Bug Summary

File:lib/Transforms/IPO/WholeProgramDevirt.cpp
Warning:line 966, column 20
Access to field 'TheKind' results in a dereference of a null pointer (loaded from variable 'Res')

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name WholeProgramDevirt.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn326551/build-llvm/lib/Transforms/IPO -I /build/llvm-toolchain-snapshot-7~svn326551/lib/Transforms/IPO -I /build/llvm-toolchain-snapshot-7~svn326551/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn326551/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn326551/build-llvm/lib/Transforms/IPO -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-checker optin.performance.Padding -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-03-02-155150-1477-1 -x c++ /build/llvm-toolchain-snapshot-7~svn326551/lib/Transforms/IPO/WholeProgramDevirt.cpp
1//===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass implements whole program optimization of virtual calls in cases
11// where we know (via !type metadata) that the list of callees is fixed. This
12// includes the following:
13// - Single implementation devirtualization: if a virtual call has a single
14// possible callee, replace all calls with a direct call to that callee.
15// - Virtual constant propagation: if the virtual function's return type is an
16// integer <=64 bits and all possible callees are readnone, for each class and
17// each list of constant arguments: evaluate the function, store the return
18// value alongside the virtual table, and rewrite each virtual call as a load
19// from the virtual table.
20// - Uniform return value optimization: if the conditions for virtual constant
21// propagation hold and each function returns the same constant value, replace
22// each virtual call with that constant.
23// - Unique return value optimization for i1 return values: if the conditions
24// for virtual constant propagation hold and a single vtable's function
25// returns 0, or a single vtable's function returns 1, replace each virtual
26// call with a comparison of the vptr against that vtable's address.
27//
28// This pass is intended to be used during the regular and thin LTO pipelines.
29// During regular LTO, the pass determines the best optimization for each
30// virtual call and applies the resolutions directly to virtual calls that are
31// eligible for virtual call optimization (i.e. calls that use either of the
32// llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics). During
33// ThinLTO, the pass operates in two phases:
34// - Export phase: this is run during the thin link over a single merged module
35// that contains all vtables with !type metadata that participate in the link.
36// The pass computes a resolution for each virtual call and stores it in the
37// type identifier summary.
38// - Import phase: this is run during the thin backends over the individual
39// modules. The pass applies the resolutions previously computed during the
40// import phase to each eligible virtual call.
41//
42//===----------------------------------------------------------------------===//
43
44#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
45#include "llvm/ADT/ArrayRef.h"
46#include "llvm/ADT/DenseMap.h"
47#include "llvm/ADT/DenseMapInfo.h"
48#include "llvm/ADT/DenseSet.h"
49#include "llvm/ADT/MapVector.h"
50#include "llvm/ADT/SmallVector.h"
51#include "llvm/ADT/iterator_range.h"
52#include "llvm/Analysis/AliasAnalysis.h"
53#include "llvm/Analysis/BasicAliasAnalysis.h"
54#include "llvm/Analysis/OptimizationRemarkEmitter.h"
55#include "llvm/Analysis/TypeMetadataUtils.h"
56#include "llvm/IR/CallSite.h"
57#include "llvm/IR/Constants.h"
58#include "llvm/IR/DataLayout.h"
59#include "llvm/IR/DebugLoc.h"
60#include "llvm/IR/DerivedTypes.h"
61#include "llvm/IR/Function.h"
62#include "llvm/IR/GlobalAlias.h"
63#include "llvm/IR/GlobalVariable.h"
64#include "llvm/IR/IRBuilder.h"
65#include "llvm/IR/InstrTypes.h"
66#include "llvm/IR/Instruction.h"
67#include "llvm/IR/Instructions.h"
68#include "llvm/IR/Intrinsics.h"
69#include "llvm/IR/LLVMContext.h"
70#include "llvm/IR/Metadata.h"
71#include "llvm/IR/Module.h"
72#include "llvm/IR/ModuleSummaryIndexYAML.h"
73#include "llvm/Pass.h"
74#include "llvm/PassRegistry.h"
75#include "llvm/PassSupport.h"
76#include "llvm/Support/Casting.h"
77#include "llvm/Support/Error.h"
78#include "llvm/Support/FileSystem.h"
79#include "llvm/Support/MathExtras.h"
80#include "llvm/Transforms/IPO.h"
81#include "llvm/Transforms/IPO/FunctionAttrs.h"
82#include "llvm/Transforms/Utils/Evaluator.h"
83#include <algorithm>
84#include <cstddef>
85#include <map>
86#include <set>
87#include <string>
88
89using namespace llvm;
90using namespace wholeprogramdevirt;
91
92#define DEBUG_TYPE"wholeprogramdevirt" "wholeprogramdevirt"
93
94static cl::opt<PassSummaryAction> ClSummaryAction(
95 "wholeprogramdevirt-summary-action",
96 cl::desc("What to do with the summary when running this pass"),
97 cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing")llvm::cl::OptionEnumValue { "none", int(PassSummaryAction::None
), "Do nothing" }
,
98 clEnumValN(PassSummaryAction::Import, "import",llvm::cl::OptionEnumValue { "import", int(PassSummaryAction::
Import), "Import typeid resolutions from summary and globals"
}
99 "Import typeid resolutions from summary and globals")llvm::cl::OptionEnumValue { "import", int(PassSummaryAction::
Import), "Import typeid resolutions from summary and globals"
}
,
100 clEnumValN(PassSummaryAction::Export, "export",llvm::cl::OptionEnumValue { "export", int(PassSummaryAction::
Export), "Export typeid resolutions to summary and globals" }
101 "Export typeid resolutions to summary and globals")llvm::cl::OptionEnumValue { "export", int(PassSummaryAction::
Export), "Export typeid resolutions to summary and globals" }
),
102 cl::Hidden);
103
104static cl::opt<std::string> ClReadSummary(
105 "wholeprogramdevirt-read-summary",
106 cl::desc("Read summary from given YAML file before running pass"),
107 cl::Hidden);
108
109static cl::opt<std::string> ClWriteSummary(
110 "wholeprogramdevirt-write-summary",
111 cl::desc("Write summary to given YAML file after running pass"),
112 cl::Hidden);
113
114// Find the minimum offset that we may store a value of size Size bits at. If
115// IsAfter is set, look for an offset before the object, otherwise look for an
116// offset after the object.
117uint64_t
118wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
119 bool IsAfter, uint64_t Size) {
120 // Find a minimum offset taking into account only vtable sizes.
121 uint64_t MinByte = 0;
122 for (const VirtualCallTarget &Target : Targets) {
123 if (IsAfter)
124 MinByte = std::max(MinByte, Target.minAfterBytes());
125 else
126 MinByte = std::max(MinByte, Target.minBeforeBytes());
127 }
128
129 // Build a vector of arrays of bytes covering, for each target, a slice of the
130 // used region (see AccumBitVector::BytesUsed in
131 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
132 // this aligns the used regions to start at MinByte.
133 //
134 // In this example, A, B and C are vtables, # is a byte already allocated for
135 // a virtual function pointer, AAAA... (etc.) are the used regions for the
136 // vtables and Offset(X) is the value computed for the Offset variable below
137 // for X.
