Bug Summary

File:llvm/lib/CodeGen/WinEHPrepare.cpp
Warning:line 212, column 30
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name WinEHPrepare.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/lib/CodeGen -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/lib/CodeGen -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-08-28-193554-24367-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp

/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp

1//===-- WinEHPrepare - Prepare exception handling for code generation ---===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass lowers LLVM IR exception handling into something closer to what the
10// backend wants for functions using a personality function from a runtime
11// provided by MSVC. Functions with other personality functions are left alone
12// and may be prepared by other passes. In particular, all supported MSVC
13// personality functions require cleanup code to be outlined, and the C++
14// personality requires catch handler code to be outlined.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/MapVector.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/Triple.h"
22#include "llvm/Analysis/CFG.h"
23#include "llvm/Analysis/EHPersonalities.h"
24#include "llvm/CodeGen/MachineBasicBlock.h"
25#include "llvm/CodeGen/Passes.h"
26#include "llvm/CodeGen/WinEHFuncInfo.h"
27#include "llvm/IR/Verifier.h"
28#include "llvm/InitializePasses.h"
29#include "llvm/MC/MCSymbol.h"
30#include "llvm/Pass.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Transforms/Utils/BasicBlockUtils.h"
35#include "llvm/Transforms/Utils/Cloning.h"
36#include "llvm/Transforms/Utils/Local.h"
37#include "llvm/Transforms/Utils/SSAUpdater.h"
38
39using namespace llvm;
40
41#define DEBUG_TYPE"winehprepare" "winehprepare"
42
43static cl::opt<bool> DisableDemotion(
44 "disable-demotion", cl::Hidden,
45 cl::desc(
46 "Clone multicolor basic blocks but do not demote cross scopes"),
47 cl::init(false));
48
49static cl::opt<bool> DisableCleanups(
50 "disable-cleanups", cl::Hidden,
51 cl::desc("Do not remove implausible terminators or other similar cleanups"),
52 cl::init(false));
53
54static cl::opt<bool> DemoteCatchSwitchPHIOnlyOpt(
55 "demote-catchswitch-only", cl::Hidden,
56 cl::desc("Demote catchswitch BBs only (for wasm EH)"), cl::init(false));
57
58namespace {
59
60class WinEHPrepare : public FunctionPass {
61public:
62 static char ID; // Pass identification, replacement for typeid.
63 WinEHPrepare(bool DemoteCatchSwitchPHIOnly = false)
64 : FunctionPass(ID), DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly) {}
65
66 bool runOnFunction(Function &Fn) override;
67
68 bool doFinalization(Module &M) override;
69
70 void getAnalysisUsage(AnalysisUsage &AU) const override;
71
72 StringRef getPassName() const override {
73 return "Windows exception handling preparation";
74 }
75
76private:
77 void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot);
78 void
79 insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
80 SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist);
81 AllocaInst *insertPHILoads(PHINode *PN, Function &F);
82 void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
83 DenseMap<BasicBlock *, Value *> &Loads, Function &F);
84 bool prepareExplicitEH(Function &F);
85 void colorFunclets(Function &F);
86
87 void demotePHIsOnFunclets(Function &F, bool DemoteCatchSwitchPHIOnly);
88 void cloneCommonBlocks(Function &F);
89 void removeImplausibleInstructions(Function &F);
90 void cleanupPreparedFunclets(Function &F);
91 void verifyPreparedFunclets(Function &F);
92
93 bool DemoteCatchSwitchPHIOnly;
94
95 // All fields are reset by runOnFunction.
96 EHPersonality Personality = EHPersonality::Unknown;
97
98 const DataLayout *DL = nullptr;
99 DenseMap<BasicBlock *, ColorVector> BlockColors;
100 MapVector<BasicBlock *, std::vector<BasicBlock *>> FuncletBlocks;
101};
102
103} // end anonymous namespace
104
105char WinEHPrepare::ID = 0;
106INITIALIZE_PASS(WinEHPrepare, DEBUG_TYPE, "Prepare Windows exceptions",static void *initializeWinEHPreparePassOnce(PassRegistry &
Registry) { PassInfo *PI = new PassInfo( "Prepare Windows exceptions"
, "winehprepare", &WinEHPrepare::ID, PassInfo::NormalCtor_t
(callDefaultCtor<WinEHPrepare>), false, false); Registry
.registerPass(*PI, true); return PI; } static llvm::once_flag
InitializeWinEHPreparePassFlag; void llvm::initializeWinEHPreparePass
(PassRegistry &Registry) { llvm::call_once(InitializeWinEHPreparePassFlag
, initializeWinEHPreparePassOnce, std::ref(Registry)); }
107 false, false)static void *initializeWinEHPreparePassOnce(PassRegistry &
Registry) { PassInfo *PI = new PassInfo( "Prepare Windows exceptions"
, "winehprepare", &WinEHPrepare::ID, PassInfo::NormalCtor_t
(callDefaultCtor<WinEHPrepare>), false, false); Registry
.registerPass(*PI, true); return PI; } static llvm::once_flag
InitializeWinEHPreparePassFlag; void llvm::initializeWinEHPreparePass
(PassRegistry &Registry) { llvm::call_once(InitializeWinEHPreparePassFlag
, initializeWinEHPreparePassOnce, std::ref(Registry)); }
108
109FunctionPass *llvm::createWinEHPass(bool DemoteCatchSwitchPHIOnly) {
110 return new WinEHPrepare(DemoteCatchSwitchPHIOnly);
111}
112
113bool WinEHPrepare::runOnFunction(Function &Fn) {
114 if (!Fn.hasPersonalityFn())
115 return false;
116
117 // Classify the personality to see what kind of preparation we need.
118 Personality = classifyEHPersonality(Fn.getPersonalityFn());
119
120 // Do nothing if this is not a scope-based personality.
121 if (!isScopedEHPersonality(Personality))
122 return false;
123
124 DL = &Fn.getParent()->getDataLayout();
125 return prepareExplicitEH(Fn);
126}
127
128bool WinEHPrepare::doFinalization(Module &M) { return false; }
129
130void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {}
131
132static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState,
133 const BasicBlock *BB) {
134 CxxUnwindMapEntry UME;
135 UME.ToState = ToState;
136 UME.Cleanup = BB;
137 FuncInfo.CxxUnwindMap.push_back(UME);
138 return FuncInfo.getLastStateNumber();
139}
140
141static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow,
142 int TryHigh, int CatchHigh,
143 ArrayRef<const CatchPadInst *> Handlers) {
144 WinEHTryBlockMapEntry TBME;
145 TBME.TryLow = TryLow;
146 TBME.TryHigh = TryHigh;
147 TBME.CatchHigh = CatchHigh;
148 assert(TBME.TryLow <= TBME.TryHigh)(static_cast <bool> (TBME.TryLow <= TBME.TryHigh) ? void
(0) : __assert_fail ("TBME.TryLow <= TBME.TryHigh", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 148, __extension__ __PRETTY_FUNCTION__))
;
149 for (const CatchPadInst *CPI : Handlers) {
150 WinEHHandlerType HT;
151 Constant *TypeInfo = cast<Constant>(CPI->getArgOperand(0));
152 if (TypeInfo->isNullValue())
153 HT.TypeDescriptor = nullptr;
154 else
155 HT.TypeDescriptor = cast<GlobalVariable>(TypeInfo->stripPointerCasts());
156 HT.Adjectives = cast<ConstantInt>(CPI->getArgOperand(1))->getZExtValue();
157 HT.Handler = CPI->getParent();
158 if (auto *AI =
159 dyn_cast<AllocaInst>(CPI->getArgOperand(2)->stripPointerCasts()))
160 HT.CatchObj.Alloca = AI;
161 else
162 HT.CatchObj.Alloca = nullptr;
163 TBME.HandlerArray.push_back(HT);
164 }
165 FuncInfo.TryBlockMap.push_back(TBME);
166}
167
168static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CleanupPad) {
169 for (const User *U : CleanupPad->users())
170 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
171 return CRI->getUnwindDest();
172 return nullptr;
173}
174
175static void calculateStateNumbersForInvokes(const Function *Fn,
176 WinEHFuncInfo &FuncInfo) {
177 auto *F = const_cast<Function *>(Fn);
178 DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(*F);
179 for (BasicBlock &BB : *F) {
180 auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
6
Assuming the object is a 'InvokeInst'
181 if (!II
6.1
'II' is non-null
6.1
'II' is non-null
6.1
'II' is non-null
)
7
Taking false branch
182 continue;
183
184 auto &BBColors = BlockColors[&BB];
185 assert(BBColors.size() == 1 && "multi-color BB not removed by preparation")(static_cast <bool> (BBColors.size() == 1 && "multi-color BB not removed by preparation"
) ? void (0) : __assert_fail ("BBColors.size() == 1 && \"multi-color BB not removed by preparation\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 185, __extension__ __PRETTY_FUNCTION__))
;
8
Assuming the condition is true
9
'?' condition is true
186 BasicBlock *FuncletEntryBB = BBColors.front();
187
188 BasicBlock *FuncletUnwindDest;
189 auto *FuncletPad =
190 dyn_cast<FuncletPadInst>(FuncletEntryBB->getFirstNonPHI());
10
Assuming the object is not a 'FuncletPadInst'
191 assert(FuncletPad || FuncletEntryBB == &Fn->getEntryBlock())(static_cast <bool> (FuncletPad || FuncletEntryBB == &
Fn->getEntryBlock()) ? void (0) : __assert_fail ("FuncletPad || FuncletEntryBB == &Fn->getEntryBlock()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 191, __extension__ __PRETTY_FUNCTION__))
;
11
Assuming the condition is true
12
'?' condition is true
192 if (!FuncletPad
12.1
'FuncletPad' is null
12.1
'FuncletPad' is null
12.1
'FuncletPad' is null
)
13
Taking true branch
193 FuncletUnwindDest = nullptr;
194 else if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
195 FuncletUnwindDest = CatchPad->getCatchSwitch()->getUnwindDest();
196 else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(FuncletPad))
197 FuncletUnwindDest = getCleanupRetUnwindDest(CleanupPad);
198 else
199 llvm_unreachable("unexpected funclet pad!")::llvm::llvm_unreachable_internal("unexpected funclet pad!", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 199)
;
200
201 BasicBlock *InvokeUnwindDest = II->getUnwindDest();
14
Calling 'InvokeInst::getUnwindDest'
30
Returning from 'InvokeInst::getUnwindDest'
31
'InvokeUnwindDest' initialized here
202 int BaseState = -1;
203 if (FuncletUnwindDest == InvokeUnwindDest) {
32
Assuming 'FuncletUnwindDest' is equal to 'InvokeUnwindDest'
33
Taking true branch
204 auto BaseStateI = FuncInfo.FuncletBaseStateMap.find(FuncletPad);
205 if (BaseStateI != FuncInfo.FuncletBaseStateMap.end())
34
Taking false branch
206 BaseState = BaseStateI->second;
207 }
208
209 if (BaseState != -1) {
35
Taking false branch
210 FuncInfo.InvokeStateMap[II] = BaseState;
211 } else {
212 Instruction *PadInst = InvokeUnwindDest->getFirstNonPHI();
36
Called C++ object pointer is null
213 assert(FuncInfo.EHPadStateMap.count(PadInst) && "EH Pad has no state!")(static_cast <bool> (FuncInfo.EHPadStateMap.count(PadInst
) && "EH Pad has no state!") ? void (0) : __assert_fail
("FuncInfo.EHPadStateMap.count(PadInst) && \"EH Pad has no state!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 213, __extension__ __PRETTY_FUNCTION__))
;
214 FuncInfo.InvokeStateMap[II] = FuncInfo.EHPadStateMap[PadInst];
215 }
216 }
217}
218
219// Given BB which ends in an unwind edge, return the EHPad that this BB belongs
220// to. If the unwind edge came from an invoke, return null.
