Bug Summary

File:lib/IR/Verifier.cpp
Warning:line 2193, column 7
Called C++ object pointer is null

Annotated Source Code

1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the function verifier interface, that can be used for some
11// sanity checking of input to the system.
12//
13// Note that this does not provide full `Java style' security and verifications,
14// instead it just tries to ensure that code is well-formed.
15//
16// * Both of a binary operator's parameters are of the same type
17// * Verify that the indices of mem access instructions match other operands
18// * Verify that arithmetic and other things are only performed on first-class
19// types. Verify that shifts & logicals only happen on integrals f.e.
20// * All of the constants in a switch statement are of the correct type
21// * The code is in valid SSA form
22// * It should be illegal to put a label into any other type (like a structure)
23// or to return one. [except constant arrays!]
24// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25// * PHI nodes must have an entry for each predecessor, with no extras.
26// * PHI nodes must be the first thing in a basic block, all grouped together
27// * PHI nodes must have at least one entry
28// * All basic blocks should only end with terminator insts, not contain them
29// * The entry node to a function must not have predecessors
30// * All Instructions must be embedded into a basic block
31// * Functions cannot take a void-typed parameter
32// * Verify that a function's argument list agrees with it's declared type.
33// * It is illegal to specify a name for a void value.
34// * It is illegal to have a internal global value with no initializer
35// * It is illegal to have a ret instruction that returns a value that does not
36// agree with the function return value type.
37// * Function call argument types match the function prototype
38// * A landing pad is defined by a landingpad instruction, and can be jumped to
39// only by the unwind edge of an invoke instruction.
40// * A landingpad instruction must be the first non-PHI instruction in the
41// block.
42// * Landingpad instructions must be in a function with a personality function.
43// * All other things that are tested by asserts spread about the code...
44//
45//===----------------------------------------------------------------------===//
46
47#include "llvm/IR/Verifier.h"
48#include "llvm/ADT/APFloat.h"
49#include "llvm/ADT/APInt.h"
50#include "llvm/ADT/ArrayRef.h"
51#include "llvm/ADT/DenseMap.h"
52#include "llvm/ADT/MapVector.h"
53#include "llvm/ADT/Optional.h"
54#include "llvm/ADT/STLExtras.h"
55#include "llvm/ADT/SmallPtrSet.h"
56#include "llvm/ADT/SmallSet.h"
57#include "llvm/ADT/SmallVector.h"
58#include "llvm/ADT/StringMap.h"
59#include "llvm/ADT/StringRef.h"
60#include "llvm/ADT/Twine.h"
61#include "llvm/ADT/ilist.h"
62#include "llvm/BinaryFormat/Dwarf.h"
63#include "llvm/IR/Argument.h"
64#include "llvm/IR/Attributes.h"
65#include "llvm/IR/BasicBlock.h"
66#include "llvm/IR/CFG.h"
67#include "llvm/IR/CallSite.h"
68#include "llvm/IR/CallingConv.h"
69#include "llvm/IR/Comdat.h"
70#include "llvm/IR/Constant.h"
71#include "llvm/IR/ConstantRange.h"
72#include "llvm/IR/Constants.h"
73#include "llvm/IR/DataLayout.h"
74#include "llvm/IR/DebugInfo.h"
75#include "llvm/IR/DebugInfoMetadata.h"
76#include "llvm/IR/DebugLoc.h"
77#include "llvm/IR/DerivedTypes.h"
78#include "llvm/IR/DiagnosticInfo.h"
79#include "llvm/IR/Dominators.h"
80#include "llvm/IR/Function.h"
81#include "llvm/IR/GlobalAlias.h"
82#include "llvm/IR/GlobalValue.h"
83#include "llvm/IR/GlobalVariable.h"
84#include "llvm/IR/InlineAsm.h"
85#include "llvm/IR/InstVisitor.h"
86#include "llvm/IR/InstrTypes.h"
87#include "llvm/IR/Instruction.h"
88#include "llvm/IR/Instructions.h"
89#include "llvm/IR/IntrinsicInst.h"
90#include "llvm/IR/Intrinsics.h"
91#include "llvm/IR/LLVMContext.h"
92#include "llvm/IR/Metadata.h"
93#include "llvm/IR/Module.h"
94#include "llvm/IR/ModuleSlotTracker.h"
95#include "llvm/IR/PassManager.h"
96#include "llvm/IR/Statepoint.h"
97#include "llvm/IR/Type.h"
98#include "llvm/IR/Use.h"
99#include "llvm/IR/User.h"
100#include "llvm/IR/Value.h"
101#include "llvm/Pass.h"
102#include "llvm/Support/AtomicOrdering.h"
103#include "llvm/Support/Casting.h"
104#include "llvm/Support/CommandLine.h"
105#include "llvm/Support/Debug.h"
106#include "llvm/Support/ErrorHandling.h"
107#include "llvm/Support/MathExtras.h"
108#include "llvm/Support/raw_ostream.h"
109#include <algorithm>
110#include <cassert>
111#include <cstdint>
112#include <memory>
113#include <string>
114#include <utility>
115
116using namespace llvm;
117
118namespace llvm {
119
120struct VerifierSupport {
121 raw_ostream *OS;
122 const Module &M;
123 ModuleSlotTracker MST;
124 const DataLayout &DL;
125 LLVMContext &Context;
126
127 /// Track the brokenness of the module while recursively visiting.
128 bool Broken = false;
129 /// Broken debug info can be "recovered" from by stripping the debug info.
130 bool BrokenDebugInfo = false;
131 /// Whether to treat broken debug info as an error.
132 bool TreatBrokenDebugInfoAsError = true;
133
134 explicit VerifierSupport(raw_ostream *OS, const Module &M)
135 : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
136
137private:
138 void Write(const Module *M) {
139 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
140 }
141
142 void Write(const Value *V) {
143 if (!V)
144 return;
145 if (isa<Instruction>(V)) {
146 V->print(*OS, MST);
147 *OS << '\n';
148 } else {
149 V->printAsOperand(*OS, true, MST);
150 *OS << '\n';
151 }
152 }
153
154 void Write(ImmutableCallSite CS) {
155 Write(CS.getInstruction());
156 }
157
158 void Write(const Metadata *MD) {
159 if (!MD)
160 return;
161 MD->print(*OS, MST, &M);
162 *OS << '\n';
163 }
164
165 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
166 Write(MD.get());
167 }
168
169 void Write(const NamedMDNode *NMD) {
170 if (!NMD)
171 return;
172 NMD->print(*OS, MST);
173 *OS << '\n';
174 }
175
176 void Write(Type *T) {
177 if (!T)
178 return;
179 *OS << ' ' << *T;
180 }
181
182 void Write(const Comdat *C) {
183 if (!C)
184 return;
185 *OS << *C;
186 }
187
188 void Write(const APInt *AI) {
189 if (!AI)
190 return;
191 *OS << *AI << '\n';
192 }
193
194 void Write(const unsigned i) { *OS << i << '\n'; }
195
196 template <typename T> void Write(ArrayRef<T> Vs) {
197 for (const T &V : Vs)
198 Write(V);
199 }
200
201 template <typename T1, typename... Ts>
202 void WriteTs(const T1 &V1, const Ts &... Vs) {
203 Write(V1);
204 WriteTs(Vs...);
205 }
206
207 template <typename... Ts> void WriteTs() {}
208
209public:
210 /// \brief A check failed, so printout out the condition and the message.
211 ///
212 /// This provides a nice place to put a breakpoint if you want to see why
213 /// something is not correct.
214 void CheckFailed(const Twine &Message) {
215 if (OS)
216 *OS << Message << '\n';
217 Broken = true;
218 }
219
220 /// \brief A check failed (with values to print).
221 ///
222 /// This calls the Message-only version so that the above is easier to set a
223 /// breakpoint on.
224 template <typename T1, typename... Ts>
225 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
226 CheckFailed(Message);
227 if (OS)
228 WriteTs(V1, Vs...);
229 }
230
231 /// A debug info check failed.
232 void DebugInfoCheckFailed(const Twine &Message) {
233 if (OS)
234 *OS << Message << '\n';
235 Broken |= TreatBrokenDebugInfoAsError;
236 BrokenDebugInfo = true;
237 }
238
239 /// A debug info check failed (with values to print).
240 template <typename T1, typename... Ts>
241 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
242 const Ts &... Vs) {
243 DebugInfoCheckFailed(Message);
244 if (OS)
245 WriteTs(V1, Vs...);
246 }
247};
248
249} // namespace llvm
250
251namespace {
252
253class Verifier : public InstVisitor<Verifier>, VerifierSupport {
254 friend class InstVisitor<Verifier>;
255
256 DominatorTree DT;
257
258 /// \brief When verifying a basic block, keep track of all of the
259 /// instructions we have seen so far.
260 ///
261 /// This allows us to do efficient dominance checks for the case when an
262 /// instruction has an operand that is an instruction in the same block.
263 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
264
265 /// \brief Keep track of the metadata nodes that have been checked already.
266 SmallPtrSet<const Metadata *, 32> MDNodes;
267
268 /// Keep track which DISubprogram is attached to which function.
269 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
270
271 /// Track all DICompileUnits visited.
272 SmallPtrSet<const Metadata *, 2> CUVisited;
273
274 /// \brief The result type for a landingpad.
275 Type *LandingPadResultTy;
276
277 /// \brief Whether we've seen a call to @llvm.localescape in this function
278 /// already.
279 bool SawFrameEscape;
280
281 /// Whether the current function has a DISubprogram attached to it.
282 bool HasDebugInfo = false;
283
284 /// Stores the count of how many objects were passed to llvm.localescape for a
285 /// given function and the largest index passed to llvm.localrecover.
286 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
287
288 // Maps catchswitches and cleanuppads that unwind to siblings to the
289 // terminators that indicate the unwind, used to detect cycles therein.
290 MapVector<Instruction *, TerminatorInst *> SiblingFuncletInfo;
291
292 /// Cache of constants visited in search of ConstantExprs.
293 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
294
295 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
296 SmallVector<const Function *, 4> DeoptimizeDeclarations;
297
298 // Verify that this GlobalValue is only used in this module.
299 // This map is used to avoid visiting uses twice. We can arrive at a user
300 // twice, if they have multiple operands. In particular for very large
301 // constant expressions, we can arrive at a particular user many times.
302 SmallPtrSet<const Value *, 32> GlobalValueVisited;
303
304 // Keeps track of duplicate function argument debug info.
305 SmallVector<const DILocalVariable *, 16> DebugFnArgs;
306
307 TBAAVerifier TBAAVerifyHelper;
308
309 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
310
311public:
312 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
313 const Module &M)
314 : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
315 SawFrameEscape(false), TBAAVerifyHelper(this) {
316 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
317 }
318
319 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
320
321 bool verify(const Function &F) {
322 assert(F.getParent() == &M &&(static_cast <bool> (F.getParent() == &M &&
"An instance of this class only works with a specific module!"
) ? void (0) : __assert_fail ("F.getParent() == &M && \"An instance of this class only works with a specific module!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/lib/IR/Verifier.cpp"
, 323, __extension__ __PRETTY_FUNCTION__))
323 "An instance of this class only works with a specific module!")(static_cast <bool> (F.getParent() == &M &&
"An instance of this class only works with a specific module!"
) ? void (0) : __assert_fail ("F.getParent() == &M && \"An instance of this class only works with a specific module!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/lib/IR/Verifier.cpp"
, 323, __extension__ __PRETTY_FUNCTION__))
;
324
325 // First ensure the function is well-enough formed to compute dominance
326 // information, and directly compute a dominance tree. We don't rely on the
327 // pass manager to provide this as it isolates us from a potentially
328 // out-of-date dominator tree and makes it significantly more complex to run
329 // this code outside of a pass manager.
330 // FIXME: It's really gross that we have to cast away constness here.
331 if (!F.empty())
332 DT.recalculate(const_cast<Function &>(F));
333
334 for (const BasicBlock &BB : F) {
335 if (!BB.empty() && BB.back().isTerminator())
336 continue;
337
338 if (OS) {
339 *OS << "Basic Block in function '" << F.getName()
340 << "' does not have terminator!\n";
341 BB.printAsOperand(*OS, true, MST);
342 *OS << "\n";
343 }
344 return false;
345 }
346
347 Broken = false;
348 // FIXME: We strip const here because the inst visitor strips const.
349 visit(const_cast<Function &>(F));
350 verifySiblingFuncletUnwinds();
351 InstsInThisBlock.clear();
352 DebugFnArgs.clear();
353 LandingPadResultTy = nullptr;
354 SawFrameEscape = false;
355 SiblingFuncletInfo.clear();
356
357 return !Broken;
358 }
359
360 /// Verify the module that this instance of \c Verifier was initialized with.
361 bool verify() {
362 Broken = false;
363
364 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
365 for (const Function &F : M)
366 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
367 DeoptimizeDeclarations.push_back(&F);
368
369 // Now that we've visited every function, verify that we never asked to
370 // recover a frame index that wasn't escaped.
371 verifyFrameRecoverIndices();
372 for (const GlobalVariable &GV : M.globals())
373 visitGlobalVariable(GV);
374
375 for (const GlobalAlias &GA : M.aliases())
376 visitGlobalAlias(GA);
377
378 for (const NamedMDNode &NMD : M.named_metadata())
379 visitNamedMDNode(NMD);
380
381 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
382 visitComdat(SMEC.getValue());
383
384 visitModuleFlags(M);
385 visitModuleIdents(M);
386
387 verifyCompileUnits();
388
389 verifyDeoptimizeCallingConvs();
390 DISubprogramAttachments.clear();
391 return !Broken;
392 }
393
394private:
395 // Verification methods...
396 void visitGlobalValue(const GlobalValue &GV);
397 void visitGlobalVariable(const GlobalVariable &GV);
398 void visitGlobalAlias(const GlobalAlias &GA);
399 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
400 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
401 const GlobalAlias &A, const Constant &C);
402 void visitNamedMDNode(const NamedMDNode &NMD);
403 void visitMDNode(const MDNode &MD);
404 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
405 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
406 void visitComdat(const Comdat &C);
407 void visitModuleIdents(const Module &M);
408 void visitModuleFlags(const Module &M);
409 void visitModuleFlag(const MDNode *Op,
410 DenseMap<const MDString *, const MDNode *> &SeenIDs,
411 SmallVectorImpl<const MDNode *> &Requirements);
412 void visitFunction(const Function &F);
413 void visitBasicBlock(BasicBlock &BB);
414 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
415 void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
416
417 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
418#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
419#include "llvm/IR/Metadata.def"
420 void visitDIScope(const DIScope &N);
421 void visitDIVariable(const DIVariable &N);
422 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
423 void visitDITemplateParameter(const DITemplateParameter &N);
424
425 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
426
427 // InstVisitor overrides...
428 using InstVisitor<Verifier>::visit;
429 void visit(Instruction &I);
430
431 void visitTruncInst(TruncInst &I);
432 void visitZExtInst(ZExtInst &I);
433 void visitSExtInst(SExtInst &I);
434 void visitFPTruncInst(FPTruncInst &I);
435 void visitFPExtInst(FPExtInst &I);
436 void visitFPToUIInst(FPToUIInst &I);
437 void visitFPToSIInst(FPToSIInst &I);
438 void visitUIToFPInst(UIToFPInst &I);
439 void visitSIToFPInst(SIToFPInst &I);
440 void visitIntToPtrInst(IntToPtrInst &I);
441 void visitPtrToIntInst(PtrToIntInst &I);
442 void visitBitCastInst(BitCastInst &I);
443 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
444 void visitPHINode(PHINode &PN);
445 void visitBinaryOperator(BinaryOperator &B);
446 void visitICmpInst(ICmpInst &IC);
447 void visitFCmpInst(FCmpInst &FC);
448 void visitExtractElementInst(ExtractElementInst &EI);
449 void visitInsertElementInst(InsertElementInst &EI);
450 void visitShuffleVectorInst(ShuffleVectorInst &EI);
451 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
452 void visitCallInst(CallInst &CI);
453 void visitInvokeInst(InvokeInst &II);
454 void visitGetElementPtrInst(GetElementPtrInst &GEP);
455 void visitLoadInst(LoadInst &LI);
456 void visitStoreInst(StoreInst &SI);
457 void verifyDominatesUse(Instruction &I, unsigned i);
458 void visitInstruction(Instruction &I);
459 void visitTerminatorInst(TerminatorInst &I);
460 void visitBranchInst(BranchInst &BI);
461 void visitReturnInst(ReturnInst &RI);
462 void visitSwitchInst(SwitchInst &SI);
463 void visitIndirectBrInst(IndirectBrInst &BI);
464 void visitSelectInst(SelectInst &SI);
465 void visitUserOp1(Instruction &I);
466 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
467 void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
468 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
469 void visitDbgIntrinsic(StringRef Kind, DbgInfoIntrinsic &DII);
470 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
471 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
472 void visitFenceInst(FenceInst &FI);
473 void visitAllocaInst(AllocaInst &AI);
474 void visitExtractValueInst(ExtractValueInst &EVI);
475 void visitInsertValueInst(InsertValueInst &IVI);
476 void visitEHPadPredecessors(Instruction &I);
477 void visitLandingPadInst(LandingPadInst &LPI);
478 void visitResumeInst(ResumeInst &RI);
479 void visitCatchPadInst(CatchPadInst &CPI);
480 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
481 void visitCleanupPadInst(CleanupPadInst &CPI);
482 void visitFuncletPadInst(FuncletPadInst &FPI);
483 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
484 void visitCleanupReturnInst(CleanupReturnInst &CRI);
485
486 void verifyCallSite(CallSite CS);
487 void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal);
488 void verifySwiftErrorValue(const Value *SwiftErrorVal);
489 void verifyMustTailCall(CallInst &CI);
490 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
491 unsigned ArgNo, std::string &Suffix);
492 bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
493 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
494 const Value *V);
495 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
496 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
497 const Value *V);
498 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
499
500 void visitConstantExprsRecursively(const Constant *EntryC);
501 void visitConstantExpr(const ConstantExpr *CE);
502 void verifyStatepoint(ImmutableCallSite CS);
503 void verifyFrameRecoverIndices();
504 void verifySiblingFuncletUnwinds();
505
506 void verifyFragmentExpression(const DbgInfoIntrinsic &I);
507 template <typename ValueOrMetadata>
508 void verifyFragmentExpression(const DIVariable &V,
509 DIExpression::FragmentInfo Fragment,
510 ValueOrMetadata *Desc);
511 void verifyFnArgs(const DbgInfoIntrinsic &I);
512
513 /// Module-level debug info verification...
514 void verifyCompileUnits();
515
516 /// Module-level verification that all @llvm.experimental.deoptimize
517 /// declarations share the same calling convention.
518 void verifyDeoptimizeCallingConvs();
519};
520
521} // end anonymous namespace
522
523/// We know that cond should be true, if not print an error message.
524#define Assert(C, ...)do { if (!(C)) { CheckFailed(...); return; } } while (false) \
525 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
526
527/// We know that a debug info condition should be true, if not print
528/// an error message.
529#define AssertDI(C, ...)do { if (!(C)) { DebugInfoCheckFailed(...); return; } } while
(false)
\
530 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
531
532void Verifier::visit(Instruction &I) {
533 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
534 Assert(I.getOperand(i) != nullptr, "Operand is null", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Operand is null"
, &I); return; } } while (false)
;
535 InstVisitor<Verifier>::visit(I);
536}
537
538// Helper to recursively iterate over indirect users. By
539// returning false, the callback can ask to stop recursing
540// further.
541static void forEachUser(const Value *User,
542 SmallPtrSet<const Value *, 32> &Visited,
543 llvm::function_ref<bool(const Value *)> Callback) {
544 if (!Visited.insert(User).second)
545 return;
546 for (const Value *TheNextUser : User->materialized_users())
547 if (Callback(TheNextUser))
548 forEachUser(TheNextUser, Visited, Callback);
549}
550
551void Verifier::visitGlobalValue(const GlobalValue &GV) {
552 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),do { if (!(!GV.isDeclaration() || GV.hasValidDeclarationLinkage
())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (false)
553 "Global is external, but doesn't have external or weak linkage!", &GV)do { if (!(!GV.isDeclaration() || GV.hasValidDeclarationLinkage
())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (false)
;
554
555 Assert(GV.getAlignment() <= Value::MaximumAlignment,do { if (!(GV.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &GV
); return; } } while (false)
556 "huge alignment values are unsupported", &GV)do { if (!(GV.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &GV
); return; } } while (false)
;
557 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (false)
558 "Only global variables can have appending linkage!", &GV)do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (false)
;
559
560 if (GV.hasAppendingLinkage()) {
561 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
562 Assert(GVar && GVar->getValueType()->isArrayTy(),do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (false)
563 "Only global arrays can have appending linkage!", GVar)do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (false)
;
564 }
565
566 if (GV.isDeclarationForLinker())
567 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("Declaration may not be in a Comdat!"
, &GV); return; } } while (false)
;
568
569 if (GV.hasDLLImportStorageClass())
570 Assert(!GV.isDSOLocal(),do { if (!(!GV.isDSOLocal())) { CheckFailed("GlobalValue with DLLImport Storage is dso_local!"
, &GV); return; } } while (false)
571 "GlobalValue with DLLImport Storage is dso_local!", &GV)do { if (!(!GV.isDSOLocal())) { CheckFailed("GlobalValue with DLLImport Storage is dso_local!"
, &GV); return; } } while (false)
;
572
573 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
574 if (const Instruction *I = dyn_cast<Instruction>(V)) {
575 if (!I->getParent() || !I->getParent()->getParent())
576 CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
577 I);
578 else if (I->getParent()->getParent()->getParent() != &M)
579 CheckFailed("Global is referenced in a different module!", &GV, &M, I,
580 I->getParent()->getParent(),
581 I->getParent()->getParent()->getParent());
582 return false;
583 } else if (const Function *F = dyn_cast<Function>(V)) {
584 if (F->getParent() != &M)
585 CheckFailed("Global is used by function in a different module", &GV, &M,
586 F, F->getParent());
587 return false;
588 }
589 return true;
590 });
591}
592
593void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
594 if (GV.hasInitializer()) {
595 Assert(GV.getInitializer()->getType() == GV.getValueType(),do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
596 "Global variable initializer type does not match global "do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
597 "variable type!",do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
598 &GV)do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
;
599 // If the global has common linkage, it must have a zero initializer and
600 // cannot be constant.
601 if (GV.hasCommonLinkage()) {
602 Assert(GV.getInitializer()->isNullValue(),do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (false)
603 "'common' global must have a zero initializer!", &GV)do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (false)
;
604 Assert(!GV.isConstant(), "'common' global may not be marked constant!",do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (false)
605 &GV)do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (false)
;
606 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("'common' global may not be in a Comdat!"
, &GV); return; } } while (false)
;
607 }
608 }
609
610 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
611 GV.getName() == "llvm.global_dtors")) {
612 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
613 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
;
614 // Don't worry about emitting an error for it not being an array,
615 // visitGlobalValue will complain on appending non-array.
616 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
617 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
618 PointerType *FuncPtrTy =
619 FunctionType::get(Type::getVoidTy(Context), false)->getPointerTo();
620 // FIXME: Reject the 2-field form in LLVM 4.0.
621 Assert(STy &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
622 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
623 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
624 STy->getTypeAtIndex(1) == FuncPtrTy,do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
625 "wrong type for intrinsic global variable", &GV)do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
;
626 if (STy->getNumElements() == 3) {
627 Type *ETy = STy->getTypeAtIndex(2);
628 Assert(ETy->isPointerTy() &&do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
629 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
630 "wrong type for intrinsic global variable", &GV)do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
;
631 }
632 }
633 }
634
635 if (GV.hasName() && (GV.getName() == "llvm.used" ||
636 GV.getName() == "llvm.compiler.used")) {
637 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
638 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
;
639 Type *GVType = GV.getValueType();
640 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
641 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
642 Assert(PTy, "wrong type for intrinsic global variable", &GV)do { if (!(PTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
;
643 if (GV.hasInitializer()) {
644 const Constant *Init = GV.getInitializer();
645 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
646 Assert(InitArray, "wrong initalizer for intrinsic global variable",do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (false)
647 Init)do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (false)
;
648 for (Value *Op : InitArray->operands()) {
649 Value *V = Op->stripPointerCastsNoFollowAliases();
650 Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
651 isa<GlobalAlias>(V),do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
652 "invalid llvm.used member", V)do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
;
653 Assert(V->hasName(), "members of llvm.used must be named", V)do { if (!(V->hasName())) { CheckFailed("members of llvm.used must be named"
, V); return; } } while (false)
;
654 }
655 }
656 }
657 }
658
659 Assert(!GV.hasDLLImportStorageClass() ||do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
660 (GV.isDeclaration() && GV.hasExternalLinkage()) ||do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
661 GV.hasAvailableExternallyLinkage(),do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
662 "Global is marked as dllimport, but not external", &GV)do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
;
663
664 // Visit any debug info attachments.
665 SmallVector<MDNode *, 1> MDs;
666 GV.getMetadata(LLVMContext::MD_dbg, MDs);
667 for (auto *MD : MDs) {
668 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
669 visitDIGlobalVariableExpression(*GVE);
670 else
671 AssertDI(false, "!dbg attachment of global variable must be a "do { if (!(false)) { DebugInfoCheckFailed("!dbg attachment of global variable must be a "
"DIGlobalVariableExpression"); return; } } while (false)
672 "DIGlobalVariableExpression")do { if (!(false)) { DebugInfoCheckFailed("!dbg attachment of global variable must be a "
"DIGlobalVariableExpression"); return; } } while (false)
;
673 }
674
675 if (!GV.hasInitializer()) {
676 visitGlobalValue(GV);
677 return;
678 }
679
680 // Walk any aggregate initializers looking for bitcasts between address spaces
681 visitConstantExprsRecursively(GV.getInitializer());
682
683 visitGlobalValue(GV);
684}
685
686void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
687 SmallPtrSet<const GlobalAlias*, 4> Visited;
688 Visited.insert(&GA);
689 visitAliaseeSubExpr(Visited, GA, C);
690}
691
692void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
693 const GlobalAlias &GA, const Constant &C) {
694 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
695 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (false)
696 &GA)do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (false)
;
697
698 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
699 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA)do { if (!(Visited.insert(GA2).second)) { CheckFailed("Aliases cannot form a cycle"
, &GA); return; } } while (false)
;
700
701 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias"
, &GA); return; } } while (false)
702 &GA)do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias"
, &GA); return; } } while (false)
;
703 } else {
704 // Only continue verifying subexpressions of GlobalAliases.
705 // Do not recurse into global initializers.
706 return;
707 }
708 }
709
710 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
711 visitConstantExprsRecursively(CE);
712
713 for (const Use &U : C.operands()) {
714 Value *V = &*U;
715 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
716 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
717 else if (const auto *C2 = dyn_cast<Constant>(V))
718 visitAliaseeSubExpr(Visited, GA, *C2);
719 }
720}
721
722void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
723 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
724 "Alias should have private, internal, linkonce, weak, linkonce_odr, "do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
725 "weak_odr, or external linkage!",do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
726 &GA)do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
;
727 const Constant *Aliasee = GA.getAliasee();
728 Assert(Aliasee, "Aliasee cannot be NULL!", &GA)do { if (!(Aliasee)) { CheckFailed("Aliasee cannot be NULL!",
&GA); return; } } while (false)
;
729 Assert(GA.getType() == Aliasee->getType(),do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (false)
730 "Alias and aliasee types should match!", &GA)do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (false)
;
731
732 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (false)
733 "Aliasee should be either GlobalValue or ConstantExpr", &GA)do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (false)
;
734
735 visitAliaseeSubExpr(GA, *Aliasee);
736
737 visitGlobalValue(GA);
738}
739
740void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
741 // There used to be various other llvm.dbg.* nodes, but we don't support
742 // upgrading them and we want to reserve the namespace for future uses.
743 if (NMD.getName().startswith("llvm.dbg."))
744 AssertDI(NMD.getName() == "llvm.dbg.cu",do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
745 "unrecognized named metadata node in the llvm.dbg namespace",do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
746 &NMD)do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
;
747 for (const MDNode *MD : NMD.operands()) {
748 if (NMD.getName() == "llvm.dbg.cu")
749 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD)do { if (!(MD && isa<DICompileUnit>(MD))) { DebugInfoCheckFailed
("invalid compile unit", &NMD, MD); return; } } while (false
)
;
750
751 if (!MD)
752 continue;
753
754 visitMDNode(*MD);
755 }
756}
757
758void Verifier::visitMDNode(const MDNode &MD) {
759 // Only visit each node once. Metadata can be mutually recursive, so this
760 // avoids infinite recursion here, as well as being an optimization.
761 if (!MDNodes.insert(&MD).second)
762 return;
763
764 switch (MD.getMetadataID()) {
765 default:
766 llvm_unreachable("Invalid MDNode subclass")::llvm::llvm_unreachable_internal("Invalid MDNode subclass", "/build/llvm-toolchain-snapshot-6.0~svn318601/lib/IR/Verifier.cpp"
, 766)
;
767 case Metadata::MDTupleKind:
768 break;
769#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
770 case Metadata::CLASS##Kind: \
771 visit##CLASS(cast<CLASS>(MD)); \
772 break;
773#include "llvm/IR/Metadata.def"
774 }
775
776 for (const Metadata *Op : MD.operands()) {
777 if (!Op)
778 continue;
779 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (false)
780 &MD, Op)do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (false)
;
781 if (auto *N = dyn_cast<MDNode>(Op)) {
782 visitMDNode(*N);
783 continue;
784 }
785 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
786 visitValueAsMetadata(*V, nullptr);
787 continue;
788 }
789 }
790
791 // Check these last, so we diagnose problems in operands first.
792 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD)do { if (!(!MD.isTemporary())) { CheckFailed("Expected no forward declarations!"
, &MD); return; } } while (false)
;
793 Assert(MD.isResolved(), "All nodes should be resolved!", &MD)do { if (!(MD.isResolved())) { CheckFailed("All nodes should be resolved!"
