Struct tag nodes must have an odd number of operands!",
4741 BaseNode);
4742 return InvalidNode;
4743 }
4744 }
4745
4746 // Check the type size field.
4747 if (IsNewFormat) {
4748 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
4749 BaseNode->getOperand(1));
4750 if (!TypeSizeNode) {
4751 CheckFailed("Type size nodes must be constants!", &I, BaseNode);
4752 return InvalidNode;
4753 }
4754 }
4755
4756 // Check the type name field. In the new format it can be anything.
4757 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
4758 CheckFailed("Struct tag nodes have a string as their first operand",
4759 BaseNode);
4760 return InvalidNode;
4761 }
4762
4763 bool Failed = false;
4764
4765 Optional<APInt> PrevOffset;
4766 unsigned BitWidth = ~0u;
4767
4768 // We've already checked that BaseNode is not a degenerate root node with one
4769 // operand in \c verifyTBAABaseNode, so this loop should run at least once.
4770 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
4771 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
4772 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
4773 Idx += NumOpsPerField) {
4774 const MDOperand &FieldTy = BaseNode->getOperand(Idx);
4775 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
4776 if (!isa<MDNode>(FieldTy)) {
4777 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
4778 Failed = true;
4779 continue;
4780 }
4781
4782 auto *OffsetEntryCI =
4783 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
4784 if (!OffsetEntryCI) {
4785 CheckFailed("Offset entries must be constants!", &I, BaseNode);
4786 Failed = true;
4787 continue;
4788 }
4789
4790 if (BitWidth == ~0u)
4791 BitWidth = OffsetEntryCI->getBitWidth();
4792
4793 if (OffsetEntryCI->getBitWidth() != BitWidth) {
4794 CheckFailed(
4795 "Bitwidth between the offsets and struct type entries must match", &I,
4796 BaseNode);
4797 Failed = true;
4798 continue;
4799 }
4800
4801 // NB! As far as I can tell, we generate a non-strictly increasing offset
4802 // sequence only from structs that have zero size bit fields. When
4803 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
4804 // pick the field lexically the latest in struct type metadata node. This
4805 // mirrors the actual behavior of the alias analysis implementation.
4806 bool IsAscending =
4807 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
4808
4809 if (!IsAscending) {
4810 CheckFailed("Offsets must be increasing!", &I, BaseNode);
4811 Failed = true;
4812 }
4813
4814 PrevOffset = OffsetEntryCI->getValue();
4815
4816 if (IsNewFormat) {
4817 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
4818 BaseNode->getOperand(Idx + 2));
4819 if (!MemberSizeNode) {
4820 CheckFailed("Member size entries must be constants!", &I, BaseNode);
4821 Failed = true;
4822 continue;
4823 }
4824 }
4825 }
4826
4827 return Failed ? InvalidNode
4828 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
4829}
4830
4831static bool IsRootTBAANode(const MDNode *MD) {
4832 return MD->getNumOperands() < 2;
4833}
4834
4835static bool IsScalarTBAANodeImpl(const MDNode *MD,
4836 SmallPtrSetImpl<const MDNode *> &Visited) {
4837 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
4838 return false;
4839
4840 if (!isa<MDString>(MD->getOperand(0)))
4841 return false;
4842
4843 if (MD->getNumOperands() == 3) {
4844 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
4845 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
4846 return false;
4847 }
4848
4849 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4850 return Parent && Visited.insert(Parent).second &&
4851 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
4852}
4853
4854bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
4855 auto ResultIt = TBAAScalarNodes.find(MD);
4856 if (ResultIt != TBAAScalarNodes.end())
4857 return ResultIt->second;
4858
4859 SmallPtrSet<const MDNode *, 4> Visited;
4860 bool Result = IsScalarTBAANodeImpl(MD, Visited);
4861 auto InsertResult = TBAAScalarNodes.insert({MD, Result});
4862 (void)InsertResult;
4863 assert(InsertResult.second && "Just checked!")(static_cast <bool> (InsertResult.second && "Just checked!"
) ? void (0) : __assert_fail ("InsertResult.second && \"Just checked!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/IR/Verifier.cpp"
, 4863, __extension__ __PRETTY_FUNCTION__))
;
4864
4865 return Result;
4866}
4867
4868/// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
4869/// Offset in place to be the offset within the field node returned.