221static const BasicBlock *getEHPadFromPredecessor(const BasicBlock *BB,
222 Value *ParentPad) {
223 const Instruction *TI = BB->getTerminator();
224 if (isa<InvokeInst>(TI))
225 return nullptr;
226 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
227 if (CatchSwitch->getParentPad() != ParentPad)
228 return nullptr;
229 return BB;
230 }
231 assert(!TI->isEHPad() && "unexpected EHPad!")(static_cast <bool> (!TI->isEHPad() && "unexpected EHPad!"
) ? void (0) : __assert_fail ("!TI->isEHPad() && \"unexpected EHPad!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 231, __extension__ __PRETTY_FUNCTION__))
;
232 auto *CleanupPad = cast<CleanupReturnInst>(TI)->getCleanupPad();
233 if (CleanupPad->getParentPad() != ParentPad)
234 return nullptr;
235 return CleanupPad->getParent();
236}
237
238// Starting from a EHPad, Backward walk through control-flow graph
239// to produce two primary outputs:
240// FuncInfo.EHPadStateMap[] and FuncInfo.CxxUnwindMap[]
241static void calculateCXXStateNumbers(WinEHFuncInfo &FuncInfo,
242 const Instruction *FirstNonPHI,
243 int ParentState) {
244 const BasicBlock *BB = FirstNonPHI->getParent();
245 assert(BB->isEHPad() && "not a funclet!")(static_cast <bool> (BB->isEHPad() && "not a funclet!"
) ? void (0) : __assert_fail ("BB->isEHPad() && \"not a funclet!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 245, __extension__ __PRETTY_FUNCTION__))
;
246
247 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
248 assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&(static_cast <bool> (FuncInfo.EHPadStateMap.count(CatchSwitch
) == 0 && "shouldn't revist catch funclets!") ? void (
0) : __assert_fail ("FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 && \"shouldn't revist catch funclets!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 249, __extension__ __PRETTY_FUNCTION__))
249 "shouldn't revist catch funclets!")(static_cast <bool> (FuncInfo.EHPadStateMap.count(CatchSwitch
) == 0 && "shouldn't revist catch funclets!") ? void (
0) : __assert_fail ("FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 && \"shouldn't revist catch funclets!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 249, __extension__ __PRETTY_FUNCTION__))
;
250
251 SmallVector<const CatchPadInst *, 2> Handlers;
252 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
253 auto *CatchPad = cast<CatchPadInst>(CatchPadBB->getFirstNonPHI());
254 Handlers.push_back(CatchPad);
255 }
256 int TryLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
257 FuncInfo.EHPadStateMap[CatchSwitch] = TryLow;
258 for (const BasicBlock *PredBlock : predecessors(BB))
259 if ((PredBlock = getEHPadFromPredecessor(PredBlock,
260 CatchSwitch->getParentPad())))
261 calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
262 TryLow);
263 int CatchLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
264
265 // catchpads are separate funclets in C++ EH due to the way rethrow works.
266 int TryHigh = CatchLow - 1;
267
268 // MSVC FrameHandler3/4 on x64&Arm64 expect Catch Handlers in $tryMap$
269 // stored in pre-order (outer first, inner next), not post-order
270 // Add to map here. Fix the CatchHigh after children are processed
271 const Module *Mod = BB->getParent()->getParent();
272 bool IsPreOrder = Triple(Mod->getTargetTriple()).isArch64Bit();
273 if (IsPreOrder)
274 addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchLow, Handlers);
275 unsigned TBMEIdx = FuncInfo.TryBlockMap.size() - 1;
276
277 for (const auto *CatchPad : Handlers) {
278 FuncInfo.FuncletBaseStateMap[CatchPad] = CatchLow;
279 for (const User *U : CatchPad->users()) {
280 const auto *UserI = cast<Instruction>(U);
281 if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
282 BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
283 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
284 calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
285 }
286 if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
287 BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
288 // If a nested cleanup pad reports a null unwind destination and the
289 // enclosing catch pad doesn't it must be post-dominated by an
290 // unreachable instruction.
291 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
292 calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
293 }
294 }
295 }
296 int CatchHigh = FuncInfo.getLastStateNumber();
297 // Now child Catches are processed, update CatchHigh
298 if (IsPreOrder)
299 FuncInfo.TryBlockMap[TBMEIdx].CatchHigh = CatchHigh;
300 else // PostOrder
301 addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers);
302
303 LLVM_DEBUG(dbgs() << "TryLow[" << BB->getName() << "]: " << TryLow << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "TryLow[" << BB->
getName() << "]: " << TryLow << '\n'; } } while
(false)
;
304 LLVM_DEBUG(dbgs() << "TryHigh[" << BB->getName() << "]: " << TryHighdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "TryHigh[" << BB->
getName() << "]: " << TryHigh << '\n'; } } while
(false)
305 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "TryHigh[" << BB->
getName() << "]: " << TryHigh << '\n'; } } while
(false)
;
306 LLVM_DEBUG(dbgs() << "CatchHigh[" << BB->getName() << "]: " << CatchHighdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "CatchHigh[" << BB->
getName() << "]: " << CatchHigh << '\n'; } }
while (false)
307 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "CatchHigh[" << BB->
getName() << "]: " << CatchHigh << '\n'; } }
while (false)
;
308 } else {
309 auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);
310
311 // It's possible for a cleanup to be visited twice: it might have multiple
312 // cleanupret instructions.
313 if (FuncInfo.EHPadStateMap.count(CleanupPad))
314 return;
315
316 int CleanupState = addUnwindMapEntry(FuncInfo, ParentState, BB);
317 FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
318 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state #" <<
CleanupState << " to BB " << BB->getName() <<
'\n'; } } while (false)
319 << BB->getName() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state #" <<
CleanupState << " to BB " << BB->getName() <<
'\n'; } } while (false)
;
320 for (const BasicBlock *PredBlock : predecessors(BB)) {
321 if ((PredBlock = getEHPadFromPredecessor(PredBlock,
322 CleanupPad->getParentPad()))) {
323 calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
324 CleanupState);
325 }
326 }
327 for (const User *U : CleanupPad->users()) {
328 const auto *UserI = cast<Instruction>(U);
329 if (UserI->isEHPad())
330 report_fatal_error("Cleanup funclets for the MSVC++ personality cannot "
331 "contain exceptional actions");
332 }
333 }
334}
335
336static int addSEHExcept(WinEHFuncInfo &FuncInfo, int ParentState,
337 const Function *Filter, const BasicBlock *Handler) {
338 SEHUnwindMapEntry Entry;
339 Entry.ToState = ParentState;
340 Entry.IsFinally = false;
341 Entry.Filter = Filter;
342 Entry.Handler = Handler;
343 FuncInfo.SEHUnwindMap.push_back(Entry);
344 return FuncInfo.SEHUnwindMap.size() - 1;
345}
346
347static int addSEHFinally(WinEHFuncInfo &FuncInfo, int ParentState,
348 const BasicBlock *Handler) {
349 SEHUnwindMapEntry Entry;
350 Entry.ToState = ParentState;
351 Entry.IsFinally = true;
352 Entry.Filter = nullptr;
353 Entry.Handler = Handler;
354 FuncInfo.SEHUnwindMap.push_back(Entry);
355 return FuncInfo.SEHUnwindMap.size() - 1;
356}
357
358// Starting from a EHPad, Backward walk through control-flow graph
359// to produce two primary outputs:
360// FuncInfo.EHPadStateMap[] and FuncInfo.SEHUnwindMap[]
361static void calculateSEHStateNumbers(WinEHFuncInfo &FuncInfo,
362 const Instruction *FirstNonPHI,
363 int ParentState) {
364 const BasicBlock *BB = FirstNonPHI->getParent();
365 assert(BB->isEHPad() && "no a funclet!")(static_cast <bool> (BB->isEHPad() && "no a funclet!"
) ? void (0) : __assert_fail ("BB->isEHPad() && \"no a funclet!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 365, __extension__ __PRETTY_FUNCTION__))
;
366
367 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
368 assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&(static_cast <bool> (FuncInfo.EHPadStateMap.count(CatchSwitch
) == 0 && "shouldn't revist catch funclets!") ? void (
0) : __assert_fail ("FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 && \"shouldn't revist catch funclets!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 369, __extension__ __PRETTY_FUNCTION__))
369 "shouldn't revist catch funclets!")(static_cast <bool> (FuncInfo.EHPadStateMap.count(CatchSwitch
) == 0 && "shouldn't revist catch funclets!") ? void (
0) : __assert_fail ("FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 && \"shouldn't revist catch funclets!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 369, __extension__ __PRETTY_FUNCTION__))
;
370
371 // Extract the filter function and the __except basic block and create a
372 // state for them.
373 assert(CatchSwitch->getNumHandlers() == 1 &&(static_cast <bool> (CatchSwitch->getNumHandlers() ==
1 && "SEH doesn't have multiple handlers per __try")
? void (0) : __assert_fail ("CatchSwitch->getNumHandlers() == 1 && \"SEH doesn't have multiple handlers per __try\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 374, __extension__ __PRETTY_FUNCTION__))
374 "SEH doesn't have multiple handlers per __try")(static_cast <bool> (CatchSwitch->getNumHandlers() ==
1 && "SEH doesn't have multiple handlers per __try")
? void (0) : __assert_fail ("CatchSwitch->getNumHandlers() == 1 && \"SEH doesn't have multiple handlers per __try\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 374, __extension__ __PRETTY_FUNCTION__))
;
375 const auto *CatchPad =
376 cast<CatchPadInst>((*CatchSwitch->handler_begin())->getFirstNonPHI());
377 const BasicBlock *CatchPadBB = CatchPad->getParent();
378 const Constant *FilterOrNull =
379 cast<Constant>(CatchPad->getArgOperand(0)->stripPointerCasts());
380 const Function *Filter = dyn_cast<Function>(FilterOrNull);
381 assert((Filter || FilterOrNull->isNullValue()) &&(static_cast <bool> ((Filter || FilterOrNull->isNullValue
()) && "unexpected filter value") ? void (0) : __assert_fail
("(Filter || FilterOrNull->isNullValue()) && \"unexpected filter value\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 382, __extension__ __PRETTY_FUNCTION__))
382 "unexpected filter value")(static_cast <bool> ((Filter || FilterOrNull->isNullValue
()) && "unexpected filter value") ? void (0) : __assert_fail
("(Filter || FilterOrNull->isNullValue()) && \"unexpected filter value\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 382, __extension__ __PRETTY_FUNCTION__))
;
383 int TryState = addSEHExcept(FuncInfo, ParentState, Filter, CatchPadBB);
384
385 // Everything in the __try block uses TryState as its parent state.