, &MD); return; } } while (false)
;
794}
795
796void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
797 Assert(MD.getValue(), "Expected valid value", &MD)do { if (!(MD.getValue())) { CheckFailed("Expected valid value"
, &MD); return; } } while (false)
;
798 Assert(!MD.getValue()->getType()->isMetadataTy(),do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (false)
799 "Unexpected metadata round-trip through values", &MD, MD.getValue())do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (false)
;
800
801 auto *L = dyn_cast<LocalAsMetadata>(&MD);
802 if (!L)
803 return;
804
805 Assert(F, "function-local metadata used outside a function", L)do { if (!(F)) { CheckFailed("function-local metadata used outside a function"
, L); return; } } while (false)
;
806
807 // If this was an instruction, bb, or argument, verify that it is in the
808 // function that we expect.
809 Function *ActualF = nullptr;
810 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
811 Assert(I->getParent(), "function-local metadata not in basic block", L, I)do { if (!(I->getParent())) { CheckFailed("function-local metadata not in basic block"
, L, I); return; } } while (false)
;
812 ActualF = I->getParent()->getParent();
813 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
814 ActualF = BB->getParent();
815 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
816 ActualF = A->getParent();
817 assert(ActualF && "Unimplemented function local metadata case!")(static_cast <bool> (ActualF && "Unimplemented function local metadata case!"
) ? void (0) : __assert_fail ("ActualF && \"Unimplemented function local metadata case!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/lib/IR/Verifier.cpp"
, 817, __extension__ __PRETTY_FUNCTION__))
;
818
819 Assert(ActualF == F, "function-local metadata used in wrong function", L)do { if (!(ActualF == F)) { CheckFailed("function-local metadata used in wrong function"
, L); return; } } while (false)
;
820}
821
822void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
823 Metadata *MD = MDV.getMetadata();
824 if (auto *N = dyn_cast<MDNode>(MD)) {
825 visitMDNode(*N);
826 return;
827 }
828
829 // Only visit each node once. Metadata can be mutually recursive, so this
830 // avoids infinite recursion here, as well as being an optimization.
831 if (!MDNodes.insert(MD).second)
832 return;
833
834 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
835 visitValueAsMetadata(*V, F);
836}
837
838static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
839static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
840static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
841
842void Verifier::visitDILocation(const DILocation &N) {
843 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
844 "location requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
845 if (auto *IA = N.getRawInlinedAt())
846 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA)do { if (!(isa<DILocation>(IA))) { DebugInfoCheckFailed
("inlined-at should be a location", &N, IA); return; } } while
(false)
;
847 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
848 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N)do { if (!(SP->isDefinition())) { DebugInfoCheckFailed("scope points into the type hierarchy"
, &N); return; } } while (false)
;
849}
850
851void Verifier::visitGenericDINode(const GenericDINode &N) {
852 AssertDI(N.getTag(), "invalid tag", &N)do { if (!(N.getTag())) { DebugInfoCheckFailed("invalid tag",
&N); return; } } while (false)
;
853}
854
855void Verifier::visitDIScope(const DIScope &N) {
856 if (auto *F = N.getRawFile())
857 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
858}
859
860void Verifier::visitDISubrange(const DISubrange &N) {
861 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
862 AssertDI(N.getCount() >= -1, "invalid subrange count", &N)do { if (!(N.getCount() >= -1)) { DebugInfoCheckFailed("invalid subrange count"
, &N); return; } } while (false)
;
863}
864
865void Verifier::visitDIEnumerator(const DIEnumerator &N) {
866 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_enumerator)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
867}
868
869void Verifier::visitDIBasicType(const DIBasicType &N) {
870 AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
871 N.getTag() == dwarf::DW_TAG_unspecified_type,do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
872 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
;
873}
874
875void Verifier::visitDIDerivedType(const DIDerivedType &N) {
876 // Common scope checks.
877 visitDIScope(N);
878
879 AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
880 N.getTag() == dwarf::DW_TAG_pointer_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
881 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
882 N.getTag() == dwarf::DW_TAG_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
883 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
884 N.getTag() == dwarf::DW_TAG_const_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
885 N.getTag() == dwarf::DW_TAG_volatile_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
886 N.getTag() == dwarf::DW_TAG_restrict_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
887 N.getTag() == dwarf::DW_TAG_atomic_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
888 N.getTag() == dwarf::DW_TAG_member ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
889 N.getTag() == dwarf::DW_TAG_inheritance ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
890 N.getTag() == dwarf::DW_TAG_friend,do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
891 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
;
892 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
893 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,do { if (!(isType(N.getRawExtraData()))) { DebugInfoCheckFailed
("invalid pointer to member type", &N, N.getRawExtraData(
)); return; } } while (false)
894 N.getRawExtraData())do { if (!(isType(N.getRawExtraData()))) { DebugInfoCheckFailed
("invalid pointer to member type", &N, N.getRawExtraData(
)); return; } } while (false)
;
895 }
896
897 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
898 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
899 N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
;
900
901 if (N.getDWARFAddressSpace()) {
902 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
903 N.getTag() == dwarf::DW_TAG_reference_type,do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
904 "DWARF address space only applies to pointer or reference types",do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
905 &N)do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
;
906 }
907}
908
909static bool hasConflictingReferenceFlags(unsigned Flags) {
910 return (Flags & DINode::FlagLValueReference) &&
911 (Flags & DINode::FlagRValueReference);
912}
913
914void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
915 auto *Params = dyn_cast<MDTuple>(&RawParams);
916 AssertDI(Params, "invalid template params", &N, &RawParams)do { if (!(Params)) { DebugInfoCheckFailed("invalid template params"
, &N, &RawParams); return; } } while (false)
;
917 for (Metadata *Op : Params->operands()) {
918 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",do { if (!(Op && isa<DITemplateParameter>(Op)))
{ DebugInfoCheckFailed("invalid template parameter", &N,
Params, Op); return; } } while (false)
919 &N, Params, Op)do { if (!(Op && isa<DITemplateParameter>(Op)))
{ DebugInfoCheckFailed("invalid template parameter", &N,
Params, Op); return; } } while (false)
;
920 }
921}
922
923void Verifier::visitDICompositeType(const DICompositeType &N) {
924 // Common scope checks.
925 visitDIScope(N);
926
927 AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
928 N.getTag() == dwarf::DW_TAG_structure_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
929 N.getTag() == dwarf::DW_TAG_union_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
930 N.getTag() == dwarf::DW_TAG_enumeration_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
931 N.getTag() == dwarf::DW_TAG_class_type,do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
932 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
;
933
934 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
935 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
936 N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
;
937
938 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { DebugInfoCheckFailed("invalid composite elements", &
N, N.getRawElements()); return; } } while (false)
939 "invalid composite elements", &N, N.getRawElements())do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { DebugInfoCheckFailed("invalid composite elements", &
N, N.getRawElements()); return; } } while (false)
;
940 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,do { if (!(isType(N.getRawVTableHolder()))) { DebugInfoCheckFailed
("invalid vtable holder", &N, N.getRawVTableHolder()); return
; } } while (false)
941 N.getRawVTableHolder())do { if (!(isType(N.getRawVTableHolder()))) { DebugInfoCheckFailed
("invalid vtable holder", &N, N.getRawVTableHolder()); return
; } } while (false)
;
942 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
943 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
944 if (auto *Params = N.getRawTemplateParams())
945 visitTemplateParams(N, *Params);
946
947 if (N.getTag() == dwarf::DW_TAG_class_type ||
948 N.getTag() == dwarf::DW_TAG_union_type) {
949 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),do { if (!(N.getFile() && !N.getFile()->getFilename
().empty())) { DebugInfoCheckFailed("class/union requires a filename"
, &N, N.getFile()); return; } } while (false)
950 "class/union requires a filename", &N, N.getFile())do { if (!(N.getFile() && !N.getFile()->getFilename
().empty())) { DebugInfoCheckFailed("class/union requires a filename"
, &N, N.getFile()); return; } } while (false)
;
951 }
952}
953
954void Verifier::visitDISubroutineType(const DISubroutineType &N) {
955 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subroutine_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
956 if (auto *Types = N.getRawTypeArray()) {
957 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types)do { if (!(isa<MDTuple>(Types))) { DebugInfoCheckFailed
("invalid composite elements", &N, Types); return; } } while
(false)
;
958 for (Metadata *Ty : N.getTypeArray()->operands()) {
959 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty)do { if (!(isType(Ty))) { DebugInfoCheckFailed("invalid subroutine type ref"
, &N, Types, Ty); return; } } while (false)
;
960 }
961 }
962 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
963 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
964}
965
966void Verifier::visitDIFile(const DIFile &N) {
967 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_file_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
968 AssertDI((N.getChecksumKind() != DIFile::CSK_None ||do { if (!((N.getChecksumKind() != DIFile::CSK_None || N.getChecksum
().empty()))) { DebugInfoCheckFailed("invalid checksum kind",
&N); return; } } while (false)
969 N.getChecksum().empty()), "invalid checksum kind", &N)do { if (!((N.getChecksumKind() != DIFile::CSK_None || N.getChecksum
().empty()))) { DebugInfoCheckFailed("invalid checksum kind",
&N); return; } } while (false)
;
970}
971
972void Verifier::visitDICompileUnit(const DICompileUnit &N) {
973 AssertDI(N.isDistinct(), "compile units must be distinct", &N)do { if (!(N.isDistinct())) { DebugInfoCheckFailed("compile units must be distinct"
, &N); return; } } while (false)
;
974 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_compile_unit)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
975
976 // Don't bother verifying the compilation directory or producer string
977 // as those could be empty.
978 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { DebugInfoCheckFailed("invalid file", &N, N.getRawFile
()); return; } } while (false)
979 N.getRawFile())do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { DebugInfoCheckFailed("invalid file", &N, N.getRawFile
()); return; } } while (false)
;
980 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,do { if (!(!N.getFile()->getFilename().empty())) { DebugInfoCheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
false)
981 N.getFile())do { if (!(!N.getFile()->getFilename().empty())) { DebugInfoCheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
false)
;
982
983 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind
))) { DebugInfoCheckFailed("invalid emission kind", &N); return
; } } while (false)
984 "invalid emission kind", &N)do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind
))) { DebugInfoCheckFailed("invalid emission kind", &N); return
; } } while (false)
;
985
986 if (auto *Array = N.getRawEnumTypes()) {
987 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid enum list", &N, Array); return; } } while (false
)
;
988 for (Metadata *Op : N.getEnumTypes()->operands()) {
989 auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
990 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { DebugInfoCheckFailed("invalid enum type", &N, N.getEnumTypes
(), Op); return; } } while (false)
991 "invalid enum type", &N, N.getEnumTypes(), Op)do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { DebugInfoCheckFailed("invalid enum type", &N, N.getEnumTypes
(), Op); return; } } while (false)
;
992 }
993 }
994 if (auto *Array = N.getRawRetainedTypes()) {
995 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid retained type list", &N, Array); return; } } while
(false)
;
996 for (Metadata *Op : N.getRetainedTypes()->operands()) {
997 AssertDI(Op && (isa<DIType>(Op) ||do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
998 (isa<DISubprogram>(Op) &&do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
999 !cast<DISubprogram>(Op)->isDefinition())),do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
1000 "invalid retained type", &N, Op)do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
;
1001 }
1002 }
1003 if (auto *Array = N.getRawGlobalVariables()) {
1004 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid global variable list", &N, Array); return; } } while
(false)
;
1005 for (Metadata *Op : N.getGlobalVariables()->operands()) {
1006 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),do { if (!(Op && (isa<DIGlobalVariableExpression>
(Op)))) { DebugInfoCheckFailed("invalid global variable ref",
&N, Op); return; } } while (false)
1007 "invalid global variable ref", &N, Op)do { if (!(Op && (isa<DIGlobalVariableExpression>
(Op)))) { DebugInfoCheckFailed("invalid global variable ref",
&N, Op); return; } } while (false)
;
1008 }
1009 }
1010 if (auto *Array = N.getRawImportedEntities()) {
1011 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid imported entity list", &N, Array); return; } } while
(false)
;
1012 for (Metadata *Op : N.getImportedEntities()->operands()) {
1013 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",do { if (!(Op && isa<DIImportedEntity>(Op))) { DebugInfoCheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(false)
1014 &N, Op)do { if (!(Op && isa<DIImportedEntity>(Op))) { DebugInfoCheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(false)
;
1015 }
1016 }
1017 if (auto *Array = N.getRawMacros()) {
1018 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid macro list", &N, Array); return; } } while (false
)
;
1019 for (Metadata *Op : N.getMacros()->operands()) {
1020 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { DebugInfoCheckFailed
("invalid macro ref", &N, Op); return; } } while (false)
;
1021 }
1022 }
1023 CUVisited.insert(&N);
1024}
1025
1026void Verifier::visitDISubprogram(const DISubprogram &N) {
1027 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subprogram)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1028 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
1029 if (auto *F = N.getRawFile())
1030 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1031 else
1032 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine())do { if (!(N.getLine() == 0)) { DebugInfoCheckFailed("line specified with no file"
, &N, N.getLine()); return; } } while (false)
;
1033 if (auto *T = N.getRawType())
1034 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T)do { if (!(isa<DISubroutineType>(T))) { DebugInfoCheckFailed
("invalid subroutine type", &N, T); return; } } while (false
)
;
1035 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,do { if (!(isType(N.getRawContainingType()))) { DebugInfoCheckFailed
("invalid containing type", &N, N.getRawContainingType())
; return; } } while (false)
1036 N.getRawContainingType())do { if (!(isType(N.getRawContainingType()))) { DebugInfoCheckFailed
("invalid containing type", &N, N.getRawContainingType())
; return; } } while (false)
;
1037 if (auto *Params = N.getRawTemplateParams())
1038 visitTemplateParams(N, *Params);
1039 if (auto *S = N.getRawDeclaration())
1040 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { DebugInfoCheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (false)
1041 "invalid subprogram declaration", &N, S)do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { DebugInfoCheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (false)
;
1042 if (auto *RawVars = N.getRawVariables()) {
1043 auto *Vars = dyn_cast<MDTuple>(RawVars);
1044 AssertDI(Vars, "invalid variable list", &N, RawVars)do { if (!(Vars)) { DebugInfoCheckFailed("invalid variable list"
, &N, RawVars); return; } } while (false)
;
1045 for (Metadata *Op : Vars->operands()) {
1046 AssertDI(Op && isa<DILocalVariable>(Op), "invalid local variable", &N,do { if (!(Op && isa<DILocalVariable>(Op))) { DebugInfoCheckFailed
("invalid local variable", &N, Vars, Op); return; } } while
(false)
1047 Vars, Op)do { if (!(Op && isa<DILocalVariable>(Op))) { DebugInfoCheckFailed
("invalid local variable", &N, Vars, Op); return; } } while
(false)
;
1048 }
1049 }
1050 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
1051 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
1052
1053 auto *Unit = N.getRawUnit();
1054 if (N.isDefinition()) {
1055 // Subprogram definitions (not part of the type hierarchy).
1056 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N)do { if (!(N.isDistinct())) { DebugInfoCheckFailed("subprogram definitions must be distinct"
, &N); return; } } while (false)
;
1057 AssertDI(Unit, "subprogram definitions must have a compile unit", &N)do { if (!(Unit)) { DebugInfoCheckFailed("subprogram definitions must have a compile unit"
, &N); return; } } while (false)
;
1058 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit)do { if (!(isa<DICompileUnit>(Unit))) { DebugInfoCheckFailed
("invalid unit type", &N, Unit); return; } } while (false
)
;
1059 } else {
1060 // Subprogram declarations (part of the type hierarchy).
1061 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N)do { if (!(!Unit)) { DebugInfoCheckFailed("subprogram declarations must not have a compile unit"
, &N); return; } } while (false)
;
1062 }
1063
1064 if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1065 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1066 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes)do { if (!(ThrownTypes)) { DebugInfoCheckFailed("invalid thrown types list"
, &N, RawThrownTypes); return; } } while (false)
;
1067 for (Metadata *Op : ThrownTypes->operands())
1068 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,do { if (!(Op && isa<DIType>(Op))) { DebugInfoCheckFailed
("invalid thrown type", &N, ThrownTypes, Op); return; } }
while (false)
1069 Op)do { if (!(Op && isa<DIType>(Op))) { DebugInfoCheckFailed
("invalid thrown type", &N, ThrownTypes, Op); return; } }
while (false)
;
1070 }
1071}
1072
1073void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1074 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_lexical_block)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1075 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("invalid local scope"
, &N, N.getRawScope()); return; } } while (false)
1076 "invalid local scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("invalid local scope"
, &N, N.getRawScope()); return; } } while (false)
;
1077 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1078 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N)do { if (!(SP->isDefinition())) { DebugInfoCheckFailed("scope points into the type hierarchy"
, &N); return; } } while (false)
;
1079}
1080
1081void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1082 visitDILexicalBlockBase(N);
1083
1084 AssertDI(N.getLine() || !N.getColumn(),do { if (!(N.getLine() || !N.getColumn())) { DebugInfoCheckFailed
("cannot have column info without line info", &N); return
; } } while (false)
1085 "cannot have column info without line info", &N)do { if (!(N.getLine() || !N.getColumn())) { DebugInfoCheckFailed
("cannot have column info without line info", &N); return
; } } while (false)
;
1086}
1087
1088void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1089 visitDILexicalBlockBase(N);
1090}
1091
1092void Verifier::visitDINamespace(const DINamespace &N) {
1093 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_namespace)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1094 if (auto *S = N.getRawScope())
1095 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope ref"
, &N, S); return; } } while (false)
;
1096}
1097
1098void Verifier::visitDIMacro(const DIMacro &N) {
1099 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
1100 N.getMacinfoType() == dwarf::DW_MACINFO_undef,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
1101 "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
;
1102 AssertDI(!N.getName().empty(), "anonymous macro", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("anonymous macro"
, &N); return; } } while (false)
;
1103 if (!N.getValue().empty()) {
1104 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix")(static_cast <bool> (N.getValue().data()[0] != ' ' &&
"Macro value has a space prefix") ? void (0) : __assert_fail
("N.getValue().data()[0] != ' ' && \"Macro value has a space prefix\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/lib/IR/Verifier.cpp"
, 1104, __extension__ __PRETTY_FUNCTION__))
;
1105 }
1106}
1107
1108void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1109 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file
)) { DebugInfoCheckFailed("invalid macinfo type", &N); return
; } } while (false)
1110 "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file
)) { DebugInfoCheckFailed("invalid macinfo type", &N); return
; } } while (false)
;
1111 if (auto *F = N.getRawFile())
1112 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1113
1114 if (auto *Array = N.getRawElements()) {
1115 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid macro list", &N, Array); return; } } while (false
)
;
1116 for (Metadata *Op : N.getElements()->operands()) {
1117 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { DebugInfoCheckFailed
("invalid macro ref", &N, Op); return; } } while (false)
;
1118 }
1119 }
1120}
1121
1122void Verifier::visitDIModule(const DIModule &N) {
1123 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_module)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1124 AssertDI(!N.getName().empty(), "anonymous module", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("anonymous module"
, &N); return; } } while (false)
;
1125}
1126
1127void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1128 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1129}
1130
1131void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1132 visitDITemplateParameter(N);
1133
1134 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1135 &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
;
1136}
1137
1138void Verifier::visitDITemplateValueParameter(
1139 const DITemplateValueParameter &N) {
1140 visitDITemplateParameter(N);
1141
1142 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1143 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1144 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1145 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1146}
1147
1148void Verifier::visitDIVariable(const DIVariable &N) {
1149 if (auto *S = N.getRawScope())
1150 AssertDI(isa<DIScope>(S), "invalid scope", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope"
, &N, S); return; } } while (false)
;
1151 if (auto *F = N.getRawFile())
1152 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1153}
1154
1155void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1156 // Checks common to all variables.
1157 visitDIVariable(N);
1158
1159 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1160 AssertDI(!N.getName().empty(), "missing global variable name", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("missing global variable name"
, &N); return; } } while (false)
;
1161 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1162 AssertDI(N.getType(), "missing global variable type", &N)do { if (!(N.getType())) { DebugInfoCheckFailed("missing global variable type"
, &N); return; } } while (false)
;
1163 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1164 AssertDI(isa<DIDerivedType>(Member),do { if (!(isa<DIDerivedType>(Member))) { DebugInfoCheckFailed
("invalid static data member declaration", &N, Member); return
; } } while (false)
1165 "invalid static data member declaration", &N, Member)do { if (!(isa<DIDerivedType>(Member))) { DebugInfoCheckFailed
("invalid static data member declaration", &N, Member); return
; } } while (false)
;
1166 }
1167}
1168
1169void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1170 // Checks common to all variables.
1171 visitDIVariable(N);
1172
1173 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1174 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1175 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
1176 "local variable requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
1177}
1178
1179void Verifier::visitDIExpression(const DIExpression &N) {
1180 AssertDI(N.isValid(), "invalid expression", &N)do { if (!(N.isValid())) { DebugInfoCheckFailed("invalid expression"
, &N); return; } } while (false)
;
1181}
1182
1183void Verifier::visitDIGlobalVariableExpression(
1184 const DIGlobalVariableExpression &GVE) {
1185 AssertDI(GVE.getVariable(), "missing variable")do { if (!(GVE.getVariable())) { DebugInfoCheckFailed("missing variable"
); return; } } while (false)
;
1186 if (auto *Var = GVE.getVariable())
1187 visitDIGlobalVariable(*Var);
1188 if (auto *Expr = GVE.getExpression()) {
1189 visitDIExpression(*Expr);
1190 if (auto Fragment = Expr->getFragmentInfo())
1191 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1192 }
1193}
1194
1195void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1196 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_APPLE_property)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1197 if (auto *T = N.getRawType())
1198 AssertDI(isType(T), "invalid type ref", &N, T)do { if (!(isType(T))) { DebugInfoCheckFailed("invalid type ref"
, &N, T); return; } } while (false)
;
1199 if (auto *F = N.getRawFile())
1200 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1201}
1202
1203void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1204 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1205 N.getTag() == dwarf::DW_TAG_imported_declaration,do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1206 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1207 if (auto *S = N.getRawScope())
1208 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope for imported entity"
, &N, S); return; } } while (false)
;
1209 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,do { if (!(isDINode(N.getRawEntity()))) { DebugInfoCheckFailed
("invalid imported entity", &N, N.getRawEntity()); return
; } } while (false)
1210 N.getRawEntity())do { if (!(isDINode(N.getRawEntity()))) { DebugInfoCheckFailed
("invalid imported entity", &N, N.getRawEntity()); return
; } } while (false)
;
1211}
1212
1213void Verifier::visitComdat(const Comdat &C) {
1214 // The Module is invalid if the GlobalValue has private linkage. Entities
1215 // with private linkage don't have entries in the symbol table.
1216 if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1217 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (false)
1218 GV)do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (false)
;
1219}
1220
1221void Verifier::visitModuleIdents(const Module &M) {
1222 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1223 if (!Idents)
1224 return;
1225
1226 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1227 // Scan each llvm.ident entry and make sure that this requirement is met.
1228 for (const MDNode *N : Idents->operands()) {
1229 Assert(N->getNumOperands() == 1,do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (false)
1230 "incorrect number of operands in llvm.ident metadata", N)do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (false)
;
1231 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1232 ("invalid value for llvm.ident metadata entry operand"do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1233 "(the operand should be a string)"),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1234 N->getOperand(0))do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
;
1235 }
1236}
1237
1238void Verifier::visitModuleFlags(const Module &M) {
1239 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1240 if (!Flags) return;
1241
1242 // Scan each flag, and track the flags and requirements.
1243 DenseMap<const MDString*, const MDNode*> SeenIDs;
1244 SmallVector<const MDNode*, 16> Requirements;
1245 for (const MDNode *MDN : Flags->operands())
1246 visitModuleFlag(MDN, SeenIDs, Requirements);
1247
1248 // Validate that the requirements in the module are valid.
1249 for (const MDNode *Requirement : Requirements) {
1250 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1251 const Metadata *ReqValue = Requirement->getOperand(1);
1252
1253 const MDNode *Op = SeenIDs.lookup(Flag);
1254 if (!Op) {
1255 CheckFailed("invalid requirement on flag, flag is not present in module",
1256 Flag);
1257 continue;
1258 }
1259
1260 if (Op->getOperand(2) != ReqValue) {
1261 CheckFailed(("invalid requirement on flag, "
1262 "flag does not have the required value"),
1263 Flag);
1264 continue;
1265 }
1266 }
1267}
1268
1269void
1270Verifier::visitModuleFlag(const MDNode *Op,
1271 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1272 SmallVectorImpl<const MDNode *> &Requirements) {
1273 // Each module flag should have three arguments, the merge behavior (a
1274 // constant int), the flag ID (an MDString), and the value.
1275 Assert(Op->getNumOperands() == 3,do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (false)
1276 "incorrect number of operands in module flag", Op)do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (false)
;
1277 Module::ModFlagBehavior MFB;
1278 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1279 Assert(do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1280 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1281 "invalid behavior operand in module flag (expected constant integer)",do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1282 Op->getOperand(0))do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
;
1283 Assert(false,do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
1284 "invalid behavior operand in module flag (unexpected constant)",do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
1285 Op->getOperand(0))do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
;
1286 }
1287 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1288 Assert(ID, "invalid ID operand in module flag (expected metadata string)",do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (false)
1289 Op->getOperand(1))do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (false)
;
1290
1291 // Sanity check the values for behaviors with additional requirements.
1292 switch (MFB) {
1293 case Module::Error:
1294 case Module::Warning:
1295 case Module::Override:
1296 // These behavior types accept any value.
1297 break;
1298
1299 case Module::Max: {
1300 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(2)))) { CheckFailed("invalid value for 'max' module flag (expected constant integer)"
, Op->getOperand(2)); return; } } while (false)
1301 "invalid value for 'max' module flag (expected constant integer)",do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(2)))) { CheckFailed("invalid value for 'max' module flag (expected constant integer)"
, Op->getOperand(2)); return; } } while (false)
1302 Op->getOperand(2))do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(2)))) { CheckFailed("invalid value for 'max' module flag (expected constant integer)"
, Op->getOperand(2)); return; } } while (false)
;
1303 break;
1304 }
1305
1306 case Module::Require: {
1307 // The value should itself be an MDNode with two operands, a flag ID (an
1308 // MDString), and a value.
1309 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1310 Assert(Value && Value->getNumOperands() == 2,do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
1311 "invalid value for 'require' module flag (expected metadata pair)",do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
1312 Op->getOperand(2))do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
;
1313 Assert(isa<MDString>(Value->getOperand(0)),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1314 ("invalid value for 'require' module flag "do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1315 "(first value operand should be a string)"),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1316 Value->getOperand(0))do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
;
1317
1318 // Append it to the list of requirements, to check once all module flags are
1319 // scanned.
1320 Requirements.push_back(Value);
1321 break;
1322 }
1323
1324 case Module::Append:
1325 case Module::AppendUnique: {
1326 // These behavior types require the operand be an MDNode.
1327 Assert(isa<MDNode>(Op->getOperand(2)),do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1328 "invalid value for 'append'-type module flag "do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1329 "(expected a metadata node)",do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1330 Op->getOperand(2))do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
;
1331 break;
1332 }
1333 }
1334
1335 // Unless this is a "requires" flag, check the ID is unique.
1336 if (MFB != Module::Require) {
1337 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1338 Assert(Inserted,do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (false)
1339 "module flag identifiers must be unique (or of 'require' type)", ID)do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (false)
;
1340 }
1341
1342 if (ID->getString() == "wchar_size") {
1343 ConstantInt *Value
1344 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1345 Assert(Value, "wchar_size metadata requires constant integer argument")do { if (!(Value)) { CheckFailed("wchar_size metadata requires constant integer argument"
); return; } } while (false)
;
1346 }
1347
1348 if (ID->getString() == "Linker Options") {
1349 // If the llvm.linker.options named metadata exists, we assume that the
1350 // bitcode reader has upgraded the module flag. Otherwise the flag might
1351 // have been created by a client directly.
1352 Assert(M.getNamedMetadata("llvm.linker.options"),do { if (!(M.getNamedMetadata("llvm.linker.options"))) { CheckFailed
("'Linker Options' named metadata no longer supported"); return
; } } while (false)
1353 "'Linker Options' named metadata no longer supported")do { if (!(M.getNamedMetadata("llvm.linker.options"))) { CheckFailed
("'Linker Options' named metadata no longer supported"); return
; } } while (false)
;
1354 }
1355}
1356
1357/// Return true if this attribute kind only applies to functions.
1358static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
1359 switch (Kind) {
1360 case Attribute::NoReturn:
1361 case Attribute::NoUnwind:
1362 case Attribute::NoInline:
1363 case Attribute::AlwaysInline:
1364 case Attribute::OptimizeForSize:
1365 case Attribute::StackProtect:
1366 case Attribute::StackProtectReq:
1367 case Attribute::StackProtectStrong:
1368 case Attribute::SafeStack:
1369 case Attribute::NoRedZone:
1370 case Attribute::NoImplicitFloat:
1371 case Attribute::Naked:
1372 case Attribute::InlineHint:
1373 case Attribute::StackAlignment:
1374 case Attribute::UWTable:
1375 case Attribute::NonLazyBind:
1376 case Attribute::ReturnsTwice:
1377 case Attribute::SanitizeAddress:
1378 case Attribute::SanitizeThread:
1379 case Attribute::SanitizeMemory:
1380 case Attribute::MinSize:
1381 case Attribute::NoDuplicate:
1382 case Attribute::Builtin:
1383 case Attribute::NoBuiltin:
1384 case Attribute::Cold:
1385 case Attribute::OptimizeNone:
1386 case Attribute::JumpTable:
1387 case Attribute::Convergent:
1388 case Attribute::ArgMemOnly:
1389 case Attribute::NoRecurse:
1390 case Attribute::InaccessibleMemOnly:
1391 case Attribute::InaccessibleMemOrArgMemOnly:
1392 case Attribute::AllocSize:
1393 case Attribute::Speculatable:
1394 case Attribute::StrictFP:
1395 return true;
1396 default:
1397 break;
1398 }
1399 return false;
1400}
1401
1402/// Return true if this is a function attribute that can also appear on
1403/// arguments.