4870///
4871/// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
4872MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
4873 const MDNode *BaseNode,
4874 APInt &Offset,
4875 bool IsNewFormat) {
4876 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!")(static_cast <bool> (BaseNode->getNumOperands() >=
2 && "Invalid base node!") ? void (0) : __assert_fail
("BaseNode->getNumOperands() >= 2 && \"Invalid base node!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/IR/Verifier.cpp"
, 4876, __extension__ __PRETTY_FUNCTION__))
;
4877
4878 // Scalar nodes have only one possible "field" -- their parent in the access
4879 // hierarchy. Offset must be zero at this point, but our caller is supposed
4880 // to Assert that.
4881 if (BaseNode->getNumOperands() == 2)
4882 return cast<MDNode>(BaseNode->getOperand(1));
4883
4884 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
4885 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
4886 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
4887 Idx += NumOpsPerField) {
4888 auto *OffsetEntryCI =
4889 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
4890 if (OffsetEntryCI->getValue().ugt(Offset)) {
4891 if (Idx == FirstFieldOpNo) {
4892 CheckFailed("Could not find TBAA parent in struct type node", &I,
4893 BaseNode, &Offset);
4894 return nullptr;
4895 }
4896
4897 unsigned PrevIdx = Idx - NumOpsPerField;
4898 auto *PrevOffsetEntryCI =
4899 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
4900 Offset -= PrevOffsetEntryCI->getValue();
4901 return cast<MDNode>(BaseNode->getOperand(PrevIdx));
4902 }
4903 }
4904
4905 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
4906 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
4907 BaseNode->getOperand(LastIdx + 1));
4908 Offset -= LastOffsetEntryCI->getValue();
4909 return cast<MDNode>(BaseNode->getOperand(LastIdx));
4910}
4911
4912static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
4913 if (!Type || Type->getNumOperands() < 3)
4914 return false;
4915
4916 // In the new format type nodes shall have a reference to the parent type as
4917 // its first operand.
4918 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
4919 if (!Parent)
4920 return false;
4921
4922 return true;
4923}
4924
4925bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
4926 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("This instruction shall not have a TBAA access tag!", &I
); return false; } } while (false)
4927 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("This instruction shall not have a TBAA access tag!", &I
); return false; } } while (false)
4928 isa<AtomicCmpXchgInst>(I),do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("This instruction shall not have a TBAA access tag!", &I
); return false; } } while (false)
4929 "This instruction shall not have a TBAA access tag!", &I)do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("This instruction shall not have a TBAA access tag!", &I
); return false; } } while (false)
;
4930
4931 bool IsStructPathTBAA =
4932 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
4933
4934 AssertTBAA(do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
4935 IsStructPathTBAA,do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
4936 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I)do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
;
4937
4938 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
4939 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4940
4941 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
4942
4943 if (IsNewFormat) {
4944 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,do { if (!(MD->getNumOperands() == 4 || MD->getNumOperands
() == 5)) { CheckFailed("Access tag metadata must have either 4 or 5 operands"
, &I, MD); return false; } } while (false)
4945 "Access tag metadata must have either 4 or 5 operands", &I, MD)do { if (!(MD->getNumOperands() == 4 || MD->getNumOperands
() == 5)) { CheckFailed("Access tag metadata must have either 4 or 5 operands"
, &I, MD); return false; } } while (false)
;
4946 } else {
4947 AssertTBAA(MD->getNumOperands() < 5,do { if (!(MD->getNumOperands() < 5)) { CheckFailed("Struct tag metadata must have either 3 or 4 operands"
, &I, MD); return false; } } while (false)
4948 "Struct tag metadata must have either 3 or 4 operands", &I, MD)do { if (!(MD->getNumOperands() < 5)) { CheckFailed("Struct tag metadata must have either 3 or 4 operands"
, &I, MD); return false; } } while (false)
;
4949 }
4950
4951 // Check the access size field.
4952 if (IsNewFormat) {
4953 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
4954 MD->getOperand(3));
4955 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD)do { if (!(AccessSizeNode)) { CheckFailed("Access size field must be a constant"
, &I, MD); return false; } } while (false)
;
4956 }
4957
4958 // Check the immutability flag.