386 FuncInfo.EHPadStateMap[CatchSwitch] = TryState;
387 LLVM_DEBUG(dbgs() << "Assigning state #" << TryState << " to BB "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state #" <<
TryState << " to BB " << CatchPadBB->getName(
) << '\n'; } } while (false)
388 << CatchPadBB->getName() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state #" <<
TryState << " to BB " << CatchPadBB->getName(
) << '\n'; } } while (false)
;
389 for (const BasicBlock *PredBlock : predecessors(BB))
390 if ((PredBlock = getEHPadFromPredecessor(PredBlock,
391 CatchSwitch->getParentPad())))
392 calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
393 TryState);
394
395 // Everything in the __except block unwinds to ParentState, just like code
396 // outside the __try.
397 for (const User *U : CatchPad->users()) {
398 const auto *UserI = cast<Instruction>(U);
399 if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
400 BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
401 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
402 calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
403 }
404 if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
405 BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
406 // If a nested cleanup pad reports a null unwind destination and the
407 // enclosing catch pad doesn't it must be post-dominated by an
408 // unreachable instruction.
409 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
410 calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
411 }
412 }
413 } else {
414 auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);
415
416 // It's possible for a cleanup to be visited twice: it might have multiple
417 // cleanupret instructions.
418 if (FuncInfo.EHPadStateMap.count(CleanupPad))
419 return;
420
421 int CleanupState = addSEHFinally(FuncInfo, ParentState, BB);
422 FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
423 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state #" <<
CleanupState << " to BB " << BB->getName() <<
'\n'; } } while (false)
424 << BB->getName() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state #" <<
CleanupState << " to BB " << BB->getName() <<
'\n'; } } while (false)
;
425 for (const BasicBlock *PredBlock : predecessors(BB))
426 if ((PredBlock =
427 getEHPadFromPredecessor(PredBlock, CleanupPad->getParentPad())))
428 calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
429 CleanupState);
430 for (const User *U : CleanupPad->users()) {
431 const auto *UserI = cast<Instruction>(U);
432 if (UserI->isEHPad())
433 report_fatal_error("Cleanup funclets for the SEH personality cannot "
434 "contain exceptional actions");
435 }
436 }
437}
438
439static bool isTopLevelPadForMSVC(const Instruction *EHPad) {
440 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(EHPad))
441 return isa<ConstantTokenNone>(CatchSwitch->getParentPad()) &&
442 CatchSwitch->unwindsToCaller();
443 if (auto *CleanupPad = dyn_cast<CleanupPadInst>(EHPad))
444 return isa<ConstantTokenNone>(CleanupPad->getParentPad()) &&
445 getCleanupRetUnwindDest(CleanupPad) == nullptr;
446 if (isa<CatchPadInst>(EHPad))
447 return false;
448 llvm_unreachable("unexpected EHPad!")::llvm::llvm_unreachable_internal("unexpected EHPad!", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 448)
;
449}
450
451void llvm::calculateSEHStateNumbers(const Function *Fn,
452 WinEHFuncInfo &FuncInfo) {
453 // Don't compute state numbers twice.
454 if (!FuncInfo.SEHUnwindMap.empty())
455 return;
456
457 for (const BasicBlock &BB : *Fn) {
458 if (!BB.isEHPad())
459 continue;
460 const Instruction *FirstNonPHI = BB.getFirstNonPHI();
461 if (!isTopLevelPadForMSVC(FirstNonPHI))
462 continue;
463 ::calculateSEHStateNumbers(FuncInfo, FirstNonPHI, -1);
464 }
465
466 calculateStateNumbersForInvokes(Fn, FuncInfo);
467}
468
469void llvm::calculateWinCXXEHStateNumbers(const Function *Fn,
470 WinEHFuncInfo &FuncInfo) {
471 // Return if it's already been done.
472 if (!FuncInfo.EHPadStateMap.empty())
473 return;
474
475 for (const BasicBlock &BB : *Fn) {
476 if (!BB.isEHPad())
477 continue;
478 const Instruction *FirstNonPHI = BB.getFirstNonPHI();
479 if (!isTopLevelPadForMSVC(FirstNonPHI))
480 continue;
481 calculateCXXStateNumbers(FuncInfo, FirstNonPHI, -1);
482 }
483
484 calculateStateNumbersForInvokes(Fn, FuncInfo);
485}
486
487static int addClrEHHandler(WinEHFuncInfo &FuncInfo, int HandlerParentState,
488 int TryParentState, ClrHandlerType HandlerType,
489 uint32_t TypeToken, const BasicBlock *Handler) {
490 ClrEHUnwindMapEntry Entry;
491 Entry.HandlerParentState = HandlerParentState;
492 Entry.TryParentState = TryParentState;
493 Entry.Handler = Handler;
494 Entry.HandlerType = HandlerType;
495 Entry.TypeToken = TypeToken;
496 FuncInfo.ClrEHUnwindMap.push_back(Entry);
497 return FuncInfo.ClrEHUnwindMap.size() - 1;
498}
499
500void llvm::calculateClrEHStateNumbers(const Function *Fn,
501 WinEHFuncInfo &FuncInfo) {
502 // Return if it's already been done.
503 if (!FuncInfo.EHPadStateMap.empty())
1
Assuming the condition is false
2
Taking false branch
504 return;
505
506 // This numbering assigns one state number to each catchpad and cleanuppad.
507 // It also computes two tree-like relations over states:
508 // 1) Each state has a "HandlerParentState", which is the state of the next
509 // outer handler enclosing this state's handler (same as nearest ancestor
510 // per the ParentPad linkage on EH pads, but skipping over catchswitches).
511 // 2) Each state has a "TryParentState", which:
512 // a) for a catchpad that's not the last handler on its catchswitch, is
513 // the state of the next catchpad on that catchswitch
514 // b) for all other pads, is the state of the pad whose try region is the
515 // next outer try region enclosing this state's try region. The "try
516 // regions are not present as such in the IR, but will be inferred
517 // based on the placement of invokes and pads which reach each other
518 // by exceptional exits
519 // Catchswitches do not get their own states, but each gets mapped to the
520 // state of its first catchpad.
521
522 // Step one: walk down from outermost to innermost funclets, assigning each
523 // catchpad and cleanuppad a state number. Add an entry to the
524 // ClrEHUnwindMap for each state, recording its HandlerParentState and
525 // handler attributes. Record the TryParentState as well for each catchpad
526 // that's not the last on its catchswitch, but initialize all other entries'
527 // TryParentStates to a sentinel -1 value that the next pass will update.
528
529 // Seed a worklist with pads that have no parent.
530 SmallVector<std::pair<const Instruction *, int>, 8> Worklist;
531 for (const BasicBlock &BB : *Fn) {
532 const Instruction *FirstNonPHI = BB.getFirstNonPHI();
533 const Value *ParentPad;
534 if (const auto *CPI = dyn_cast<CleanupPadInst>(FirstNonPHI))
535 ParentPad = CPI->getParentPad();
536 else if (const auto *CSI = dyn_cast<CatchSwitchInst>(FirstNonPHI))
537 ParentPad = CSI->getParentPad();
538 else
539 continue;
540 if (isa<ConstantTokenNone>(ParentPad))
541 Worklist.emplace_back(FirstNonPHI, -1);
542 }
543
544 // Use the worklist to visit all pads, from outer to inner. Record
545 // HandlerParentState for all pads. Record TryParentState only for catchpads
546 // that aren't the last on their catchswitch (setting all other entries'
547 // TryParentStates to an initial value of -1). This loop is also responsible
548 // for setting the EHPadStateMap entry for all catchpads, cleanuppads, and
549 // catchswitches.
550 while (!Worklist.empty()) {
3
Loop condition is false. Execution continues on line 604
551 const Instruction *Pad;
552 int HandlerParentState;
553 std::tie(Pad, HandlerParentState) = Worklist.pop_back_val();
554
555 if (const auto *Cleanup = dyn_cast<CleanupPadInst>(Pad)) {
556 // Create the entry for this cleanup with the appropriate handler
557 // properties. Finally and fault handlers are distinguished by arity.
558 ClrHandlerType HandlerType =
559 (Cleanup->getNumArgOperands() ? ClrHandlerType::Fault
560 : ClrHandlerType::Finally);
561 int CleanupState = addClrEHHandler(FuncInfo, HandlerParentState, -1,
562 HandlerType, 0, Pad->getParent());
563 // Queue any child EH pads on the worklist.
564 for (const User *U : Cleanup->users())
565 if (const auto *I = dyn_cast<Instruction>(U))
566 if (I->isEHPad())
567 Worklist.emplace_back(I, CleanupState);
568 // Remember this pad's state.
569 FuncInfo.EHPadStateMap[Cleanup] = CleanupState;
570 } else {
571 // Walk the handlers of this catchswitch in reverse order since all but
572 // the last need to set the following one as its TryParentState.
573 const auto *CatchSwitch = cast<CatchSwitchInst>(Pad);
574 int CatchState = -1, FollowerState = -1;
575 SmallVector<const BasicBlock *, 4> CatchBlocks(CatchSwitch->handlers());
576 for (auto CBI = CatchBlocks.rbegin(), CBE = CatchBlocks.rend();
577 CBI != CBE; ++CBI, FollowerState = CatchState) {
578 const BasicBlock *CatchBlock = *CBI;
579 // Create the entry for this catch with the appropriate handler
580 // properties.
581 const auto *Catch = cast<CatchPadInst>(CatchBlock->getFirstNonPHI());
582 uint32_t TypeToken = static_cast<uint32_t>(
583 cast<ConstantInt>(Catch->getArgOperand(0))->getZExtValue());
584 CatchState =
585 addClrEHHandler(FuncInfo, HandlerParentState, FollowerState,
586 ClrHandlerType::Catch, TypeToken, CatchBlock);
587 // Queue any child EH pads on the worklist.
588 for (const User *U : Catch->users())
589 if (const auto *I = dyn_cast<Instruction>(U))
590 if (I->isEHPad())
591 Worklist.emplace_back(I, CatchState);
592 // Remember this catch's state.
593 FuncInfo.EHPadStateMap[Catch] = CatchState;
594 }
595 // Associate the catchswitch with the state of its first catch.