1404static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
1405 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1406 Kind == Attribute::ReadNone;
1407}
1408
1409void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1410 const Value *V) {
1411 for (Attribute A : Attrs) {
1412 if (A.isStringAttribute())
1413 continue;
1414
1415 if (isFuncOnlyAttr(A.getKindAsEnum())) {
1416 if (!IsFunction) {
1417 CheckFailed("Attribute '" + A.getAsString() +
1418 "' only applies to functions!",
1419 V);
1420 return;
1421 }
1422 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1423 CheckFailed("Attribute '" + A.getAsString() +
1424 "' does not apply to functions!",
1425 V);
1426 return;
1427 }
1428 }
1429}
1430
1431// VerifyParameterAttrs - Check the given attributes for an argument or return
1432// value of the specified type. The value V is printed in error messages.
1433void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1434 const Value *V) {
1435 if (!Attrs.hasAttributes())
1436 return;
1437
1438 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1439
1440 // Check for mutually incompatible attributes. Only inreg is compatible with
1441 // sret.
1442 unsigned AttrCount = 0;
1443 AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1444 AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1445 AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1446 Attrs.hasAttribute(Attribute::InReg);
1447 AttrCount += Attrs.hasAttribute(Attribute::Nest);
1448 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
1449 "and 'sret' are incompatible!",do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
1450 V)do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
;
1451
1452 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1453 Attrs.hasAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1454 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1455 "'inalloca and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1456 V)do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
;
1457
1458 Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1459 Attrs.hasAttribute(Attribute::Returned)),do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1460 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1461 "'sret and returned' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1462 V)do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
;
1463
1464 Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1465 Attrs.hasAttribute(Attribute::SExt)),do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1466 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1467 "'zeroext and signext' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1468 V)do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
;
1469
1470 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1471 Attrs.hasAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1472 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1473 "'readnone and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1474 V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
;
1475
1476 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1477 Attrs.hasAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1478 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1479 "'readnone and writeonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1480 V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
;
1481
1482 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1483 Attrs.hasAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1484 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1485 "'readonly and writeonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1486 V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
;
1487
1488 Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1489 Attrs.hasAttribute(Attribute::AlwaysInline)),do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1490 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1491 "'noinline and alwaysinline' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1492 V)do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
;
1493
1494 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1495 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
1496 "Wrong types for attribute: " +do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
1497 AttributeSet::get(Context, IncompatibleAttrs).getAsString(),do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
1498 V)do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
;
1499
1500 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1501 SmallPtrSet<Type*, 4> Visited;
1502 if (!PTy->getElementType()->isSized(&Visited)) {
1503 Assert(!Attrs.hasAttribute(Attribute::ByVal) &&do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::InAlloca))) { CheckFailed("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1504 !Attrs.hasAttribute(Attribute::InAlloca),do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::InAlloca))) { CheckFailed("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1505 "Attributes 'byval' and 'inalloca' do not support unsized types!",do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::InAlloca))) { CheckFailed("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1506 V)do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::InAlloca))) { CheckFailed("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
;
1507 }
1508 if (!isa<PointerType>(PTy->getElementType()))
1509 Assert(!Attrs.hasAttribute(Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
1510 "Attribute 'swifterror' only applies to parameters "do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
1511 "with pointer to pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
1512 V)do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
;
1513 } else {
1514 Assert(!Attrs.hasAttribute(Attribute::ByVal),do { if (!(!Attrs.hasAttribute(Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
1515 "Attribute 'byval' only applies to parameters with pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
1516 V)do { if (!(!Attrs.hasAttribute(Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
;
1517 Assert(!Attrs.hasAttribute(Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
1518 "Attribute 'swifterror' only applies to parameters "do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
1519 "with pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
1520 V)do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
;
1521 }
1522}
1523
1524// Check parameter attributes against a function type.
1525// The value V is printed in error messages.
1526void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1527 const Value *V) {
1528 if (Attrs.isEmpty())
1529 return;
1530
1531 bool SawNest = false;
1532 bool SawReturned = false;
1533 bool SawSRet = false;
1534 bool SawSwiftSelf = false;
1535 bool SawSwiftError = false;
1536
1537 // Verify return value attributes.
1538 AttributeSet RetAttrs = Attrs.getRetAttributes();
1539 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1540 !RetAttrs.hasAttribute(Attribute::Nest) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1541 !RetAttrs.hasAttribute(Attribute::StructRet) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1542 !RetAttrs.hasAttribute(Attribute::NoCapture) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1543 !RetAttrs.hasAttribute(Attribute::Returned) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1544 !RetAttrs.hasAttribute(Attribute::InAlloca) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1545 !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1546 !RetAttrs.hasAttribute(Attribute::SwiftError)),do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1547 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1548 "'returned', 'swiftself', and 'swifterror' do not apply to return "do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1549 "values!",do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1550 V)do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
;
1551 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1552 !RetAttrs.hasAttribute(Attribute::WriteOnly) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1553 !RetAttrs.hasAttribute(Attribute::ReadNone)),do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1554 "Attribute '" + RetAttrs.getAsString() +do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1555 "' does not apply to function returns",do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1556 V)do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
;
1557 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1558
1559 // Verify parameter attributes.
1560 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1561 Type *Ty = FT->getParamType(i);
1562 AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1563
1564 verifyParameterAttrs(ArgAttrs, Ty, V);
1565
1566 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1567 Assert(!SawNest, "More than one parameter has attribute nest!", V)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, V); return; } } while (false)
;
1568 SawNest = true;
1569 }
1570
1571 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1572 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (false)
1573 V)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (false)
;
1574 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute"
, V); return; } } while (false)
1575 "Incompatible argument and return types for 'returned' attribute",do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute"
, V); return; } } while (false)
1576 V)do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute"
, V); return; } } while (false)
;
1577 SawReturned = true;
1578 }
1579
1580 if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1581 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V)do { if (!(!SawSRet)) { CheckFailed("Cannot have multiple 'sret' parameters!"
, V); return; } } while (false)
;
1582 Assert(i == 0 || i == 1,do { if (!(i == 0 || i == 1)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (false)
1583 "Attribute 'sret' is not on first or second parameter!", V)do { if (!(i == 0 || i == 1)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (false)
;
1584 SawSRet = true;
1585 }
1586
1587 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1588 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V)do { if (!(!SawSwiftSelf)) { CheckFailed("Cannot have multiple 'swiftself' parameters!"
, V); return; } } while (false)
;
1589 SawSwiftSelf = true;
1590 }
1591
1592 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1593 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!"
, V); return; } } while (false)
1594 V)do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!"
, V); return; } } while (false)
;
1595 SawSwiftError = true;
1596 }
1597
1598 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1599 Assert(i == FT->getNumParams() - 1,do { if (!(i == FT->getNumParams() - 1)) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (false)
1600 "inalloca isn't on the last parameter!", V)do { if (!(i == FT->getNumParams() - 1)) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (false)
;
1601 }
1602 }
1603
1604 if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1605 return;
1606
1607 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1608
1609 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1610 Attrs.hasFnAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1611 "Attributes 'readnone and readonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
;
1612
1613 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readnone and writeonly' are incompatible!", V); return
; } } while (false)
1614 Attrs.hasFnAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readnone and writeonly' are incompatible!", V); return
; } } while (false)
1615 "Attributes 'readnone and writeonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readnone and writeonly' are incompatible!", V); return
; } } while (false)
;
1616
1617 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readonly and writeonly' are incompatible!", V); return
; } } while (false)
1618 Attrs.hasFnAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readonly and writeonly' are incompatible!", V); return
; } } while (false)
1619 "Attributes 'readonly and writeonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readonly and writeonly' are incompatible!", V); return
; } } while (false)
;
1620
1621 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1622 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1623 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1624 "incompatible!",do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1625 V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
;
1626
1627 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1628 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1629 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
;
1630
1631 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes 'noinline and alwaysinline' are incompatible!", V
); return; } } while (false)
1632 Attrs.hasFnAttribute(Attribute::AlwaysInline)),do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes 'noinline and alwaysinline' are incompatible!", V
); return; } } while (false)
1633 "Attributes 'noinline and alwaysinline' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes 'noinline and alwaysinline' are incompatible!", V
); return; } } while (false)
;
1634
1635 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1636 Assert(Attrs.hasFnAttribute(Attribute::NoInline),do { if (!(Attrs.hasFnAttribute(Attribute::NoInline))) { CheckFailed
("Attribute 'optnone' requires 'noinline'!", V); return; } } while
(false)
1637 "Attribute 'optnone' requires 'noinline'!", V)do { if (!(Attrs.hasFnAttribute(Attribute::NoInline))) { CheckFailed
("Attribute 'optnone' requires 'noinline'!", V); return; } } while
(false)
;
1638
1639 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),do { if (!(!Attrs.hasFnAttribute(Attribute::OptimizeForSize))
) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
1640 "Attributes 'optsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasFnAttribute(Attribute::OptimizeForSize))
) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
;
1641
1642 Assert(!Attrs.hasFnAttribute(Attribute::MinSize),do { if (!(!Attrs.hasFnAttribute(Attribute::MinSize))) { CheckFailed
("Attributes 'minsize and optnone' are incompatible!", V); return
; } } while (false)
1643 "Attributes 'minsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasFnAttribute(Attribute::MinSize))) { CheckFailed
("Attributes 'minsize and optnone' are incompatible!", V); return
; } } while (false)
;
1644 }
1645
1646 if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1647 const GlobalValue *GV = cast<GlobalValue>(V);
1648 Assert(GV->hasGlobalUnnamedAddr(),do { if (!(GV->hasGlobalUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (false)
1649 "Attribute 'jumptable' requires 'unnamed_addr'", V)do { if (!(GV->hasGlobalUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (false)
;
1650 }
1651
1652 if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1653 std::pair<unsigned, Optional<unsigned>> Args =
1654 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
1655
1656 auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1657 if (ParamNo >= FT->getNumParams()) {
1658 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1659 return false;
1660 }
1661
1662 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1663 CheckFailed("'allocsize' " + Name +
1664 " argument must refer to an integer parameter",
1665 V);
1666 return false;
1667 }
1668
1669 return true;
1670 };
1671
1672 if (!CheckParam("element size", Args.first))
1673 return;
1674
1675 if (Args.second && !CheckParam("number of elements", *Args.second))
1676 return;
1677 }
1678}
1679
1680void Verifier::verifyFunctionMetadata(
1681 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1682 for (const auto &Pair : MDs) {
1683 if (Pair.first == LLVMContext::MD_prof) {
1684 MDNode *MD = Pair.second;
1685 Assert(MD->getNumOperands() >= 2,do { if (!(MD->getNumOperands() >= 2)) { CheckFailed("!prof annotations should have no less than 2 operands"
, MD); return; } } while (false)
1686 "!prof annotations should have no less than 2 operands", MD)do { if (!(MD->getNumOperands() >= 2)) { CheckFailed("!prof annotations should have no less than 2 operands"
, MD); return; } } while (false)
;
1687
1688 // Check first operand.
1689 Assert(MD->getOperand(0) != nullptr, "first operand should not be null",do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (false)
1690 MD)do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (false)
;
1691 Assert(isa<MDString>(MD->getOperand(0)),do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (false)
1692 "expected string with name of the !prof annotation", MD)do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (false)
;
1693 MDString *MDS = cast<MDString>(MD->getOperand(0));
1694 StringRef ProfName = MDS->getString();
1695 Assert(ProfName.equals("function_entry_count"),do { if (!(ProfName.equals("function_entry_count"))) { CheckFailed
("first operand should be 'function_entry_count'", MD); return
; } } while (false)
1696 "first operand should be 'function_entry_count'", MD)do { if (!(ProfName.equals("function_entry_count"))) { CheckFailed
("first operand should be 'function_entry_count'", MD); return
; } } while (false)
;
1697
1698 // Check second operand.
1699 Assert(MD->getOperand(1) != nullptr, "second operand should not be null",do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (false)
1700 MD)do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (false)
;
1701 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (false)
1702 "expected integer argument to function_entry_count", MD)do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (false)
;
1703 }
1704 }
1705}
1706
1707void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1708 if (!ConstantExprVisited.insert(EntryC).second)
1709 return;
1710
1711 SmallVector<const Constant *, 16> Stack;
1712 Stack.push_back(EntryC);
1713
1714 while (!Stack.empty()) {
1715 const Constant *C = Stack.pop_back_val();
1716
1717 // Check this constant expression.
1718 if (const auto *CE = dyn_cast<ConstantExpr>(C))
1719 visitConstantExpr(CE);
1720
1721 if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1722 // Global Values get visited separately, but we do need to make sure
1723 // that the global value is in the correct module
1724 Assert(GV->getParent() == &M, "Referencing global in another module!",do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, EntryC, &M, GV, GV->getParent()); return; } } while (
false)
1725 EntryC, &M, GV, GV->getParent())do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, EntryC, &M, GV, GV->getParent()); return; } } while (
false)
;
1726 continue;
1727 }
1728
1729 // Visit all sub-expressions.
1730 for (const Use &U : C->operands()) {
1731 const auto *OpC = dyn_cast<Constant>(U);
1732 if (!OpC)
1733 continue;
1734 if (!ConstantExprVisited.insert(OpC).second)
1735 continue;
1736 Stack.push_back(OpC);
1737 }
1738 }
1739}
1740
1741void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1742 if (CE->getOpcode() == Instruction::BitCast)
1743 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
1744 CE->getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
1745 "Invalid bitcast", CE)do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
;
1746
1747 if (CE->getOpcode() == Instruction::IntToPtr ||
1748 CE->getOpcode() == Instruction::PtrToInt) {
1749 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1750 ? CE->getType()
1751 : CE->getOperand(0)->getType();
1752 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1753 ? "inttoptr not supported for non-integral pointers"
1754 : "ptrtoint not supported for non-integral pointers";
1755 Assert(do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
1756 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
1757 Msg)do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
;
1758 }
1759}
1760
1761bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
1762 // There shouldn't be more attribute sets than there are parameters plus the
1763 // function and return value.
1764 return Attrs.getNumAttrSets() <= Params + 2;
1765}
1766
1767/// Verify that statepoint intrinsic is well formed.
1768void Verifier::verifyStatepoint(ImmutableCallSite CS) {
1769 assert(CS.getCalledFunction() &&(static_cast <bool> (CS.getCalledFunction() && CS
.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
) ? void (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/build/llvm-toolchain-snapshot-6.0~svn318601/lib/IR/Verifier.cpp"
, 1771, __extension__ __PRETTY_FUNCTION__))
1770 CS.getCalledFunction()->getIntrinsicID() ==(static_cast <bool> (CS.getCalledFunction() && CS
.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
) ? void (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/build/llvm-toolchain-snapshot-6.0~svn318601/lib/IR/Verifier.cpp"
, 1771, __extension__ __PRETTY_FUNCTION__))
1771 Intrinsic::experimental_gc_statepoint)(static_cast <bool> (CS.getCalledFunction() && CS
.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
) ? void (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/build/llvm-toolchain-snapshot-6.0~svn318601/lib/IR/Verifier.cpp"
, 1771, __extension__ __PRETTY_FUNCTION__))
;
1772
1773 const Instruction &CI = *CS.getInstruction();
1774
1775 Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1776 !CS.onlyAccessesArgMemory(),do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1777 "gc.statepoint must read and write all memory to preserve "do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1778 "reordering restrictions required by safepoint semantics",do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1779 &CI)do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
;
1780
1781 const Value *IDV = CS.getArgument(0);
1782 Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",do { if (!(isa<ConstantInt>(IDV))) { CheckFailed("gc.statepoint ID must be a constant integer"
, &CI); return; } } while (false)
1783 &CI)do { if (!(isa<ConstantInt>(IDV))) { CheckFailed("gc.statepoint ID must be a constant integer"
, &CI); return; } } while (false)
;
1784
1785 const Value *NumPatchBytesV = CS.getArgument(1);
1786 Assert(isa<ConstantInt>(NumPatchBytesV),do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (false)
1787 "gc.statepoint number of patchable bytes must be a constant integer",do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (false)
1788 &CI)do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (false)
;
1789 const int64_t NumPatchBytes =
1790 cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1791 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!")(static_cast <bool> (isInt<32>(NumPatchBytes) &&
"NumPatchBytesV is an i32!") ? void (0) : __assert_fail ("isInt<32>(NumPatchBytes) && \"NumPatchBytesV is an i32!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/lib/IR/Verifier.cpp"
, 1791, __extension__ __PRETTY_FUNCTION__))
;
1792 Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (false)
1793 "positive",do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (false)
1794 &CI)do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (false)
;
1795
1796 const Value *Target = CS.getArgument(2);
1797 auto *PT = dyn_cast<PointerType>(Target->getType());
1798 Assert(PT && PT->getElementType()->isFunctionTy(),do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, &CI, Target); return; } } while (false)
1799 "gc.statepoint callee must be of function pointer type", &CI, Target)do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, &CI, Target); return; } } while (false)
;
1800 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1801
1802 const Value *NumCallArgsV = CS.getArgument(3);
1803 Assert(isa<ConstantInt>(NumCallArgsV),do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
1804 "gc.statepoint number of arguments to underlying call "do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
1805 "must be constant integer",do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
1806 &CI)do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
;
1807 const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1808 Assert(NumCallArgs >= 0,do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
1809 "gc.statepoint number of arguments to underlying call "do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
1810 "must be positive",do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
1811 &CI)do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
;
1812 const int NumParams = (int)TargetFuncType->getNumParams();
1813 if (TargetFuncType->isVarArg()) {
1814 Assert(NumCallArgs >= NumParams,do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, &CI); return; } } while (false)
1815 "gc.statepoint mismatch in number of vararg call args", &CI)do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, &CI); return; } } while (false)
;
1816
1817 // TODO: Remove this limitation
1818 Assert(TargetFuncType->getReturnType()->isVoidTy(),do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
1819 "gc.statepoint doesn't support wrapping non-void "do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
1820 "vararg functions yet",do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
1821 &CI)do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
;
1822 } else
1823 Assert(NumCallArgs == NumParams,do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, &CI); return; } } while (false)
1824 "gc.statepoint mismatch in number of call args", &CI)do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, &CI); return; } } while (false)
;
1825
1826 const Value *FlagsV = CS.getArgument(4);
1827 Assert(isa<ConstantInt>(FlagsV),do { if (!(isa<ConstantInt>(FlagsV))) { CheckFailed("gc.statepoint flags must be constant integer"
, &CI); return; } } while (false)
1828 "gc.statepoint flags must be constant integer", &CI)do { if (!(isa<ConstantInt>(FlagsV))) { CheckFailed("gc.statepoint flags must be constant integer"
, &CI); return; } } while (false)
;
1829 const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1830 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, &CI); return; } } while (false)
1831 "unknown flag used in gc.statepoint flags argument", &CI)do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, &CI); return; } } while (false)
;
1832
1833 // Verify that the types of the call parameter arguments match
1834 // the type of the wrapped callee.
1835 for (int i = 0; i < NumParams; i++) {
1836 Type *ParamType = TargetFuncType->getParamType(i);
1837 Type *ArgType = CS.getArgument(5 + i)->getType();
1838 Assert(ArgType == ParamType,do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
1839 "gc.statepoint call argument does not match wrapped "do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
1840 "function type",do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
1841 &CI)do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
;
1842 }
1843
1844 const int EndCallArgsInx = 4 + NumCallArgs;
1845
1846 const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1847 Assert(isa<ConstantInt>(NumTransitionArgsV),do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
1848 "gc.statepoint number of transition arguments "do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
1849 "must be constant integer",do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
1850 &CI)do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
;
1851 const int NumTransitionArgs =
1852 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1853 Assert(NumTransitionArgs >= 0,do { if (!(NumTransitionArgs >= 0)) { CheckFailed("gc.statepoint number of transition arguments must be positive"
, &CI); return; } } while (false)
1854 "gc.statepoint number of transition arguments must be positive", &CI)do { if (!(NumTransitionArgs >= 0)) { CheckFailed("gc.statepoint number of transition arguments must be positive"
, &CI); return; } } while (false)
;
1855 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1856
1857 const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1858 Assert(isa<ConstantInt>(NumDeoptArgsV),do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
1859 "gc.statepoint number of deoptimization arguments "do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
1860 "must be constant integer",do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
1861 &CI)do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
;
1862 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1863 Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (false)
1864 "must be positive",do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (false)
1865 &CI)do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (false)
;
1866
1867 const int ExpectedNumArgs =
1868 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1869 Assert(ExpectedNumArgs <= (int)CS.arg_size(),do { if (!(ExpectedNumArgs <= (int)CS.arg_size())) { CheckFailed
("gc.statepoint too few arguments according to length fields"
, &CI); return; } } while (false)
1870 "gc.statepoint too few arguments according to length fields", &CI)do { if (!(ExpectedNumArgs <= (int)CS.arg_size())) { CheckFailed
("gc.statepoint too few arguments according to length fields"
, &CI); return; } } while (false)
;
1871
1872 // Check that the only uses of this gc.statepoint are gc.result or
1873 // gc.relocate calls which are tied to this statepoint and thus part
1874 // of the same statepoint sequence
1875 for (const User *U : CI.users()) {
1876 const CallInst *Call = dyn_cast<const CallInst>(U);
1877 Assert(Call, "illegal use of statepoint token", &CI, U)do { if (!(Call)) { CheckFailed("illegal use of statepoint token"
, &CI, U); return; } } while (false)
;
1878 if (!Call) continue;
1879 Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call),do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
1880 "gc.result or gc.relocate are the only value uses "do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
1881 "of a gc.statepoint",do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
1882 &CI, U)do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
;
1883 if (isa<GCResultInst>(Call)) {
1884 Assert(Call->getArgOperand(0) == &CI,do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.result connected to wrong gc.statepoint", &CI, Call)
; return; } } while (false)
1885 "gc.result connected to wrong gc.statepoint", &CI, Call)do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.result connected to wrong gc.statepoint", &CI, Call)
; return; } } while (false)
;
1886 } else if (isa<GCRelocateInst>(Call)) {
1887 Assert(Call->getArgOperand(0) == &CI,do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", &CI, Call
); return; } } while (false)
1888 "gc.relocate connected to wrong gc.statepoint", &CI, Call)do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", &CI, Call
); return; } } while (false)
;
1889 }
1890 }
1891
1892 // Note: It is legal for a single derived pointer to be listed multiple
1893 // times. It's non-optimal, but it is legal. It can also happen after
1894 // insertion if we strip a bitcast away.
1895 // Note: It is really tempting to check that each base is relocated and
1896 // that a derived pointer is never reused as a base pointer. This turns
1897 // out to be problematic since optimizations run after safepoint insertion
1898 // can recognize equality properties that the insertion logic doesn't know
1899 // about. See example statepoint.ll in the verifier subdirectory
1900}
1901
1902void Verifier::verifyFrameRecoverIndices() {
1903 for (auto &Counts : FrameEscapeInfo) {
1904 Function *F = Counts.first;
1905 unsigned EscapedObjectCount = Counts.second.first;
1906 unsigned MaxRecoveredIndex = Counts.second.second;
1907 Assert(MaxRecoveredIndex <= EscapedObjectCount,do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1908 "all indices passed to llvm.localrecover must be less than the "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1909 "number of arguments passed ot llvm.localescape in the parent "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1910 "function",do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1911 F)do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
;
1912 }
1913}
1914
1915static Instruction *getSuccPad(TerminatorInst *Terminator) {
1916 BasicBlock *UnwindDest;
1917 if (auto *II = dyn_cast<InvokeInst>(Terminator))
1918 UnwindDest = II->getUnwindDest();
1919 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
1920 UnwindDest = CSI->getUnwindDest();
1921 else
1922 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
1923 return UnwindDest->getFirstNonPHI();
1924}
1925
1926void Verifier::verifySiblingFuncletUnwinds() {
1927 SmallPtrSet<Instruction *, 8> Visited;
1928 SmallPtrSet<Instruction *, 8> Active;
1929 for (const auto &Pair : SiblingFuncletInfo) {
1930 Instruction *PredPad = Pair.first;
1931 if (Visited.count(PredPad))
1932 continue;
1933 Active.insert(PredPad);
1934 TerminatorInst *Terminator = Pair.second;
1935 do {
1936 Instruction *SuccPad = getSuccPad(Terminator);
1937 if (Active.count(SuccPad)) {
1938 // Found a cycle; report error
1939 Instruction *CyclePad = SuccPad;
1940 SmallVector<Instruction *, 8> CycleNodes;
1941 do {
1942 CycleNodes.push_back(CyclePad);
1943 TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
1944 if (CycleTerminator != CyclePad)
1945 CycleNodes.push_back(CycleTerminator);
1946 CyclePad = getSuccPad(CycleTerminator);
1947 } while (CyclePad != SuccPad);
1948 Assert(false, "EH pads can't handle each other's exceptions",do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions"
, ArrayRef<Instruction *>(CycleNodes)); return; } } while
(false)
1949 ArrayRef<Instruction *>(CycleNodes))do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions"
, ArrayRef<Instruction *>(CycleNodes)); return; } } while
(false)
;
1950 }
1951 // Don't re-walk a node we've already checked
1952 if (!Visited.insert(SuccPad).second)
1953 break;
1954 // Walk to this successor if it has a map entry.
1955 PredPad = SuccPad;
1956 auto TermI = SiblingFuncletInfo.find(PredPad);
1957 if (TermI == SiblingFuncletInfo.end())
1958 break;
1959 Terminator = TermI->second;
1960 Active.insert(PredPad);
1961 } while (true);
1962 // Each node only has one successor, so we've walked all the active
1963 // nodes' successors.
1964 Active.clear();
1965 }
1966}
1967
1968// visitFunction - Verify that a function is ok.
1969//
1970void Verifier::visitFunction(const Function &F) {
1971 visitGlobalValue(F);
1972
1973 // Check function arguments.
1974 FunctionType *FT = F.getFunctionType();
1975 unsigned NumArgs = F.arg_size();
1976
1977 Assert(&Context == &F.getContext(),do { if (!(&Context == &F.getContext())) { CheckFailed
("Function context does not match Module context!", &F); return
; } } while (false)
1978 "Function context does not match Module context!", &F)do { if (!(&Context == &F.getContext())) { CheckFailed
("Function context does not match Module context!", &F); return
; } } while (false)
;
1979
1980 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F)do { if (!(!F.hasCommonLinkage())) { CheckFailed("Functions may not have common linkage"
, &F); return; } } while (false)
;
1981 Assert(FT->getNumParams() == NumArgs,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
1982 "# formal arguments must match # of arguments for function type!", &F,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
1983 FT)do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
;
1984 Assert(F.getReturnType()->isFirstClassType() ||do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
1985 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
1986 "Functions cannot return aggregate values!", &F)do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
;
1987
1988 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (false)
1989 "Invalid struct return type!", &F)do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (false)
;
1990
1991 AttributeList Attrs = F.getAttributes();
1992
1993 Assert(verifyAttributeCount(Attrs, FT->getNumParams()),do { if (!(verifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (false)
1994 "Attribute after last parameter!", &F)do { if (!(verifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (false)
;
1995
1996 // Check function attributes.
1997 verifyFunctionAttrs(FT, Attrs, &F);
1998
1999 // On function declarations/definitions, we do not support the builtin
2000 // attribute. We do not check this in VerifyFunctionAttrs since that is
2001 // checking for Attributes that can/can not ever be on functions.
2002 Assert(!Attrs.hasFnAttribute(Attribute::Builtin),do { if (!(!Attrs.hasFnAttribute(Attribute::Builtin))) { CheckFailed
("Attribute 'builtin' can only be applied to a callsite.", &
F); return; } } while (false)
2003 "Attribute 'builtin' can only be applied to a callsite.", &F)do { if (!(!Attrs.hasFnAttribute(Attribute::Builtin))) { CheckFailed
("Attribute 'builtin' can only be applied to a callsite.", &
F); return; } } while (false)
;
2004
2005 // Check that this function meets the restrictions on this calling convention.
2006 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2007 // restrictions can be lifted.
2008 switch (F.getCallingConv()) {
1
Control jumps to the 'default' case at line 2009
2009 default:
2010 case CallingConv::C:
2011 break;
2
Execution continues on line 2036
2012 case CallingConv::AMDGPU_KERNEL:
2013 case CallingConv::SPIR_KERNEL:
2014 Assert(F.getReturnType()->isVoidTy(),do { if (!(F.getReturnType()->isVoidTy())) { CheckFailed("Calling convention requires void return type"
, &F); return; } } while (false)
2015 "Calling convention requires void return type", &F)do { if (!(F.getReturnType()->isVoidTy())) { CheckFailed("Calling convention requires void return type"
, &F); return; } } while (false)
;
2016 LLVM_FALLTHROUGH[[clang::fallthrough]];
2017 case CallingConv::AMDGPU_VS:
2018 case CallingConv::AMDGPU_HS:
2019 case CallingConv::AMDGPU_GS:
2020 case CallingConv::AMDGPU_PS:
2021 case CallingConv::AMDGPU_CS:
2022 Assert(!F.hasStructRetAttr(),do { if (!(!F.hasStructRetAttr())) { CheckFailed("Calling convention does not allow sret"
, &F); return; } } while (false)
2023 "Calling convention does not allow sret", &F)do { if (!(!F.hasStructRetAttr())) { CheckFailed("Calling convention does not allow sret"
, &F); return; } } while (false)
;
2024 LLVM_FALLTHROUGH[[clang::fallthrough]];
2025 case CallingConv::Fast:
2026 case CallingConv::Cold:
2027 case CallingConv::Intel_OCL_BI:
2028 case CallingConv::PTX_Kernel:
2029 case CallingConv::PTX_Device:
2030 Assert(!F.isVarArg(), "Calling convention does not support varargs or "do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
2031 "perfect forwarding!",do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
2032 &F)do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
;
2033 break;
2034 }
2035
2036 bool isLLVMdotName = F.getName().size() >= 5 &&
3
Assuming the condition is false
2037 F.getName().substr(0, 5) == "llvm.";
2038
2039 // Check that the argument values match the function type for this function...