138 //
139 // Offset(A)
140 // | |
141 // |MinByte
142 // A: ################AAAAAAAA|AAAAAAAA
143 // B: ########BBBBBBBBBBBBBBBB|BBBB
144 // C: ########################|CCCCCCCCCCCCCCCC
145 // | Offset(B) |
146 //
147 // This code produces the slices of A, B and C that appear after the divider
148 // at MinByte.
149 std::vector<ArrayRef<uint8_t>> Used;
150 for (const VirtualCallTarget &Target : Targets) {
151 ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
152 : Target.TM->Bits->Before.BytesUsed;
153 uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
154 : MinByte - Target.minBeforeBytes();
155
156 // Disregard used regions that are smaller than Offset. These are
157 // effectively all-free regions that do not need to be checked.
158 if (VTUsed.size() > Offset)
159 Used.push_back(VTUsed.slice(Offset));
160 }
161
162 if (Size == 1) {
163 // Find a free bit in each member of Used.
164 for (unsigned I = 0;; ++I) {
165 uint8_t BitsUsed = 0;
166 for (auto &&B : Used)
167 if (I < B.size())
168 BitsUsed |= B[I];
169 if (BitsUsed != 0xff)
170 return (MinByte + I) * 8 +
171 countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
172 }
173 } else {
174 // Find a free (Size/8) byte region in each member of Used.
175 // FIXME: see if alignment helps.
176 for (unsigned I = 0;; ++I) {
177 for (auto &&B : Used) {
178 unsigned Byte = 0;
179 while ((I + Byte) < B.size() && Byte < (Size / 8)) {
180 if (B[I + Byte])
181 goto NextI;
182 ++Byte;
183 }
184 }
185 return (MinByte + I) * 8;
186 NextI:;
187 }
188 }
189}
190
191void wholeprogramdevirt::setBeforeReturnValues(
192 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
193 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
194 if (BitWidth == 1)
195 OffsetByte = -(AllocBefore / 8 + 1);
196 else
197 OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
198 OffsetBit = AllocBefore % 8;
199
200 for (VirtualCallTarget &Target : Targets) {
201 if (BitWidth == 1)
202 Target.setBeforeBit(AllocBefore);
203 else
204 Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
205 }
206}
207
208void wholeprogramdevirt::setAfterReturnValues(
209 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
210 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
211 if (BitWidth == 1)
212 OffsetByte = AllocAfter / 8;
213 else
214 OffsetByte = (AllocAfter + 7) / 8;
215 OffsetBit = AllocAfter % 8;
216
217 for (VirtualCallTarget &Target : Targets) {
218 if (BitWidth == 1)
219 Target.setAfterBit(AllocAfter);
220 else
221 Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
222 }
223}
224
225VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM)
226 : Fn(Fn), TM(TM),
227 IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {}
228
229namespace {
230
231// A slot in a set of virtual tables. The TypeID identifies the set of virtual
232// tables, and the ByteOffset is the offset in bytes from the address point to
233// the virtual function pointer.
234struct VTableSlot {
235 Metadata *TypeID;
236 uint64_t ByteOffset;
237};
238
239} // end anonymous namespace
240
241namespace llvm {
242
243template <> struct DenseMapInfo<VTableSlot> {
244 static VTableSlot getEmptyKey() {
245 return {DenseMapInfo<Metadata *>::getEmptyKey(),
246 DenseMapInfo<uint64_t>::getEmptyKey()};
247 }
248 static VTableSlot getTombstoneKey() {
249 return {DenseMapInfo<Metadata *>::getTombstoneKey(),
250 DenseMapInfo<uint64_t>::getTombstoneKey()};
251 }
252 static unsigned getHashValue(const VTableSlot &I) {
253 return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
254 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
255 }
256 static bool isEqual(const VTableSlot &LHS,
257 const VTableSlot &RHS) {
258 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
259 }
260};
261
262} // end namespace llvm
263
264namespace {
265
266// A virtual call site. VTable is the loaded virtual table pointer, and CS is
267// the indirect virtual call.
268struct VirtualCallSite {
269 Value *VTable;
270 CallSite CS;
271
272 // If non-null, this field points to the associated unsafe use count stored in
273 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
274 // of that field for details.
275 unsigned *NumUnsafeUses;
276
277 void
278 emitRemark(const StringRef OptName, const StringRef TargetName,
279 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
280 Function *F = CS.getCaller();
281 DebugLoc DLoc = CS->getDebugLoc();
282 BasicBlock *Block = CS.getParent();
283
284 using namespace ore;
285 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE"wholeprogramdevirt", OptName, DLoc, Block)
286 << NV("Optimization", OptName)
287 << ": devirtualized a call to "
288 << NV("FunctionName", TargetName));
289 }
290
291 void replaceAndErase(
292 const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
293 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
294 Value *New) {
295 if (RemarksEnabled)
296 emitRemark(OptName, TargetName, OREGetter);
297 CS->replaceAllUsesWith(New);
298 if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
299 BranchInst::Create(II->getNormalDest(), CS.getInstruction());
300 II->getUnwindDest()->removePredecessor(II->getParent());
301 }
302 CS->eraseFromParent();
303 // This use is no longer unsafe.
304 if (NumUnsafeUses)
305 --*NumUnsafeUses;
306 }
307};
308
309// Call site information collected for a specific VTableSlot and possibly a list
310// of constant integer arguments. The grouping by arguments is handled by the
311// VTableSlotInfo class.
312struct CallSiteInfo {
313 /// The set of call sites for this slot. Used during regular LTO and the
314 /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
315 /// call sites that appear in the merged module itself); in each of these
316 /// cases we are directly operating on the call sites at the IR level.
317 std::vector<VirtualCallSite> CallSites;
318
319 // These fields are used during the export phase of ThinLTO and reflect
320 // information collected from function summaries.
321
322 /// Whether any function summary contains an llvm.assume(llvm.type.test) for
323 /// this slot.
324 bool SummaryHasTypeTestAssumeUsers;
325
326 /// CFI-specific: a vector containing the list of function summaries that use
327 /// the llvm.type.checked.load intrinsic and therefore will require
328 /// resolutions for llvm.type.test in order to implement CFI checks if
329 /// devirtualization was unsuccessful. If devirtualization was successful, the
330 /// pass will clear this vector by calling markDevirt(). If at the end of the
331 /// pass the vector is non-empty, we will need to add a use of llvm.type.test
332 /// to each of the function summaries in the vector.
333 std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
334
335 bool isExported() const {
336 return SummaryHasTypeTestAssumeUsers ||
337 !SummaryTypeCheckedLoadUsers.empty();
338 }
339
340 /// As explained in the comment for SummaryTypeCheckedLoadUsers.
341 void markDevirt() { SummaryTypeCheckedLoadUsers.clear(); }
342};
343
344// Call site information collected for a specific VTableSlot.
345struct VTableSlotInfo {
346 // The set of call sites which do not have all constant integer arguments
347 // (excluding "this").
348 CallSiteInfo CSInfo;
349
350 // The set of call sites with all constant integer arguments (excluding
351 // "this"), grouped by argument list.