596 assert(CatchSwitch->getNumHandlers())(static_cast <bool> (CatchSwitch->getNumHandlers()) ?
void (0) : __assert_fail ("CatchSwitch->getNumHandlers()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 596, __extension__ __PRETTY_FUNCTION__))
;
597 FuncInfo.EHPadStateMap[CatchSwitch] = CatchState;
598 }
599 }
600
601 // Step two: record the TryParentState of each state. For cleanuppads that
602 // don't have cleanuprets, we may need to infer this from their child pads,
603 // so visit pads in descendant-most to ancestor-most order.
604 for (auto Entry = FuncInfo.ClrEHUnwindMap.rbegin(),
4
Loop condition is false. Execution continues on line 699
605 End = FuncInfo.ClrEHUnwindMap.rend();
606 Entry != End; ++Entry) {
607 const Instruction *Pad =
608 Entry->Handler.get<const BasicBlock *>()->getFirstNonPHI();
609 // For most pads, the TryParentState is the state associated with the
610 // unwind dest of exceptional exits from it.
611 const BasicBlock *UnwindDest;
612 if (const auto *Catch = dyn_cast<CatchPadInst>(Pad)) {
613 // If a catch is not the last in its catchswitch, its TryParentState is
614 // the state associated with the next catch in the switch, even though
615 // that's not the unwind dest of exceptions escaping the catch. Those
616 // cases were already assigned a TryParentState in the first pass, so
617 // skip them.
618 if (Entry->TryParentState != -1)
619 continue;
620 // Otherwise, get the unwind dest from the catchswitch.
621 UnwindDest = Catch->getCatchSwitch()->getUnwindDest();
622 } else {
623 const auto *Cleanup = cast<CleanupPadInst>(Pad);
624 UnwindDest = nullptr;
625 for (const User *U : Cleanup->users()) {
626 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
627 // Common and unambiguous case -- cleanupret indicates cleanup's
628 // unwind dest.
629 UnwindDest = CleanupRet->getUnwindDest();
630 break;
631 }
632
633 // Get an unwind dest for the user
634 const BasicBlock *UserUnwindDest = nullptr;
635 if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
636 UserUnwindDest = Invoke->getUnwindDest();
637 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(U)) {
638 UserUnwindDest = CatchSwitch->getUnwindDest();
639 } else if (auto *ChildCleanup = dyn_cast<CleanupPadInst>(U)) {
640 int UserState = FuncInfo.EHPadStateMap[ChildCleanup];
641 int UserUnwindState =
642 FuncInfo.ClrEHUnwindMap[UserState].TryParentState;
643 if (UserUnwindState != -1)
644 UserUnwindDest = FuncInfo.ClrEHUnwindMap[UserUnwindState]
645 .Handler.get<const BasicBlock *>();
646 }
647
648 // Not having an unwind dest for this user might indicate that it
649 // doesn't unwind, so can't be taken as proof that the cleanup itself
650 // may unwind to caller (see e.g. SimplifyUnreachable and
651 // RemoveUnwindEdge).
652 if (!UserUnwindDest)
653 continue;
654
655 // Now we have an unwind dest for the user, but we need to see if it
656 // unwinds all the way out of the cleanup or if it stays within it.
657 const Instruction *UserUnwindPad = UserUnwindDest->getFirstNonPHI();
658 const Value *UserUnwindParent;
659 if (auto *CSI = dyn_cast<CatchSwitchInst>(UserUnwindPad))
660 UserUnwindParent = CSI->getParentPad();
661 else
662 UserUnwindParent =
663 cast<CleanupPadInst>(UserUnwindPad)->getParentPad();
664
665 // The unwind stays within the cleanup iff it targets a child of the
666 // cleanup.
667 if (UserUnwindParent == Cleanup)
668 continue;
669
670 // This unwind exits the cleanup, so its dest is the cleanup's dest.
671 UnwindDest = UserUnwindDest;
672 break;
673 }
674 }
675
676 // Record the state of the unwind dest as the TryParentState.
677 int UnwindDestState;
678
679 // If UnwindDest is null at this point, either the pad in question can
680 // be exited by unwind to caller, or it cannot be exited by unwind. In
681 // either case, reporting such cases as unwinding to caller is correct.
682 // This can lead to EH tables that "look strange" -- if this pad's is in
683 // a parent funclet which has other children that do unwind to an enclosing
684 // pad, the try region for this pad will be missing the "duplicate" EH
685 // clause entries that you'd expect to see covering the whole parent. That
686 // should be benign, since the unwind never actually happens. If it were
687 // an issue, we could add a subsequent pass that pushes unwind dests down
688 // from parents that have them to children that appear to unwind to caller.
689 if (!UnwindDest) {
690 UnwindDestState = -1;
691 } else {
692 UnwindDestState = FuncInfo.EHPadStateMap[UnwindDest->getFirstNonPHI()];
693 }
694
695 Entry->TryParentState = UnwindDestState;
696 }
697
698 // Step three: transfer information from pads to invokes.
699 calculateStateNumbersForInvokes(Fn, FuncInfo);
5
Calling 'calculateStateNumbersForInvokes'
700}
701
702void WinEHPrepare::colorFunclets(Function &F) {
703 BlockColors = colorEHFunclets(F);
704
705 // Invert the map from BB to colors to color to BBs.
706 for (BasicBlock &BB : F) {
707 ColorVector &Colors = BlockColors[&BB];
708 for (BasicBlock *Color : Colors)
709 FuncletBlocks[Color].push_back(&BB);
710 }
711}
712
713void WinEHPrepare::demotePHIsOnFunclets(Function &F,
714 bool DemoteCatchSwitchPHIOnly) {
715 // Strip PHI nodes off of EH pads.
716 SmallVector<PHINode *, 16> PHINodes;
717 for (BasicBlock &BB : make_early_inc_range(F)) {
718 if (!BB.isEHPad())
719 continue;
720 if (DemoteCatchSwitchPHIOnly && !isa<CatchSwitchInst>(BB.getFirstNonPHI()))
721 continue;
722
723 for (Instruction &I : make_early_inc_range(BB)) {
724 auto *PN = dyn_cast<PHINode>(&I);
725 // Stop at the first non-PHI.
726 if (!PN)
727 break;
728
729 AllocaInst *SpillSlot = insertPHILoads(PN, F);
730 if (SpillSlot)
731 insertPHIStores(PN, SpillSlot);
732
733 PHINodes.push_back(PN);
734 }
735 }
736
737 for (auto *PN : PHINodes) {
738 // There may be lingering uses on other EH PHIs being removed
739 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
740 PN->eraseFromParent();
741 }
742}
743
744void WinEHPrepare::cloneCommonBlocks(Function &F) {
745 // We need to clone all blocks which belong to multiple funclets. Values are
746 // remapped throughout the funclet to propagate both the new instructions
747 // *and* the new basic blocks themselves.
748 for (auto &Funclets : FuncletBlocks) {
749 BasicBlock *FuncletPadBB = Funclets.first;
750 std::vector<BasicBlock *> &BlocksInFunclet = Funclets.second;
751 Value *FuncletToken;
752 if (FuncletPadBB == &F.getEntryBlock())
753 FuncletToken = ConstantTokenNone::get(F.getContext());
754 else
755 FuncletToken = FuncletPadBB->getFirstNonPHI();
756
757 std::vector<std::pair<BasicBlock *, BasicBlock *>> Orig2Clone;
758 ValueToValueMapTy VMap;
759 for (BasicBlock *BB : BlocksInFunclet) {
760 ColorVector &ColorsForBB = BlockColors[BB];
761 // We don't need to do anything if the block is monochromatic.
762 size_t NumColorsForBB = ColorsForBB.size();
763 if (NumColorsForBB == 1)
764 continue;
765
766 DEBUG_WITH_TYPE("winehprepare-coloring",do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Cloning block \'"
<< BB->getName() << "\' for funclet \'" <<
FuncletPadBB->getName() << "\'.\n"; } } while (false
)
767 dbgs() << " Cloning block \'" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Cloning block \'"
<< BB->getName() << "\' for funclet \'" <<
FuncletPadBB->getName() << "\'.\n"; } } while (false
)
768 << "\' for funclet \'" << FuncletPadBB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Cloning block \'"
<< BB->getName() << "\' for funclet \'" <<
FuncletPadBB->getName() << "\'.\n"; } } while (false
)
769 << "\'.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Cloning block \'"
<< BB->getName() << "\' for funclet \'" <<
FuncletPadBB->getName() << "\'.\n"; } } while (false
)
;
770
771 // Create a new basic block and copy instructions into it!
772 BasicBlock *CBB =
773 CloneBasicBlock(BB, VMap, Twine(".for.", FuncletPadBB->getName()));
774 // Insert the clone immediately after the original to ensure determinism
775 // and to keep the same relative ordering of any funclet's blocks.
776 CBB->insertInto(&F, BB->getNextNode());
777
778 // Add basic block mapping.
779 VMap[BB] = CBB;
780
781 // Record delta operations that we need to perform to our color mappings.
782 Orig2Clone.emplace_back(BB, CBB);
783 }
784
785 // If nothing was cloned, we're done cloning in this funclet.
786 if (Orig2Clone.empty())
787 continue;
788
789 // Update our color mappings to reflect that one block has lost a color and
790 // another has gained a color.
791 for (auto &BBMapping : Orig2Clone) {
792 BasicBlock *OldBlock = BBMapping.first;
793 BasicBlock *NewBlock = BBMapping.second;
794
795 BlocksInFunclet.push_back(NewBlock);
796 ColorVector &NewColors = BlockColors[NewBlock];
797 assert(NewColors.empty() && "A new block should only have one color!")(static_cast <bool> (NewColors.empty() && "A new block should only have one color!"
) ? void (0) : __assert_fail ("NewColors.empty() && \"A new block should only have one color!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 797, __extension__ __PRETTY_FUNCTION__))
;
798 NewColors.push_back(FuncletPadBB);
799
800 DEBUG_WITH_TYPE("winehprepare-coloring",do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Assigned color \'"
<< FuncletPadBB->getName() << "\' to block \'"
<< NewBlock->getName() << "\'.\n"; } } while (
false)
801 dbgs() << " Assigned color \'" << FuncletPadBB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Assigned color \'"
<< FuncletPadBB->getName() << "\' to block \'"
<< NewBlock->getName() << "\'.\n"; } } while (
false)
802 << "\' to block \'" << NewBlock->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Assigned color \'"
<< FuncletPadBB->getName() << "\' to block \'"
<< NewBlock->getName() << "\'.\n"; } } while (
false)
803 << "\'.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Assigned color \'"
<< FuncletPadBB->getName() << "\' to block \'"
<< NewBlock->getName() << "\'.\n"; } } while (
false)
;
804
805 llvm::erase_value(BlocksInFunclet, OldBlock);
806 ColorVector &OldColors = BlockColors[OldBlock];
807 llvm::erase_value(OldColors, FuncletPadBB);
808
809 DEBUG_WITH_TYPE("winehprepare-coloring",do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Removed color \'"
<< FuncletPadBB->getName() << "\' from block \'"
<< OldBlock->getName() << "\'.\n"; } } while (
false)
810 dbgs() << " Removed color \'" << FuncletPadBB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Removed color \'"
<< FuncletPadBB->getName() << "\' from block \'"
<< OldBlock->getName() << "\'.\n"; } } while (
false)
811 << "\' from block \'" << OldBlock->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Removed color \'"
<< FuncletPadBB->getName() << "\' from block \'"
<< OldBlock->getName() << "\'.\n"; } } while (
false)
812 << "\'.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare-coloring")) { dbgs() << " Removed color \'"
<< FuncletPadBB->getName() << "\' from block \'"
<< OldBlock->getName() << "\'.\n"; } } while (
false)
;
813 }
814
815 // Loop over all of the instructions in this funclet, fixing up operand
816 // references as we go. This uses VMap to do all the hard work.