2040 unsigned i = 0;
2041 for (const Argument &Arg : F.args()) {
4
Assuming '__begin' is equal to '__end'
2042 Assert(Arg.getType() == FT->getParamType(i),do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
2043 "Argument value does not match function argument type!", &Arg,do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
2044 FT->getParamType(i))do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
;
2045 Assert(Arg.getType()->isFirstClassType(),do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", &Arg)
; return; } } while (false)
2046 "Function arguments must have first-class types!", &Arg)do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", &Arg)
; return; } } while (false)
;
2047 if (!isLLVMdotName) {
2048 Assert(!Arg.getType()->isMetadataTy(),do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed(
"Function takes metadata but isn't an intrinsic", &Arg, &
F); return; } } while (false)
2049 "Function takes metadata but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed(
"Function takes metadata but isn't an intrinsic", &Arg, &
F); return; } } while (false)
;
2050 Assert(!Arg.getType()->isTokenTy(),do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, &Arg, &F); return; } } while (false)
2051 "Function takes token but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, &Arg, &F); return; } } while (false)
;
2052 }
2053
2054 // Check that swifterror argument is only used by loads and stores.
2055 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2056 verifySwiftErrorValue(&Arg);
2057 }
2058 ++i;
2059 }
2060
2061 if (!isLLVMdotName)
5
Taking true branch
2062 Assert(!F.getReturnType()->isTokenTy(),do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Functions returns a token but isn't an intrinsic", &F);
return; } } while (false)
2063 "Functions returns a token but isn't an intrinsic", &F)do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Functions returns a token but isn't an intrinsic", &F);
return; } } while (false)
;
2064
2065 // Get the function metadata attachments.
2066 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2067 F.getAllMetadata(MDs);
2068 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync")(static_cast <bool> (F.hasMetadata() != MDs.empty() &&
"Bit out-of-sync") ? void (0) : __assert_fail ("F.hasMetadata() != MDs.empty() && \"Bit out-of-sync\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/lib/IR/Verifier.cpp"
, 2068, __extension__ __PRETTY_FUNCTION__))
;
2069 verifyFunctionMetadata(MDs);
2070
2071 // Check validity of the personality function
2072 if (F.hasPersonalityFn()) {
6
Assuming the condition is false
7
Taking false branch
2073 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2074 if (Per)
2075 Assert(Per->getParent() == F.getParent(),do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
2076 "Referencing personality function in another module!",do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
2077 &F, F.getParent(), Per, Per->getParent())do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
;
2078 }
2079
2080 if (F.isMaterializable()) {
8
Assuming the condition is false
9
Taking false branch
2081 // Function has a body somewhere we can't see.
2082 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (false)
2083 MDs.empty() ? nullptr : MDs.front().second)do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (false)
;
2084 } else if (F.isDeclaration()) {
10
Assuming the condition is false
11
Taking false branch
2085 for (const auto &I : MDs) {
2086 AssertDI(I.first != LLVMContext::MD_dbg,do { if (!(I.first != LLVMContext::MD_dbg)) { DebugInfoCheckFailed
("function declaration may not have a !dbg attachment", &
F); return; } } while (false)
2087 "function declaration may not have a !dbg attachment", &F)do { if (!(I.first != LLVMContext::MD_dbg)) { DebugInfoCheckFailed
("function declaration may not have a !dbg attachment", &
F); return; } } while (false)
;
2088 Assert(I.first != LLVMContext::MD_prof,do { if (!(I.first != LLVMContext::MD_prof)) { CheckFailed("function declaration may not have a !prof attachment"
, &F); return; } } while (false)
2089 "function declaration may not have a !prof attachment", &F)do { if (!(I.first != LLVMContext::MD_prof)) { CheckFailed("function declaration may not have a !prof attachment"
, &F); return; } } while (false)
;
2090
2091 // Verify the metadata itself.
2092 visitMDNode(*I.second);
2093 }
2094 Assert(!F.hasPersonalityFn(),do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (false)
2095 "Function declaration shouldn't have a personality routine", &F)do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (false)
;
2096 } else {
2097 // Verify that this function (which has a body) is not named "llvm.*". It
2098 // is not legal to define intrinsics.
2099 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F)do { if (!(!isLLVMdotName)) { CheckFailed("llvm intrinsics cannot be defined!"
, &F); return; } } while (false)
;
2100
2101 // Check the entry node
2102 const BasicBlock *Entry = &F.getEntryBlock();
2103 Assert(pred_empty(Entry),do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (false)
2104 "Entry block to function must not have predecessors!", Entry)do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (false)
;
2105
2106 // The address of the entry block cannot be taken, unless it is dead.
2107 if (Entry->hasAddressTaken()) {
12
Assuming the condition is false
13
Taking false branch
2108 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (false)
2109 "blockaddress may not be used with the entry block!", Entry)do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (false)
;
2110 }
2111
2112 unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2113 // Visit metadata attachments.
2114 for (const auto &I : MDs) {
14
Assuming '__begin' is equal to '__end'
2115 // Verify that the attachment is legal.
2116 switch (I.first) {
2117 default:
2118 break;
2119 case LLVMContext::MD_dbg: {
2120 ++NumDebugAttachments;
2121 AssertDI(NumDebugAttachments == 1,do { if (!(NumDebugAttachments == 1)) { DebugInfoCheckFailed(
"function must have a single !dbg attachment", &F, I.second
); return; } } while (false)
2122 "function must have a single !dbg attachment", &F, I.second)do { if (!(NumDebugAttachments == 1)) { DebugInfoCheckFailed(
"function must have a single !dbg attachment", &F, I.second
); return; } } while (false)
;
2123 AssertDI(isa<DISubprogram>(I.second),do { if (!(isa<DISubprogram>(I.second))) { DebugInfoCheckFailed
("function !dbg attachment must be a subprogram", &F, I.second
); return; } } while (false)
2124 "function !dbg attachment must be a subprogram", &F, I.second)do { if (!(isa<DISubprogram>(I.second))) { DebugInfoCheckFailed
("function !dbg attachment must be a subprogram", &F, I.second
); return; } } while (false)
;
2125 auto *SP = cast<DISubprogram>(I.second);
2126 const Function *&AttachedTo = DISubprogramAttachments[SP];
2127 AssertDI(!AttachedTo || AttachedTo == &F,do { if (!(!AttachedTo || AttachedTo == &F)) { DebugInfoCheckFailed
("DISubprogram attached to more than one function", SP, &
F); return; } } while (false)
2128 "DISubprogram attached to more than one function", SP, &F)do { if (!(!AttachedTo || AttachedTo == &F)) { DebugInfoCheckFailed
("DISubprogram attached to more than one function", SP, &
F); return; } } while (false)
;
2129 AttachedTo = &F;
2130 break;
2131 }
2132 case LLVMContext::MD_prof:
2133 ++NumProfAttachments;
2134 Assert(NumProfAttachments == 1,do { if (!(NumProfAttachments == 1)) { CheckFailed("function must have a single !prof attachment"
, &F, I.second); return; } } while (false)
2135 "function must have a single !prof attachment", &F, I.second)do { if (!(NumProfAttachments == 1)) { CheckFailed("function must have a single !prof attachment"
, &F, I.second); return; } } while (false)
;
2136 break;
2137 }
2138
2139 // Verify the metadata itself.
2140 visitMDNode(*I.second);
2141 }
2142 }
2143
2144 // If this function is actually an intrinsic, verify that it is only used in
2145 // direct call/invokes, never having its "address taken".
2146 // Only do this if the module is materialized, otherwise we don't have all the
2147 // uses.
2148 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
15
Assuming the condition is false
2149 const User *U;
2150 if (F.hasAddressTaken(&U))
2151 Assert(false, "Invalid user of intrinsic instruction!", U)do { if (!(false)) { CheckFailed("Invalid user of intrinsic instruction!"
, U); return; } } while (false)
;
2152 }
2153
2154 Assert(!F.hasDLLImportStorageClass() ||do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
2155 (F.isDeclaration() && F.hasExternalLinkage()) ||do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
2156 F.hasAvailableExternallyLinkage(),do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
2157 "Function is marked as dllimport, but not external.", &F)do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
;
2158
2159 auto *N = F.getSubprogram();
2160 HasDebugInfo = (N != nullptr);
16
Assuming the condition is true
2161 if (!HasDebugInfo)
17
Taking false branch
2162 return;
2163
2164 // Check that all !dbg attachments lead to back to N (or, at least, another
2165 // subprogram that describes the same function).
2166 //
2167 // FIXME: Check this incrementally while visiting !dbg attachments.
2168 // FIXME: Only check when N is the canonical subprogram for F.
2169 SmallPtrSet<const MDNode *, 32> Seen;
2170 for (auto &BB : F)
2171 for (auto &I : BB) {
2172 // Be careful about using DILocation here since we might be dealing with
2173 // broken code (this is the Verifier after all).
2174 DILocation *DL =
2175 dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
2176 if (!DL)
18
Assuming 'DL' is non-null
19
Taking false branch
2177 continue;
2178 if (!Seen.insert(DL).second)
20
Assuming the condition is false
21
Taking false branch
2179 continue;
2180
2181 DILocalScope *Scope = DL->getInlinedAtScope();
2182 if (Scope && !Seen.insert(Scope).second)
22
Assuming 'Scope' is null
23
Taking false branch
2183 continue;
2184
2185 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
24
'?' condition is false
25
'SP' initialized to a null pointer value
2186
2187 // Scope and SP could be the same MDNode and we don't want to skip
2188 // validation in that case
2189 if (SP && ((Scope != SP) && !Seen.insert(SP).second))
26
Taking false branch
2190 continue;
2191
2192 // FIXME: Once N is canonical, check "SP == &N".
2193 AssertDI(SP->describes(&F),do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
27
Within the expansion of the macro 'AssertDI':
a
Called C++ object pointer is null
2194 "!dbg attachment points at wrong subprogram for function", N, &F,do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
2195 &I, DL, Scope, SP)do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
;
2196 }
2197}
2198
2199// verifyBasicBlock - Verify that a basic block is well formed...
2200//
2201void Verifier::visitBasicBlock(BasicBlock &BB) {
2202 InstsInThisBlock.clear();
2203
2204 // Ensure that basic blocks have terminators!
2205 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB)do { if (!(BB.getTerminator())) { CheckFailed("Basic Block does not have terminator!"
, &BB); return; } } while (false)
;
2206
2207 // Check constraints that this basic block imposes on all of the PHI nodes in
2208 // it.
2209 if (isa<PHINode>(BB.front())) {
2210 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2211 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2212 std::sort(Preds.begin(), Preds.end());
2213 PHINode *PN;
2214 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
2215 // Ensure that PHI nodes have at least one entry!
2216 Assert(PN->getNumIncomingValues() != 0,do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (false)
2217 "PHI nodes must have at least one entry. If the block is dead, "do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (false)
2218 "the PHI should be removed!",do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (false)
2219 PN)do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (false)
;
2220 Assert(PN->getNumIncomingValues() == Preds.size(),do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (false)
2221 "PHINode should have one entry for each predecessor of its "do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (false)
2222 "parent basic block!",do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (false)
2223 PN)do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (false)
;
2224
2225 // Get and sort all incoming values in the PHI node...
2226 Values.clear();
2227 Values.reserve(PN->getNumIncomingValues());
2228 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2229 Values.push_back(std::make_pair(PN->getIncomingBlock(i),
2230 PN->getIncomingValue(i)));
2231 std::sort(Values.begin(), Values.end());
2232
2233 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2234 // Check to make sure that if there is more than one entry for a
2235 // particular basic block in this PHI node, that the incoming values are
2236 // all identical.
2237 //
2238 Assert(i == 0 || Values[i].first != Values[i - 1].first ||do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
2239 Values[i].second == Values[i - 1].second,do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
2240 "PHI node has multiple entries for the same basic block with "do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
2241 "different incoming values!",do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
2242 PN, Values[i].first, Values[i].second, Values[i - 1].second)do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
;
2243
2244 // Check to make sure that the predecessors and PHI node entries are
2245 // matched up.
2246 Assert(Values[i].first == Preds[i],do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, PN, Values[i].first, Preds[i]); return; } } while (false)
2247 "PHI node entries do not match predecessors!", PN,do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, PN, Values[i].first, Preds[i]); return; } } while (false)
2248 Values[i].first, Preds[i])do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, PN, Values[i].first, Preds[i]); return; } } while (false)
;
2249 }
2250 }
2251 }
2252
2253 // Check that all instructions have their parent pointers set up correctly.
2254 for (auto &I : BB)
2255 {
2256 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!")do { if (!(I.getParent() == &BB)) { CheckFailed("Instruction has bogus parent pointer!"
); return; } } while (false)
;
2257 }
2258}
2259
2260void Verifier::visitTerminatorInst(TerminatorInst &I) {
2261 // Ensure that terminators only exist at the end of the basic block.
2262 Assert(&I == I.getParent()->getTerminator(),do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (false)
2263 "Terminator found in the middle of a basic block!", I.getParent())do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (false)
;
2264 visitInstruction(I);
2265}
2266
2267void Verifier::visitBranchInst(BranchInst &BI) {
2268 if (BI.isConditional()) {
2269 Assert(BI.getCondition()->getType()->isIntegerTy(1),do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (false)
2270 "Branch condition is not 'i1' type!", &BI, BI.getCondition())do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (false)
;
2271 }
2272 visitTerminatorInst(BI);
2273}
2274
2275void Verifier::visitReturnInst(ReturnInst &RI) {
2276 Function *F = RI.getParent()->getParent();
2277 unsigned N = RI.getNumOperands();
2278 if (F->getReturnType()->isVoidTy())
2279 Assert(N == 0,do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2280 "Found return instr that returns non-void in Function of void "do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2281 "return type!",do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2282 &RI, F->getReturnType())do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
;
2283 else
2284 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2285 "Function return type does not match operand "do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2286 "type of return inst!",do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2287 &RI, F->getReturnType())do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
;
2288
2289 // Check to make sure that the return value has necessary properties for
2290 // terminators...
2291 visitTerminatorInst(RI);
2292}
2293
2294void Verifier::visitSwitchInst(SwitchInst &SI) {
2295 // Check to make sure that all of the constants in the switch instruction
2296 // have the same type as the switched-on value.
2297 Type *SwitchTy = SI.getCondition()->getType();
2298 SmallPtrSet<ConstantInt*, 32> Constants;
2299 for (auto &Case : SI.cases()) {
2300 Assert(Case.getCaseValue()->getType() == SwitchTy,do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (false)
2301 "Switch constants must all be same type as switch value!", &SI)do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (false)
;
2302 Assert(Constants.insert(Case.getCaseValue()).second,do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, Case.getCaseValue
()); return; } } while (false)
2303 "Duplicate integer as switch case", &SI, Case.getCaseValue())do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, Case.getCaseValue
()); return; } } while (false)
;
2304 }
2305
2306 visitTerminatorInst(SI);
2307}
2308
2309void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2310 Assert(BI.getAddress()->getType()->isPointerTy(),do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (false)
2311 "Indirectbr operand must have pointer type!", &BI)do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (false)
;
2312 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2313 Assert(BI.getDestination(i)->getType()->isLabelTy(),do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (false)
2314 "Indirectbr destinations must all have pointer type!", &BI)do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (false)
;
2315
2316 visitTerminatorInst(BI);
2317}
2318
2319void Verifier::visitSelectInst(SelectInst &SI) {
2320 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
2321 SI.getOperand(2)),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
2322 "Invalid operands for select instruction!", &SI)do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
;
2323
2324 Assert(SI.getTrueValue()->getType() == SI.getType(),do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (false)
2325 "Select values must have same type as select instruction!", &SI)do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (false)
;
2326 visitInstruction(SI);
2327}
2328
2329/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2330/// a pass, if any exist, it's an error.
2331///
2332void Verifier::visitUserOp1(Instruction &I) {
2333 Assert(false, "User-defined operators should not live outside of a pass!", &I)do { if (!(false)) { CheckFailed("User-defined operators should not live outside of a pass!"
, &I); return; } } while (false)
;
2334}
2335
2336void Verifier::visitTruncInst(TruncInst &I) {
2337 // Get the source and destination types
2338 Type *SrcTy = I.getOperand(0)->getType();
2339 Type *DestTy = I.getType();
2340
2341 // Get the size of the types in bits, we'll need this later
2342 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2343 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2344
2345 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only operates on integer"
, &I); return; } } while (false)
;
2346 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only produces integer"
, &I); return; } } while (false)
;
2347 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
2348 "trunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2349 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for Trunc"
, &I); return; } } while (false)
;
2350
2351 visitInstruction(I);
2352}
2353
2354void Verifier::visitZExtInst(ZExtInst &I) {
2355 // Get the source and destination types
2356 Type *SrcTy = I.getOperand(0)->getType();
2357 Type *DestTy = I.getType();
2358
2359 // Get the size of the types in bits, we'll need this later
2360 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only operates on integer"
, &I); return; } } while (false)
;
2361 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only produces an integer"
, &I); return; } } while (false)
;
2362 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2363 "zext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2364 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2365 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2366
2367 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for ZExt"
, &I); return; } } while (false)
;
2368
2369 visitInstruction(I);
2370}
2371
2372void Verifier::visitSExtInst(SExtInst &I) {
2373 // Get the source and destination types
2374 Type *SrcTy = I.getOperand(0)->getType();
2375 Type *DestTy = I.getType();
2376
2377 // Get the size of the types in bits, we'll need this later
2378 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2379 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2380
2381 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SExt only operates on integer"
, &I); return; } } while (false)
;
2382 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("SExt only produces an integer"
, &I); return; } } while (false)
;
2383 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2384 "sext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2385 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for SExt"
, &I); return; } } while (false)
;
2386
2387 visitInstruction(I);
2388}
2389
2390void Verifier::visitFPTruncInst(FPTruncInst &I) {
2391 // Get the source and destination types
2392 Type *SrcTy = I.getOperand(0)->getType();
2393 Type *DestTy = I.getType();
2394 // Get the size of the types in bits, we'll need this later
2395 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2396 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2397
2398 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only operates on FP"
, &I); return; } } while (false)
;
2399 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only produces an FP"
, &I); return; } } while (false)
;
2400 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
2401 "fptrunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2402 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for FPTrunc"
, &I); return; } } while (false)
;
2403
2404 visitInstruction(I);
2405}
2406
2407void Verifier::visitFPExtInst(FPExtInst &I) {
2408 // Get the source and destination types
2409 Type *SrcTy = I.getOperand(0)->getType();
2410 Type *DestTy = I.getType();
2411
2412 // Get the size of the types in bits, we'll need this later
2413 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2414 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2415
2416 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only operates on FP"
, &I); return; } } while (false)
;
2417 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only produces an FP"
, &I); return; } } while (false)
;
2418 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2419 "fpext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2420 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("DestTy too small for FPExt"
, &I); return; } } while (false)
;
2421
2422 visitInstruction(I);
2423}
2424
2425void Verifier::visitUIToFPInst(UIToFPInst &I) {
2426 // Get the source and destination types
2427 Type *SrcTy = I.getOperand(0)->getType();
2428 Type *DestTy = I.getType();
2429
2430 bool SrcVec = SrcTy->isVectorTy();
2431 bool DstVec = DestTy->isVectorTy();
2432
2433 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
2434 "UIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2435 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (false)
2436 "UIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (false)
;
2437 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (false)
2438 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (false)
;
2439
2440 if (SrcVec && DstVec)
2441 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2442 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2443 "UIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
;
2444
2445 visitInstruction(I);
2446}
2447
2448void Verifier::visitSIToFPInst(SIToFPInst &I) {
2449 // Get the source and destination types
2450 Type *SrcTy = I.getOperand(0)->getType();
2451 Type *DestTy = I.getType();
2452
2453 bool SrcVec = SrcTy->isVectorTy();
2454 bool DstVec = DestTy->isVectorTy();
2455
2456 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
2457 "SIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2458 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (false)
2459 "SIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (false)
;
2460 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (false)
2461 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (false)
;
2462
2463 if (SrcVec && DstVec)
2464 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2465 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2466 "SIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
;
2467
2468 visitInstruction(I);
2469}
2470
2471void Verifier::visitFPToUIInst(FPToUIInst &I) {
2472 // Get the source and destination types
2473 Type *SrcTy = I.getOperand(0)->getType();
2474 Type *DestTy = I.getType();
2475
2476 bool SrcVec = SrcTy->isVectorTy();
2477 bool DstVec = DestTy->isVectorTy();
2478
2479 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (false)
2480 "FPToUI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2481 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (false)
2482 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (false)
;
2483 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (false)
2484 "FPToUI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (false)
;
2485
2486 if (SrcVec && DstVec)
2487 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
2488 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
2489 "FPToUI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
;
2490
2491 visitInstruction(I);
2492}
2493
2494void Verifier::visitFPToSIInst(FPToSIInst &I) {
2495 // Get the source and destination types
2496 Type *SrcTy = I.getOperand(0)->getType();
2497 Type *DestTy = I.getType();
2498
2499 bool SrcVec = SrcTy->isVectorTy();
2500 bool DstVec = DestTy->isVectorTy();
2501
2502 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (false)
2503 "FPToSI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2504 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (false)
2505 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (false)
;
2506 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (false)
2507 "FPToSI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (false)
;
2508
2509 if (SrcVec && DstVec)
2510 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
2511 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
2512 "FPToSI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
;
2513
2514 visitInstruction(I);
2515}
2516
2517void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2518 // Get the source and destination types
2519 Type *SrcTy = I.getOperand(0)->getType();
2520 Type *DestTy = I.getType();
2521
2522 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I)do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("PtrToInt source must be pointer"
, &I); return; } } while (false)
;
2523
2524 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2525 Assert(!DL.isNonIntegralPointerType(PTy),do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"ptrtoint not supported for non-integral pointers"); return; }
} while (false)
2526 "ptrtoint not supported for non-integral pointers")do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"ptrtoint not supported for non-integral pointers"); return; }
} while (false)
;
2527
2528 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("PtrToInt result must be integral"
, &I); return; } } while (false)
;
2529 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (false)
2530 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (false)
;
2531
2532 if (SrcTy->isVectorTy()) {
2533 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2534 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2535 Assert(VSrc->getNumElements() == VDest->getNumElements(),do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (false)
2536 "PtrToInt Vector width mismatch", &I)do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (false)
;
2537 }
2538
2539 visitInstruction(I);
2540}
2541
2542void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2543 // Get the source and destination types
2544 Type *SrcTy = I.getOperand(0)->getType();
2545 Type *DestTy = I.getType();
2546
2547 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("IntToPtr source must be an integral"
, &I); return; } } while (false)
2548 "IntToPtr source must be an integral", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("IntToPtr source must be an integral"
, &I); return; } } while (false)
;
2549 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I)do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("IntToPtr result must be a pointer"
, &I); return; } } while (false)
;
2550
2551 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2552 Assert(!DL.isNonIntegralPointerType(PTy),do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"inttoptr not supported for non-integral pointers"); return; }
} while (false)
2553 "inttoptr not supported for non-integral pointers")do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"inttoptr not supported for non-integral pointers"); return; }
} while (false)
;
2554
2555 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (false)
2556 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (false)
;
2557 if (SrcTy->isVectorTy()) {
2558 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2559 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2560 Assert(VSrc->getNumElements() == VDest->getNumElements(),do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (false)
2561 "IntToPtr Vector width mismatch", &I)do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (false)
;
2562 }
2563 visitInstruction(I);
2564}
2565
2566void Verifier::visitBitCastInst(BitCastInst &I) {
2567 Assert(do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
2568 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
2569 "Invalid bitcast", &I)do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
;
2570 visitInstruction(I);
2571}
2572
2573void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2574 Type *SrcTy = I.getOperand(0)->getType();
2575 Type *DestTy = I.getType();
2576
2577 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (false)
2578 &I)do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (false)
;
2579 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (false)
2580 &I)do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (false)
;
2581 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (false)
2582 "AddrSpaceCast must be between different address spaces", &I)do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (false)
;
2583 if (SrcTy->isVectorTy())
2584 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),do { if (!(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements
())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
2585 "AddrSpaceCast vector pointer number of elements mismatch", &I)do { if (!(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements
())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
;
2586 visitInstruction(I);
2587}
2588
2589/// visitPHINode - Ensure that a PHI node is well formed.
2590///
2591void Verifier::visitPHINode(PHINode &PN) {
2592 // Ensure that the PHI nodes are all grouped together at the top of the block.
2593 // This can be tested by checking whether the instruction before this is
2594 // either nonexistent (because this is begin()) or is a PHI node. If not,
2595 // then there is some other instruction before a PHI.
2596 Assert(&PN == &PN.getParent()->front() ||do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
2597 isa<PHINode>(--BasicBlock::iterator(&PN)),do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
2598 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent())do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
;
2599
2600 // Check that a PHI doesn't yield a Token.
2601 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!")do { if (!(!PN.getType()->isTokenTy())) { CheckFailed("PHI nodes cannot have token type!"
); return; } } while (false)
;
2602
2603 // Check that all of the values of the PHI node have the same type as the
2604 // result, and that the incoming blocks are really basic blocks.
2605 for (Value *IncValue : PN.incoming_values()) {
2606 Assert(PN.getType() == IncValue->getType(),do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (false)
2607 "PHI node operands are not the same type as the result!", &PN)do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (false)
;
2608 }
2609
2610 // All other PHI node constraints are checked in the visitBasicBlock method.
2611
2612 visitInstruction(PN);
2613}
2614
2615void Verifier::verifyCallSite(CallSite CS) {
2616 Instruction *I = CS.getInstruction();
2617
2618 Assert(CS.getCalledValue()->getType()->isPointerTy(),do { if (!(CS.getCalledValue()->getType()->isPointerTy(
))) { CheckFailed("Called function must be a pointer!", I); return
; } } while (false)
2619 "Called function must be a pointer!", I)do { if (!(CS.getCalledValue()->getType()->isPointerTy(
))) { CheckFailed("Called function must be a pointer!", I); return
; } } while (false)
;
2620 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2621
2622 Assert(FPTy->getElementType()->isFunctionTy(),do { if (!(FPTy->getElementType()->isFunctionTy())) { CheckFailed
("Called function is not pointer to function type!", I); return
; } } while (false)
2623 "Called function is not pointer to function type!", I)do { if (!(FPTy->getElementType()->isFunctionTy())) { CheckFailed
("Called function is not pointer to function type!", I); return
; } } while (false)
;
2624
2625 Assert(FPTy->getElementType() == CS.getFunctionType(),do { if (!(FPTy->getElementType() == CS.getFunctionType())
) { CheckFailed("Called function is not the same type as the call!"
, I); return; } } while (false)
2626 "Called function is not the same type as the call!", I)do { if (!(FPTy->getElementType() == CS.getFunctionType())
) { CheckFailed("Called function is not the same type as the call!"
, I); return; } } while (false)
;
2627
2628 FunctionType *FTy = CS.getFunctionType();
2629
2630 // Verify that the correct number of arguments are being passed
2631 if (FTy->isVarArg())
2632 Assert(CS.arg_size() >= FTy->getNumParams(),do { if (!(CS.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, I); return; } } while (false)
2633 "Called function requires more parameters than were provided!", I)do { if (!(CS.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, I); return; } } while (false)
;
2634 else
2635 Assert(CS.arg_size() == FTy->getNumParams(),do { if (!(CS.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", I
); return; } } while (false)
2636 "Incorrect number of arguments passed to called function!", I)do { if (!(CS.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", I
); return; } } while (false)
;
2637
2638 // Verify that all arguments to the call match the function type.
2639 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2640 Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (false)
2641 "Call parameter type does not match function signature!",do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (false)
2642 CS.getArgument(i), FTy->getParamType(i), I)do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (false)
;
2643
2644 AttributeList Attrs = CS.getAttributes();
2645
2646 Assert(verifyAttributeCount(Attrs, CS.arg_size()),do { if (!(verifyAttributeCount(Attrs, CS.arg_size()))) { CheckFailed
("Attribute after last parameter!", I); return; } } while (false
)
2647 "Attribute after last parameter!", I)do { if (!(verifyAttributeCount(Attrs, CS.arg_size()))) { CheckFailed
("Attribute after last parameter!", I); return; } } while (false
)
;
2648
2649 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
2650 // Don't allow speculatable on call sites, unless the underlying function
2651 // declaration is also speculatable.
2652 Function *Callee
2653 = dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
2654 Assert(Callee && Callee->isSpeculatable(),do { if (!(Callee && Callee->isSpeculatable())) { CheckFailed
("speculatable attribute may not apply to call sites", I); return
; } } while (false)
2655 "speculatable attribute may not apply to call sites", I)do { if (!(Callee && Callee->isSpeculatable())) { CheckFailed
("speculatable attribute may not apply to call sites", I); return
; } } while (false)
;
2656 }
2657
2658 // Verify call attributes.
2659 verifyFunctionAttrs(FTy, Attrs, I);
2660
2661 // Conservatively check the inalloca argument.
2662 // We have a bug if we can find that there is an underlying alloca without
2663 // inalloca.
2664 if (CS.hasInAllocaArgument()) {
2665 Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2666 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2667 Assert(AI->isUsedWithInAlloca(),do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, I); return; } } while (false)
2668 "inalloca argument for call has mismatched alloca", AI, I)do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, I); return; } } while (false)
;
2669 }
2670
2671 // For each argument of the callsite, if it has the swifterror argument,
2672 // make sure the underlying alloca/parameter it comes from has a swifterror as
2673 // well.
2674 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2675 if (CS.paramHasAttr(i, Attribute::SwiftError)) {
2676 Value *SwiftErrorArg = CS.getArgument(i);
2677 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2678 Assert(AI->isSwiftError(),do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca"
, AI, I); return; } } while (false)
2679 "swifterror argument for call has mismatched alloca", AI, I)do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca"
, AI, I); return; } } while (false)
;
2680 continue;
2681 }
2682 auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2683 Assert(ArgI, "swifterror argument should come from an alloca or parameter", SwiftErrorArg, I)do { if (!(ArgI)) { CheckFailed("swifterror argument should come from an alloca or parameter"
, SwiftErrorArg, I); return; } } while (false)
;
2684 Assert(ArgI->hasSwiftErrorAttr(),do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, I); return; } } while (false)
2685 "swifterror argument for call has mismatched parameter", ArgI, I)do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, I); return; } } while (false)
;
2686 }
2687
2688 if (FTy->isVarArg()) {
2689 // FIXME? is 'nest' even legal here?