352 std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;
353
354 void addCallSite(Value *VTable, CallSite CS, unsigned *NumUnsafeUses);
355
356private:
357 CallSiteInfo &findCallSiteInfo(CallSite CS);
358};
359
360CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallSite CS) {
361 std::vector<uint64_t> Args;
362 auto *CI = dyn_cast<IntegerType>(CS.getType());
363 if (!CI || CI->getBitWidth() > 64 || CS.arg_empty())
364 return CSInfo;
365 for (auto &&Arg : make_range(CS.arg_begin() + 1, CS.arg_end())) {
366 auto *CI = dyn_cast<ConstantInt>(Arg);
367 if (!CI || CI->getBitWidth() > 64)
368 return CSInfo;
369 Args.push_back(CI->getZExtValue());
370 }
371 return ConstCSInfo[Args];
372}
373
374void VTableSlotInfo::addCallSite(Value *VTable, CallSite CS,
375 unsigned *NumUnsafeUses) {
376 findCallSiteInfo(CS).CallSites.push_back({VTable, CS, NumUnsafeUses});
377}
378
379struct DevirtModule {
380 Module &M;
381 function_ref<AAResults &(Function &)> AARGetter;
382
383 ModuleSummaryIndex *ExportSummary;
384 const ModuleSummaryIndex *ImportSummary;
385
386 IntegerType *Int8Ty;
387 PointerType *Int8PtrTy;
388 IntegerType *Int32Ty;
389 IntegerType *Int64Ty;
390 IntegerType *IntPtrTy;
391
392 bool RemarksEnabled;
393 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
394
395 MapVector<VTableSlot, VTableSlotInfo> CallSlots;
396
397 // This map keeps track of the number of "unsafe" uses of a loaded function
398 // pointer. The key is the associated llvm.type.test intrinsic call generated
399 // by this pass. An unsafe use is one that calls the loaded function pointer
400 // directly. Every time we eliminate an unsafe use (for example, by
401 // devirtualizing it or by applying virtual constant propagation), we
402 // decrement the value stored in this map. If a value reaches zero, we can
403 // eliminate the type check by RAUWing the associated llvm.type.test call with
404 // true.
405 std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
406
407 DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
408 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
409 ModuleSummaryIndex *ExportSummary,
410 const ModuleSummaryIndex *ImportSummary)
411 : M(M), AARGetter(AARGetter), ExportSummary(ExportSummary),
412 ImportSummary(ImportSummary), Int8Ty(Type::getInt8Ty(M.getContext())),
413 Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
414 Int32Ty(Type::getInt32Ty(M.getContext())),
415 Int64Ty(Type::getInt64Ty(M.getContext())),
416 IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
417 RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
418 assert(!(ExportSummary && ImportSummary))(static_cast <bool> (!(ExportSummary && ImportSummary
)) ? void (0) : __assert_fail ("!(ExportSummary && ImportSummary)"
, "/build/llvm-toolchain-snapshot-7~svn326551/lib/Transforms/IPO/WholeProgramDevirt.cpp"
, 418, __extension__ __PRETTY_FUNCTION__))
;
419 }
420
421 bool areRemarksEnabled();
422
423 void scanTypeTestUsers(Function *TypeTestFunc, Function *AssumeFunc);
424 void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
425
426 void buildTypeIdentifierMap(
427 std::vector<VTableBits> &Bits,
428 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
429 Constant *getPointerAtOffset(Constant *I, uint64_t Offset);
430 bool
431 tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
432 const std::set<TypeMemberInfo> &TypeMemberInfos,
433 uint64_t ByteOffset);
434
435 void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
436 bool &IsExported);
437 bool trySingleImplDevirt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
438 VTableSlotInfo &SlotInfo,
439 WholeProgramDevirtResolution *Res);
440
441 bool tryEvaluateFunctionsWithArgs(
442 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
443 ArrayRef<uint64_t> Args);
444
445 void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
446 uint64_t TheRetVal);
447 bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
448 CallSiteInfo &CSInfo,
449 WholeProgramDevirtResolution::ByArg *Res);
450
451 // Returns the global symbol name that is used to export information about the
452 // given vtable slot and list of arguments.
453 std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
454 StringRef Name);
455
456 bool shouldExportConstantsAsAbsoluteSymbols();
457
458 // This function is called during the export phase to create a symbol
459 // definition containing information about the given vtable slot and list of
460 // arguments.
461 void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
462 Constant *C);
463 void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
464 uint32_t Const, uint32_t &Storage);
465
466 // This function is called during the import phase to create a reference to
467 // the symbol definition created during the export phase.
468 Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
469 StringRef Name);
470 Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
471 StringRef Name, IntegerType *IntTy,
472 uint32_t Storage);
473
474 void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
475 Constant *UniqueMemberAddr);
476 bool tryUniqueRetValOpt(unsigned BitWidth,
477 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
478 CallSiteInfo &CSInfo,
479 WholeProgramDevirtResolution::ByArg *Res,
480 VTableSlot Slot, ArrayRef<uint64_t> Args);
481
482 void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
483 Constant *Byte, Constant *Bit);
484 bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
485 VTableSlotInfo &SlotInfo,
486 WholeProgramDevirtResolution *Res, VTableSlot Slot);
487
488 void rebuildGlobal(VTableBits &B);
489
490 // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
491 void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);
492
493 // If we were able to eliminate all unsafe uses for a type checked load,
494 // eliminate the associated type tests by replacing them with true.
495 void removeRedundantTypeTests();
496
497 bool run();
498
499 // Lower the module using the action and summary passed as command line
500 // arguments. For testing purposes only.
501 static bool runForTesting(
502 Module &M, function_ref<AAResults &(Function &)> AARGetter,
503 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter);
504};
505
506struct WholeProgramDevirt : public ModulePass {
507 static char ID;
508
509 bool UseCommandLine = false;
510
511 ModuleSummaryIndex *ExportSummary;
512 const ModuleSummaryIndex *ImportSummary;
513
514 WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) {
515 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
516 }
517
518 WholeProgramDevirt(ModuleSummaryIndex *ExportSummary,
519 const ModuleSummaryIndex *ImportSummary)
520 : ModulePass(ID), ExportSummary(ExportSummary),
521 ImportSummary(ImportSummary) {
522 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
523 }
524
525 bool runOnModule(Module &M) override {
526 if (skipModule(M))
527 return false;
528
529 // In the new pass manager, we can request the optimization
530 // remark emitter pass on a per-function-basis, which the
531 // OREGetter will do for us.
532 // In the old pass manager, this is harder, so we just build
533 // an optimization remark emitter on the fly, when we need it.