817 for (BasicBlock *BB : BlocksInFunclet)
818 // Loop over all instructions, fixing each one as we find it...
819 for (Instruction &I : *BB)
820 RemapInstruction(&I, VMap,
821 RF_IgnoreMissingLocals | RF_NoModuleLevelChanges);
822
823 // Catchrets targeting cloned blocks need to be updated separately from
824 // the loop above because they are not in the current funclet.
825 SmallVector<CatchReturnInst *, 2> FixupCatchrets;
826 for (auto &BBMapping : Orig2Clone) {
827 BasicBlock *OldBlock = BBMapping.first;
828 BasicBlock *NewBlock = BBMapping.second;
829
830 FixupCatchrets.clear();
831 for (BasicBlock *Pred : predecessors(OldBlock))
832 if (auto *CatchRet = dyn_cast<CatchReturnInst>(Pred->getTerminator()))
833 if (CatchRet->getCatchSwitchParentPad() == FuncletToken)
834 FixupCatchrets.push_back(CatchRet);
835
836 for (CatchReturnInst *CatchRet : FixupCatchrets)
837 CatchRet->setSuccessor(NewBlock);
838 }
839
840 auto UpdatePHIOnClonedBlock = [&](PHINode *PN, bool IsForOldBlock) {
841 unsigned NumPreds = PN->getNumIncomingValues();
842 for (unsigned PredIdx = 0, PredEnd = NumPreds; PredIdx != PredEnd;
843 ++PredIdx) {
844 BasicBlock *IncomingBlock = PN->getIncomingBlock(PredIdx);
845 bool EdgeTargetsFunclet;
846 if (auto *CRI =
847 dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
848 EdgeTargetsFunclet = (CRI->getCatchSwitchParentPad() == FuncletToken);
849 } else {
850 ColorVector &IncomingColors = BlockColors[IncomingBlock];
851 assert(!IncomingColors.empty() && "Block not colored!")(static_cast <bool> (!IncomingColors.empty() &&
"Block not colored!") ? void (0) : __assert_fail ("!IncomingColors.empty() && \"Block not colored!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 851, __extension__ __PRETTY_FUNCTION__))
;
852 assert((IncomingColors.size() == 1 ||(static_cast <bool> ((IncomingColors.size() == 1 || llvm
::all_of(IncomingColors, [&](BasicBlock *Color) { return Color
!= FuncletPadBB; })) && "Cloning should leave this funclet's blocks monochromatic"
) ? void (0) : __assert_fail ("(IncomingColors.size() == 1 || llvm::all_of(IncomingColors, [&](BasicBlock *Color) { return Color != FuncletPadBB; })) && \"Cloning should leave this funclet's blocks monochromatic\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 857, __extension__ __PRETTY_FUNCTION__))
853 llvm::all_of(IncomingColors,(static_cast <bool> ((IncomingColors.size() == 1 || llvm
::all_of(IncomingColors, [&](BasicBlock *Color) { return Color
!= FuncletPadBB; })) && "Cloning should leave this funclet's blocks monochromatic"
) ? void (0) : __assert_fail ("(IncomingColors.size() == 1 || llvm::all_of(IncomingColors, [&](BasicBlock *Color) { return Color != FuncletPadBB; })) && \"Cloning should leave this funclet's blocks monochromatic\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 857, __extension__ __PRETTY_FUNCTION__))
854 [&](BasicBlock *Color) {(static_cast <bool> ((IncomingColors.size() == 1 || llvm
::all_of(IncomingColors, [&](BasicBlock *Color) { return Color
!= FuncletPadBB; })) && "Cloning should leave this funclet's blocks monochromatic"
) ? void (0) : __assert_fail ("(IncomingColors.size() == 1 || llvm::all_of(IncomingColors, [&](BasicBlock *Color) { return Color != FuncletPadBB; })) && \"Cloning should leave this funclet's blocks monochromatic\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 857, __extension__ __PRETTY_FUNCTION__))
855 return Color != FuncletPadBB;(static_cast <bool> ((IncomingColors.size() == 1 || llvm
::all_of(IncomingColors, [&](BasicBlock *Color) { return Color
!= FuncletPadBB; })) && "Cloning should leave this funclet's blocks monochromatic"
) ? void (0) : __assert_fail ("(IncomingColors.size() == 1 || llvm::all_of(IncomingColors, [&](BasicBlock *Color) { return Color != FuncletPadBB; })) && \"Cloning should leave this funclet's blocks monochromatic\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 857, __extension__ __PRETTY_FUNCTION__))
856 })) &&(static_cast <bool> ((IncomingColors.size() == 1 || llvm
::all_of(IncomingColors, [&](BasicBlock *Color) { return Color
!= FuncletPadBB; })) && "Cloning should leave this funclet's blocks monochromatic"
) ? void (0) : __assert_fail ("(IncomingColors.size() == 1 || llvm::all_of(IncomingColors, [&](BasicBlock *Color) { return Color != FuncletPadBB; })) && \"Cloning should leave this funclet's blocks monochromatic\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 857, __extension__ __PRETTY_FUNCTION__))
857 "Cloning should leave this funclet's blocks monochromatic")(static_cast <bool> ((IncomingColors.size() == 1 || llvm
::all_of(IncomingColors, [&](BasicBlock *Color) { return Color
!= FuncletPadBB; })) && "Cloning should leave this funclet's blocks monochromatic"
) ? void (0) : __assert_fail ("(IncomingColors.size() == 1 || llvm::all_of(IncomingColors, [&](BasicBlock *Color) { return Color != FuncletPadBB; })) && \"Cloning should leave this funclet's blocks monochromatic\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 857, __extension__ __PRETTY_FUNCTION__))
;
858 EdgeTargetsFunclet = (IncomingColors.front() == FuncletPadBB);
859 }
860 if (IsForOldBlock != EdgeTargetsFunclet)
861 continue;
862 PN->removeIncomingValue(IncomingBlock, /*DeletePHIIfEmpty=*/false);
863 // Revisit the next entry.
864 --PredIdx;
865 --PredEnd;
866 }
867 };
868
869 for (auto &BBMapping : Orig2Clone) {
870 BasicBlock *OldBlock = BBMapping.first;
871 BasicBlock *NewBlock = BBMapping.second;
872 for (PHINode &OldPN : OldBlock->phis()) {
873 UpdatePHIOnClonedBlock(&OldPN, /*IsForOldBlock=*/true);
874 }
875 for (PHINode &NewPN : NewBlock->phis()) {
876 UpdatePHIOnClonedBlock(&NewPN, /*IsForOldBlock=*/false);
877 }
878 }
879
880 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to
881 // the PHI nodes for NewBB now.
882 for (auto &BBMapping : Orig2Clone) {
883 BasicBlock *OldBlock = BBMapping.first;
884 BasicBlock *NewBlock = BBMapping.second;
885 for (BasicBlock *SuccBB : successors(NewBlock)) {
886 for (PHINode &SuccPN : SuccBB->phis()) {
887 // Ok, we have a PHI node. Figure out what the incoming value was for
888 // the OldBlock.
889 int OldBlockIdx = SuccPN.getBasicBlockIndex(OldBlock);
890 if (OldBlockIdx == -1)
891 break;
892 Value *IV = SuccPN.getIncomingValue(OldBlockIdx);
893
894 // Remap the value if necessary.
895 if (auto *Inst = dyn_cast<Instruction>(IV)) {
896 ValueToValueMapTy::iterator I = VMap.find(Inst);
897 if (I != VMap.end())
898 IV = I->second;
899 }
900
901 SuccPN.addIncoming(IV, NewBlock);
902 }
903 }
904 }
905
906 for (ValueToValueMapTy::value_type VT : VMap) {
907 // If there were values defined in BB that are used outside the funclet,
908 // then we now have to update all uses of the value to use either the
909 // original value, the cloned value, or some PHI derived value. This can
910 // require arbitrary PHI insertion, of which we are prepared to do, clean
911 // these up now.
912 SmallVector<Use *, 16> UsesToRename;
913
914 auto *OldI = dyn_cast<Instruction>(const_cast<Value *>(VT.first));
915 if (!OldI)
916 continue;
917 auto *NewI = cast<Instruction>(VT.second);
918 // Scan all uses of this instruction to see if it is used outside of its
919 // funclet, and if so, record them in UsesToRename.
920 for (Use &U : OldI->uses()) {
921 Instruction *UserI = cast<Instruction>(U.getUser());
922 BasicBlock *UserBB = UserI->getParent();
923 ColorVector &ColorsForUserBB = BlockColors[UserBB];
924 assert(!ColorsForUserBB.empty())(static_cast <bool> (!ColorsForUserBB.empty()) ? void (
0) : __assert_fail ("!ColorsForUserBB.empty()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 924, __extension__ __PRETTY_FUNCTION__))
;
925 if (ColorsForUserBB.size() > 1 ||
926 *ColorsForUserBB.begin() != FuncletPadBB)
927 UsesToRename.push_back(&U);
928 }
929
930 // If there are no uses outside the block, we're done with this
931 // instruction.
932 if (UsesToRename.empty())
933 continue;
934
935 // We found a use of OldI outside of the funclet. Rename all uses of OldI
936 // that are outside its funclet to be uses of the appropriate PHI node
937 // etc.
938 SSAUpdater SSAUpdate;
939 SSAUpdate.Initialize(OldI->getType(), OldI->getName());
940 SSAUpdate.AddAvailableValue(OldI->getParent(), OldI);
941 SSAUpdate.AddAvailableValue(NewI->getParent(), NewI);
942
943 while (!UsesToRename.empty())
944 SSAUpdate.RewriteUseAfterInsertions(*UsesToRename.pop_back_val());
945 }
946 }
947}
948
949void WinEHPrepare::removeImplausibleInstructions(Function &F) {
950 // Remove implausible terminators and replace them with UnreachableInst.