2690 bool SawNest = false;
2691 bool SawReturned = false;
2692
2693 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
2694 if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
2695 SawNest = true;
2696 if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
2697 SawReturned = true;
2698 }
2699
2700 // Check attributes on the varargs part.
2701 for (unsigned Idx = FTy->getNumParams(); Idx < CS.arg_size(); ++Idx) {
2702 Type *Ty = CS.getArgument(Idx)->getType();
2703 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
2704 verifyParameterAttrs(ArgAttrs, Ty, I);
2705
2706 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2707 Assert(!SawNest, "More than one parameter has attribute nest!", I)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, I); return; } } while (false)
;
2708 SawNest = true;
2709 }
2710
2711 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2712 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, I); return; } } while (false)
2713 I)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, I); return; } } while (false)
;
2714 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
2715 "Incompatible argument and return types for 'returned' "do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
2716 "attribute",do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
2717 I)do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
;
2718 SawReturned = true;
2719 }
2720
2721 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, I); return; } } while (false)
2722 "Attribute 'sret' cannot be used for vararg call arguments!", I)do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, I); return; } } while (false)
;
2723
2724 if (ArgAttrs.hasAttribute(Attribute::InAlloca))
2725 Assert(Idx == CS.arg_size() - 1, "inalloca isn't on the last argument!",do { if (!(Idx == CS.arg_size() - 1)) { CheckFailed("inalloca isn't on the last argument!"
, I); return; } } while (false)
2726 I)do { if (!(Idx == CS.arg_size() - 1)) { CheckFailed("inalloca isn't on the last argument!"
, I); return; } } while (false)
;
2727 }
2728 }
2729
2730 // Verify that there's no metadata unless it's a direct call to an intrinsic.
2731 if (CS.getCalledFunction() == nullptr ||
2732 !CS.getCalledFunction()->getName().startswith("llvm.")) {
2733 for (Type *ParamTy : FTy->params()) {
2734 Assert(!ParamTy->isMetadataTy(),do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, I); return; } } while (false)
2735 "Function has metadata parameter but isn't an intrinsic", I)do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, I); return; } } while (false)
;
2736 Assert(!ParamTy->isTokenTy(),do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, I); return; } } while (false)
2737 "Function has token parameter but isn't an intrinsic", I)do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, I); return; } } while (false)
;
2738 }
2739 }
2740
2741 // Verify that indirect calls don't return tokens.
2742 if (CS.getCalledFunction() == nullptr)
2743 Assert(!FTy->getReturnType()->isTokenTy(),do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (false)
2744 "Return type cannot be token for indirect call!")do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (false)
;
2745
2746 if (Function *F = CS.getCalledFunction())
2747 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2748 visitIntrinsicCallSite(ID, CS);
2749
2750 // Verify that a callsite has at most one "deopt", at most one "funclet" and
2751 // at most one "gc-transition" operand bundle.
2752 bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2753 FoundGCTransitionBundle = false;
2754 for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
2755 OperandBundleUse BU = CS.getOperandBundleAt(i);
2756 uint32_t Tag = BU.getTagID();
2757 if (Tag == LLVMContext::OB_deopt) {
2758 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I)do { if (!(!FoundDeoptBundle)) { CheckFailed("Multiple deopt operand bundles"
, I); return; } } while (false)
;
2759 FoundDeoptBundle = true;
2760 } else if (Tag == LLVMContext::OB_gc_transition) {
2761 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles"
, I); return; } } while (false)
2762 I)do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles"
, I); return; } } while (false)
;
2763 FoundGCTransitionBundle = true;
2764 } else if (Tag == LLVMContext::OB_funclet) {
2765 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I)do { if (!(!FoundFuncletBundle)) { CheckFailed("Multiple funclet operand bundles"
, I); return; } } while (false)
;
2766 FoundFuncletBundle = true;
2767 Assert(BU.Inputs.size() == 1,do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand"
, I); return; } } while (false)
2768 "Expected exactly one funclet bundle operand", I)do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand"
, I); return; } } while (false)
;
2769 Assert(isa<FuncletPadInst>(BU.Inputs.front()),do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, I); return; } } while (false)
2770 "Funclet bundle operands should correspond to a FuncletPadInst",do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, I); return; } } while (false)
2771 I)do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, I); return; } } while (false)
;
2772 }
2773 }
2774
2775 // Verify that each inlinable callsite of a debug-info-bearing function in a
2776 // debug-info-bearing function has a debug location attached to it. Failure to
2777 // do so causes assertion failures when the inliner sets up inline scope info.
2778 if (I->getFunction()->getSubprogram() && CS.getCalledFunction() &&
2779 CS.getCalledFunction()->getSubprogram())
2780 AssertDI(I->getDebugLoc(), "inlinable function call in a function with "do { if (!(I->getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", I); return; } } while
(false)
2781 "debug info must have a !dbg location",do { if (!(I->getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", I); return; } } while
(false)
2782 I)do { if (!(I->getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", I); return; } } while
(false)
;
2783
2784 visitInstruction(*I);
2785}
2786
2787/// Two types are "congruent" if they are identical, or if they are both pointer
2788/// types with different pointee types and the same address space.
2789static bool isTypeCongruent(Type *L, Type *R) {
2790 if (L == R)
2791 return true;
2792 PointerType *PL = dyn_cast<PointerType>(L);
2793 PointerType *PR = dyn_cast<PointerType>(R);
2794 if (!PL || !PR)
2795 return false;
2796 return PL->getAddressSpace() == PR->getAddressSpace();
2797}
2798
2799static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
2800 static const Attribute::AttrKind ABIAttrs[] = {
2801 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2802 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
2803 Attribute::SwiftError};
2804 AttrBuilder Copy;
2805 for (auto AK : ABIAttrs) {
2806 if (Attrs.hasParamAttribute(I, AK))
2807 Copy.addAttribute(AK);
2808 }
2809 if (Attrs.hasParamAttribute(I, Attribute::Alignment))
2810 Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
2811 return Copy;
2812}
2813
2814void Verifier::verifyMustTailCall(CallInst &CI) {
2815 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI)do { if (!(!CI.isInlineAsm())) { CheckFailed("cannot use musttail call with inline asm"
, &CI); return; } } while (false)
;
2816
2817 // - The caller and callee prototypes must match. Pointer types of
2818 // parameters or return types may differ in pointee type, but not
2819 // address space.
2820 Function *F = CI.getParent()->getParent();
2821 FunctionType *CallerTy = F->getFunctionType();
2822 FunctionType *CalleeTy = CI.getFunctionType();
2823 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
2824 "cannot guarantee tail call due to mismatched parameter counts", &CI)do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
;
2825 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (false)
2826 "cannot guarantee tail call due to mismatched varargs", &CI)do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (false)
;
2827 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (false)
2828 "cannot guarantee tail call due to mismatched return types", &CI)do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (false)
;
2829 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2830 Assert(do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
2831 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
2832 "cannot guarantee tail call due to mismatched parameter types", &CI)do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
;
2833 }
2834
2835 // - The calling conventions of the caller and callee must match.
2836 Assert(F->getCallingConv() == CI.getCallingConv(),do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (false)
2837 "cannot guarantee tail call due to mismatched calling conv", &CI)do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (false)
;
2838
2839 // - All ABI-impacting function attributes, such as sret, byval, inreg,
2840 // returned, and inalloca, must match.
2841 AttributeList CallerAttrs = F->getAttributes();
2842 AttributeList CalleeAttrs = CI.getAttributes();
2843 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2844 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2845 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2846 Assert(CallerABIAttrs == CalleeABIAttrs,do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
2847 "cannot guarantee tail call due to mismatched ABI impacting "do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
2848 "function attributes",do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
2849 &CI, CI.getOperand(I))do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
;
2850 }
2851
2852 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2853 // or a pointer bitcast followed by a ret instruction.
2854 // - The ret instruction must return the (possibly bitcasted) value
2855 // produced by the call or void.
2856 Value *RetVal = &CI;
2857 Instruction *Next = CI.getNextNode();
2858
2859 // Handle the optional bitcast.
2860 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2861 Assert(BI->getOperand(0) == RetVal,do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (false)
2862 "bitcast following musttail call must use the call", BI)do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (false)
;
2863 RetVal = BI;
2864 Next = BI->getNextNode();
2865 }
2866
2867 // Check the return.
2868 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2869 Assert(Ret, "musttail call must be precede a ret with an optional bitcast",do { if (!(Ret)) { CheckFailed("musttail call must be precede a ret with an optional bitcast"
, &CI); return; } } while (false)
2870 &CI)do { if (!(Ret)) { CheckFailed("musttail call must be precede a ret with an optional bitcast"
, &CI); return; } } while (false)
;
2871 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal)) { CheckFailed("musttail call result must be returned"
, Ret); return; } } while (false)
2872 "musttail call result must be returned", Ret)do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal)) { CheckFailed("musttail call result must be returned"
, Ret); return; } } while (false)
;
2873}
2874
2875void Verifier::visitCallInst(CallInst &CI) {
2876 verifyCallSite(&CI);
2877
2878 if (CI.isMustTailCall())
2879 verifyMustTailCall(CI);
2880}
2881
2882void Verifier::visitInvokeInst(InvokeInst &II) {
2883 verifyCallSite(&II);
2884
2885 // Verify that the first non-PHI instruction of the unwind destination is an
2886 // exception handling instruction.
2887 Assert(do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
2888 II.getUnwindDest()->isEHPad(),do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
2889 "The unwind destination does not have an exception handling instruction!",do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
2890 &II)do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
;
2891
2892 visitTerminatorInst(II);
2893}
2894
2895/// visitBinaryOperator - Check that both arguments to the binary operator are
2896/// of the same type!
2897///
2898void Verifier::visitBinaryOperator(BinaryOperator &B) {
2899 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (false)
2900 "Both operands to a binary operator are not of the same type!", &B)do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (false)
;
2901
2902 switch (B.getOpcode()) {
2903 // Check that integer arithmetic operators are only used with
2904 // integral operands.
2905 case Instruction::Add:
2906 case Instruction::Sub:
2907 case Instruction::Mul:
2908 case Instruction::SDiv:
2909 case Instruction::UDiv:
2910 case Instruction::SRem:
2911 case Instruction::URem:
2912 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (false)
2913 "Integer arithmetic operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (false)
;
2914 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2915 "Integer arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2916 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2917 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
;
2918 break;
2919 // Check that floating-point arithmetic operators are only used with
2920 // floating-point operands.
2921 case Instruction::FAdd:
2922 case Instruction::FSub:
2923 case Instruction::FMul:
2924 case Instruction::FDiv:
2925 case Instruction::FRem:
2926 Assert(B.getType()->isFPOrFPVectorTy(),do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
2927 "Floating-point arithmetic operators only work with "do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
2928 "floating-point types!",do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
2929 &B)do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
;
2930 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2931 "Floating-point arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2932 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2933 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
;
2934 break;
2935 // Check that logical operators are only used with integral operands.
2936 case Instruction::And:
2937 case Instruction::Or:
2938 case Instruction::Xor:
2939 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (false)
2940 "Logical operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (false)
;
2941 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
2942 "Logical operators must have same type for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
2943 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
;
2944 break;
2945 case Instruction::Shl:
2946 case Instruction::LShr:
2947 case Instruction::AShr:
2948 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (false)
2949 "Shifts only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (false)
;
2950 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (false)
2951 "Shift return type must be same as operands!", &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (false)
;
2952 break;
2953 default:
2954 llvm_unreachable("Unknown BinaryOperator opcode!")::llvm::llvm_unreachable_internal("Unknown BinaryOperator opcode!"
, "/build/llvm-toolchain-snapshot-6.0~svn318601/lib/IR/Verifier.cpp"
, 2954)
;
2955 }
2956
2957 visitInstruction(B);
2958}
2959
2960void Verifier::visitICmpInst(ICmpInst &IC) {
2961 // Check that the operands are the same type
2962 Type *Op0Ty = IC.getOperand(0)->getType();
2963 Type *Op1Ty = IC.getOperand(1)->getType();
2964 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (false)
2965 "Both operands to ICmp instruction are not of the same type!", &IC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (false)
;
2966 // Check that the operands are the right type
2967 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy
())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (false)
2968 "Invalid operand types for ICmp instruction", &IC)do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy
())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (false)
;
2969 // Check that the predicate is valid.
2970 Assert(IC.isIntPredicate(),do { if (!(IC.isIntPredicate())) { CheckFailed("Invalid predicate in ICmp instruction!"
, &IC); return; } } while (false)
2971 "Invalid predicate in ICmp instruction!", &IC)do { if (!(IC.isIntPredicate())) { CheckFailed("Invalid predicate in ICmp instruction!"
, &IC); return; } } while (false)
;
2972
2973 visitInstruction(IC);
2974}
2975
2976void Verifier::visitFCmpInst(FCmpInst &FC) {
2977 // Check that the operands are the same type
2978 Type *Op0Ty = FC.getOperand(0)->getType();
2979 Type *Op1Ty = FC.getOperand(1)->getType();
2980 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (false)
2981 "Both operands to FCmp instruction are not of the same type!", &FC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (false)
;
2982 // Check that the operands are the right type
2983 Assert(Op0Ty->isFPOrFPVectorTy(),do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (false)
2984 "Invalid operand types for FCmp instruction", &FC)do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (false)
;
2985 // Check that the predicate is valid.
2986 Assert(FC.isFPPredicate(),do { if (!(FC.isFPPredicate())) { CheckFailed("Invalid predicate in FCmp instruction!"
, &FC); return; } } while (false)
2987 "Invalid predicate in FCmp instruction!", &FC)do { if (!(FC.isFPPredicate())) { CheckFailed("Invalid predicate in FCmp instruction!"
, &FC); return; } } while (false)
;
2988
2989 visitInstruction(FC);
2990}
2991
2992void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
2993 Assert(do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
2994 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
2995 "Invalid extractelement operands!", &EI)do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
;
2996 visitInstruction(EI);
2997}
2998
2999void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3000 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
3001 IE.getOperand(2)),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
3002 "Invalid insertelement operands!", &IE)do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
;
3003 visitInstruction(IE);
3004}
3005
3006void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3007 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
3008 SV.getOperand(2)),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
3009 "Invalid shufflevector operands!", &SV)do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
;
3010 visitInstruction(SV);
3011}
3012
3013void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3014 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3015
3016 Assert(isa<PointerType>(TargetTy),do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (false)
3017 "GEP base pointer is not a vector or a vector of pointers", &GEP)do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (false)
;
3018 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP)do { if (!(GEP.getSourceElementType()->isSized())) { CheckFailed
("GEP into unsized type!", &GEP); return; } } while (false
)
;
3019 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3020 Type *ElTy =
3021 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3022 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP)do { if (!(ElTy)) { CheckFailed("Invalid indices for GEP pointer type!"
, &GEP); return; } } while (false)
;
3023
3024 Assert(GEP.getType()->isPtrOrPtrVectorTy() &&do { if (!(GEP.getType()->isPtrOrPtrVectorTy() && GEP
.getResultElementType() == ElTy)) { CheckFailed("GEP is not of right type for indices!"
, &GEP, ElTy); return; } } while (false)
3025 GEP.getResultElementType() == ElTy,do { if (!(GEP.getType()->isPtrOrPtrVectorTy() && GEP
.getResultElementType() == ElTy)) { CheckFailed("GEP is not of right type for indices!"
, &GEP, ElTy); return; } } while (false)
3026 "GEP is not of right type for indices!", &GEP, ElTy)do { if (!(GEP.getType()->isPtrOrPtrVectorTy() && GEP
.getResultElementType() == ElTy)) { CheckFailed("GEP is not of right type for indices!"
, &GEP, ElTy); return; } } while (false)
;
3027
3028 if (GEP.getType()->isVectorTy()) {
3029 // Additional checks for vector GEPs.
3030 unsigned GEPWidth = GEP.getType()->getVectorNumElements();
3031 if (GEP.getPointerOperandType()->isVectorTy())
3032 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),do { if (!(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements
())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
3033 "Vector GEP result width doesn't match operand's", &GEP)do { if (!(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements
())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
;
3034 for (Value *Idx : Idxs) {
3035 Type *IndexTy = Idx->getType();
3036 if (IndexTy->isVectorTy()) {
3037 unsigned IndexWidth = IndexTy->getVectorNumElements();
3038 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP)do { if (!(IndexWidth == GEPWidth)) { CheckFailed("Invalid GEP index vector width"
, &GEP); return; } } while (false)
;
3039 }
3040 Assert(IndexTy->isIntOrIntVectorTy(),do { if (!(IndexTy->isIntOrIntVectorTy())) { CheckFailed("All GEP indices should be of integer type"
); return; } } while (false)
3041 "All GEP indices should be of integer type")do { if (!(IndexTy->isIntOrIntVectorTy())) { CheckFailed("All GEP indices should be of integer type"
); return; } } while (false)
;
3042 }
3043 }
3044 visitInstruction(GEP);
3045}
3046
3047static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3048 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3049}
3050
3051void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3052 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&(static_cast <bool> (Range && Range == I.getMetadata
(LLVMContext::MD_range) && "precondition violation") ?
void (0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/lib/IR/Verifier.cpp"
, 3053, __extension__ __PRETTY_FUNCTION__))
3053 "precondition violation")(static_cast <bool> (Range && Range == I.getMetadata
(LLVMContext::MD_range) && "precondition violation") ?
void (0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/lib/IR/Verifier.cpp"
, 3053, __extension__ __PRETTY_FUNCTION__))
;
3054
3055 unsigned NumOperands = Range->getNumOperands();
3056 Assert(NumOperands % 2 == 0, "Unfinished range!", Range)do { if (!(NumOperands % 2 == 0)) { CheckFailed("Unfinished range!"
, Range); return; } } while (false)
;
3057 unsigned NumRanges = NumOperands / 2;
3058 Assert(NumRanges >= 1, "It should have at least one range!", Range)do { if (!(NumRanges >= 1)) { CheckFailed("It should have at least one range!"
, Range); return; } } while (false)
;
3059
3060 ConstantRange LastRange(1); // Dummy initial value
3061 for (unsigned i = 0; i < NumRanges; ++i) {
3062 ConstantInt *Low =
3063 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3064 Assert(Low, "The lower limit must be an integer!", Low)do { if (!(Low)) { CheckFailed("The lower limit must be an integer!"
, Low); return; } } while (false)
;
3065 ConstantInt *High =
3066 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3067 Assert(High, "The upper limit must be an integer!", High)do { if (!(High)) { CheckFailed("The upper limit must be an integer!"
, High); return; } } while (false)
;
3068 Assert(High->getType() == Low->getType() && High->getType() == Ty,do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (false)
3069 "Range types must match instruction type!", &I)do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (false)
;
3070
3071 APInt HighV = High->getValue();
3072 APInt LowV = Low->getValue();
3073 ConstantRange CurRange(LowV, HighV);
3074 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (false)
3075 "Range must not be empty!", Range)do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (false)
;
3076 if (i != 0) {
3077 Assert(CurRange.intersectWith(LastRange).isEmptySet(),do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (false)
3078 "Intervals are overlapping", Range)do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (false)
;
3079 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (false)
3080 Range)do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (false)
;
3081 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
3082 Range)do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
;
3083 }
3084 LastRange = ConstantRange(LowV, HighV);
3085 }
3086 if (NumRanges > 2) {
3087 APInt FirstLow =
3088 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3089 APInt FirstHigh =
3090 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3091 ConstantRange FirstRange(FirstLow, FirstHigh);
3092 Assert(FirstRange.intersectWith(LastRange).isEmptySet(),do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (false)
3093 "Intervals are overlapping", Range)do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (false)
;
3094 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
3095 Range)do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
;
3096 }
3097}
3098
3099void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3100 unsigned Size = DL.getTypeSizeInBits(Ty);
3101 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I)do { if (!(Size >= 8)) { CheckFailed("atomic memory access' size must be byte-sized"
, Ty, I); return; } } while (false)
;
3102 Assert(!(Size & (Size - 1)),do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size"
, Ty, I); return; } } while (false)
3103 "atomic memory access' operand must have a power-of-two size", Ty, I)do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size"
, Ty, I); return; } } while (false)
;
3104}
3105
3106void Verifier::visitLoadInst(LoadInst &LI) {
3107 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3108 Assert(PTy, "Load operand must be a pointer.", &LI)do { if (!(PTy)) { CheckFailed("Load operand must be a pointer."
, &LI); return; } } while (false)
;
3109 Type *ElTy = LI.getType();
3110 Assert(LI.getAlignment() <= Value::MaximumAlignment,do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (false)
3111 "huge alignment values are unsupported", &LI)do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (false)
;
3112 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI)do { if (!(ElTy->isSized())) { CheckFailed("loading unsized types is not allowed"
, &LI); return; } } while (false)
;
3113 if (LI.isAtomic()) {
3114 Assert(LI.getOrdering() != AtomicOrdering::Release &&do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
3115 LI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
3116 "Load cannot have Release ordering", &LI)do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
;
3117 Assert(LI.getAlignment() != 0,do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (false)
3118 "Atomic load must specify explicit alignment", &LI)do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (false)
;
3119 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3120 ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3121 "atomic load operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3122 "type!",do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3123 ElTy, &LI)do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
;
3124 checkAtomicMemAccessSize(ElTy, &LI);
3125 } else {
3126 Assert(LI.getSyncScopeID() == SyncScope::System,do { if (!(LI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic load cannot have SynchronizationScope specified"
, &LI); return; } } while (false)
3127 "Non-atomic load cannot have SynchronizationScope specified", &LI)do { if (!(LI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic load cannot have SynchronizationScope specified"
, &LI); return; } } while (false)
;
3128 }
3129
3130 visitInstruction(LI);
3131}
3132
3133void Verifier::visitStoreInst(StoreInst &SI) {
3134 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3135 Assert(PTy, "Store operand must be a pointer.", &SI)do { if (!(PTy)) { CheckFailed("Store operand must be a pointer."
, &SI); return; } } while (false)
;
3136 Type *ElTy = PTy->getElementType();
3137 Assert(ElTy == SI.getOperand(0)->getType(),do { if (!(ElTy == SI.getOperand(0)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (false)
3138 "Stored value type does not match pointer operand type!", &SI, ElTy)do { if (!(ElTy == SI.getOperand(0)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (false)
;
3139 Assert(SI.getAlignment() <= Value::MaximumAlignment,do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (false)
3140 "huge alignment values are unsupported", &SI)do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (false)
;
3141 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI)do { if (!(ElTy->isSized())) { CheckFailed("storing unsized types is not allowed"
, &SI); return; } } while (false)
;
3142 if (SI.isAtomic()) {
3143 Assert(SI.getOrdering() != AtomicOrdering::Acquire &&do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
3144 SI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
3145 "Store cannot have Acquire ordering", &SI)do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
;
3146 Assert(SI.getAlignment() != 0,do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (false)
3147 "Atomic store must specify explicit alignment", &SI)do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (false)
;
3148 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3149 ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3150 "atomic store operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3151 "type!",do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3152 ElTy, &SI)do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
;
3153 checkAtomicMemAccessSize(ElTy, &SI);
3154 } else {
3155 Assert(SI.getSyncScopeID() == SyncScope::System,do { if (!(SI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (false)
3156 "Non-atomic store cannot have SynchronizationScope specified", &SI)do { if (!(SI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (false)
;
3157 }
3158 visitInstruction(SI);
3159}
3160
3161/// Check that SwiftErrorVal is used as a swifterror argument in CS.
3162void Verifier::verifySwiftErrorCallSite(CallSite CS,
3163 const Value *SwiftErrorVal) {
3164 unsigned Idx = 0;
3165 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
3166 I != E; ++I, ++Idx) {
3167 if (*I == SwiftErrorVal) {
3168 Assert(CS.paramHasAttr(Idx, Attribute::SwiftError),do { if (!(CS.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
3169 "swifterror value when used in a callsite should be marked "do { if (!(CS.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
3170 "with swifterror attribute",do { if (!(CS.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
3171 SwiftErrorVal, CS)do { if (!(CS.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
;
3172 }
3173 }
3174}
3175
3176void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3177 // Check that swifterror value is only used by loads, stores, or as
3178 // a swifterror argument.
3179 for (const User *U : SwiftErrorVal->users()) {
3180 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3181 isa<InvokeInst>(U),do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3182 "swifterror value can only be loaded and stored from, or "do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3183 "as a swifterror argument!",do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3184 SwiftErrorVal, U)do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
;
3185 // If it is used by a store, check it is the second operand.
3186 if (auto StoreI = dyn_cast<StoreInst>(U))
3187 Assert(StoreI->getOperand(1) == SwiftErrorVal,do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
3188 "swifterror value should be the second operand when used "do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
3189 "by stores", SwiftErrorVal, U)do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
;
3190 if (auto CallI = dyn_cast<CallInst>(U))
3191 verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal);
3192 if (auto II = dyn_cast<InvokeInst>(U))
3193 verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal);
3194 }
3195}
3196
3197void Verifier::visitAllocaInst(AllocaInst &AI) {
3198 SmallPtrSet<Type*, 4> Visited;
3199 PointerType *PTy = AI.getType();
3200 // TODO: Relax this restriction?
3201 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),do { if (!(PTy->getAddressSpace() == DL.getAllocaAddrSpace
())) { CheckFailed("Allocation instruction pointer not in the stack address space!"
, &AI); return; } } while (false)
3202 "Allocation instruction pointer not in the stack address space!",do { if (!(PTy->getAddressSpace() == DL.getAllocaAddrSpace
())) { CheckFailed("Allocation instruction pointer not in the stack address space!"
, &AI); return; } } while (false)
3203 &AI)do { if (!(PTy->getAddressSpace() == DL.getAllocaAddrSpace
())) { CheckFailed("Allocation instruction pointer not in the stack address space!"
, &AI); return; } } while (false)
;
3204 Assert(AI.getAllocatedType()->isSized(&Visited),do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (false)
3205 "Cannot allocate unsized type", &AI)do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (false)
;
3206 Assert(AI.getArraySize()->getType()->isIntegerTy(),do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (false)
3207 "Alloca array size must have integer type", &AI)do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (false)
;
3208 Assert(AI.getAlignment() <= Value::MaximumAlignment,do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (false)
3209 "huge alignment values are unsupported", &AI)do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (false)
;
3210
3211 if (AI.isSwiftError()) {
3212 verifySwiftErrorValue(&AI);
3213 }
3214
3215 visitInstruction(AI);
3216}
3217
3218void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3219
3220 // FIXME: more conditions???
3221 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
3222 "cmpxchg instructions must be atomic.", &CXI)do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
;
3223 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
3224 "cmpxchg instructions must be atomic.", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
;
3225 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
3226 "cmpxchg instructions cannot be unordered.", &CXI)do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
;
3227 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
3228 "cmpxchg instructions cannot be unordered.", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
;
3229 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3230 "cmpxchg instructions failure argument shall be no stronger than the "do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3231 "success argument",do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3232 &CXI)do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
;
3233 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
3234 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
3235 "cmpxchg failure ordering cannot include release semantics", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
;
3236
3237 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3238 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI)do { if (!(PTy)) { CheckFailed("First cmpxchg operand must be a pointer."
, &CXI); return; } } while (false)
;
3239 Type *ElTy = PTy->getElementType();
3240 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy(),do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy()))
{ CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
3241 "cmpxchg operand must have integer or pointer type",do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy()))
{ CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
3242 ElTy, &CXI)do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy()))
{ CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
;
3243 checkAtomicMemAccessSize(ElTy, &CXI);
3244 Assert(ElTy == CXI.getOperand(1)->getType(),do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3245 "Expected value type does not match pointer operand type!", &CXI,do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3246 ElTy)do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
;
3247 Assert(ElTy == CXI.getOperand(2)->getType(),do { if (!(ElTy == CXI.getOperand(2)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3248 "Stored value type does not match pointer operand type!", &CXI, ElTy)do { if (!(ElTy == CXI.getOperand(2)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
;
3249 visitInstruction(CXI);
3250}
3251
3252void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3253 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,do { if (!(RMWI.getOrdering() != AtomicOrdering::NotAtomic)) {
CheckFailed("atomicrmw instructions must be atomic.", &RMWI
); return; } } while (false)
3254 "atomicrmw instructions must be atomic.", &RMWI)do { if (!(RMWI.getOrdering() != AtomicOrdering::NotAtomic)) {
CheckFailed("atomicrmw instructions must be atomic.", &RMWI
); return; } } while (false)
;
3255 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) {
CheckFailed("atomicrmw instructions cannot be unordered.", &
RMWI); return; } } while (false)
3256 "atomicrmw instructions cannot be unordered.", &RMWI)do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) {
CheckFailed("atomicrmw instructions cannot be unordered.", &
RMWI); return; } } while (false)
;
3257 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3258 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI)do { if (!(PTy)) { CheckFailed("First atomicrmw operand must be a pointer."
, &RMWI); return; } } while (false)
;
3259 Type *ElTy = PTy->getElementType();
3260 Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
3261 &RMWI, ElTy)do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
;
3262 checkAtomicMemAccessSize(ElTy, &RMWI);
3263 Assert(ElTy == RMWI.getOperand(1)->getType(),do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
3264 "Argument value type does not match pointer operand type!", &RMWI,do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
3265 ElTy)do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
;
3266 Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (false)
3267 RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (false)
3268 "Invalid binary operation!", &RMWI)do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (false)
;
3269 visitInstruction(RMWI);
3270}
3271
3272void Verifier::visitFenceInst(FenceInst &FI) {
3273 const AtomicOrdering Ordering = FI.getOrdering();
3274 Assert(Ordering == AtomicOrdering::Acquire ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3275 Ordering == AtomicOrdering::Release ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3276 Ordering == AtomicOrdering::AcquireRelease ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3277 Ordering == AtomicOrdering::SequentiallyConsistent,do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3278 "fence instructions may only have acquire, release, acq_rel, or "do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3279 "seq_cst ordering.",do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3280 &FI)do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
;
3281 visitInstruction(FI);
3282}
3283
3284void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3285 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
3286 EVI.getIndices()) == EVI.getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
3287 "Invalid ExtractValueInst operands!", &EVI)do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
;
3288
3289 visitInstruction(EVI);
3290}
3291
3292void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3293 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3294 IVI.getIndices()) ==do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3295 IVI.getOperand(1)->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3296 "Invalid InsertValueInst operands!", &IVI)do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
;
3297
3298 visitInstruction(IVI);
3299}
3300
3301static Value *getParentPad(Value *EHPad) {
3302 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3303 return FPI->getParentPad();
3304
3305 return cast<CatchSwitchInst>(EHPad)->getParentPad();
3306}
3307
3308void Verifier::visitEHPadPredecessors(Instruction &I) {
3309 assert(I.isEHPad())(static_cast <bool> (I.isEHPad()) ? void (0) : __assert_fail
("I.isEHPad()", "/build/llvm-toolchain-snapshot-6.0~svn318601/lib/IR/Verifier.cpp"
, 3309, __extension__ __PRETTY_FUNCTION__))
;
3310
3311 BasicBlock *BB = I.getParent();
3312 Function *F = BB->getParent();
3313
3314 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I)do { if (!(BB != &F->getEntryBlock())) { CheckFailed("EH pad cannot be in entry block."