534 std::unique_ptr<OptimizationRemarkEmitter> ORE;
535 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
536 ORE = make_unique<OptimizationRemarkEmitter>(F);
537 return *ORE;
538 };
539
540 if (UseCommandLine)
541 return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter);
542
543 return DevirtModule(M, LegacyAARGetter(*this), OREGetter, ExportSummary,
544 ImportSummary)
545 .run();
546 }
547
548 void getAnalysisUsage(AnalysisUsage &AU) const override {
549 AU.addRequired<AssumptionCacheTracker>();
550 AU.addRequired<TargetLibraryInfoWrapperPass>();
551 }
552};
553
554} // end anonymous namespace
555
556INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt",static void *initializeWholeProgramDevirtPassOnce(PassRegistry
&Registry) {
557 "Whole program devirtualization", false, false)static void *initializeWholeProgramDevirtPassOnce(PassRegistry
&Registry) {
558INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry);
559INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry);
560INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt",PassInfo *PI = new PassInfo( "Whole program devirtualization"
, "wholeprogramdevirt", &WholeProgramDevirt::ID, PassInfo
::NormalCtor_t(callDefaultCtor<WholeProgramDevirt>), false
, false); Registry.registerPass(*PI, true); return PI; } static
llvm::once_flag InitializeWholeProgramDevirtPassFlag; void llvm
::initializeWholeProgramDevirtPass(PassRegistry &Registry
) { llvm::call_once(InitializeWholeProgramDevirtPassFlag, initializeWholeProgramDevirtPassOnce
, std::ref(Registry)); }
561 "Whole program devirtualization", false, false)PassInfo *PI = new PassInfo( "Whole program devirtualization"
, "wholeprogramdevirt", &WholeProgramDevirt::ID, PassInfo
::NormalCtor_t(callDefaultCtor<WholeProgramDevirt>), false
, false); Registry.registerPass(*PI, true); return PI; } static
llvm::once_flag InitializeWholeProgramDevirtPassFlag; void llvm
::initializeWholeProgramDevirtPass(PassRegistry &Registry
) { llvm::call_once(InitializeWholeProgramDevirtPassFlag, initializeWholeProgramDevirtPassOnce
, std::ref(Registry)); }
562char WholeProgramDevirt::ID = 0;
563
564ModulePass *
565llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary,
566 const ModuleSummaryIndex *ImportSummary) {
567 return new WholeProgramDevirt(ExportSummary, ImportSummary);
568}
569
570PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
571 ModuleAnalysisManager &AM) {
572 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
573 auto AARGetter = [&](Function &F) -> AAResults & {
574 return FAM.getResult<AAManager>(F);
575 };
576 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
577 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
578 };
579 if (!DevirtModule(M, AARGetter, OREGetter, nullptr, nullptr).run())
580 return PreservedAnalyses::all();
581 return PreservedAnalyses::none();
582}
583
584bool DevirtModule::runForTesting(
585 Module &M, function_ref<AAResults &(Function &)> AARGetter,
586 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
587 ModuleSummaryIndex Summary(/*IsPerformingAnalysis=*/false);
588
589 // Handle the command-line summary arguments. This code is for testing
590 // purposes only, so we handle errors directly.
591 if (!ClReadSummary.empty()) {
592 ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
593 ": ");
594 auto ReadSummaryFile =
595 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
596
597 yaml::Input In(ReadSummaryFile->getBuffer());
598 In >> Summary;
599 ExitOnErr(errorCodeToError(In.error()));
600 }
601
602 bool Changed =
603 DevirtModule(
604 M, AARGetter, OREGetter,
605 ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr,
606 ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr)
607 .run();
608
609 if (!ClWriteSummary.empty()) {
610 ExitOnError ExitOnErr(
611 "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
612 std::error_code EC;
613 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::F_Text);
614 ExitOnErr(errorCodeToError(EC));
615
616 yaml::Output Out(OS);
617 Out << Summary;
618 }
619
620 return Changed;
621}
622
623void DevirtModule::buildTypeIdentifierMap(
624 std::vector<VTableBits> &Bits,
625 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
626 DenseMap<GlobalVariable *, VTableBits *> GVToBits;
627 Bits.reserve(M.getGlobalList().size());
628 SmallVector<MDNode *, 2> Types;
629 for (GlobalVariable &GV : M.globals()) {
630 Types.clear();
631 GV.getMetadata(LLVMContext::MD_type, Types);
632 if (Types.empty())
633 continue;
634
635 VTableBits *&BitsPtr = GVToBits[&GV];
636 if (!BitsPtr) {
637 Bits.emplace_back();
638 Bits.back().GV = &GV;
639 Bits.back().ObjectSize =
640 M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
641 BitsPtr = &Bits.back();
642 }
643
644 for (MDNode *Type : Types) {
645 auto TypeID = Type->getOperand(1).get();
646
647 uint64_t Offset =
648 cast<ConstantInt>(
649 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
650 ->getZExtValue();
651
652 TypeIdMap[TypeID].insert({BitsPtr, Offset});
653 }
654 }
655}
656
657Constant *DevirtModule::getPointerAtOffset(Constant *I, uint64_t Offset) {
658 if (I->getType()->isPointerTy()) {
659 if (Offset == 0)
660 return I;
661 return nullptr;
662 }
663
664 const DataLayout &DL = M.getDataLayout();
665
666 if (auto *C = dyn_cast<ConstantStruct>(I)) {
667 const StructLayout *SL = DL.getStructLayout(C->getType());
668 if (Offset >= SL->getSizeInBytes())
669 return nullptr;
670
671 unsigned Op = SL->getElementContainingOffset(Offset);
672 return getPointerAtOffset(cast<Constant>(I->getOperand(Op)),
673 Offset - SL->getElementOffset(Op));
674 }
675 if (auto *C = dyn_cast<ConstantArray>(I)) {
676 ArrayType *VTableTy = C->getType();
677 uint64_t ElemSize = DL.getTypeAllocSize(VTableTy->getElementType());
678
679 unsigned Op = Offset / ElemSize;
680 if (Op >= C->getNumOperands())
681 return nullptr;
682
683 return getPointerAtOffset(cast<Constant>(I->getOperand(Op)),
684 Offset % ElemSize);
685 }
686 return nullptr;
687}
688
689bool DevirtModule::tryFindVirtualCallTargets(
690 std::vector<VirtualCallTarget> &TargetsForSlot,
691 const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) {
692 for (const TypeMemberInfo &TM : TypeMemberInfos) {
693 if (!TM.Bits->GV->isConstant())
694 return false;
695
696 Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(),
697 TM.Offset + ByteOffset);
698 if (!Ptr)
699 return false;
700
701 auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts());
702 if (!Fn)
703 return false;
704
705 // We can disregard __cxa_pure_virtual as a possible call target, as
706 // calls to pure virtuals are UB.
707 if (Fn->getName() == "__cxa_pure_virtual")
708 continue;
709
710 TargetsForSlot.push_back({Fn, &TM});
711 }
712
713 // Give up if we couldn't find any targets.
714 return !TargetsForSlot.empty();
715}
716
717void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
718 Constant *TheFn, bool &IsExported) {
719 auto Apply = [&](CallSiteInfo &CSInfo) {
720 for (auto &&VCallSite : CSInfo.CallSites) {
721 if (RemarksEnabled)
722 VCallSite.emitRemark("single-impl", TheFn->getName(), OREGetter);
723 VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
724 TheFn, VCallSite.CS.getCalledValue()->getType()));
725 // This use is no longer unsafe.
726 if (VCallSite.NumUnsafeUses)
727 --*VCallSite.NumUnsafeUses;
728 }
729 if (CSInfo.isExported()) {
730 IsExported = true;
731 CSInfo.markDevirt();
732 }
733 };
734 Apply(SlotInfo.CSInfo);
735 for (auto &P : SlotInfo.ConstCSInfo)
736 Apply(P.second);
737}
738
739bool DevirtModule::trySingleImplDevirt(
740 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
741 VTableSlotInfo &SlotInfo, WholeProgramDevirtResolution *Res) {
742 // See if the program contains a single implementation of this virtual
743 // function.