4959 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
4960 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
4961 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
4962 MD->getOperand(ImmutabilityFlagOpNo));
4963 AssertTBAA(IsImmutableCI,do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
4964 "Immutability tag on struct tag metadata must be a constant",do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
4965 &I, MD)do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
;
4966 AssertTBAA(do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
4967 IsImmutableCI->isZero() || IsImmutableCI->isOne(),do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
4968 "Immutability part of the struct tag metadata must be either 0 or 1",do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
4969 &I, MD)do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
;
4970 }
4971
4972 AssertTBAA(BaseNode && AccessType,do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
4973 "Malformed struct tag metadata: base and access-type "do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
4974 "should be non-null and point to Metadata nodes",do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
4975 &I, MD, BaseNode, AccessType)do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
;
4976
4977 if (!IsNewFormat) {
4978 AssertTBAA(isValidScalarTBAANode(AccessType),do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
4979 "Access type node must be a valid scalar type", &I, MD,do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
4980 AccessType)do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
;
4981 }
4982
4983 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
4984 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD)do { if (!(OffsetCI)) { CheckFailed("Offset must be constant integer"
, &I, MD); return false; } } while (false)
;
4985
4986 APInt Offset = OffsetCI->getValue();
4987 bool SeenAccessTypeInPath = false;
4988
4989 SmallPtrSet<MDNode *, 4> StructPath;
4990
4991 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
4992 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
4993 IsNewFormat)) {
4994 if (!StructPath.insert(BaseNode).second) {
4995 CheckFailed("Cycle detected in struct path", &I, MD);
4996 return false;
4997 }
4998
4999 bool Invalid;
5000 unsigned BaseNodeBitWidth;
5001 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
5002 IsNewFormat);
5003
5004 // If the base node is invalid in itself, then we've already printed all the
5005 // errors we wanted to print.
5006 if (Invalid)
5007 return false;
5008
5009 SeenAccessTypeInPath |= BaseNode == AccessType;
5010
5011 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
5012 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",do { if (!(Offset == 0)) { CheckFailed("Offset not zero at the point of scalar access"
, &I, MD, &Offset); return false; } } while (false)
5013 &I, MD, &Offset)do { if (!(Offset == 0)) { CheckFailed("Offset not zero at the point of scalar access"
, &I, MD, &Offset); return false; } } while (false)
;
5014
5015 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0) || (IsNewFormat && BaseNodeBitWidth
== ~0u))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
5016 (BaseNodeBitWidth == 0 && Offset == 0) ||do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0) || (IsNewFormat && BaseNodeBitWidth
== ~0u))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
5017 (IsNewFormat && BaseNodeBitWidth == ~0u),do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0) || (IsNewFormat && BaseNodeBitWidth
== ~0u))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
5018 "Access bit-width not the same as description bit-width", &I, MD,do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0) || (IsNewFormat && BaseNodeBitWidth
== ~0u))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
5019 BaseNodeBitWidth, Offset.getBitWidth())do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0) || (IsNewFormat && BaseNodeBitWidth
== ~0u))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
;
5020
5021 if (IsNewFormat && SeenAccessTypeInPath)
5022 break;
5023 }
5024
5025 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",do { if (!(SeenAccessTypeInPath)) { CheckFailed("Did not see access type in access path!"
, &I, MD); return false; } } while (false)
5026 &I, MD)do { if (!(SeenAccessTypeInPath)) { CheckFailed("Did not see access type in access path!"
, &I, MD); return false; } } while (false)
;
5027 return true;
5028}
5029
5030char VerifierLegacyPass::ID = 0;
5031INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)static void *initializeVerifierLegacyPassPassOnce(PassRegistry
&Registry) { PassInfo *PI = new PassInfo( "Module Verifier"
, "verify", &VerifierLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<VerifierLegacyPass>), false, false); Registry
.registerPass(*PI, true); return PI; } static llvm::once_flag
InitializeVerifierLegacyPassPassFlag; void llvm::initializeVerifierLegacyPassPass
(PassRegistry &Registry) { llvm::call_once(InitializeVerifierLegacyPassPassFlag
, initializeVerifierLegacyPassPassOnce, std::ref(Registry)); }
5032
5033FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
5034 return new VerifierLegacyPass(FatalErrors);
5035}
5036
5037AnalysisKey VerifierAnalysis::Key;
5038VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
5039 ModuleAnalysisManager &) {
5040 Result Res;
5041 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
5042 return Res;
5043}
5044
5045VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
5046 FunctionAnalysisManager &) {
5047 return { llvm::verifyFunction(F, &dbgs()), false };
5048}
5049
5050PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
5051 auto Res = AM.getResult<VerifierAnalysis>(M);
5052 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
5053 report_fatal_error("Broken module found, compilation aborted!");
5054
5055 return PreservedAnalyses::all();
5056}
5057
5058PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
5059 auto res = AM.getResult<VerifierAnalysis>(F);
5060 if (res.IRBroken && FatalErrors)
5061 report_fatal_error("Broken function found, compilation aborted!");
5062
5063 return PreservedAnalyses::all();
5064}