, &I); return; } } while (false)
;
3315
3316 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3317 // The landingpad instruction defines its parent as a landing pad block. The
3318 // landing pad block may be branched to only by the unwind edge of an
3319 // invoke.
3320 for (BasicBlock *PredBB : predecessors(BB)) {
3321 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3322 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3323 "Block containing LandingPadInst must be jumped to "do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3324 "only by the unwind edge of an invoke.",do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3325 LPI)do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
;
3326 }
3327 return;
3328 }
3329 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3330 if (!pred_empty(BB))
3331 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3332 "Block containg CatchPadInst must be jumped to "do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3333 "only by its catchswitch.",do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3334 CPI)do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
;
3335 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
3336 "Catchswitch cannot unwind to one of its catchpads",do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
3337 CPI->getCatchSwitch(), CPI)do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
;
3338 return;
3339 }
3340
3341 // Verify that each pred has a legal terminator with a legal to/from EH
3342 // pad relationship.
3343 Instruction *ToPad = &I;
3344 Value *ToPadParent = getParentPad(ToPad);
3345 for (BasicBlock *PredBB : predecessors(BB)) {
3346 TerminatorInst *TI = PredBB->getTerminator();
3347 Value *FromPad;
3348 if (auto *II = dyn_cast<InvokeInst>(TI)) {
3349 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, II); return; } } while (false)
3350 "EH pad must be jumped to via an unwind edge", ToPad, II)do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, II); return; } } while (false)
;
3351 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3352 FromPad = Bundle->Inputs[0];
3353 else
3354 FromPad = ConstantTokenNone::get(II->getContext());
3355 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3356 FromPad = CRI->getOperand(0);
3357 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI)do { if (!(FromPad != ToPadParent)) { CheckFailed("A cleanupret must exit its cleanup"
, CRI); return; } } while (false)
;
3358 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3359 FromPad = CSI;
3360 } else {
3361 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI)do { if (!(false)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, TI); return; } } while (false)
;
3362 }
3363
3364 // The edge may exit from zero or more nested pads.
3365 SmallSet<Value *, 8> Seen;
3366 for (;; FromPad = getParentPad(FromPad)) {
3367 Assert(FromPad != ToPad,do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it"
, FromPad, TI); return; } } while (false)
3368 "EH pad cannot handle exceptions raised within it", FromPad, TI)do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it"
, FromPad, TI); return; } } while (false)
;
3369 if (FromPad == ToPadParent) {
3370 // This is a legal unwind edge.
3371 break;
3372 }
3373 Assert(!isa<ConstantTokenNone>(FromPad),do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed
("A single unwind edge may only enter one EH pad", TI); return
; } } while (false)
3374 "A single unwind edge may only enter one EH pad", TI)do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed
("A single unwind edge may only enter one EH pad", TI); return
; } } while (false)
;
3375 Assert(Seen.insert(FromPad).second,do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads"
, FromPad); return; } } while (false)
3376 "EH pad jumps through a cycle of pads", FromPad)do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads"
, FromPad); return; } } while (false)
;
3377 }
3378 }
3379}
3380
3381void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3382 // The landingpad instruction is ill-formed if it doesn't have any clauses and
3383 // isn't a cleanup.
3384 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (false)
3385 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI)do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (false)
;
3386
3387 visitEHPadPredecessors(LPI);
3388
3389 if (!LandingPadResultTy)
3390 LandingPadResultTy = LPI.getType();
3391 else
3392 Assert(LandingPadResultTy == LPI.getType(),do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3393 "The landingpad instruction should have a consistent result type "do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3394 "inside a function.",do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3395 &LPI)do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
;
3396
3397 Function *F = LPI.getParent()->getParent();
3398 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (false)
3399 "LandingPadInst needs to be in a function with a personality.", &LPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (false)
;
3400
3401 // The landingpad instruction must be the first non-PHI instruction in the
3402 // block.
3403 Assert(LPI.getParent()->getLandingPadInst() == &LPI,do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
3404 "LandingPadInst not the first non-PHI instruction in the block.",do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
3405 &LPI)do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
;
3406
3407 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3408 Constant *Clause = LPI.getClause(i);
3409 if (LPI.isCatch(i)) {
3410 Assert(isa<PointerType>(Clause->getType()),do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (false)
3411 "Catch operand does not have pointer type!", &LPI)do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (false)
;
3412 } else {
3413 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI)do { if (!(LPI.isFilter(i))) { CheckFailed("Clause is neither catch nor filter!"
, &LPI); return; } } while (false)
;
3414 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (false)
3415 "Filter operand is not an array of constants!", &LPI)do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (false)
;
3416 }
3417 }
3418
3419 visitInstruction(LPI);
3420}
3421
3422void Verifier::visitResumeInst(ResumeInst &RI) {
3423 Assert(RI.getFunction()->hasPersonalityFn(),do { if (!(RI.getFunction()->hasPersonalityFn())) { CheckFailed
("ResumeInst needs to be in a function with a personality.", &
RI); return; } } while (false)
3424 "ResumeInst needs to be in a function with a personality.", &RI)do { if (!(RI.getFunction()->hasPersonalityFn())) { CheckFailed
("ResumeInst needs to be in a function with a personality.", &
RI); return; } } while (false)
;
3425
3426 if (!LandingPadResultTy)
3427 LandingPadResultTy = RI.getValue()->getType();
3428 else
3429 Assert(LandingPadResultTy == RI.getValue()->getType(),do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3430 "The resume instruction should have a consistent result type "do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3431 "inside a function.",do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3432 &RI)do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
;
3433
3434 visitTerminatorInst(RI);
3435}
3436
3437void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3438 BasicBlock *BB = CPI.getParent();
3439
3440 Function *F = BB->getParent();
3441 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
3442 "CatchPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
;
3443
3444 Assert(isa<CatchSwitchInst>(CPI.getParentPad()),do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
3445 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
3446 CPI.getParentPad())do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
;
3447
3448 // The catchpad instruction must be the first non-PHI instruction in the
3449 // block.
3450 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3451 "CatchPadInst not the first non-PHI instruction in the block.", &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
;
3452
3453 visitEHPadPredecessors(CPI);
3454 visitFuncletPadInst(CPI);
3455}
3456
3457void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3458 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
3459 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
3460 CatchReturn.getOperand(0))do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
;
3461
3462 visitTerminatorInst(CatchReturn);
3463}
3464
3465void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3466 BasicBlock *BB = CPI.getParent();
3467
3468 Function *F = BB->getParent();
3469 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
3470 "CleanupPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
;
3471
3472 // The cleanuppad instruction must be the first non-PHI instruction in the
3473 // block.
3474 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3475 "CleanupPadInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3476 &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
;
3477
3478 auto *ParentPad = CPI.getParentPad();
3479 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent."
, &CPI); return; } } while (false)
3480 "CleanupPadInst has an invalid parent.", &CPI)do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent."
, &CPI); return; } } while (false)
;
3481
3482 visitEHPadPredecessors(CPI);
3483 visitFuncletPadInst(CPI);
3484}
3485
3486void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3487 User *FirstUser = nullptr;
3488 Value *FirstUnwindPad = nullptr;
3489 SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3490 SmallSet<FuncletPadInst *, 8> Seen;
3491
3492 while (!Worklist.empty()) {
3493 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3494 Assert(Seen.insert(CurrentPad).second,do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself"
, CurrentPad); return; } } while (false)
3495 "FuncletPadInst must not be nested within itself", CurrentPad)do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself"
, CurrentPad); return; } } while (false)
;
3496 Value *UnresolvedAncestorPad = nullptr;
3497 for (User *U : CurrentPad->users()) {
3498 BasicBlock *UnwindDest;
3499 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3500 UnwindDest = CRI->getUnwindDest();
3501 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3502 // We allow catchswitch unwind to caller to nest
3503 // within an outer pad that unwinds somewhere else,
3504 // because catchswitch doesn't have a nounwind variant.
3505 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3506 if (CSI->unwindsToCaller())
3507 continue;
3508 UnwindDest = CSI->getUnwindDest();
3509 } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3510 UnwindDest = II->getUnwindDest();
3511 } else if (isa<CallInst>(U)) {
3512 // Calls which don't unwind may be found inside funclet
3513 // pads that unwind somewhere else. We don't *require*
3514 // such calls to be annotated nounwind.
3515 continue;
3516 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3517 // The unwind dest for a cleanup can only be found by
3518 // recursive search. Add it to the worklist, and we'll
3519 // search for its first use that determines where it unwinds.
3520 Worklist.push_back(CPI);
3521 continue;
3522 } else {
3523 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U)do { if (!(isa<CatchReturnInst>(U))) { CheckFailed("Bogus funclet pad use"
, U); return; } } while (false)
;
3524 continue;
3525 }
3526
3527 Value *UnwindPad;
3528 bool ExitsFPI;
3529 if (UnwindDest) {
3530 UnwindPad = UnwindDest->getFirstNonPHI();
3531 if (!cast<Instruction>(UnwindPad)->isEHPad())
3532 continue;
3533 Value *UnwindParent = getParentPad(UnwindPad);
3534 // Ignore unwind edges that don't exit CurrentPad.
3535 if (UnwindParent == CurrentPad)
3536 continue;
3537 // Determine whether the original funclet pad is exited,
3538 // and if we are scanning nested pads determine how many
3539 // of them are exited so we can stop searching their
3540 // children.
3541 Value *ExitedPad = CurrentPad;
3542 ExitsFPI = false;
3543 do {
3544 if (ExitedPad == &FPI) {
3545 ExitsFPI = true;
3546 // Now we can resolve any ancestors of CurrentPad up to
3547 // FPI, but not including FPI since we need to make sure
3548 // to check all direct users of FPI for consistency.
3549 UnresolvedAncestorPad = &FPI;
3550 break;
3551 }
3552 Value *ExitedParent = getParentPad(ExitedPad);
3553 if (ExitedParent == UnwindParent) {
3554 // ExitedPad is the ancestor-most pad which this unwind
3555 // edge exits, so we can resolve up to it, meaning that
3556 // ExitedParent is the first ancestor still unresolved.
3557 UnresolvedAncestorPad = ExitedParent;
3558 break;
3559 }
3560 ExitedPad = ExitedParent;
3561 } while (!isa<ConstantTokenNone>(ExitedPad));
3562 } else {
3563 // Unwinding to caller exits all pads.
3564 UnwindPad = ConstantTokenNone::get(FPI.getContext());
3565 ExitsFPI = true;
3566 UnresolvedAncestorPad = &FPI;
3567 }
3568
3569 if (ExitsFPI) {
3570 // This unwind edge exits FPI. Make sure it agrees with other
3571 // such edges.
3572 if (FirstUser) {
3573 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3574 "pad must have the same unwind "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3575 "dest",do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3576 &FPI, U, FirstUser)do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
;
3577 } else {
3578 FirstUser = U;
3579 FirstUnwindPad = UnwindPad;
3580 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3581 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3582 getParentPad(UnwindPad) == getParentPad(&FPI))
3583 SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
3584 }
3585 }
3586 // Make sure we visit all uses of FPI, but for nested pads stop as
3587 // soon as we know where they unwind to.
3588 if (CurrentPad != &FPI)
3589 break;
3590 }
3591 if (UnresolvedAncestorPad) {
3592 if (CurrentPad == UnresolvedAncestorPad) {
3593 // When CurrentPad is FPI itself, we don't mark it as resolved even if
3594 // we've found an unwind edge that exits it, because we need to verify
3595 // all direct uses of FPI.
3596 assert(CurrentPad == &FPI)(static_cast <bool> (CurrentPad == &FPI) ? void (0)
: __assert_fail ("CurrentPad == &FPI", "/build/llvm-toolchain-snapshot-6.0~svn318601/lib/IR/Verifier.cpp"
, 3596, __extension__ __PRETTY_FUNCTION__))
;
3597 continue;
3598 }
3599 // Pop off the worklist any nested pads that we've found an unwind
3600 // destination for. The pads on the worklist are the uncles,
3601 // great-uncles, etc. of CurrentPad. We've found an unwind destination
3602 // for all ancestors of CurrentPad up to but not including
3603 // UnresolvedAncestorPad.
3604 Value *ResolvedPad = CurrentPad;
3605 while (!Worklist.empty()) {
3606 Value *UnclePad = Worklist.back();
3607 Value *AncestorPad = getParentPad(UnclePad);
3608 // Walk ResolvedPad up the ancestor list until we either find the
3609 // uncle's parent or the last resolved ancestor.
3610 while (ResolvedPad != AncestorPad) {
3611 Value *ResolvedParent = getParentPad(ResolvedPad);
3612 if (ResolvedParent == UnresolvedAncestorPad) {
3613 break;
3614 }
3615 ResolvedPad = ResolvedParent;
3616 }
3617 // If the resolved ancestor search didn't find the uncle's parent,
3618 // then the uncle is not yet resolved.
3619 if (ResolvedPad != AncestorPad)
3620 break;
3621 // This uncle is resolved, so pop it from the worklist.
3622 Worklist.pop_back();
3623 }
3624 }
3625 }
3626
3627 if (FirstUnwindPad) {
3628 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3629 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3630 Value *SwitchUnwindPad;
3631 if (SwitchUnwindDest)
3632 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3633 else
3634 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3635 Assert(SwitchUnwindPad == FirstUnwindPad,do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3636 "Unwind edges out of a catch must have the same unwind dest as "do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3637 "the parent catchswitch",do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3638 &FPI, FirstUser, CatchSwitch)do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
;
3639 }
3640 }
3641
3642 visitInstruction(FPI);
3643}
3644
3645void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3646 BasicBlock *BB = CatchSwitch.getParent();
3647
3648 Function *F = BB->getParent();
3649 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
3650 "CatchSwitchInst needs to be in a function with a personality.",do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
3651 &CatchSwitch)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
;
3652
3653 // The catchswitch instruction must be the first non-PHI instruction in the
3654 // block.
3655 Assert(BB->getFirstNonPHI() == &CatchSwitch,do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
3656 "CatchSwitchInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
3657 &CatchSwitch)do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
;
3658
3659 auto *ParentPad = CatchSwitch.getParentPad();
3660 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CatchSwitchInst has an invalid parent."
, ParentPad); return; } } while (false)
3661 "CatchSwitchInst has an invalid parent.", ParentPad)do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CatchSwitchInst has an invalid parent."
, ParentPad); return; } } while (false)
;
3662
3663 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3664 Instruction *I = UnwindDest->getFirstNonPHI();
3665 Assert(I->isEHPad() && !isa<LandingPadInst>(I),do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3666 "CatchSwitchInst must unwind to an EH block which is not a "do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3667 "landingpad.",do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3668 &CatchSwitch)do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
;
3669
3670 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3671 if (getParentPad(I) == ParentPad)
3672 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3673 }
3674
3675 Assert(CatchSwitch.getNumHandlers() != 0,do { if (!(CatchSwitch.getNumHandlers() != 0)) { CheckFailed(
"CatchSwitchInst cannot have empty handler list", &CatchSwitch
); return; } } while (false)
3676 "CatchSwitchInst cannot have empty handler list", &CatchSwitch)do { if (!(CatchSwitch.getNumHandlers() != 0)) { CheckFailed(
"CatchSwitchInst cannot have empty handler list", &CatchSwitch
); return; } } while (false)
;
3677
3678 for (BasicBlock *Handler : CatchSwitch.handlers()) {
3679 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),do { if (!(isa<CatchPadInst>(Handler->getFirstNonPHI
()))) { CheckFailed("CatchSwitchInst handlers must be catchpads"
, &CatchSwitch, Handler); return; } } while (false)
3680 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler)do { if (!(isa<CatchPadInst>(Handler->getFirstNonPHI
()))) { CheckFailed("CatchSwitchInst handlers must be catchpads"
, &CatchSwitch, Handler); return; } } while (false)
;
3681 }
3682
3683 visitEHPadPredecessors(CatchSwitch);
3684 visitTerminatorInst(CatchSwitch);
3685}
3686
3687void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3688 Assert(isa<CleanupPadInst>(CRI.getOperand(0)),do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
3689 "CleanupReturnInst needs to be provided a CleanupPad", &CRI,do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
3690 CRI.getOperand(0))do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
;
3691
3692 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3693 Instruction *I = UnwindDest->getFirstNonPHI();
3694 Assert(I->isEHPad() && !isa<LandingPadInst>(I),do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
3695 "CleanupReturnInst must unwind to an EH block which is not a "do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
3696 "landingpad.",do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
3697 &CRI)do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
;
3698 }
3699
3700 visitTerminatorInst(CRI);
3701}
3702
3703void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3704 Instruction *Op = cast<Instruction>(I.getOperand(i));
3705 // If the we have an invalid invoke, don't try to compute the dominance.
3706 // We already reject it in the invoke specific checks and the dominance
3707 // computation doesn't handle multiple edges.
3708 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3709 if (II->getNormalDest() == II->getUnwindDest())
3710 return;
3711 }
3712
3713 // Quick check whether the def has already been encountered in the same block.
3714 // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI
3715 // uses are defined to happen on the incoming edge, not at the instruction.
3716 //
3717 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3718 // wrapping an SSA value, assert that we've already encountered it. See
3719 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3720 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3721 return;
3722
3723 const Use &U = I.getOperandUse(i);
3724 Assert(DT.dominates(Op, U),do { if (!(DT.dominates(Op, U))) { CheckFailed("Instruction does not dominate all uses!"
, Op, &I); return; } } while (false)
3725 "Instruction does not dominate all uses!", Op, &I)do { if (!(DT.dominates(Op, U))) { CheckFailed("Instruction does not dominate all uses!"
, Op, &I); return; } } while (false)
;
3726}
3727
3728void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3729 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "do { if (!(I.getType()->isPointerTy())) { CheckFailed("dereferenceable, dereferenceable_or_null "
"apply only to pointer types", &I); return; } } while (false
)
3730 "apply only to pointer types", &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("dereferenceable, dereferenceable_or_null "
"apply only to pointer types", &I); return; } } while (false
)
;
3731 Assert(isa<LoadInst>(I),do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (false)
3732 "dereferenceable, dereferenceable_or_null apply only to load"do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (false)
3733 " instructions, use attributes for calls or invokes", &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (false)
;
3734 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "do { if (!(MD->getNumOperands() == 1)) { CheckFailed("dereferenceable, dereferenceable_or_null "
"take one operand!", &I); return; } } while (false)
3735 "take one operand!", &I)do { if (!(MD->getNumOperands() == 1)) { CheckFailed("dereferenceable, dereferenceable_or_null "
"take one operand!", &I); return; } } while (false)
;
3736 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3737 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("dereferenceable, " "dereferenceable_or_null metadata value must be an i64!"
, &I); return; } } while (false)
3738 "dereferenceable_or_null metadata value must be an i64!", &I)do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("dereferenceable, " "dereferenceable_or_null metadata value must be an i64!"
, &I); return; } } while (false)
;
3739}
3740
3741/// verifyInstruction - Verify that an instruction is well formed.
3742///
3743void Verifier::visitInstruction(Instruction &I) {
3744 BasicBlock *BB = I.getParent();
3745 Assert(BB, "Instruction not embedded in basic block!", &I)do { if (!(BB)) { CheckFailed("Instruction not embedded in basic block!"
, &I); return; } } while (false)
;
3746
3747 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
3748 for (User *U : I.users()) {
3749 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),do { if (!(U != (User *)&I || !DT.isReachableFromEntry(BB
))) { CheckFailed("Only PHI nodes may reference their own value!"
, &I); return; } } while (false)
3750 "Only PHI nodes may reference their own value!", &I)do { if (!(U != (User *)&I || !DT.isReachableFromEntry(BB
))) { CheckFailed("Only PHI nodes may reference their own value!"
, &I); return; } } while (false)
;
3751 }
3752 }
3753
3754 // Check that void typed values don't have names
3755 Assert(!I.getType()->isVoidTy() || !I.hasName(),do { if (!(!I.getType()->isVoidTy() || !I.hasName())) { CheckFailed
("Instruction has a name, but provides a void value!", &I
); return; } } while (false)
3756 "Instruction has a name, but provides a void value!", &I)do { if (!(!I.getType()->isVoidTy() || !I.hasName())) { CheckFailed
("Instruction has a name, but provides a void value!", &I
); return; } } while (false)
;
3757
3758 // Check that the return value of the instruction is either void or a legal
3759 // value type.
3760 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),do { if (!(I.getType()->isVoidTy() || I.getType()->isFirstClassType
())) { CheckFailed("Instruction returns a non-scalar type!", &
I); return; } } while (false)
3761 "Instruction returns a non-scalar type!", &I)do { if (!(I.getType()->isVoidTy() || I.getType()->isFirstClassType
())) { CheckFailed("Instruction returns a non-scalar type!", &
I); return; } } while (false)
;
3762
3763 // Check that the instruction doesn't produce metadata. Calls are already
3764 // checked against the callee type.
3765 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),do { if (!(!I.getType()->isMetadataTy() || isa<CallInst
>(I) || isa<InvokeInst>(I))) { CheckFailed("Invalid use of metadata!"
, &I); return; } } while (false)
3766 "Invalid use of metadata!", &I)do { if (!(!I.getType()->isMetadataTy() || isa<CallInst
>(I) || isa<InvokeInst>(I))) { CheckFailed("Invalid use of metadata!"
, &I); return; } } while (false)
;
3767
3768 // Check that all uses of the instruction, if they are instructions
3769 // themselves, actually have parent basic blocks. If the use is not an
3770 // instruction, it is an error!
3771 for (Use &U : I.uses()) {
3772 if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
3773 Assert(Used->getParent() != nullptr,do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
3774 "Instruction referencing"do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
3775 " instruction not embedded in a basic block!",do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
3776 &I, Used)do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
;
3777 else {
3778 CheckFailed("Use of instruction is not an instruction!", U);
3779 return;
3780 }
3781 }
3782
3783 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
3784 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Instruction has null operand!"
, &I); return; } } while (false)
;
3785
3786 // Check to make sure that only first-class-values are operands to
3787 // instructions.
3788 if (!I.getOperand(i)->getType()->isFirstClassType()) {
3789 Assert(false, "Instruction operands must be first-class values!", &I)do { if (!(false)) { CheckFailed("Instruction operands must be first-class values!"
, &I); return; } } while (false)
;
3790 }
3791
3792 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
3793 // Check to make sure that the "address of" an intrinsic function is never
3794 // taken.
3795 Assert(do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
3796 !F->isIntrinsic() ||do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
3797 i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
3798 "Cannot take the address of an intrinsic!", &I)do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
;
3799 Assert(do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3800 !F->isIntrinsic() || isa<CallInst>(I) ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3801 F->getIntrinsicID() == Intrinsic::donothing ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3802 F->getIntrinsicID() == Intrinsic::coro_resume ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3803 F->getIntrinsicID() == Intrinsic::coro_destroy ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3804 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3805 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3806 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3807 "Cannot invoke an intrinsic other than donothing, patchpoint, "do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3808 "statepoint, coro_resume or coro_destroy",do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3809 &I)do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
;
3810 Assert(F->getParent() == &M, "Referencing function in another module!",do { if (!(F->getParent() == &M)) { CheckFailed("Referencing function in another module!"
, &I, &M, F, F->getParent()); return; } } while (false
)
3811 &I, &M, F, F->getParent())do { if (!(F->getParent() == &M)) { CheckFailed("Referencing function in another module!"
, &I, &M, F, F->getParent()); return; } } while (false
)
;
3812 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
3813 Assert(OpBB->getParent() == BB->getParent(),do { if (!(OpBB->getParent() == BB->getParent())) { CheckFailed
("Referring to a basic block in another function!", &I); return
; } } while (false)
3814 "Referring to a basic block in another function!", &I)do { if (!(OpBB->getParent() == BB->getParent())) { CheckFailed
("Referring to a basic block in another function!", &I); return
; } } while (false)
;
3815 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
3816 Assert(OpArg->getParent() == BB->getParent(),do { if (!(OpArg->getParent() == BB->getParent())) { CheckFailed
("Referring to an argument in another function!", &I); return
; } } while (false)
3817 "Referring to an argument in another function!", &I)do { if (!(OpArg->getParent() == BB->getParent())) { CheckFailed
("Referring to an argument in another function!", &I); return
; } } while (false)
;
3818 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
3819 Assert(GV->getParent() == &M, "Referencing global in another module!", &I,do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, &I, &M, GV, GV->getParent()); return; } } while (
false)
3820 &M, GV, GV->getParent())do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, &I, &M, GV, GV->getParent()); return; } } while (
false)
;
3821 } else if (isa<Instruction>(I.getOperand(i))) {
3822 verifyDominatesUse(I, i);
3823 } else if (isa<InlineAsm>(I.getOperand(i))) {
3824 Assert((i + 1 == e && isa<CallInst>(I)) ||do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (false)
3825 (i + 3 == e && isa<InvokeInst>(I)),do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (false)
3826 "Cannot take the address of an inline asm!", &I)do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (false)
;
3827 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
3828 if (CE->getType()->isPtrOrPtrVectorTy() ||
3829 !DL.getNonIntegralAddressSpaces().empty()) {
3830 // If we have a ConstantExpr pointer, we need to see if it came from an
3831 // illegal bitcast. If the datalayout string specifies non-integral
3832 // address spaces then we also need to check for illegal ptrtoint and
3833 // inttoptr expressions.
3834 visitConstantExprsRecursively(CE);
3835 }
3836 }
3837 }
3838
3839 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
3840 Assert(I.getType()->isFPOrFPVectorTy(),do { if (!(I.getType()->isFPOrFPVectorTy())) { CheckFailed
("fpmath requires a floating point result!", &I); return;
} } while (false)
3841 "fpmath requires a floating point result!", &I)do { if (!(I.getType()->isFPOrFPVectorTy())) { CheckFailed
("fpmath requires a floating point result!", &I); return;
} } while (false)
;
3842 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I)do { if (!(MD->getNumOperands() == 1)) { CheckFailed("fpmath takes one operand!"
, &I); return; } } while (false)
;
3843 if (ConstantFP *CFP0 =
3844 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
3845 const APFloat &Accuracy = CFP0->getValueAPF();
3846 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),do { if (!(&Accuracy.getSemantics() == &APFloat::IEEEsingle
())) { CheckFailed("fpmath accuracy must have float type", &
I); return; } } while (false)
3847 "fpmath accuracy must have float type", &I)do { if (!(&Accuracy.getSemantics() == &APFloat::IEEEsingle
())) { CheckFailed("fpmath accuracy must have float type", &
I); return; } } while (false)
;
3848 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),do { if (!(Accuracy.isFiniteNonZero() && !Accuracy.isNegative
())) { CheckFailed("fpmath accuracy not a positive number!", &
I); return; } } while (false)
3849 "fpmath accuracy not a positive number!", &I)do { if (!(Accuracy.isFiniteNonZero() && !Accuracy.isNegative
())) { CheckFailed("fpmath accuracy not a positive number!", &
I); return; } } while (false)
;
3850 } else {
3851 Assert(false, "invalid fpmath accuracy!", &I)do { if (!(false)) { CheckFailed("invalid fpmath accuracy!", &
I); return; } } while (false)
;
3852 }
3853 }
3854
3855 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
3856 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),do { if (!(isa<LoadInst>(I) || isa<CallInst>(I) ||
isa<InvokeInst>(I))) { CheckFailed("Ranges are only for loads, calls and invokes!"
, &I); return; } } while (false)
3857 "Ranges are only for loads, calls and invokes!", &I)do { if (!(isa<LoadInst>(I) || isa<CallInst>(I) ||
isa<InvokeInst>(I))) { CheckFailed("Ranges are only for loads, calls and invokes!"
, &I); return; } } while (false)
;
3858 visitRangeMetadata(I, Range, I.getType());
3859 }
3860
3861 if (I.getMetadata(LLVMContext::MD_nonnull)) {
3862 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",do { if (!(I.getType()->isPointerTy())) { CheckFailed("nonnull applies only to pointer types"
, &I); return; } } while (false)
3863 &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("nonnull applies only to pointer types"
, &I); return; } } while (false)
;
3864 Assert(isa<LoadInst>(I),do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
3865 "nonnull applies only to load instructions, use attributes"do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
3866 " for calls or invokes",do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
3867 &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
;
3868 }
3869
3870 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
3871 visitDereferenceableMetadata(I, MD);
3872
3873 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
3874 visitDereferenceableMetadata(I, MD);
3875
3876 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
3877 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
3878
3879 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
3880 Assert(I.getType()->isPointerTy(), "align applies only to pointer types",do { if (!(I.getType()->isPointerTy())) { CheckFailed("align applies only to pointer types"
, &I); return; } } while (false)
3881 &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("align applies only to pointer types"
, &I); return; } } while (false)
;
3882 Assert(isa<LoadInst>(I), "align applies only to load instructions, "do { if (!(isa<LoadInst>(I))) { CheckFailed("align applies only to load instructions, "
"use attributes for calls or invokes", &I); return; } } while
(false)
3883 "use attributes for calls or invokes", &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("align applies only to load instructions, "
"use attributes for calls or invokes", &I); return; } } while
(false)
;
3884 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I)do { if (!(AlignMD->getNumOperands() == 1)) { CheckFailed(
"align takes one operand!", &I); return; } } while (false
)
;
3885 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
3886 Assert(CI && CI->getType()->isIntegerTy(64),do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("align metadata value must be an i64!", &
I); return; } } while (false)
3887 "align metadata value must be an i64!", &I)do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("align metadata value must be an i64!", &
I); return; } } while (false)
;
3888 uint64_t Align = CI->getZExtValue();
3889 Assert(isPowerOf2_64(Align),do { if (!(isPowerOf2_64(Align))) { CheckFailed("align metadata value must be a power of 2!"