744 Function *TheFn = TargetsForSlot[0].Fn;
745 for (auto &&Target : TargetsForSlot)
746 if (TheFn != Target.Fn)
747 return false;
748
749 // If so, update each call site to call that implementation directly.
750 if (RemarksEnabled)
751 TargetsForSlot[0].WasDevirt = true;
752
753 bool IsExported = false;
754 applySingleImplDevirt(SlotInfo, TheFn, IsExported);
755 if (!IsExported)
756 return false;
757
758 // If the only implementation has local linkage, we must promote to external
759 // to make it visible to thin LTO objects. We can only get here during the
760 // ThinLTO export phase.
761 if (TheFn->hasLocalLinkage()) {
762 std::string NewName = (TheFn->getName() + "$merged").str();
763
764 // Since we are renaming the function, any comdats with the same name must
765 // also be renamed. This is required when targeting COFF, as the comdat name
766 // must match one of the names of the symbols in the comdat.
767 if (Comdat *C = TheFn->getComdat()) {
768 if (C->getName() == TheFn->getName()) {
769 Comdat *NewC = M.getOrInsertComdat(NewName);
770 NewC->setSelectionKind(C->getSelectionKind());
771 for (GlobalObject &GO : M.global_objects())
772 if (GO.getComdat() == C)
773 GO.setComdat(NewC);
774 }
775 }
776
777 TheFn->setLinkage(GlobalValue::ExternalLinkage);
778 TheFn->setVisibility(GlobalValue::HiddenVisibility);
779 TheFn->setName(NewName);
780 }
781
782 Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
783 Res->SingleImplName = TheFn->getName();
784
785 return true;
786}
787
788bool DevirtModule::tryEvaluateFunctionsWithArgs(
789 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
790 ArrayRef<uint64_t> Args) {
791 // Evaluate each function and store the result in each target's RetVal
792 // field.
793 for (VirtualCallTarget &Target : TargetsForSlot) {
794 if (Target.Fn->arg_size() != Args.size() + 1)
795 return false;
796
797 Evaluator Eval(M.getDataLayout(), nullptr);
798 SmallVector<Constant *, 2> EvalArgs;
799 EvalArgs.push_back(
800 Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
801 for (unsigned I = 0; I != Args.size(); ++I) {
802 auto *ArgTy = dyn_cast<IntegerType>(
803 Target.Fn->getFunctionType()->getParamType(I + 1));
804 if (!ArgTy)
805 return false;
806 EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
807 }
808
809 Constant *RetVal;
810 if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
811 !isa<ConstantInt>(RetVal))
812 return false;
813 Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
814 }
815 return true;
816}
817
818void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
819 uint64_t TheRetVal) {
820 for (auto Call : CSInfo.CallSites)
821 Call.replaceAndErase(
822 "uniform-ret-val", FnName, RemarksEnabled, OREGetter,
823 ConstantInt::get(cast<IntegerType>(Call.CS.getType()), TheRetVal));
824 CSInfo.markDevirt();
825}
826
827bool DevirtModule::tryUniformRetValOpt(
828 MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
829 WholeProgramDevirtResolution::ByArg *Res) {
830 // Uniform return value optimization. If all functions return the same
831 // constant, replace all calls with that constant.
832 uint64_t TheRetVal = TargetsForSlot[0].RetVal;
833 for (const VirtualCallTarget &Target : TargetsForSlot)
834 if (Target.RetVal != TheRetVal)
835 return false;
836
837 if (CSInfo.isExported()) {
838 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
839 Res->Info = TheRetVal;
840 }
841
842 applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
843 if (RemarksEnabled)
844 for (auto &&Target : TargetsForSlot)
845 Target.WasDevirt = true;
846 return true;
847}
848
849std::string DevirtModule::getGlobalName(VTableSlot Slot,
850 ArrayRef<uint64_t> Args,
851 StringRef Name) {
852 std::string FullName = "__typeid_";
853 raw_string_ostream OS(FullName);
854 OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
855 for (uint64_t Arg : Args)
856 OS << '_' << Arg;
857 OS << '_' << Name;
858 return OS.str();
859}
860
861bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
862 Triple T(M.getTargetTriple());
863 return (T.getArch() == Triple::x86 || T.getArch() == Triple::x86_64) &&
864 T.getObjectFormat() == Triple::ELF;
865}
866
867void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
868 StringRef Name, Constant *C) {
869 GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
870 getGlobalName(Slot, Args, Name), C, &M);
871 GA->setVisibility(GlobalValue::HiddenVisibility);
872}
873
874void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
875 StringRef Name, uint32_t Const,
876 uint32_t &Storage) {
877 if (shouldExportConstantsAsAbsoluteSymbols()) {
878 exportGlobal(
879 Slot, Args, Name,
880 ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
881 return;
882 }
883
884 Storage = Const;
885}
886
887Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
888 StringRef Name) {
889 Constant *C = M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Ty);
890 auto *GV = dyn_cast<GlobalVariable>(C);
891 if (GV)
892 GV->setVisibility(GlobalValue::HiddenVisibility);
893 return C;
894}
895
896Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
897 StringRef Name, IntegerType *IntTy,
898 uint32_t Storage) {
899 if (!shouldExportConstantsAsAbsoluteSymbols())
900 return ConstantInt::get(IntTy, Storage);
901
902 Constant *C = importGlobal(Slot, Args, Name);
903 auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
904 C = ConstantExpr::getPtrToInt(C, IntTy);
905
906 // We only need to set metadata if the global is newly created, in which
907 // case it would not have hidden visibility.
908 if (GV->getMetadata(LLVMContext::MD_absolute_symbol))
909 return C;
910
911 auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
912 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
913 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
914 GV->setMetadata(LLVMContext::MD_absolute_symbol,
915 MDNode::get(M.getContext(), {MinC, MaxC}));
916 };
917 unsigned AbsWidth = IntTy->getBitWidth();
918 if (AbsWidth == IntPtrTy->getBitWidth())
919 SetAbsRange(~0ull, ~0ull); // Full set.
920 else
921 SetAbsRange(0, 1ull << AbsWidth);
922 return C;
923}
924
925void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
926 bool IsOne,
927 Constant *UniqueMemberAddr) {
928 for (auto &&Call : CSInfo.CallSites) {
929 IRBuilder<> B(Call.CS.getInstruction());
930 Value *Cmp =
931 B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
932 B.CreateBitCast(Call.VTable, Int8PtrTy), UniqueMemberAddr);
933 Cmp = B.CreateZExt(Cmp, Call.CS->getType());
934 Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
935 Cmp);
936 }
937 CSInfo.markDevirt();
938}
939
940bool DevirtModule::tryUniqueRetValOpt(
941 unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
942 CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
943 VTableSlot Slot, ArrayRef<uint64_t> Args) {
944 // IsOne controls whether we look for a 0 or a 1.