951 for (auto &Funclet : FuncletBlocks) {
952 BasicBlock *FuncletPadBB = Funclet.first;
953 std::vector<BasicBlock *> &BlocksInFunclet = Funclet.second;
954 Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI();
955 auto *FuncletPad = dyn_cast<FuncletPadInst>(FirstNonPHI);
956 auto *CatchPad = dyn_cast_or_null<CatchPadInst>(FuncletPad);
957 auto *CleanupPad = dyn_cast_or_null<CleanupPadInst>(FuncletPad);
958
959 for (BasicBlock *BB : BlocksInFunclet) {
960 for (Instruction &I : *BB) {
961 auto *CB = dyn_cast<CallBase>(&I);
962 if (!CB)
963 continue;
964
965 Value *FuncletBundleOperand = nullptr;
966 if (auto BU = CB->getOperandBundle(LLVMContext::OB_funclet))
967 FuncletBundleOperand = BU->Inputs.front();
968
969 if (FuncletBundleOperand == FuncletPad)
970 continue;
971
972 // Skip call sites which are nounwind intrinsics or inline asm.
973 auto *CalledFn =
974 dyn_cast<Function>(CB->getCalledOperand()->stripPointerCasts());
975 if (CalledFn && ((CalledFn->isIntrinsic() && CB->doesNotThrow()) ||
976 CB->isInlineAsm()))
977 continue;
978
979 // This call site was not part of this funclet, remove it.
980 if (isa<InvokeInst>(CB)) {
981 // Remove the unwind edge if it was an invoke.
982 removeUnwindEdge(BB);
983 // Get a pointer to the new call.
984 BasicBlock::iterator CallI =
985 std::prev(BB->getTerminator()->getIterator());
986 auto *CI = cast<CallInst>(&*CallI);
987 changeToUnreachable(CI);
988 } else {
989 changeToUnreachable(&I);
990 }
991
992 // There are no more instructions in the block (except for unreachable),
993 // we are done.
994 break;
995 }
996
997 Instruction *TI = BB->getTerminator();
998 // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst.
999 bool IsUnreachableRet = isa<ReturnInst>(TI) && FuncletPad;
1000 // The token consumed by a CatchReturnInst must match the funclet token.
1001 bool IsUnreachableCatchret = false;
1002 if (auto *CRI = dyn_cast<CatchReturnInst>(TI))
1003 IsUnreachableCatchret = CRI->getCatchPad() != CatchPad;
1004 // The token consumed by a CleanupReturnInst must match the funclet token.
1005 bool IsUnreachableCleanupret = false;
1006 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI))
1007 IsUnreachableCleanupret = CRI->getCleanupPad() != CleanupPad;
1008 if (IsUnreachableRet || IsUnreachableCatchret ||
1009 IsUnreachableCleanupret) {
1010 changeToUnreachable(TI);
1011 } else if (isa<InvokeInst>(TI)) {
1012 if (Personality == EHPersonality::MSVC_CXX && CleanupPad) {
1013 // Invokes within a cleanuppad for the MSVC++ personality never
1014 // transfer control to their unwind edge: the personality will
1015 // terminate the program.
1016 removeUnwindEdge(BB);
1017 }
1018 }
1019 }
1020 }
1021}
1022
1023void WinEHPrepare::cleanupPreparedFunclets(Function &F) {
1024 // Clean-up some of the mess we made by removing useles PHI nodes, trivial
1025 // branches, etc.
1026 for (BasicBlock &BB : llvm::make_early_inc_range(F)) {
1027 SimplifyInstructionsInBlock(&BB);
1028 ConstantFoldTerminator(&BB, /*DeleteDeadConditions=*/true);
1029 MergeBlockIntoPredecessor(&BB);
1030 }
1031
1032 // We might have some unreachable blocks after cleaning up some impossible
1033 // control flow.
1034 removeUnreachableBlocks(F);
1035}
1036
1037#ifndef NDEBUG
1038void WinEHPrepare::verifyPreparedFunclets(Function &F) {
1039 for (BasicBlock &BB : F) {
1040 size_t NumColors = BlockColors[&BB].size();
1041 assert(NumColors == 1 && "Expected monochromatic BB!")(static_cast <bool> (NumColors == 1 && "Expected monochromatic BB!"
) ? void (0) : __assert_fail ("NumColors == 1 && \"Expected monochromatic BB!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 1041, __extension__ __PRETTY_FUNCTION__))
;
1042 if (NumColors == 0)
1043 report_fatal_error("Uncolored BB!");
1044 if (NumColors > 1)
1045 report_fatal_error("Multicolor BB!");
1046 assert((DisableDemotion || !(BB.isEHPad() && isa<PHINode>(BB.begin()))) &&(static_cast <bool> ((DisableDemotion || !(BB.isEHPad()
&& isa<PHINode>(BB.begin()))) && "EH Pad still has a PHI!"
) ? void (0) : __assert_fail ("(DisableDemotion || !(BB.isEHPad() && isa<PHINode>(BB.begin()))) && \"EH Pad still has a PHI!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 1047, __extension__ __PRETTY_FUNCTION__))
1047 "EH Pad still has a PHI!")(static_cast <bool> ((DisableDemotion || !(BB.isEHPad()
&& isa<PHINode>(BB.begin()))) && "EH Pad still has a PHI!"
) ? void (0) : __assert_fail ("(DisableDemotion || !(BB.isEHPad() && isa<PHINode>(BB.begin()))) && \"EH Pad still has a PHI!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 1047, __extension__ __PRETTY_FUNCTION__))
;
1048 }
1049}
1050#endif
1051
1052bool WinEHPrepare::prepareExplicitEH(Function &F) {
1053 // Remove unreachable blocks. It is not valuable to assign them a color and
1054 // their existence can trick us into thinking values are alive when they are
1055 // not.
1056 removeUnreachableBlocks(F);
1057
1058 // Determine which blocks are reachable from which funclet entries.
1059 colorFunclets(F);
1060
1061 cloneCommonBlocks(F);
1062
1063 if (!DisableDemotion)
1064 demotePHIsOnFunclets(F, DemoteCatchSwitchPHIOnly ||
1065 DemoteCatchSwitchPHIOnlyOpt);
1066
1067 if (!DisableCleanups) {
1068 assert(!verifyFunction(F, &dbgs()))(static_cast <bool> (!verifyFunction(F, &dbgs())) ?
void (0) : __assert_fail ("!verifyFunction(F, &dbgs())",
"/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 1068, __extension__ __PRETTY_FUNCTION__))
;
1069 removeImplausibleInstructions(F);
1070
1071 assert(!verifyFunction(F, &dbgs()))(static_cast <bool> (!verifyFunction(F, &dbgs())) ?
void (0) : __assert_fail ("!verifyFunction(F, &dbgs())",
"/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 1071, __extension__ __PRETTY_FUNCTION__))
;
1072 cleanupPreparedFunclets(F);
1073 }
1074
1075 LLVM_DEBUG(verifyPreparedFunclets(F))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { verifyPreparedFunclets(F); } } while (false
)
;
1076 // Recolor the CFG to verify that all is well.
1077 LLVM_DEBUG(colorFunclets(F))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { colorFunclets(F); } } while (false)
;
1078 LLVM_DEBUG(verifyPreparedFunclets(F))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { verifyPreparedFunclets(F); } } while (false
)
;
1079
1080 BlockColors.clear();
1081 FuncletBlocks.clear();
1082
1083 return true;
1084}
1085
1086// TODO: Share loads when one use dominates another, or when a catchpad exit
1087// dominates uses (needs dominators).
1088AllocaInst *WinEHPrepare::insertPHILoads(PHINode *PN, Function &F) {
1089 BasicBlock *PHIBlock = PN->getParent();
1090 AllocaInst *SpillSlot = nullptr;
1091 Instruction *EHPad = PHIBlock->getFirstNonPHI();
1092
1093 if (!EHPad->isTerminator()) {
1094 // If the EHPad isn't a terminator, then we can insert a load in this block
1095 // that will dominate all uses.
1096 SpillSlot = new AllocaInst(PN->getType(), DL->getAllocaAddrSpace(), nullptr,
1097 Twine(PN->getName(), ".wineh.spillslot"),
1098 &F.getEntryBlock().front());
1099 Value *V = new LoadInst(PN->getType(), SpillSlot,
1100 Twine(PN->getName(), ".wineh.reload"),
1101 &*PHIBlock->getFirstInsertionPt());
1102 PN->replaceAllUsesWith(V);
1103 return SpillSlot;
1104 }
1105
1106 // Otherwise, we have a PHI on a terminator EHPad, and we give up and insert
1107 // loads of the slot before every use.
1108 DenseMap<BasicBlock *, Value *> Loads;
1109 for (Use &U : llvm::make_early_inc_range(PN->uses())) {
1110 auto *UsingInst = cast<Instruction>(U.getUser());
1111 if (isa<PHINode>(UsingInst) && UsingInst->getParent()->isEHPad()) {
1112 // Use is on an EH pad phi. Leave it alone; we'll insert loads and
1113 // stores for it separately.
1114 continue;
1115 }
1116 replaceUseWithLoad(PN, U, SpillSlot, Loads, F);
1117 }
1118 return SpillSlot;
1119}
1120
1121// TODO: improve store placement. Inserting at def is probably good, but need
1122// to be careful not to introduce interfering stores (needs liveness analysis).
1123// TODO: identify related phi nodes that can share spill slots, and share them
1124// (also needs liveness).
1125void WinEHPrepare::insertPHIStores(PHINode *OriginalPHI,
1126 AllocaInst *SpillSlot) {
1127 // Use a worklist of (Block, Value) pairs -- the given Value needs to be
1128 // stored to the spill slot by the end of the given Block.
1129 SmallVector<std::pair<BasicBlock *, Value *>, 4> Worklist;
1130
1131 Worklist.push_back({OriginalPHI->getParent(), OriginalPHI});
1132
1133 while (!Worklist.empty()) {
1134 BasicBlock *EHBlock;
1135 Value *InVal;
1136 std::tie(EHBlock, InVal) = Worklist.pop_back_val();
1137
1138 PHINode *PN = dyn_cast<PHINode>(InVal);
1139 if (PN && PN->getParent() == EHBlock) {
1140 // The value is defined by another PHI we need to remove, with no room to
1141 // insert a store after the PHI, so each predecessor needs to store its
1142 // incoming value.
1143 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
1144 Value *PredVal = PN->getIncomingValue(i);
1145
1146 // Undef can safely be skipped.
1147 if (isa<UndefValue>(PredVal))
1148 continue;
1149
1150 insertPHIStore(PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist);
1151 }
1152 } else {
1153 // We need to store InVal, which dominates EHBlock, but can't put a store
1154 // in EHBlock, so need to put stores in each predecessor.