, &I); return; } } while (false)
3890 "align metadata value must be a power of 2!", &I)do { if (!(isPowerOf2_64(Align))) { CheckFailed("align metadata value must be a power of 2!"
, &I); return; } } while (false)
;
3891 Assert(Align <= Value::MaximumAlignment,do { if (!(Align <= Value::MaximumAlignment)) { CheckFailed
("alignment is larger that implementation defined limit", &
I); return; } } while (false)
3892 "alignment is larger that implementation defined limit", &I)do { if (!(Align <= Value::MaximumAlignment)) { CheckFailed
("alignment is larger that implementation defined limit", &
I); return; } } while (false)
;
3893 }
3894
3895 if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
3896 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N)do { if (!(isa<DILocation>(N))) { DebugInfoCheckFailed(
"invalid !dbg metadata attachment", &I, N); return; } } while
(false)
;
3897 visitMDNode(*N);
3898 }
3899
3900 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
3901 verifyFragmentExpression(*DII);
3902
3903 InstsInThisBlock.insert(&I);
3904}
3905
3906/// Allow intrinsics to be verified in different ways.
3907void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
3908 Function *IF = CS.getCalledFunction();
3909 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",do { if (!(IF->isDeclaration())) { CheckFailed("Intrinsic functions should never be defined!"
, IF); return; } } while (false)
3910 IF)do { if (!(IF->isDeclaration())) { CheckFailed("Intrinsic functions should never be defined!"
, IF); return; } } while (false)
;
3911
3912 // Verify that the intrinsic prototype lines up with what the .td files
3913 // describe.
3914 FunctionType *IFTy = IF->getFunctionType();
3915 bool IsVarArg = IFTy->isVarArg();
3916
3917 SmallVector<Intrinsic::IITDescriptor, 8> Table;
3918 getIntrinsicInfoTableEntries(ID, Table);
3919 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
3920
3921 SmallVector<Type *, 4> ArgTys;
3922 Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getReturnType
(), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (false)
3923 TableRef, ArgTys),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getReturnType
(), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (false)
3924 "Intrinsic has incorrect return type!", IF)do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getReturnType
(), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (false)
;
3925 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
3926 Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getParamType
(i), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (false)
3927 TableRef, ArgTys),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getParamType
(i), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (false)
3928 "Intrinsic has incorrect argument type!", IF)do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getParamType
(i), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (false)
;
3929
3930 // Verify if the intrinsic call matches the vararg property.
3931 if (IsVarArg)
3932 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Intrinsic was not defined with variable arguments!"
, IF); return; } } while (false)
3933 "Intrinsic was not defined with variable arguments!", IF)do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Intrinsic was not defined with variable arguments!"
, IF); return; } } while (false)
;
3934 else
3935 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Callsite was not defined with variable arguments!"
, IF); return; } } while (false)
3936 "Callsite was not defined with variable arguments!", IF)do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Callsite was not defined with variable arguments!"
, IF); return; } } while (false)
;
3937
3938 // All descriptors should be absorbed by now.
3939 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF)do { if (!(TableRef.empty())) { CheckFailed("Intrinsic has too few arguments!"
, IF); return; } } while (false)
;
3940
3941 // Now that we have the intrinsic ID and the actual argument types (and we
3942 // know they are legal for the intrinsic!) get the intrinsic name through the
3943 // usual means. This allows us to verify the mangling of argument types into
3944 // the name.
3945 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
3946 Assert(ExpectedName == IF->getName(),do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3947 "Intrinsic name not mangled correctly for type arguments! "do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3948 "Should be: " +do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3949 ExpectedName,do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3950 IF)do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
;
3951
3952 // If the intrinsic takes MDNode arguments, verify that they are either global
3953 // or are local to *this* function.
3954 for (Value *V : CS.args())
3955 if (auto *MD = dyn_cast<MetadataAsValue>(V))
3956 visitMetadataAsValue(*MD, CS.getCaller());
3957
3958 switch (ID) {
3959 default:
3960 break;
3961 case Intrinsic::coro_id: {
3962 auto *InfoArg = CS.getArgOperand(3)->stripPointerCasts();
3963 if (isa<ConstantPointerNull>(InfoArg))
3964 break;
3965 auto *GV = dyn_cast<GlobalVariable>(InfoArg);
3966 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
3967 "info argument of llvm.coro.begin must refer to an initialized "do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
3968 "constant")do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
;
3969 Constant *Init = GV->getInitializer();
3970 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
3971 "info argument of llvm.coro.begin must refer to either a struct or "do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
3972 "an array")do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
;
3973 break;
3974 }
3975 case Intrinsic::ctlz: // llvm.ctlz
3976 case Intrinsic::cttz: // llvm.cttz
3977 Assert(isa<ConstantInt>(CS.getArgOperand(1)),do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
3978 "is_zero_undef argument of bit counting intrinsics must be a "do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
3979 "constant int",do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
3980 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
;
3981 break;
3982 case Intrinsic::experimental_constrained_fadd:
3983 case Intrinsic::experimental_constrained_fsub:
3984 case Intrinsic::experimental_constrained_fmul:
3985 case Intrinsic::experimental_constrained_fdiv:
3986 case Intrinsic::experimental_constrained_frem:
3987 case Intrinsic::experimental_constrained_fma:
3988 case Intrinsic::experimental_constrained_sqrt:
3989 case Intrinsic::experimental_constrained_pow:
3990 case Intrinsic::experimental_constrained_powi:
3991 case Intrinsic::experimental_constrained_sin:
3992 case Intrinsic::experimental_constrained_cos:
3993 case Intrinsic::experimental_constrained_exp:
3994 case Intrinsic::experimental_constrained_exp2:
3995 case Intrinsic::experimental_constrained_log:
3996 case Intrinsic::experimental_constrained_log10:
3997 case Intrinsic::experimental_constrained_log2:
3998 case Intrinsic::experimental_constrained_rint:
3999 case Intrinsic::experimental_constrained_nearbyint:
4000 visitConstrainedFPIntrinsic(
4001 cast<ConstrainedFPIntrinsic>(*CS.getInstruction()));
4002 break;
4003 case Intrinsic::dbg_declare: // llvm.dbg.declare
4004 Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),do { if (!(isa<MetadataAsValue>(CS.getArgOperand(0)))) {
CheckFailed("invalid llvm.dbg.declare intrinsic call 1", CS)
; return; } } while (false)
4005 "invalid llvm.dbg.declare intrinsic call 1", CS)do { if (!(isa<MetadataAsValue>(CS.getArgOperand(0)))) {
CheckFailed("invalid llvm.dbg.declare intrinsic call 1", CS)
; return; } } while (false)
;
4006 visitDbgIntrinsic("declare", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
4007 break;
4008 case Intrinsic::dbg_addr: // llvm.dbg.addr
4009 visitDbgIntrinsic("addr", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
4010 break;
4011 case Intrinsic::dbg_value: // llvm.dbg.value
4012 visitDbgIntrinsic("value", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
4013 break;
4014 case Intrinsic::memcpy:
4015 case Intrinsic::memmove:
4016 case Intrinsic::memset: {
4017 ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
4018 Assert(AlignCI,do { if (!(AlignCI)) { CheckFailed("alignment argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
4019 "alignment argument of memory intrinsics must be a constant int",do { if (!(AlignCI)) { CheckFailed("alignment argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
4020 CS)do { if (!(AlignCI)) { CheckFailed("alignment argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
;
4021 const APInt &AlignVal = AlignCI->getValue();
4022 Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),do { if (!(AlignCI->isZero() || AlignVal.isPowerOf2())) { CheckFailed
("alignment argument of memory intrinsics must be a power of 2"
, CS); return; } } while (false)
4023 "alignment argument of memory intrinsics must be a power of 2", CS)do { if (!(AlignCI->isZero() || AlignVal.isPowerOf2())) { CheckFailed
("alignment argument of memory intrinsics must be a power of 2"
, CS); return; } } while (false)
;
4024 Assert(isa<ConstantInt>(CS.getArgOperand(4)),do { if (!(isa<ConstantInt>(CS.getArgOperand(4)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
4025 "isvolatile argument of memory intrinsics must be a constant int",do { if (!(isa<ConstantInt>(CS.getArgOperand(4)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
4026 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(4)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
;
4027 break;
4028 }
4029 case Intrinsic::memcpy_element_unordered_atomic: {
4030 const AtomicMemCpyInst *MI = cast<AtomicMemCpyInst>(CS.getInstruction());
4031
4032 ConstantInt *ElementSizeCI =
4033 dyn_cast<ConstantInt>(MI->getRawElementSizeInBytes());
4034 Assert(ElementSizeCI,do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise unordered atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
4035 "element size of the element-wise unordered atomic memory "do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise unordered atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
4036 "intrinsic must be a constant int",do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise unordered atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
4037 CS)do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise unordered atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
;
4038 const APInt &ElementSizeVal = ElementSizeCI->getValue();
4039 Assert(ElementSizeVal.isPowerOf2(),do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
4040 "element size of the element-wise atomic memory intrinsic "do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
4041 "must be a power of 2",do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
4042 CS)do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
;
4043
4044 if (auto *LengthCI = dyn_cast<ConstantInt>(MI->getLength())) {
4045 uint64_t Length = LengthCI->getZExtValue();
4046 uint64_t ElementSize = MI->getElementSizeInBytes();
4047 Assert((Length % ElementSize) == 0,do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", CS); return; } } while
(false)
4048 "constant length must be a multiple of the element size in the "do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", CS); return; } } while
(false)
4049 "element-wise atomic memory intrinsic",do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", CS); return; } } while
(false)
4050 CS)do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", CS); return; } } while
(false)
;
4051 }
4052
4053 auto IsValidAlignment = [&](uint64_t Alignment) {
4054 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4055 };
4056 uint64_t DstAlignment = CS.getParamAlignment(0),
4057 SrcAlignment = CS.getParamAlignment(1);
4058 Assert(IsValidAlignment(DstAlignment),do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
4059 "incorrect alignment of the destination argument", CS)do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
;
4060 Assert(IsValidAlignment(SrcAlignment),do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, CS); return; } } while (false)
4061 "incorrect alignment of the source argument", CS)do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, CS); return; } } while (false)
;
4062 break;
4063 }
4064 case Intrinsic::memmove_element_unordered_atomic: {
4065 auto *MI = cast<AtomicMemMoveInst>(CS.getInstruction());
4066
4067 ConstantInt *ElementSizeCI =
4068 dyn_cast<ConstantInt>(MI->getRawElementSizeInBytes());
4069 Assert(ElementSizeCI,do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise unordered atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
4070 "element size of the element-wise unordered atomic memory "do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise unordered atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
4071 "intrinsic must be a constant int",do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise unordered atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
4072 CS)do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise unordered atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
;
4073 const APInt &ElementSizeVal = ElementSizeCI->getValue();
4074 Assert(ElementSizeVal.isPowerOf2(),do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
4075 "element size of the element-wise atomic memory intrinsic "do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
4076 "must be a power of 2",do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
4077 CS)do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
;
4078
4079 if (auto *LengthCI = dyn_cast<ConstantInt>(MI->getLength())) {
4080 uint64_t Length = LengthCI->getZExtValue();
4081 uint64_t ElementSize = MI->getElementSizeInBytes();
4082 Assert((Length % ElementSize) == 0,do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", CS); return; } } while
(false)
4083 "constant length must be a multiple of the element size in the "do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", CS); return; } } while
(false)
4084 "element-wise atomic memory intrinsic",do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", CS); return; } } while
(false)
4085 CS)do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", CS); return; } } while
(false)
;
4086 }
4087
4088 auto IsValidAlignment = [&](uint64_t Alignment) {
4089 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4090 };
4091 uint64_t DstAlignment = CS.getParamAlignment(0),
4092 SrcAlignment = CS.getParamAlignment(1);
4093 Assert(IsValidAlignment(DstAlignment),do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
4094 "incorrect alignment of the destination argument", CS)do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
;
4095 Assert(IsValidAlignment(SrcAlignment),do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, CS); return; } } while (false)
4096 "incorrect alignment of the source argument", CS)do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, CS); return; } } while (false)
;
4097 break;
4098 }
4099 case Intrinsic::memset_element_unordered_atomic: {
4100 auto *MI = cast<AtomicMemSetInst>(CS.getInstruction());
4101
4102 ConstantInt *ElementSizeCI =
4103 dyn_cast<ConstantInt>(MI->getRawElementSizeInBytes());
4104 Assert(ElementSizeCI,do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise unordered atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
4105 "element size of the element-wise unordered atomic memory "do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise unordered atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
4106 "intrinsic must be a constant int",do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise unordered atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
4107 CS)do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise unordered atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
;
4108 const APInt &ElementSizeVal = ElementSizeCI->getValue();
4109 Assert(ElementSizeVal.isPowerOf2(),do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
4110 "element size of the element-wise atomic memory intrinsic "do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
4111 "must be a power of 2",do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
4112 CS)do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
;
4113
4114 if (auto *LengthCI = dyn_cast<ConstantInt>(MI->getLength())) {
4115 uint64_t Length = LengthCI->getZExtValue();
4116 uint64_t ElementSize = MI->getElementSizeInBytes();
4117 Assert((Length % ElementSize) == 0,do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", CS); return; } } while
(false)
4118 "constant length must be a multiple of the element size in the "do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", CS); return; } } while
(false)
4119 "element-wise atomic memory intrinsic",do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", CS); return; } } while
(false)
4120 CS)do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", CS); return; } } while
(false)
;
4121 }
4122
4123 auto IsValidAlignment = [&](uint64_t Alignment) {
4124 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4125 };
4126 uint64_t DstAlignment = CS.getParamAlignment(0);
4127 Assert(IsValidAlignment(DstAlignment),do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
4128 "incorrect alignment of the destination argument", CS)do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
;
4129 break;
4130 }
4131 case Intrinsic::gcroot:
4132 case Intrinsic::gcwrite:
4133 case Intrinsic::gcread:
4134 if (ID == Intrinsic::gcroot) {
4135 AllocaInst *AI =
4136 dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
4137 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS)do { if (!(AI)) { CheckFailed("llvm.gcroot parameter #1 must be an alloca."
, CS); return; } } while (false)
;
4138 Assert(isa<Constant>(CS.getArgOperand(1)),do { if (!(isa<Constant>(CS.getArgOperand(1)))) { CheckFailed
("llvm.gcroot parameter #2 must be a constant.", CS); return;
} } while (false)
4139 "llvm.gcroot parameter #2 must be a constant.", CS)do { if (!(isa<Constant>(CS.getArgOperand(1)))) { CheckFailed
("llvm.gcroot parameter #2 must be a constant.", CS); return;
} } while (false)
;
4140 if (!AI->getAllocatedType()->isPointerTy()) {
4141 Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
4142 "llvm.gcroot parameter #1 must either be a pointer alloca, "do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
4143 "or argument #2 must be a non-null constant.",do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
4144 CS)do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
;
4145 }
4146 }
4147
4148 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
4149 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
;
4150 break;
4151 case Intrinsic::init_trampoline:
4152 Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (false)
4153 "llvm.init_trampoline parameter #2 must resolve to a function.",do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (false)
4154 CS)do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (false)
;
4155 break;
4156 case Intrinsic::prefetch:
4157 Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4158 isa<ConstantInt>(CS.getArgOperand(2)) &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4159 cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4160 cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4161 "invalid arguments to llvm.prefetch", CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
;
4162 break;
4163 case Intrinsic::stackprotector:
4164 Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),do { if (!(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.stackprotector parameter #2 must resolve to an alloca."
, CS); return; } } while (false)
4165 "llvm.stackprotector parameter #2 must resolve to an alloca.", CS)do { if (!(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.stackprotector parameter #2 must resolve to an alloca."
, CS); return; } } while (false)
;
4166 break;
4167 case Intrinsic::lifetime_start:
4168 case Intrinsic::lifetime_end:
4169 case Intrinsic::invariant_start:
4170 Assert(isa<ConstantInt>(CS.getArgOperand(0)),do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (false)
4171 "size argument of memory use markers must be a constant integer",do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (false)
4172 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (false)
;
4173 break;
4174 case Intrinsic::invariant_end:
4175 Assert(isa<ConstantInt>(CS.getArgOperand(1)),do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("llvm.invariant.end parameter #2 must be a constant integer"
, CS); return; } } while (false)
4176 "llvm.invariant.end parameter #2 must be a constant integer", CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("llvm.invariant.end parameter #2 must be a constant integer"
, CS); return; } } while (false)
;
4177 break;
4178
4179 case Intrinsic::localescape: {
4180 BasicBlock *BB = CS.getParent();
4181 Assert(BB == &BB->getParent()->front(),do { if (!(BB == &BB->getParent()->front())) { CheckFailed
("llvm.localescape used outside of entry block", CS); return;
} } while (false)
4182 "llvm.localescape used outside of entry block", CS)do { if (!(BB == &BB->getParent()->front())) { CheckFailed
("llvm.localescape used outside of entry block", CS); return;
} } while (false)
;
4183 Assert(!SawFrameEscape,do { if (!(!SawFrameEscape)) { CheckFailed("multiple calls to llvm.localescape in one function"
, CS); return; } } while (false)
4184 "multiple calls to llvm.localescape in one function", CS)do { if (!(!SawFrameEscape)) { CheckFailed("multiple calls to llvm.localescape in one function"
, CS); return; } } while (false)
;
4185 for (Value *Arg : CS.args()) {
4186 if (isa<ConstantPointerNull>(Arg))
4187 continue; // Null values are allowed as placeholders.
4188 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4189 Assert(AI && AI->isStaticAlloca(),do { if (!(AI && AI->isStaticAlloca())) { CheckFailed
("llvm.localescape only accepts static allocas", CS); return;
} } while (false)
4190 "llvm.localescape only accepts static allocas", CS)do { if (!(AI && AI->isStaticAlloca())) { CheckFailed
("llvm.localescape only accepts static allocas", CS); return;
} } while (false)
;
4191 }
4192 FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
4193 SawFrameEscape = true;
4194 break;
4195 }
4196 case Intrinsic::localrecover: {
4197 Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
4198 Function *Fn = dyn_cast<Function>(FnArg);
4199 Assert(Fn && !Fn->isDeclaration(),do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
4200 "llvm.localrecover first "do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
4201 "argument must be function defined in this module",do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
4202 CS)do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
;
4203 auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
4204 Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",do { if (!(IdxArg)) { CheckFailed("idx argument of llvm.localrecover must be a constant int"
, CS); return; } } while (false)
4205 CS)do { if (!(IdxArg)) { CheckFailed("idx argument of llvm.localrecover must be a constant int"
, CS); return; } } while (false)
;
4206 auto &Entry = FrameEscapeInfo[Fn];
4207 Entry.second = unsigned(
4208 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4209 break;
4210 }
4211
4212 case Intrinsic::experimental_gc_statepoint:
4213 Assert(!CS.isInlineAsm(),do { if (!(!CS.isInlineAsm())) { CheckFailed("gc.statepoint support for inline assembly unimplemented"
, CS); return; } } while (false)
4214 "gc.statepoint support for inline assembly unimplemented", CS)do { if (!(!CS.isInlineAsm())) { CheckFailed("gc.statepoint support for inline assembly unimplemented"
, CS); return; } } while (false)
;
4215 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
4216 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
;
4217
4218 verifyStatepoint(CS);
4219 break;
4220 case Intrinsic::experimental_gc_result: {
4221 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
4222 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
;
4223 // Are we tied to a statepoint properly?
4224 CallSite StatepointCS(CS.getArgOperand(0));
4225 const Function *StatepointFn =
4226 StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
4227 Assert(StatepointFn && StatepointFn->isDeclaration() &&do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4228 StatepointFn->getIntrinsicID() ==do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4229 Intrinsic::experimental_gc_statepoint,do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4230 "gc.result operand #1 must be from a statepoint", CS,do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4231 CS.getArgOperand(0))do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
;
4232
4233 // Assert that result type matches wrapped callee.
4234 const Value *Target = StatepointCS.getArgument(2);
4235 auto *PT = cast<PointerType>(Target->getType());
4236 auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4237 Assert(CS.getType() == TargetFuncType->getReturnType(),do { if (!(CS.getType() == TargetFuncType->getReturnType()
)) { CheckFailed("gc.result result type does not match wrapped callee"
, CS); return; } } while (false)
4238 "gc.result result type does not match wrapped callee", CS)do { if (!(CS.getType() == TargetFuncType->getReturnType()
)) { CheckFailed("gc.result result type does not match wrapped callee"
, CS); return; } } while (false)
;
4239 break;
4240 }
4241 case Intrinsic::experimental_gc_relocate: {
4242 Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS)do { if (!(CS.getNumArgOperands() == 3)) { CheckFailed("wrong number of arguments"
, CS); return; } } while (false)
;
4243
4244 Assert(isa<PointerType>(CS.getType()->getScalarType()),do { if (!(isa<PointerType>(CS.getType()->getScalarType
()))) { CheckFailed("gc.relocate must return a pointer or a vector of pointers"
, CS); return; } } while (false)
4245 "gc.relocate must return a pointer or a vector of pointers", CS)do { if (!(isa<PointerType>(CS.getType()->getScalarType
()))) { CheckFailed("gc.relocate must return a pointer or a vector of pointers"
, CS); return; } } while (false)
;
4246
4247 // Check that this relocate is correctly tied to the statepoint
4248
4249 // This is case for relocate on the unwinding path of an invoke statepoint
4250 if (LandingPadInst *LandingPad =
4251 dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
4252
4253 const BasicBlock *InvokeBB =
4254 LandingPad->getParent()->getUniquePredecessor();
4255
4256 // Landingpad relocates should have only one predecessor with invoke
4257 // statepoint terminator
4258 Assert(InvokeBB, "safepoints should have unique landingpads",do { if (!(InvokeBB)) { CheckFailed("safepoints should have unique landingpads"
, LandingPad->getParent()); return; } } while (false)
4259 LandingPad->getParent())do { if (!(InvokeBB)) { CheckFailed("safepoints should have unique landingpads"
, LandingPad->getParent()); return; } } while (false)
;
4260 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",do { if (!(InvokeBB->getTerminator())) { CheckFailed("safepoint block should be well formed"
, InvokeBB); return; } } while (false)
4261 InvokeBB)do { if (!(InvokeBB->getTerminator())) { CheckFailed("safepoint block should be well formed"
, InvokeBB); return; } } while (false)
;
4262 Assert(isStatepoint(InvokeBB->getTerminator()),do { if (!(isStatepoint(InvokeBB->getTerminator()))) { CheckFailed
("gc relocate should be linked to a statepoint", InvokeBB); return
; } } while (false)
4263 "gc relocate should be linked to a statepoint", InvokeBB)do { if (!(isStatepoint(InvokeBB->getTerminator()))) { CheckFailed
("gc relocate should be linked to a statepoint", InvokeBB); return
; } } while (false)
;
4264 }
4265 else {
4266 // In all other cases relocate should be tied to the statepoint directly.
4267 // This covers relocates on a normal return path of invoke statepoint and
4268 // relocates of a call statepoint.
4269 auto Token = CS.getArgOperand(0);
4270 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),do { if (!(isa<Instruction>(Token) && isStatepoint
(cast<Instruction>(Token)))) { CheckFailed("gc relocate is incorrectly tied to the statepoint"
, CS, Token); return; } } while (false)
4271 "gc relocate is incorrectly tied to the statepoint", CS, Token)do { if (!(isa<Instruction>(Token) && isStatepoint
(cast<Instruction>(Token)))) { CheckFailed("gc relocate is incorrectly tied to the statepoint"
, CS, Token); return; } } while (false)
;
4272 }
4273
4274 // Verify rest of the relocate arguments.
4275
4276 ImmutableCallSite StatepointCS(
4277 cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint());
4278
4279 // Both the base and derived must be piped through the safepoint.
4280 Value* Base = CS.getArgOperand(1);
4281 Assert(isa<ConstantInt>(Base),do { if (!(isa<ConstantInt>(Base))) { CheckFailed("gc.relocate operand #2 must be integer offset"
, CS); return; } } while (false)
4282 "gc.relocate operand #2 must be integer offset", CS)do { if (!(isa<ConstantInt>(Base))) { CheckFailed("gc.relocate operand #2 must be integer offset"
, CS); return; } } while (false)
;
4283
4284 Value* Derived = CS.getArgOperand(2);
4285 Assert(isa<ConstantInt>(Derived),do { if (!(isa<ConstantInt>(Derived))) { CheckFailed("gc.relocate operand #3 must be integer offset"
, CS); return; } } while (false)
4286 "gc.relocate operand #3 must be integer offset", CS)do { if (!(isa<ConstantInt>(Derived))) { CheckFailed("gc.relocate operand #3 must be integer offset"
, CS); return; } } while (false)
;
4287
4288 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4289 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4290 // Check the bounds
4291 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),do { if (!(0 <= BaseIndex && BaseIndex < (int)StatepointCS
.arg_size())) { CheckFailed("gc.relocate: statepoint base index out of bounds"
, CS); return; } } while (false)
4292 "gc.relocate: statepoint base index out of bounds", CS)do { if (!(0 <= BaseIndex && BaseIndex < (int)StatepointCS
.arg_size())) { CheckFailed("gc.relocate: statepoint base index out of bounds"
, CS); return; } } while (false)
;
4293 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),do { if (!(0 <= DerivedIndex && DerivedIndex < (
int)StatepointCS.arg_size())) { CheckFailed("gc.relocate: statepoint derived index out of bounds"
, CS); return; } } while (false)
4294 "gc.relocate: statepoint derived index out of bounds", CS)do { if (!(0 <= DerivedIndex && DerivedIndex < (
int)StatepointCS.arg_size())) { CheckFailed("gc.relocate: statepoint derived index out of bounds"
, CS); return; } } while (false)
;
4295
4296 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4297 // section of the statepoint's argument.