945 auto tryUniqueRetValOptFor = [&](bool IsOne) {
946 const TypeMemberInfo *UniqueMember = nullptr;
947 for (const VirtualCallTarget &Target : TargetsForSlot) {
27
Assuming '__begin1' is not equal to '__end1'
948 if (Target.RetVal == (IsOne ? 1 : 0)) {
28
'?' condition is true
29
Assuming the condition is true
30
Taking true branch
949 if (UniqueMember)
31
Taking false branch
950 return false;
951 UniqueMember = Target.TM;
952 }
953 }
954
955 // We should have found a unique member or bailed out by now. We already
956 // checked for a uniform return value in tryUniformRetValOpt.
957 assert(UniqueMember)(static_cast <bool> (UniqueMember) ? void (0) : __assert_fail
("UniqueMember", "/build/llvm-toolchain-snapshot-7~svn326551/lib/Transforms/IPO/WholeProgramDevirt.cpp"
, 957, __extension__ __PRETTY_FUNCTION__))
;
958
959 Constant *UniqueMemberAddr =
960 ConstantExpr::getBitCast(UniqueMember->Bits->GV, Int8PtrTy);
961 UniqueMemberAddr = ConstantExpr::getGetElementPtr(
962 Int8Ty, UniqueMemberAddr,
963 ConstantInt::get(Int64Ty, UniqueMember->Offset));
964
965 if (CSInfo.isExported()) {
32
Taking true branch
966 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
33
Access to field 'TheKind' results in a dereference of a null pointer (loaded from variable 'Res')
967 Res->Info = IsOne;
968
969 exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
970 }
971
972 // Replace each call with the comparison.
973 applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
974 UniqueMemberAddr);
975
976 // Update devirtualization statistics for targets.
977 if (RemarksEnabled)
978 for (auto &&Target : TargetsForSlot)
979 Target.WasDevirt = true;
980
981 return true;
982 };
983
984 if (BitWidth == 1) {
24
Assuming 'BitWidth' is equal to 1
25
Taking true branch
985 if (tryUniqueRetValOptFor(true))
26
Calling 'operator()'
986 return true;
987 if (tryUniqueRetValOptFor(false))
988 return true;
989 }
990 return false;
991}
992
993void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
994 Constant *Byte, Constant *Bit) {
995 for (auto Call : CSInfo.CallSites) {
996 auto *RetType = cast<IntegerType>(Call.CS.getType());
997 IRBuilder<> B(Call.CS.getInstruction());
998 Value *Addr =
999 B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte);
1000 if (RetType->getBitWidth() == 1) {
1001 Value *Bits = B.CreateLoad(Addr);
1002 Value *BitsAndBit = B.CreateAnd(Bits, Bit);
1003 auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
1004 Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
1005 OREGetter, IsBitSet);
1006 } else {
1007 Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
1008 Value *Val = B.CreateLoad(RetType, ValAddr);
1009 Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
1010 OREGetter, Val);
1011 }
1012 }
1013 CSInfo.markDevirt();
1014}
1015
1016bool DevirtModule::tryVirtualConstProp(
1017 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1018 WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1019 // This only works if the function returns an integer.
1020 auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
1021 if (!RetType)
13
Assuming 'RetType' is non-null
14
Taking false branch
1022 return false;
1023 unsigned BitWidth = RetType->getBitWidth();
1024 if (BitWidth > 64)
15
Assuming 'BitWidth' is <= 64
16
Taking false branch
1025 return false;
1026
1027 // Make sure that each function is defined, does not access memory, takes at
1028 // least one argument, does not use its first argument (which we assume is
1029 // 'this'), and has the same return type.
1030 //
1031 // Note that we test whether this copy of the function is readnone, rather
1032 // than testing function attributes, which must hold for any copy of the
1033 // function, even a less optimized version substituted at link time. This is
1034 // sound because the virtual constant propagation optimizations effectively
1035 // inline all implementations of the virtual function into each call site,
1036 // rather than using function attributes to perform local optimization.
1037 for (VirtualCallTarget &Target : TargetsForSlot) {
17
Assuming '__begin1' is equal to '__end1'
1038 if (Target.Fn->isDeclaration() ||
1039 computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) !=
1040 MAK_ReadNone ||
1041 Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() ||
1042 Target.Fn->getReturnType() != RetType)
1043 return false;
1044 }
1045
1046 for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
1047 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
18
Taking false branch
1048 continue;
1049
1050 WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
19
'ResByArg' initialized to a null pointer value
1051 if (Res)
20
Taking false branch
1052 ResByArg = &Res->ResByArg[CSByConstantArg.first];
1053
1054 if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
21
Taking false branch
1055 continue;
1056
1057 if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
23
Calling 'DevirtModule::tryUniqueRetValOpt'
1058 ResByArg, Slot, CSByConstantArg.first))
22
Passing null pointer value via 4th parameter 'Res'
1059 continue;
1060
1061 // Find an allocation offset in bits in all vtables associated with the
1062 // type.
1063 uint64_t AllocBefore =
1064 findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
1065 uint64_t AllocAfter =
1066 findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
1067
1068 // Calculate the total amount of padding needed to store a value at both
1069 // ends of the object.
1070 uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
1071 for (auto &&Target : TargetsForSlot) {
1072 TotalPaddingBefore += std::max<int64_t>(
1073 (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
1074 TotalPaddingAfter += std::max<int64_t>(
1075 (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
1076 }
1077
1078 // If the amount of padding is too large, give up.
1079 // FIXME: do something smarter here.
1080 if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
1081 continue;
1082
1083 // Calculate the offset to the value as a (possibly negative) byte offset
1084 // and (if applicable) a bit offset, and store the values in the targets.
1085 int64_t OffsetByte;
1086 uint64_t OffsetBit;
1087 if (TotalPaddingBefore <= TotalPaddingAfter)
1088 setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
1089 OffsetBit);
1090 else
1091 setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
1092 OffsetBit);
1093
1094 if (RemarksEnabled)
1095 for (auto &&Target : TargetsForSlot)
1096 Target.WasDevirt = true;
1097
1098
1099 if (CSByConstantArg.second.isExported()) {
1100 ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
1101 exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
1102 ResByArg->Byte);
1103 exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
1104 ResByArg->Bit);
1105 }
1106
1107 // Rewrite each call to a load from OffsetByte/OffsetBit.
1108 Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
1109 Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
1110 applyVirtualConstProp(CSByConstantArg.second,
1111 TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
1112 }
1113 return true;
1114}
1115
1116void DevirtModule::rebuildGlobal(VTableBits &B) {
1117 if (B.Before.Bytes.empty() && B.After.Bytes.empty())
1118 return;
1119
1120 // Align each byte array to pointer width.
1121 unsigned PointerSize = M.getDataLayout().getPointerSize();
1122 B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize));
1123 B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize));
1124
1125 // Before was stored in reverse order; flip it now.
1126 for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
1127 std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
1128
1129 // Build an anonymous global containing the before bytes, followed by the
1130 // original initializer, followed by the after bytes.