1155 for (BasicBlock *PredBlock : predecessors(EHBlock)) {
1156 insertPHIStore(PredBlock, InVal, SpillSlot, Worklist);
1157 }
1158 }
1159 }
1160}
1161
1162void WinEHPrepare::insertPHIStore(
1163 BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
1164 SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) {
1165
1166 if (PredBlock->isEHPad() && PredBlock->getFirstNonPHI()->isTerminator()) {
1167 // Pred is unsplittable, so we need to queue it on the worklist.
1168 Worklist.push_back({PredBlock, PredVal});
1169 return;
1170 }
1171
1172 // Otherwise, insert the store at the end of the basic block.
1173 new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator());
1174}
1175
1176void WinEHPrepare::replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
1177 DenseMap<BasicBlock *, Value *> &Loads,
1178 Function &F) {
1179 // Lazilly create the spill slot.
1180 if (!SpillSlot)
1181 SpillSlot = new AllocaInst(V->getType(), DL->getAllocaAddrSpace(), nullptr,
1182 Twine(V->getName(), ".wineh.spillslot"),
1183 &F.getEntryBlock().front());
1184
1185 auto *UsingInst = cast<Instruction>(U.getUser());
1186 if (auto *UsingPHI = dyn_cast<PHINode>(UsingInst)) {
1187 // If this is a PHI node, we can't insert a load of the value before
1188 // the use. Instead insert the load in the predecessor block
1189 // corresponding to the incoming value.
1190 //
1191 // Note that if there are multiple edges from a basic block to this
1192 // PHI node that we cannot have multiple loads. The problem is that
1193 // the resulting PHI node will have multiple values (from each load)
1194 // coming in from the same block, which is illegal SSA form.
1195 // For this reason, we keep track of and reuse loads we insert.
1196 BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U);
1197 if (auto *CatchRet =
1198 dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
1199 // Putting a load above a catchret and use on the phi would still leave
1200 // a cross-funclet def/use. We need to split the edge, change the
1201 // catchret to target the new block, and put the load there.
1202 BasicBlock *PHIBlock = UsingInst->getParent();
1203 BasicBlock *NewBlock = SplitEdge(IncomingBlock, PHIBlock);
1204 // SplitEdge gives us:
1205 // IncomingBlock:
1206 // ...
1207 // br label %NewBlock
1208 // NewBlock:
1209 // catchret label %PHIBlock
1210 // But we need:
1211 // IncomingBlock:
1212 // ...
1213 // catchret label %NewBlock
1214 // NewBlock:
1215 // br label %PHIBlock
1216 // So move the terminators to each others' blocks and swap their
1217 // successors.
1218 BranchInst *Goto = cast<BranchInst>(IncomingBlock->getTerminator());
1219 Goto->removeFromParent();
1220 CatchRet->removeFromParent();
1221 IncomingBlock->getInstList().push_back(CatchRet);
1222 NewBlock->getInstList().push_back(Goto);
1223 Goto->setSuccessor(0, PHIBlock);
1224 CatchRet->setSuccessor(NewBlock);
1225 // Update the color mapping for the newly split edge.
1226 // Grab a reference to the ColorVector to be inserted before getting the
1227 // reference to the vector we are copying because inserting the new
1228 // element in BlockColors might cause the map to be reallocated.
1229 ColorVector &ColorsForNewBlock = BlockColors[NewBlock];
1230 ColorVector &ColorsForPHIBlock = BlockColors[PHIBlock];
1231 ColorsForNewBlock = ColorsForPHIBlock;
1232 for (BasicBlock *FuncletPad : ColorsForPHIBlock)
1233 FuncletBlocks[FuncletPad].push_back(NewBlock);
1234 // Treat the new block as incoming for load insertion.
1235 IncomingBlock = NewBlock;
1236 }
1237 Value *&Load = Loads[IncomingBlock];
1238 // Insert the load into the predecessor block
1239 if (!Load)
1240 Load = new LoadInst(V->getType(), SpillSlot,
1241 Twine(V->getName(), ".wineh.reload"),
1242 /*isVolatile=*/false, IncomingBlock->getTerminator());
1243
1244 U.set(Load);
1245 } else {
1246 // Reload right before the old use.
1247 auto *Load = new LoadInst(V->getType(), SpillSlot,
1248 Twine(V->getName(), ".wineh.reload"),
1249 /*isVolatile=*/false, UsingInst);
1250 U.set(Load);
1251 }
1252}
1253
1254void WinEHFuncInfo::addIPToStateRange(const InvokeInst *II,
1255 MCSymbol *InvokeBegin,
1256 MCSymbol *InvokeEnd) {
1257 assert(InvokeStateMap.count(II) &&(static_cast <bool> (InvokeStateMap.count(II) &&
"should get invoke with precomputed state") ? void (0) : __assert_fail
("InvokeStateMap.count(II) && \"should get invoke with precomputed state\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 1258, __extension__ __PRETTY_FUNCTION__))
1258 "should get invoke with precomputed state")(static_cast <bool> (InvokeStateMap.count(II) &&
"should get invoke with precomputed state") ? void (0) : __assert_fail
("InvokeStateMap.count(II) && \"should get invoke with precomputed state\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/WinEHPrepare.cpp"
, 1258, __extension__ __PRETTY_FUNCTION__))
;
1259 LabelToStateMap[InvokeBegin] = std::make_pair(InvokeStateMap[II], InvokeEnd);
1260}
1261
1262WinEHFuncInfo::WinEHFuncInfo() {}

/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h

1//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file exposes the class definitions of all of the subclasses of the
10// Instruction class. This is meant to be an easy way to get access to all
11// instruction subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRUCTIONS_H
16#define LLVM_IR_INSTRUCTIONS_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/Bitfields.h"
20#include "llvm/ADT/MapVector.h"
21#include "llvm/ADT/None.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/StringRef.h"
25#include "llvm/ADT/Twine.h"
26#include "llvm/ADT/iterator.h"
27#include "llvm/ADT/iterator_range.h"
28#include "llvm/IR/Attributes.h"
29#include "llvm/IR/BasicBlock.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/CFG.h"
32#include "llvm/IR/Constant.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/Function.h"
35#include "llvm/IR/InstrTypes.h"
36#include "llvm/IR/Instruction.h"
37#include "llvm/IR/OperandTraits.h"
38#include "llvm/IR/Type.h"
39#include "llvm/IR/Use.h"
40#include "llvm/IR/User.h"
41#include "llvm/IR/Value.h"
42#include "llvm/Support/AtomicOrdering.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/ErrorHandling.h"
45#include <cassert>
46#include <cstddef>
47#include <cstdint>
48#include <iterator>
49
50namespace llvm {
51
52class APInt;
53class ConstantInt;
54class DataLayout;
55class LLVMContext;
56
57//===----------------------------------------------------------------------===//
58// AllocaInst Class
59//===----------------------------------------------------------------------===//
60
61/// an instruction to allocate memory on the stack
62class AllocaInst : public UnaryInstruction {
63 Type *AllocatedType;
64
65 using AlignmentField = AlignmentBitfieldElementT<0>;
66 using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>;
67 using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>;
68 static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField,
69 SwiftErrorField>(),
70 "Bitfields must be contiguous");
71
72protected:
73 // Note: Instruction needs to be a friend here to call cloneImpl.
74 friend class Instruction;
75
76 AllocaInst *cloneImpl() const;
77
78public:
79 explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
80 const Twine &Name, Instruction *InsertBefore);
81 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
82 const Twine &Name, BasicBlock *InsertAtEnd);
83
84 AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
85 Instruction *InsertBefore);
86 AllocaInst(Type *Ty, unsigned AddrSpace,
87 const Twine &Name, BasicBlock *InsertAtEnd);
88
89 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
90 const Twine &Name = "", Instruction *InsertBefore = nullptr);
91 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
92 const Twine &Name, BasicBlock *InsertAtEnd);
93
94 /// Return true if there is an allocation size parameter to the allocation
95 /// instruction that is not 1.
96 bool isArrayAllocation() const;
97
98 /// Get the number of elements allocated. For a simple allocation of a single
99 /// element, this will return a constant 1 value.
100 const Value *getArraySize() const { return getOperand(0); }
101 Value *getArraySize() { return getOperand(0); }
102
103 /// Overload to return most specific pointer type.
104 PointerType *getType() const {
105 return cast<PointerType>(Instruction::getType());
106 }
107
108 /// Get allocation size in bits. Returns None if size can't be determined,
109 /// e.g. in case of a VLA.
110 Optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const;
111
112 /// Return the type that is being allocated by the instruction.
113 Type *getAllocatedType() const { return AllocatedType; }
114 /// for use only in special circumstances that need to generically
115 /// transform a whole instruction (eg: IR linking and vectorization).
116 void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
117
118 /// Return the alignment of the memory that is being allocated by the
119 /// instruction.
120 Align getAlign() const {
121 return Align(1ULL << getSubclassData<AlignmentField>());
122 }
123
124 void setAlignment(Align Align) {
125 setSubclassData<AlignmentField>(Log2(Align));
126 }
127
128 // FIXME: Remove this one transition to Align is over.
129 unsigned getAlignment() const { return getAlign().value(); }
130
131 /// Return true if this alloca is in the entry block of the function and is a
132 /// constant size. If so, the code generator will fold it into the
133 /// prolog/epilog code, so it is basically free.
134 bool isStaticAlloca() const;
135
136 /// Return true if this alloca is used as an inalloca argument to a call. Such
137 /// allocas are never considered static even if they are in the entry block.
138 bool isUsedWithInAlloca() const {
139 return getSubclassData<UsedWithInAllocaField>();
140 }
141
142 /// Specify whether this alloca is used to represent the arguments to a call.
143 void setUsedWithInAlloca(bool V) {
144 setSubclassData<UsedWithInAllocaField>(V);
145 }
146
147 /// Return true if this alloca is used as a swifterror argument to a call.
148 bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); }
149 /// Specify whether this alloca is used to represent a swifterror.
150 void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); }
151
152 // Methods for support type inquiry through isa, cast, and dyn_cast:
153 static bool classof(const Instruction *I) {
154 return (I->getOpcode() == Instruction::Alloca);
155 }
156 static bool classof(const Value *V) {
157 return isa<Instruction>(V) && classof(cast<Instruction>(V));
158 }
159
160private:
161 // Shadow Instruction::setInstructionSubclassData with a private forwarding
162 // method so that subclasses cannot accidentally use it.
163 template <typename Bitfield>
164 void setSubclassData(typename Bitfield::Type Value) {
165 Instruction::setSubclassData<Bitfield>(Value);
166 }
167};
168
169//===----------------------------------------------------------------------===//
170// LoadInst Class
171//===----------------------------------------------------------------------===//
172
173/// An instruction for reading from memory. This uses the SubclassData field in
174/// Value to store whether or not the load is volatile.
175class LoadInst : public UnaryInstruction {
176 using VolatileField = BoolBitfieldElementT<0>;
177 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
178 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
179 static_assert(
180 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
181 "Bitfields must be contiguous");
182
183 void AssertOK();
184
185protected:
186 // Note: Instruction needs to be a friend here to call cloneImpl.