4298 Assert(StatepointCS.arg_size() > 0,do { if (!(StatepointCS.arg_size() > 0)) { CheckFailed("gc.statepoint: insufficient arguments"
); return; } } while (false)
4299 "gc.statepoint: insufficient arguments")do { if (!(StatepointCS.arg_size() > 0)) { CheckFailed("gc.statepoint: insufficient arguments"
); return; } } while (false)
;
4300 Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(3)
))) { CheckFailed("gc.statement: number of call arguments must be constant integer"
); return; } } while (false)
4301 "gc.statement: number of call arguments must be constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(3)
))) { CheckFailed("gc.statement: number of call arguments must be constant integer"
); return; } } while (false)
;
4302 const unsigned NumCallArgs =
4303 cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
4304 Assert(StatepointCS.arg_size() > NumCallArgs + 5,do { if (!(StatepointCS.arg_size() > NumCallArgs + 5)) { CheckFailed
("gc.statepoint: mismatch in number of call arguments"); return
; } } while (false)
4305 "gc.statepoint: mismatch in number of call arguments")do { if (!(StatepointCS.arg_size() > NumCallArgs + 5)) { CheckFailed
("gc.statepoint: mismatch in number of call arguments"); return
; } } while (false)
;
4306 Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
4307 "gc.statepoint: number of transition arguments must be "do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
4308 "a constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
;
4309 const int NumTransitionArgs =
4310 cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
4311 ->getZExtValue();
4312 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4313 Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
4314 "gc.statepoint: number of deoptimization arguments must be "do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
4315 "a constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
;
4316 const int NumDeoptArgs =
4317 cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))
4318 ->getZExtValue();
4319 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4320 const int GCParamArgsEnd = StatepointCS.arg_size();
4321 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4322 "gc.relocate: statepoint base index doesn't fall within the "do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4323 "'gc parameters' section of the statepoint call",do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4324 CS)do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
;
4325 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4326 "gc.relocate: statepoint derived index doesn't fall within the "do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4327 "'gc parameters' section of the statepoint call",do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4328 CS)do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
;
4329
4330 // Relocated value must be either a pointer type or vector-of-pointer type,
4331 // but gc_relocate does not need to return the same pointer type as the
4332 // relocated pointer. It can be casted to the correct type later if it's
4333 // desired. However, they must have the same address space and 'vectorness'
4334 GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction());
4335 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),do { if (!(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy
())) { CheckFailed("gc.relocate: relocated value must be a gc pointer"
, CS); return; } } while (false)
4336 "gc.relocate: relocated value must be a gc pointer", CS)do { if (!(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy
())) { CheckFailed("gc.relocate: relocated value must be a gc pointer"
, CS); return; } } while (false)
;
4337
4338 auto ResultType = CS.getType();
4339 auto DerivedType = Relocate.getDerivedPtr()->getType();
4340 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, CS); return; } } while (false)
4341 "gc.relocate: vector relocates to vector and pointer to pointer",do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, CS); return; } } while (false)
4342 CS)do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, CS); return; } } while (false)
;
4343 Assert(do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4344 ResultType->getPointerAddressSpace() ==do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4345 DerivedType->getPointerAddressSpace(),do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4346 "gc.relocate: relocating a pointer shouldn't change its address space",do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4347 CS)do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
;
4348 break;
4349 }
4350 case Intrinsic::eh_exceptioncode:
4351 case Intrinsic::eh_exceptionpointer: {
4352 Assert(isa<CatchPadInst>(CS.getArgOperand(0)),do { if (!(isa<CatchPadInst>(CS.getArgOperand(0)))) { CheckFailed
("eh.exceptionpointer argument must be a catchpad", CS); return
; } } while (false)
4353 "eh.exceptionpointer argument must be a catchpad", CS)do { if (!(isa<CatchPadInst>(CS.getArgOperand(0)))) { CheckFailed
("eh.exceptionpointer argument must be a catchpad", CS); return
; } } while (false)
;
4354 break;
4355 }
4356 case Intrinsic::masked_load: {
4357 Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS)do { if (!(CS.getType()->isVectorTy())) { CheckFailed("masked_load: must return a vector"
, CS); return; } } while (false)
;
4358
4359 Value *Ptr = CS.getArgOperand(0);
4360 //Value *Alignment = CS.getArgOperand(1);
4361 Value *Mask = CS.getArgOperand(2);
4362 Value *PassThru = CS.getArgOperand(3);
4363 Assert(Mask->getType()->isVectorTy(),do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_load: mask must be vector", CS); return; } } while (
false)
4364 "masked_load: mask must be vector", CS)do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_load: mask must be vector", CS); return; } } while (
false)
;
4365
4366 // DataTy is the overloaded type
4367 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4368 Assert(DataTy == CS.getType(),do { if (!(DataTy == CS.getType())) { CheckFailed("masked_load: return must match pointer type"
, CS); return; } } while (false)
4369 "masked_load: return must match pointer type", CS)do { if (!(DataTy == CS.getType())) { CheckFailed("masked_load: return must match pointer type"
, CS); return; } } while (false)
;
4370 Assert(PassThru->getType() == DataTy,do { if (!(PassThru->getType() == DataTy)) { CheckFailed("masked_load: pass through and data type must match"
, CS); return; } } while (false)
4371 "masked_load: pass through and data type must match", CS)do { if (!(PassThru->getType() == DataTy)) { CheckFailed("masked_load: pass through and data type must match"
, CS); return; } } while (false)
;
4372 Assert(Mask->getType()->getVectorNumElements() ==do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, CS); return; } } while (false)
4373 DataTy->getVectorNumElements(),do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, CS); return; } } while (false)
4374 "masked_load: vector mask must be same length as data", CS)do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, CS); return; } } while (false)
;
4375 break;
4376 }
4377 case Intrinsic::masked_store: {
4378 Value *Val = CS.getArgOperand(0);
4379 Value *Ptr = CS.getArgOperand(1);
4380 //Value *Alignment = CS.getArgOperand(2);
4381 Value *Mask = CS.getArgOperand(3);
4382 Assert(Mask->getType()->isVectorTy(),do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_store: mask must be vector", CS); return; } } while (
false)
4383 "masked_store: mask must be vector", CS)do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_store: mask must be vector", CS); return; } } while (
false)
;
4384
4385 // DataTy is the overloaded type
4386 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4387 Assert(DataTy == Val->getType(),do { if (!(DataTy == Val->getType())) { CheckFailed("masked_store: storee must match pointer type"
, CS); return; } } while (false)
4388 "masked_store: storee must match pointer type", CS)do { if (!(DataTy == Val->getType())) { CheckFailed("masked_store: storee must match pointer type"
, CS); return; } } while (false)
;
4389 Assert(Mask->getType()->getVectorNumElements() ==do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, CS); return; } } while (false)
4390 DataTy->getVectorNumElements(),do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, CS); return; } } while (false)
4391 "masked_store: vector mask must be same length as data", CS)do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, CS); return; } } while (false)
;
4392 break;
4393 }
4394
4395 case Intrinsic::experimental_guard: {
4396 Assert(CS.isCall(), "experimental_guard cannot be invoked", CS)do { if (!(CS.isCall())) { CheckFailed("experimental_guard cannot be invoked"
, CS); return; } } while (false)
;
4397 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4398 "experimental_guard must have exactly one "do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4399 "\"deopt\" operand bundle")do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
;
4400 break;
4401 }
4402
4403 case Intrinsic::experimental_deoptimize: {
4404 Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS)do { if (!(CS.isCall())) { CheckFailed("experimental_deoptimize cannot be invoked"
, CS); return; } } while (false)
;
4405 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4406 "experimental_deoptimize must have exactly one "do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4407 "\"deopt\" operand bundle")do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
;
4408 Assert(CS.getType() == CS.getInstruction()->getFunction()->getReturnType(),do { if (!(CS.getType() == CS.getInstruction()->getFunction
()->getReturnType())) { CheckFailed("experimental_deoptimize return type must match caller return type"
); return; } } while (false)
4409 "experimental_deoptimize return type must match caller return type")do { if (!(CS.getType() == CS.getInstruction()->getFunction
()->getReturnType())) { CheckFailed("experimental_deoptimize return type must match caller return type"
); return; } } while (false)
;
4410
4411 if (CS.isCall()) {
4412 auto *DeoptCI = CS.getInstruction();
4413 auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode());
4414 Assert(RI,do { if (!(RI)) { CheckFailed("calls to experimental_deoptimize must be followed by a return"
); return; } } while (false)
4415 "calls to experimental_deoptimize must be followed by a return")do { if (!(RI)) { CheckFailed("calls to experimental_deoptimize must be followed by a return"
); return; } } while (false)
;
4416
4417 if (!CS.getType()->isVoidTy() && RI)
4418 Assert(RI->getReturnValue() == DeoptCI,do { if (!(RI->getReturnValue() == DeoptCI)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
4419 "calls to experimental_deoptimize must be followed by a return "do { if (!(RI->getReturnValue() == DeoptCI)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
4420 "of the value computed by experimental_deoptimize")do { if (!(RI->getReturnValue() == DeoptCI)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
;
4421 }
4422
4423 break;
4424 }
4425 };
4426}
4427
4428/// \brief Carefully grab the subprogram from a local scope.
4429///
4430/// This carefully grabs the subprogram from a local scope, avoiding the
4431/// built-in assertions that would typically fire.
4432static DISubprogram *getSubprogram(Metadata *LocalScope) {
4433 if (!LocalScope)
4434 return nullptr;
4435
4436 if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4437 return SP;
4438
4439 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4440 return getSubprogram(LB->getRawScope());
4441
4442 // Just return null; broken scope chains are checked elsewhere.
4443 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope")(static_cast <bool> (!isa<DILocalScope>(LocalScope
) && "Unknown type of local scope") ? void (0) : __assert_fail
("!isa<DILocalScope>(LocalScope) && \"Unknown type of local scope\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/lib/IR/Verifier.cpp"
, 4443, __extension__ __PRETTY_FUNCTION__))
;
4444 return nullptr;
4445}
4446
4447void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4448 unsigned NumOperands = FPI.getNumArgOperands();
4449 Assert(((NumOperands == 5 && FPI.isTernaryOp()) ||do { if (!(((NumOperands == 5 && FPI.isTernaryOp()) ||
(NumOperands == 3 && FPI.isUnaryOp()) || (NumOperands
== 4)))) { CheckFailed("invalid arguments for constrained FP intrinsic"
, &FPI); return; } } while (false)
4450 (NumOperands == 3 && FPI.isUnaryOp()) || (NumOperands == 4)),do { if (!(((NumOperands == 5 && FPI.isTernaryOp()) ||
(NumOperands == 3 && FPI.isUnaryOp()) || (NumOperands
== 4)))) { CheckFailed("invalid arguments for constrained FP intrinsic"
, &FPI); return; } } while (false)
4451 "invalid arguments for constrained FP intrinsic", &FPI)do { if (!(((NumOperands == 5 && FPI.isTernaryOp()) ||
(NumOperands == 3 && FPI.isUnaryOp()) || (NumOperands
== 4)))) { CheckFailed("invalid arguments for constrained FP intrinsic"
, &FPI); return; } } while (false)
;
4452 Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-1)),do { if (!(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands
-1)))) { CheckFailed("invalid exception behavior argument", &
FPI); return; } } while (false)
4453 "invalid exception behavior argument", &FPI)do { if (!(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands
-1)))) { CheckFailed("invalid exception behavior argument", &
FPI); return; } } while (false)
;
4454 Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-2)),do { if (!(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands
-2)))) { CheckFailed("invalid rounding mode argument", &FPI
); return; } } while (false)
4455 "invalid rounding mode argument", &FPI)do { if (!(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands
-2)))) { CheckFailed("invalid rounding mode argument", &FPI
); return; } } while (false)
;
4456 Assert(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid,do { if (!(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid
)) { CheckFailed("invalid rounding mode argument", &FPI);
return; } } while (false)
4457 "invalid rounding mode argument", &FPI)do { if (!(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid
)) { CheckFailed("invalid rounding mode argument", &FPI);
return; } } while (false)
;
4458 Assert(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic::ebInvalid,do { if (!(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic
::ebInvalid)) { CheckFailed("invalid exception behavior argument"
, &FPI); return; } } while (false)
4459 "invalid exception behavior argument", &FPI)do { if (!(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic
::ebInvalid)) { CheckFailed("invalid exception behavior argument"
, &FPI); return; } } while (false)
;
4460}
4461
4462void Verifier::visitDbgIntrinsic(StringRef Kind, DbgInfoIntrinsic &DII) {
4463 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4464 AssertDI(isa<ValueAsMetadata>(MD) ||do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
4465 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
4466 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD)do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
;
4467 AssertDI(isa<DILocalVariable>(DII.getRawVariable()),do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
4468 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
4469 DII.getRawVariable())do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
;
4470 AssertDI(isa<DIExpression>(DII.getRawExpression()),do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
4471 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
4472 DII.getRawExpression())do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
;
4473
4474 // Ignore broken !dbg attachments; they're checked elsewhere.
4475 if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4476 if (!isa<DILocation>(N))
4477 return;
4478
4479 BasicBlock *BB = DII.getParent();
4480 Function *F = BB ? BB->getParent() : nullptr;
4481
4482 // The scopes for variables and !dbg attachments must agree.
4483 DILocalVariable *Var = DII.getVariable();
4484 DILocation *Loc = DII.getDebugLoc();
4485 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",do { if (!(Loc)) { CheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DII, BB, F); return; } } while (false)
4486 &DII, BB, F)do { if (!(Loc)) { CheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DII, BB, F); return; } } while (false)
;
4487
4488 DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4489 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4490 if (!VarSP || !LocSP)
4491 return; // Broken scope chains are checked elsewhere.
4492
4493 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4494 " variable and !dbg attachment",do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4495 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4496 Loc->getScope()->getSubprogram())do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
;
4497
4498 verifyFnArgs(DII);
4499}
4500
4501static uint64_t getVariableSize(const DIVariable &V) {
4502 // Be careful of broken types (checked elsewhere).
4503 const Metadata *RawType = V.getRawType();
4504 while (RawType) {
4505 // Try to get the size directly.
4506 if (auto *T = dyn_cast<DIType>(RawType))
4507 if (uint64_t Size = T->getSizeInBits())
4508 return Size;
4509
4510 if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
4511 // Look at the base type.
4512 RawType = DT->getRawBaseType();
4513 continue;
4514 }
4515
4516 // Missing type or size.
4517 break;
4518 }
4519
4520 // Fail gracefully.
4521 return 0;
4522}
4523
4524void Verifier::verifyFragmentExpression(const DbgInfoIntrinsic &I) {
4525 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
4526 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
4527
4528 // We don't know whether this intrinsic verified correctly.
4529 if (!V || !E || !E->isValid())
4530 return;
4531
4532 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
4533 auto Fragment = E->getFragmentInfo();
4534 if (!Fragment)
4535 return;
4536
4537 // The frontend helps out GDB by emitting the members of local anonymous
4538 // unions as artificial local variables with shared storage. When SROA splits
4539 // the storage for artificial local variables that are smaller than the entire
4540 // union, the overhang piece will be outside of the allotted space for the
4541 // variable and this check fails.
4542 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4543 if (V->isArtificial())
4544 return;
4545
4546 verifyFragmentExpression(*V, *Fragment, &I);
4547}
4548
4549template <typename ValueOrMetadata>
4550void Verifier::verifyFragmentExpression(const DIVariable &V,
4551 DIExpression::FragmentInfo Fragment,
4552 ValueOrMetadata *Desc) {
4553 // If there's no size, the type is broken, but that should be checked
4554 // elsewhere.
4555 uint64_t VarSize = getVariableSize(V);
4556 if (!VarSize)
4557 return;
4558
4559 unsigned FragSize = Fragment.SizeInBits;
4560 unsigned FragOffset = Fragment.OffsetInBits;
4561 AssertDI(FragSize + FragOffset <= VarSize,do { if (!(FragSize + FragOffset <= VarSize)) { DebugInfoCheckFailed
("fragment is larger than or outside of variable", Desc, &
V); return; } } while (false)
4562 "fragment is larger than or outside of variable", Desc, &V)do { if (!(FragSize + FragOffset <= VarSize)) { DebugInfoCheckFailed
("fragment is larger than or outside of variable", Desc, &
V); return; } } while (false)
;
4563 AssertDI(FragSize != VarSize, "fragment covers entire variable", Desc, &V)do { if (!(FragSize != VarSize)) { DebugInfoCheckFailed("fragment covers entire variable"
, Desc, &V); return; } } while (false)
;
4564}
4565
4566void Verifier::verifyFnArgs(const DbgInfoIntrinsic &I) {
4567 // This function does not take the scope of noninlined function arguments into
4568 // account. Don't run it if current function is nodebug, because it may
4569 // contain inlined debug intrinsics.
4570 if (!HasDebugInfo)
4571 return;
4572
4573 // For performance reasons only check non-inlined ones.
4574 if (I.getDebugLoc()->getInlinedAt())
4575 return;
4576
4577 DILocalVariable *Var = I.getVariable();
4578 AssertDI(Var, "dbg intrinsic without variable")do { if (!(Var)) { DebugInfoCheckFailed("dbg intrinsic without variable"
); return; } } while (false)
;
4579
4580 unsigned ArgNo = Var->getArg();
4581 if (!ArgNo)
4582 return;
4583
4584 // Verify there are no duplicate function argument debug info entries.
4585 // These will cause hard-to-debug assertions in the DWARF backend.
4586 if (DebugFnArgs.size() < ArgNo)
4587 DebugFnArgs.resize(ArgNo, nullptr);
4588
4589 auto *Prev = DebugFnArgs[ArgNo - 1];
4590 DebugFnArgs[ArgNo - 1] = Var;
4591 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,do { if (!(!Prev || (Prev == Var))) { DebugInfoCheckFailed("conflicting debug info for argument"
, &I, Prev, Var); return; } } while (false)
4592 Prev, Var)do { if (!(!Prev || (Prev == Var))) { DebugInfoCheckFailed("conflicting debug info for argument"
, &I, Prev, Var); return; } } while (false)
;
4593}
4594
4595void Verifier::verifyCompileUnits() {
4596 // When more than one Module is imported into the same context, such as during
4597 // an LTO build before linking the modules, ODR type uniquing may cause types
4598 // to point to a different CU. This check does not make sense in this case.
4599 if (M.getContext().isODRUniquingDebugTypes())
4600 return;
4601 auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
4602 SmallPtrSet<const Metadata *, 2> Listed;
4603 if (CUs)
4604 Listed.insert(CUs->op_begin(), CUs->op_end());
4605 for (auto *CU : CUVisited)
4606 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU)do { if (!(Listed.count(CU))) { DebugInfoCheckFailed("DICompileUnit not listed in llvm.dbg.cu"
, CU); return; } } while (false)
;
4607 CUVisited.clear();
4608}
4609
4610void Verifier::verifyDeoptimizeCallingConvs() {
4611 if (DeoptimizeDeclarations.empty())
4612 return;
4613
4614 const Function *First = DeoptimizeDeclarations[0];
4615 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4616 Assert(First->getCallingConv() == F->getCallingConv(),do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
4617 "All llvm.experimental.deoptimize declarations must have the same "do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
4618 "calling convention",do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
4619 First, F)do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
;
4620 }
4621}
4622
4623//===----------------------------------------------------------------------===//
4624// Implement the public interfaces to this file...
4625//===----------------------------------------------------------------------===//
4626
4627bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
4628 Function &F = const_cast<Function &>(f);
4629
4630 // Don't use a raw_null_ostream. Printing IR is expensive.
4631 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
4632
4633 // Note that this function's return value is inverted from what you would
4634 // expect of a function called "verify".
4635 return !V.verify(F);
4636}
4637
4638bool llvm::verifyModule(const Module &M, raw_ostream *OS,
4639 bool *BrokenDebugInfo) {
4640 // Don't use a raw_null_ostream. Printing IR is expensive.
4641 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
4642
4643 bool Broken = false;
4644 for (const Function &F : M)
4645 Broken |= !V.verify(F);
4646
4647 Broken |= !V.verify();
4648 if (BrokenDebugInfo)
4649 *BrokenDebugInfo = V.hasBrokenDebugInfo();
4650 // Note that this function's return value is inverted from what you would
4651 // expect of a function called "verify".
4652 return Broken;
4653}
4654
4655namespace {
4656
4657struct VerifierLegacyPass : public FunctionPass {
4658 static char ID;
4659
4660 std::unique_ptr<Verifier> V;
4661 bool FatalErrors = true;
4662
4663 VerifierLegacyPass() : FunctionPass(ID) {
4664 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4665 }
4666 explicit VerifierLegacyPass(bool FatalErrors)
4667 : FunctionPass(ID),
4668 FatalErrors(FatalErrors) {
4669 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4670 }
4671
4672 bool doInitialization(Module &M) override {
4673 V = llvm::make_unique<Verifier>(
4674 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
4675 return false;
4676 }
4677
4678 bool runOnFunction(Function &F) override {
4679 if (!V->verify(F) && FatalErrors)
4680 report_fatal_error("Broken function found, compilation aborted!");
4681
4682 return false;
4683 }
4684
4685 bool doFinalization(Module &M) override {
4686 bool HasErrors = false;
4687 for (Function &F : M)
4688 if (F.isDeclaration())
4689 HasErrors |= !V->verify(F);
4690
4691 HasErrors |= !V->verify();
4692 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
4693 report_fatal_error("Broken module found, compilation aborted!");
4694 return false;
4695 }
4696
4697 void getAnalysisUsage(AnalysisUsage &AU) const override {
4698 AU.setPreservesAll();
4699 }
4700};
4701
4702} // end anonymous namespace
4703
4704/// Helper to issue failure from the TBAA verification
4705template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
4706 if (Diagnostic)
4707 return Diagnostic->CheckFailed(Args...);
4708}
4709
4710#define AssertTBAA(C, ...)do { if (!(C)) { CheckFailed(...); return false; } } while (false
)
\
4711 do { \
4712 if (!(C)) { \
4713 CheckFailed(__VA_ARGS__); \
4714 return false; \
4715 } \
4716 } while (false)
4717
4718/// Verify that \p BaseNode can be used as the "base type" in the struct-path
4719/// TBAA scheme. This means \p BaseNode is either a scalar node, or a
4720/// struct-type node describing an aggregate data structure (like a struct).
4721TBAAVerifier::TBAABaseNodeSummary
4722TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode) {
4723 if (BaseNode->getNumOperands() < 2) {
4724 CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
4725 return {true, ~0u};
4726 }
4727
4728 auto Itr = TBAABaseNodes.find(BaseNode);
4729 if (Itr != TBAABaseNodes.end())
4730 return Itr->second;
4731
4732 auto Result = verifyTBAABaseNodeImpl(I, BaseNode);
4733 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
4734 (void)InsertResult;
4735 assert(InsertResult.second && "We just checked!")(static_cast <bool> (InsertResult.second && "We just checked!"
) ? void (0) : __assert_fail ("InsertResult.second && \"We just checked!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/lib/IR/Verifier.cpp"
, 4735, __extension__ __PRETTY_FUNCTION__))
;
4736 return Result;
4737}
4738
4739TBAAVerifier::TBAABaseNodeSummary
4740TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode) {
4741 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
4742
4743 if (BaseNode->getNumOperands() == 2) {
4744 // Scalar nodes can only be accessed at offset 0.
4745 return isValidScalarTBAANode(BaseNode)
4746 ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
4747 : InvalidNode;
4748 }
4749
4750 if (BaseNode->getNumOperands() % 2 != 1) {
4751 CheckFailed("Struct tag nodes must have an odd number of operands!",
4752 BaseNode);
4753 return InvalidNode;
4754 }
4755
4756 if (!isa<MDString>(BaseNode->getOperand(0))) {
4757 CheckFailed("Struct tag nodes have a string as their first operand",
4758 BaseNode);
4759 return InvalidNode;
4760 }
4761
4762 bool Failed = false;
4763
4764 Optional<APInt> PrevOffset;
4765 unsigned BitWidth = ~0u;
4766
4767 // We've already checked that BaseNode is not a degenerate root node with one
4768 // operand in \c verifyTBAABaseNode, so this loop should run at least once.
4769 for (unsigned Idx = 1; Idx < BaseNode->getNumOperands(); Idx += 2) {
4770 const MDOperand &FieldTy = BaseNode->getOperand(Idx);
4771 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
4772 if (!isa<MDNode>(FieldTy)) {
4773 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
4774 Failed = true;
4775 continue;
4776 }
4777
4778 auto *OffsetEntryCI =
4779 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
4780 if (!OffsetEntryCI) {
4781 CheckFailed("Offset entries must be constants!", &I, BaseNode);
4782 Failed = true;
4783 continue;
4784 }
4785
4786 if (BitWidth == ~0u)
4787 BitWidth = OffsetEntryCI->getBitWidth();
4788
4789 if (OffsetEntryCI->getBitWidth() != BitWidth) {
4790 CheckFailed(
4791 "Bitwidth between the offsets and struct type entries must match", &I,
4792 BaseNode);
4793 Failed = true;
4794 continue;
4795 }
4796
4797 // NB! As far as I can tell, we generate a non-strictly increasing offset
4798 // sequence only from structs that have zero size bit fields. When
4799 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
4800 // pick the field lexically the latest in struct type metadata node. This
4801 // mirrors the actual behavior of the alias analysis implementation.
4802 bool IsAscending =
4803 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
4804
4805 if (!IsAscending) {
4806 CheckFailed("Offsets must be increasing!", &I, BaseNode);
4807 Failed = true;
4808 }
4809
4810 PrevOffset = OffsetEntryCI->getValue();
4811 }
4812
4813 return Failed ? InvalidNode
4814 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
4815}
4816
4817static bool IsRootTBAANode(const MDNode *MD) {
4818 return MD->getNumOperands() < 2;
4819}
4820
4821static bool IsScalarTBAANodeImpl(const MDNode *MD,
4822 SmallPtrSetImpl<const MDNode *> &Visited) {
4823 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
4824 return false;
4825
4826 if (!isa<MDString>(MD->getOperand(0)))
4827 return false;
4828
4829 if (MD->getNumOperands() == 3) {
4830 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
4831 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
4832 return false;
4833 }
4834
4835 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4836 return Parent && Visited.insert(Parent).second &&
4837 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
4838}
4839
4840bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
4841 auto ResultIt = TBAAScalarNodes.find(MD);
4842 if (ResultIt != TBAAScalarNodes.end())
4843 return ResultIt->second;
4844
4845 SmallPtrSet<const MDNode *, 4> Visited;
4846 bool Result = IsScalarTBAANodeImpl(MD, Visited);
4847 auto InsertResult = TBAAScalarNodes.insert({MD, Result});
4848 (void)InsertResult;
4849 assert(InsertResult.second && "Just checked!")(static_cast <bool> (InsertResult.second && "Just checked!"
) ? void (0) : __assert_fail ("InsertResult.second && \"Just checked!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/lib/IR/Verifier.cpp"
, 4849, __extension__ __PRETTY_FUNCTION__))
;
4850
4851 return Result;
4852}
4853
4854/// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
4855/// Offset in place to be the offset within the field node returned.
4856///
4857/// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
4858MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
4859 const MDNode *BaseNode,
4860 APInt &Offset) {
4861 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!")(static_cast <bool> (BaseNode->getNumOperands() >=
2 && "Invalid base node!") ? void (0) : __assert_fail
("BaseNode->getNumOperands() >= 2 && \"Invalid base node!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/lib/IR/Verifier.cpp"
, 4861, __extension__ __PRETTY_FUNCTION__))
;
4862
4863 // Scalar nodes have only one possible "field" -- their parent in the access
4864 // hierarchy. Offset must be zero at this point, but our caller is supposed
4865 // to Assert that.
4866 if (BaseNode->getNumOperands() == 2)
4867 return cast<MDNode>(BaseNode->getOperand(1));
4868
4869 for (unsigned Idx = 1; Idx < BaseNode->getNumOperands(); Idx += 2) {
4870 auto *OffsetEntryCI =
4871 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
4872 if (OffsetEntryCI->getValue().ugt(Offset)) {
4873 if (Idx == 1) {
4874 CheckFailed("Could not find TBAA parent in struct type node", &I,
4875 BaseNode, &Offset);
4876 return nullptr;
4877 }
4878
4879 auto *PrevOffsetEntryCI =
4880 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx - 1));
4881 Offset -= PrevOffsetEntryCI->getValue();
4882 return cast<MDNode>(BaseNode->getOperand(Idx - 2));
4883 }
4884 }
4885
4886 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
4887 BaseNode->getOperand(BaseNode->getNumOperands() - 1));
4888
4889 Offset -= LastOffsetEntryCI->getValue();
4890 return cast<MDNode>(BaseNode->getOperand(BaseNode->getNumOperands() - 2));
4891}
4892
4893bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
4894 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("TBAA is only for loads, stores and calls!", &I); return
false; } } while (false)
4895 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("TBAA is only for loads, stores and calls!", &I); return
false; } } while (false)
4896 isa<AtomicCmpXchgInst>(I),do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("TBAA is only for loads, stores and calls!", &I); return
false; } } while (false)
4897 "TBAA is only for loads, stores and calls!", &I)do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("TBAA is only for loads, stores and calls!", &I); return
false; } } while (false)
;
4898
4899 bool IsStructPathTBAA =
4900 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
4901
4902 AssertTBAA(do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
4903 IsStructPathTBAA,do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
4904 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I)do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
;
4905
4906 AssertTBAA(MD->getNumOperands() < 5,do { if (!(MD->getNumOperands() < 5)) { CheckFailed("Struct tag metadata must have either 3 or 4 operands"
, &I, MD); return false; } } while (false)
4907 "Struct tag metadata must have either 3 or 4 operands", &I, MD)do { if (!(MD->getNumOperands() < 5)) { CheckFailed("Struct tag metadata must have either 3 or 4 operands"
, &I, MD); return false; } } while (false)
;
4908
4909 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
4910 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4911
4912 if (MD->getNumOperands() == 4) {
4913 auto *IsImmutableCI =
4914 mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(3));
4915 AssertTBAA(IsImmutableCI,do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
4916 "Immutability tag on struct tag metadata must be a constant", &I,do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
4917 MD)do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
;
4918 AssertTBAA(do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
4919 IsImmutableCI->isZero() || IsImmutableCI->isOne(),do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
4920 "Immutability part of the struct tag metadata must be either 0 or 1",do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
4921 &I, MD)do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
;
4922 }
4923
4924 AssertTBAA(BaseNode && AccessType,do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
4925 "Malformed struct tag metadata: base and access-type "do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
4926 "should be non-null and point to Metadata nodes",do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
4927 &I, MD, BaseNode, AccessType)do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
;
4928
4929 AssertTBAA(isValidScalarTBAANode(AccessType),do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
4930 "Access type node must be a valid scalar type", &I, MD,do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
4931 AccessType)do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
;
4932
4933 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
4934 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD)do { if (!(OffsetCI)) { CheckFailed("Offset must be constant integer"
, &I, MD); return false; } } while (false)
;
4935
4936 APInt Offset = OffsetCI->getValue();
4937 bool SeenAccessTypeInPath = false;
4938
4939 SmallPtrSet<MDNode *, 4> StructPath;
4940
4941 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
4942 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset)) {
4943 if (!StructPath.insert(BaseNode).second) {
4944 CheckFailed("Cycle detected in struct path", &I, MD);
4945 return false;
4946 }
4947
4948 bool Invalid;
4949 unsigned BaseNodeBitWidth;
4950 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode);
4951
4952 // If the base node is invalid in itself, then we've already printed all the
4953 // errors we wanted to print.
4954 if (Invalid)
4955 return false;
4956
4957 SeenAccessTypeInPath |= BaseNode == AccessType;
4958
4959 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
4960 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",do { if (!(Offset == 0)) { CheckFailed("Offset not zero at the point of scalar access"
, &I, MD, &Offset); return false; } } while (false)
4961 &I, MD, &Offset)do { if (!(Offset == 0)) { CheckFailed("Offset not zero at the point of scalar access"
, &I, MD, &Offset); return false; } } while (false)
;
4962
4963 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
4964 (BaseNodeBitWidth == 0 && Offset == 0),do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
4965 "Access bit-width not the same as description bit-width", &I, MD,do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
4966 BaseNodeBitWidth, Offset.getBitWidth())do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
;
4967 }
4968
4969 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",do { if (!(SeenAccessTypeInPath)) { CheckFailed("Did not see access type in access path!"
, &I, MD); return false; } } while (false)
4970 &I, MD)do { if (!(SeenAccessTypeInPath)) { CheckFailed("Did not see access type in access path!"
, &I, MD); return false; } } while (false)
;
4971 return true;
4972}
4973
4974char VerifierLegacyPass::ID = 0;
4975INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)static void *initializeVerifierLegacyPassPassOnce(PassRegistry
&Registry) { PassInfo *PI = new PassInfo( "Module Verifier"
, "verify", &VerifierLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<VerifierLegacyPass>), false, false); Registry
.registerPass(*PI, true); return PI; } static llvm::once_flag
InitializeVerifierLegacyPassPassFlag; void llvm::initializeVerifierLegacyPassPass
(PassRegistry &Registry) { llvm::call_once(InitializeVerifierLegacyPassPassFlag
, initializeVerifierLegacyPassPassOnce, std::ref(Registry)); }
4976
4977FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
4978 return new VerifierLegacyPass(FatalErrors);
4979}
4980
4981AnalysisKey VerifierAnalysis::Key;
4982VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
4983 ModuleAnalysisManager &) {
4984 Result Res;
4985 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
4986 return Res;
4987}
4988
4989VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
4990 FunctionAnalysisManager &) {
4991 return { llvm::verifyFunction(F, &dbgs()), false };
4992}
4993
4994PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
4995 auto Res = AM.getResult<VerifierAnalysis>(M);
4996 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
4997 report_fatal_error("Broken module found, compilation aborted!");
4998
4999 return PreservedAnalyses::all();
5000}
5001
5002PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
5003 auto res = AM.getResult<VerifierAnalysis>(F);
5004 if (res.IRBroken && FatalErrors)
5005 report_fatal_error("Broken function found, compilation aborted!");
5006
5007 return PreservedAnalyses::all();
5008}