1131 auto NewInit = ConstantStruct::getAnon(
1132 {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
1133 B.GV->getInitializer(),
1134 ConstantDataArray::get(M.getContext(), B.After.Bytes)});
1135 auto NewGV =
1136 new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
1137 GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
1138 NewGV->setSection(B.GV->getSection());
1139 NewGV->setComdat(B.GV->getComdat());
1140
1141 // Copy the original vtable's metadata to the anonymous global, adjusting
1142 // offsets as required.
1143 NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
1144
1145 // Build an alias named after the original global, pointing at the second
1146 // element (the original initializer).
1147 auto Alias = GlobalAlias::create(
1148 B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
1149 ConstantExpr::getGetElementPtr(
1150 NewInit->getType(), NewGV,
1151 ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
1152 ConstantInt::get(Int32Ty, 1)}),
1153 &M);
1154 Alias->setVisibility(B.GV->getVisibility());
1155 Alias->takeName(B.GV);
1156
1157 B.GV->replaceAllUsesWith(Alias);
1158 B.GV->eraseFromParent();
1159}
1160
1161bool DevirtModule::areRemarksEnabled() {
1162 const auto &FL = M.getFunctionList();
1163 if (FL.empty())
1164 return false;
1165 const Function &Fn = FL.front();
1166
1167 const auto &BBL = Fn.getBasicBlockList();
1168 if (BBL.empty())
1169 return false;
1170 auto DI = OptimizationRemark(DEBUG_TYPE"wholeprogramdevirt", "", DebugLoc(), &BBL.front());
1171 return DI.isEnabled();
1172}
1173
1174void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc,
1175 Function *AssumeFunc) {
1176 // Find all virtual calls via a virtual table pointer %p under an assumption
1177 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1178 // points to a member of the type identifier %md. Group calls by (type ID,
1179 // offset) pair (effectively the identity of the virtual function) and store
1180 // to CallSlots.
1181 DenseSet<Value *> SeenPtrs;
1182 for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end();
1183 I != E;) {
1184 auto CI = dyn_cast<CallInst>(I->getUser());
1185 ++I;
1186 if (!CI)
1187 continue;
1188
1189 // Search for virtual calls based on %p and add them to DevirtCalls.
1190 SmallVector<DevirtCallSite, 1> DevirtCalls;
1191 SmallVector<CallInst *, 1> Assumes;
1192 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI);
1193
1194 // If we found any, add them to CallSlots. Only do this if we haven't seen
1195 // the vtable pointer before, as it may have been CSE'd with pointers from
1196 // other call sites, and we don't want to process call sites multiple times.
1197 if (!Assumes.empty()) {
1198 Metadata *TypeId =
1199 cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
1200 Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
1201 if (SeenPtrs.insert(Ptr).second) {
1202 for (DevirtCallSite Call : DevirtCalls) {
1203 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, nullptr);
1204 }
1205 }
1206 }
1207
1208 // We no longer need the assumes or the type test.
1209 for (auto Assume : Assumes)
1210 Assume->eraseFromParent();
1211 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1212 // may use the vtable argument later.
1213 if (CI->use_empty())
1214 CI->eraseFromParent();
1215 }
1216}
1217
1218void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
1219 Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
1220
1221 for (auto I = TypeCheckedLoadFunc->use_begin(),
1222 E = TypeCheckedLoadFunc->use_end();
1223 I != E;) {
1224 auto CI = dyn_cast<CallInst>(I->getUser());
1225 ++I;
1226 if (!CI)
1227 continue;
1228
1229 Value *Ptr = CI->getArgOperand(0);
1230 Value *Offset = CI->getArgOperand(1);
1231 Value *TypeIdValue = CI->getArgOperand(2);
1232 Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
1233
1234 SmallVector<DevirtCallSite, 1> DevirtCalls;
1235 SmallVector<Instruction *, 1> LoadedPtrs;
1236 SmallVector<Instruction *, 1> Preds;
1237 bool HasNonCallUses = false;
1238 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
1239 HasNonCallUses, CI);
1240
1241 // Start by generating "pessimistic" code that explicitly loads the function
1242 // pointer from the vtable and performs the type check. If possible, we will
1243 // eliminate the load and the type check later.
1244
1245 // If possible, only generate the load at the point where it is used.
1246 // This helps avoid unnecessary spills.
1247 IRBuilder<> LoadB(
1248 (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
1249 Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
1250 Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy));
1251 Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr);
1252
1253 for (Instruction *LoadedPtr : LoadedPtrs) {
1254 LoadedPtr->replaceAllUsesWith(LoadedValue);
1255 LoadedPtr->eraseFromParent();
1256 }
1257
1258 // Likewise for the type test.
1259 IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
1260 CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
1261
1262 for (Instruction *Pred : Preds) {
1263 Pred->replaceAllUsesWith(TypeTestCall);
1264 Pred->eraseFromParent();
1265 }
1266
1267 // We have already erased any extractvalue instructions that refer to the
1268 // intrinsic call, but the intrinsic may have other non-extractvalue uses
1269 // (although this is unlikely). In that case, explicitly build a pair and
1270 // RAUW it.
1271 if (!CI->use_empty()) {
1272 Value *Pair = UndefValue::get(CI->getType());
1273 IRBuilder<> B(CI);
1274 Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
1275 Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
1276 CI->replaceAllUsesWith(Pair);
1277 }
1278
1279 // The number of unsafe uses is initially the number of uses.
1280 auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
1281 NumUnsafeUses = DevirtCalls.size();
1282
1283 // If the function pointer has a non-call user, we cannot eliminate the type
1284 // check, as one of those users may eventually call the pointer. Increment
1285 // the unsafe use count to make sure it cannot reach zero.
1286 if (HasNonCallUses)
1287 ++NumUnsafeUses;
1288 for (DevirtCallSite Call : DevirtCalls) {
1289 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS,
1290 &NumUnsafeUses);
1291 }
1292
1293 CI->eraseFromParent();
1294 }
1295}
1296
1297void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
1298 const TypeIdSummary *TidSummary =
1299 ImportSummary->getTypeIdSummary(cast<MDString>(Slot.TypeID)->getString());
1300 if (!TidSummary)
1301 return;
1302 auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
1303 if (ResI == TidSummary->WPDRes.end())
1304 return;
1305 const WholeProgramDevirtResolution &Res = ResI->second;
1306
1307 if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
1308 // The type of the function in the declaration is irrelevant because every
1309 // call site will cast it to the correct type.
1310 auto *SingleImpl = M.getOrInsertFunction(
1311 Res.SingleImplName, Type::getVoidTy(M.getContext()));
1312
1313 // This is the import phase so we should not be exporting anything.
1314 bool IsExported = false;
1315 applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
1316 assert(!IsExported)(static_cast <bool> (!IsExported) ? void (0) : __assert_fail
("!IsExported", "/build/llvm-toolchain-snapshot-7~svn326551/lib/Transforms/IPO/WholeProgramDevirt.cpp"
, 1316, __extension__ __PRETTY_FUNCTION__))
;
1317 }
1318
1319 for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
1320 auto I = Res.ResByArg.find(CSByConstantArg.first);
1321 if (I == Res.ResByArg.end())
1322 continue;
1323 auto &ResByArg = I->second;
1324 // FIXME: We should figure out what to do about the "function name" argument
1325 // to the apply* functions, as the function names are unavailable during the
1326 // importing phase. For now we just pass the empty string. This does not
1327 // impact correctness because the function names are just used for remarks.
1328 switch (ResByArg.TheKind) {
1329 case WholeProgramDevirtResolution::ByArg::UniformRetVal:
1330 applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
1331 break;
1332 case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
1333 Constant *UniqueMemberAddr =
1334 importGlobal(Slot, CSByConstantArg.first, "unique_member");
1335 applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
1336 UniqueMemberAddr);
1337 break;
1338 }
1339 case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
1340 Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
1341 Int32Ty, ResByArg.Byte);
1342 Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
1343 ResByArg.Bit);
1344 applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
1345 break;
1346 }
1347 default:
1348 break;
1349 }
1350 }
1351}
1352
1353void DevirtModule::removeRedundantTypeTests() {
1354 auto True = ConstantInt::getTrue(M.getContext());
1355 for (auto &&U : NumUnsafeUsesForTypeTest) {
1356 if (U.second == 0) {
1357 U.first->replaceAllUsesWith(True);
1358 U.first->eraseFromParent();
1359 }
1360 }
1361}
1362
1363bool DevirtModule::run() {
1364 Function *TypeTestFunc =
1365 M.getFunction(Intrinsic::getName(Intrinsic::type_test));
1366 Function *TypeCheckedLoadFunc =
1367 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
1368 Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
1369
1370 // Normally if there are no users of the devirtualization intrinsics in the
1371 // module, this pass has nothing to do. But if we are exporting, we also need
1372 // to handle any users that appear only in the function summaries.
1373 if (!ExportSummary &&
1
Assuming the condition is false
1374 (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
1375 AssumeFunc->use_empty()) &&
1376 (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()))
1377 return false;
1378
1379 if (TypeTestFunc && AssumeFunc)
2
Assuming 'TypeTestFunc' is null
1380 scanTypeTestUsers(TypeTestFunc, AssumeFunc);
1381
1382 if (TypeCheckedLoadFunc)
3
Assuming 'TypeCheckedLoadFunc' is null
4
Taking false branch
1383 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
1384
1385 if (ImportSummary) {
5
Assuming the condition is false
6
Taking false branch
1386 for (auto &S : CallSlots)
1387 importResolution(S.first, S.second);
1388
1389 removeRedundantTypeTests();
1390
1391 // The rest of the code is only necessary when exporting or during regular
1392 // LTO, so we are done.
1393 return true;
1394 }
1395
1396 // Rebuild type metadata into a map for easy lookup.
1397 std::vector<VTableBits> Bits;
1398 DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
1399 buildTypeIdentifierMap(Bits, TypeIdMap);
1400 if (TypeIdMap.empty())
7
Assuming the condition is false
8
Taking false branch
1401 return true;
1402
1403 // Collect information from summary about which calls to try to devirtualize.
1404 if (ExportSummary) {
9
Taking true branch
1405 DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
1406 for (auto &P : TypeIdMap) {
1407 if (auto *TypeId = dyn_cast<MDString>(P.first))
1408 MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
1409 TypeId);
1410 }
1411
1412 for (auto &P : *ExportSummary) {
1413 for (auto &S : P.second.SummaryList) {
1414 auto *FS = dyn_cast<FunctionSummary>(S.get());
1415 if (!FS)
1416 continue;
1417 // FIXME: Only add live functions.
1418 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
1419 for (Metadata *MD : MetadataByGUID[VF.GUID]) {
1420 CallSlots[{MD, VF.Offset}].CSInfo.SummaryHasTypeTestAssumeUsers =
1421 true;
1422 }
1423 }
1424 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
1425 for (Metadata *MD : MetadataByGUID[VF.GUID]) {
1426 CallSlots[{MD, VF.Offset}]
1427 .CSInfo.SummaryTypeCheckedLoadUsers.push_back(FS);
1428 }
1429 }
1430 for (const FunctionSummary::ConstVCall &VC :
1431 FS->type_test_assume_const_vcalls()) {
1432 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
1433 CallSlots[{MD, VC.VFunc.Offset}]
1434 .ConstCSInfo[VC.Args]
1435 .SummaryHasTypeTestAssumeUsers = true;
1436 }
1437 }
1438 for (const FunctionSummary::ConstVCall &VC :
1439 FS->type_checked_load_const_vcalls()) {
1440 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
1441 CallSlots[{MD, VC.VFunc.Offset}]
1442 .ConstCSInfo[VC.Args]
1443 .SummaryTypeCheckedLoadUsers.push_back(FS);
1444 }
1445 }
1446 }
1447 }
1448 }
1449
1450 // For each (type, offset) pair:
1451 bool DidVirtualConstProp = false;
1452 std::map<std::string, Function*> DevirtTargets;
1453 for (auto &S : CallSlots) {
1454 // Search each of the members of the type identifier for the virtual
1455 // function implementation at offset S.first.ByteOffset, and add to
1456 // TargetsForSlot.
1457 std::vector<VirtualCallTarget> TargetsForSlot;
1458 if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID],
10
Taking true branch
1459 S.first.ByteOffset)) {
1460 WholeProgramDevirtResolution *Res = nullptr;
1461 if (ExportSummary && isa<MDString>(S.first.TypeID))
11
Assuming the condition is false
1462 Res = &ExportSummary
1463 ->getOrInsertTypeIdSummary(
1464 cast<MDString>(S.first.TypeID)->getString())
1465 .WPDRes[S.first.ByteOffset];
1466
1467 if (!trySingleImplDevirt(TargetsForSlot, S.second, Res) &&
1468 tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first))
12
Calling 'DevirtModule::tryVirtualConstProp'
1469 DidVirtualConstProp = true;
1470
1471 // Collect functions devirtualized at least for one call site for stats.
1472 if (RemarksEnabled)
1473 for (const auto &T : TargetsForSlot)
1474 if (T.WasDevirt)
1475 DevirtTargets[T.Fn->getName()] = T.Fn;
1476 }
1477
1478 // CFI-specific: if we are exporting and any llvm.type.checked.load
1479 // intrinsics were *not* devirtualized, we need to add the resulting
1480 // llvm.type.test intrinsics to the function summaries so that the
1481 // LowerTypeTests pass will export them.
1482 if (ExportSummary && isa<MDString>(S.first.TypeID)) {
1483 auto GUID =
1484 GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
1485 for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
1486 FS->addTypeTest(GUID);
1487 for (auto &CCS : S.second.ConstCSInfo)
1488 for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers)
1489 FS->addTypeTest(GUID);
1490 }
1491 }
1492
1493 if (RemarksEnabled) {
1494 // Generate remarks for each devirtualized function.
1495 for (const auto &DT : DevirtTargets) {
1496 Function *F = DT.second;
1497
1498 using namespace ore;
1499 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE"wholeprogramdevirt", "Devirtualized", F)
1500 << "devirtualized "
1501 << NV("FunctionName", F->getName()));
1502 }
1503 }
1504
1505 removeRedundantTypeTests();
1506
1507 // Rebuild each global we touched as part of virtual constant propagation to
1508 // include the before and after bytes.
1509 if (DidVirtualConstProp)
1510 for (VTableBits &B : Bits)
1511 rebuildGlobal(B);
1512
1513 return true;
1514}