187 friend class Instruction;
188
189 LoadInst *cloneImpl() const;
190
191public:
192 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr,
193 Instruction *InsertBefore);
194 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
195 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
196 Instruction *InsertBefore);
197 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
198 BasicBlock *InsertAtEnd);
199 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
200 Align Align, Instruction *InsertBefore = nullptr);
201 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
202 Align Align, BasicBlock *InsertAtEnd);
203 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
204 Align Align, AtomicOrdering Order,
205 SyncScope::ID SSID = SyncScope::System,
206 Instruction *InsertBefore = nullptr);
207 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
208 Align Align, AtomicOrdering Order, SyncScope::ID SSID,
209 BasicBlock *InsertAtEnd);
210
211 /// Return true if this is a load from a volatile memory location.
212 bool isVolatile() const { return getSubclassData<VolatileField>(); }
213
214 /// Specify whether this is a volatile load or not.
215 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
216
217 /// Return the alignment of the access that is being performed.
218 /// FIXME: Remove this function once transition to Align is over.
219 /// Use getAlign() instead.
220 unsigned getAlignment() const { return getAlign().value(); }
221
222 /// Return the alignment of the access that is being performed.
223 Align getAlign() const {
224 return Align(1ULL << (getSubclassData<AlignmentField>()));
225 }
226
227 void setAlignment(Align Align) {
228 setSubclassData<AlignmentField>(Log2(Align));
229 }
230
231 /// Returns the ordering constraint of this load instruction.
232 AtomicOrdering getOrdering() const {
233 return getSubclassData<OrderingField>();
234 }
235 /// Sets the ordering constraint of this load instruction. May not be Release
236 /// or AcquireRelease.
237 void setOrdering(AtomicOrdering Ordering) {
238 setSubclassData<OrderingField>(Ordering);
239 }
240
241 /// Returns the synchronization scope ID of this load instruction.
242 SyncScope::ID getSyncScopeID() const {
243 return SSID;
244 }
245
246 /// Sets the synchronization scope ID of this load instruction.
247 void setSyncScopeID(SyncScope::ID SSID) {
248 this->SSID = SSID;
249 }
250
251 /// Sets the ordering constraint and the synchronization scope ID of this load
252 /// instruction.
253 void setAtomic(AtomicOrdering Ordering,
254 SyncScope::ID SSID = SyncScope::System) {
255 setOrdering(Ordering);
256 setSyncScopeID(SSID);
257 }
258
259 bool isSimple() const { return !isAtomic() && !isVolatile(); }
260
261 bool isUnordered() const {
262 return (getOrdering() == AtomicOrdering::NotAtomic ||
263 getOrdering() == AtomicOrdering::Unordered) &&
264 !isVolatile();
265 }
266
267 Value *getPointerOperand() { return getOperand(0); }
268 const Value *getPointerOperand() const { return getOperand(0); }
269 static unsigned getPointerOperandIndex() { return 0U; }
270 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
271
272 /// Returns the address space of the pointer operand.
273 unsigned getPointerAddressSpace() const {
274 return getPointerOperandType()->getPointerAddressSpace();
275 }
276
277 // Methods for support type inquiry through isa, cast, and dyn_cast:
278 static bool classof(const Instruction *I) {
279 return I->getOpcode() == Instruction::Load;
280 }
281 static bool classof(const Value *V) {
282 return isa<Instruction>(V) && classof(cast<Instruction>(V));
283 }
284
285private:
286 // Shadow Instruction::setInstructionSubclassData with a private forwarding
287 // method so that subclasses cannot accidentally use it.
288 template <typename Bitfield>
289 void setSubclassData(typename Bitfield::Type Value) {
290 Instruction::setSubclassData<Bitfield>(Value);
291 }
292
293 /// The synchronization scope ID of this load instruction. Not quite enough
294 /// room in SubClassData for everything, so synchronization scope ID gets its
295 /// own field.
296 SyncScope::ID SSID;
297};
298
299//===----------------------------------------------------------------------===//
300// StoreInst Class
301//===----------------------------------------------------------------------===//
302
303/// An instruction for storing to memory.
304class StoreInst : public Instruction {
305 using VolatileField = BoolBitfieldElementT<0>;
306 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
307 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
308 static_assert(
309 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
310 "Bitfields must be contiguous");
311
312 void AssertOK();
313
314protected:
315 // Note: Instruction needs to be a friend here to call cloneImpl.
316 friend class Instruction;
317
318 StoreInst *cloneImpl() const;
319
320public:
321 StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
322 StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
323 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore);
324 StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
325 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
326 Instruction *InsertBefore = nullptr);
327 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
328 BasicBlock *InsertAtEnd);
329 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
330 AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
331 Instruction *InsertBefore = nullptr);
332 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
333 AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd);
334
335 // allocate space for exactly two operands
336 void *operator new(size_t S) { return User::operator new(S, 2); }
337 void operator delete(void *Ptr) { User::operator delete(Ptr); }
338
339 /// Return true if this is a store to a volatile memory location.
340 bool isVolatile() const { return getSubclassData<VolatileField>(); }
341
342 /// Specify whether this is a volatile store or not.
343 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
344
345 /// Transparently provide more efficient getOperand methods.
346 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
347
348 /// Return the alignment of the access that is being performed
349 /// FIXME: Remove this function once transition to Align is over.
350 /// Use getAlign() instead.
351 unsigned getAlignment() const { return getAlign().value(); }
352
353 Align getAlign() const {
354 return Align(1ULL << (getSubclassData<AlignmentField>()));
355 }
356
357 void setAlignment(Align Align) {
358 setSubclassData<AlignmentField>(Log2(Align));
359 }
360
361 /// Returns the ordering constraint of this store instruction.
362 AtomicOrdering getOrdering() const {
363 return getSubclassData<OrderingField>();
364 }
365
366 /// Sets the ordering constraint of this store instruction. May not be
367 /// Acquire or AcquireRelease.
368 void setOrdering(AtomicOrdering Ordering) {
369 setSubclassData<OrderingField>(Ordering);
370 }
371
372 /// Returns the synchronization scope ID of this store instruction.
373 SyncScope::ID getSyncScopeID() const {
374 return SSID;
375 }
376
377 /// Sets the synchronization scope ID of this store instruction.
378 void setSyncScopeID(SyncScope::ID SSID) {
379 this->SSID = SSID;
380 }
381
382 /// Sets the ordering constraint and the synchronization scope ID of this
383 /// store instruction.
384 void setAtomic(AtomicOrdering Ordering,
385 SyncScope::ID SSID = SyncScope::System) {
386 setOrdering(Ordering);
387 setSyncScopeID(SSID);
388 }
389
390 bool isSimple() const { return !isAtomic() && !isVolatile(); }
391
392 bool isUnordered() const {
393 return (getOrdering() == AtomicOrdering::NotAtomic ||
394 getOrdering() == AtomicOrdering::Unordered) &&
395 !isVolatile();
396 }
397
398 Value *getValueOperand() { return getOperand(0); }
399 const Value *getValueOperand() const { return getOperand(0); }
400
401 Value *getPointerOperand() { return getOperand(1); }
402 const Value *getPointerOperand() const { return getOperand(1); }
403 static unsigned getPointerOperandIndex() { return 1U; }
404 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
405
406 /// Returns the address space of the pointer operand.
407 unsigned getPointerAddressSpace() const {
408 return getPointerOperandType()->getPointerAddressSpace();
409 }
410
411 // Methods for support type inquiry through isa, cast, and dyn_cast:
412 static bool classof(const Instruction *I) {
413 return I->getOpcode() == Instruction::Store;
414 }
415 static bool classof(const Value *V) {
416 return isa<Instruction>(V) && classof(cast<Instruction>(V));
417 }
418
419private:
420 // Shadow Instruction::setInstructionSubclassData with a private forwarding
421 // method so that subclasses cannot accidentally use it.
422 template <typename Bitfield>
423 void setSubclassData(typename Bitfield::Type Value) {
424 Instruction::setSubclassData<Bitfield>(Value);
425 }
426
427 /// The synchronization scope ID of this store instruction. Not quite enough
428 /// room in SubClassData for everything, so synchronization scope ID gets its
429 /// own field.
430 SyncScope::ID SSID;
431};
432
433template <>
434struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
435};
436
437DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits
<StoreInst>::op_begin(this); } StoreInst::const_op_iterator
StoreInst::op_begin() const { return OperandTraits<StoreInst
>::op_begin(const_cast<StoreInst*>(this)); } StoreInst
::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst
>::op_end(this); } StoreInst::const_op_iterator StoreInst::
op_end() const { return OperandTraits<StoreInst>::op_end
(const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand
(unsigned i_nocapture) const { (static_cast <bool> (i_nocapture
< OperandTraits<StoreInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 437, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<StoreInst>::op_begin(const_cast
<StoreInst*>(this))[i_nocapture].get()); } void StoreInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast
<bool> (i_nocapture < OperandTraits<StoreInst>
::operands(this) && "setOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 437, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
StoreInst>::op_begin(this)[i_nocapture] = Val_nocapture; }
unsigned StoreInst::getNumOperands() const { return OperandTraits
<StoreInst>::operands(this); } template <int Idx_nocapture
> Use &StoreInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
StoreInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
438
439//===----------------------------------------------------------------------===//
440// FenceInst Class
441//===----------------------------------------------------------------------===//
442
443/// An instruction for ordering other memory operations.
444class FenceInst : public Instruction {
445 using OrderingField = AtomicOrderingBitfieldElementT<0>;
446
447 void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
448
449protected:
450 // Note: Instruction needs to be a friend here to call cloneImpl.
451 friend class Instruction;
452
453 FenceInst *cloneImpl() const;
454
455public:
456 // Ordering may only be Acquire, Release, AcquireRelease, or
457 // SequentiallyConsistent.
458 FenceInst(LLVMContext &C, AtomicOrdering Ordering,
459 SyncScope::ID SSID = SyncScope::System,
460 Instruction *InsertBefore = nullptr);
461 FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
462 BasicBlock *InsertAtEnd);
463
464 // allocate space for exactly zero operands
465 void *operator new(size_t S) { return User::operator new(S, 0); }
466 void operator delete(void *Ptr) { User::operator delete(Ptr); }
467
468 /// Returns the ordering constraint of this fence instruction.
469 AtomicOrdering getOrdering() const {
470 return getSubclassData<OrderingField>();
471 }
472
473 /// Sets the ordering constraint of this fence instruction. May only be
474 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
475 void setOrdering(AtomicOrdering Ordering) {
476 setSubclassData<OrderingField>(Ordering);
477 }
478
479 /// Returns the synchronization scope ID of this fence instruction.
480 SyncScope::ID getSyncScopeID() const {
481 return SSID;
482 }
483
484 /// Sets the synchronization scope ID of this fence instruction.
485 void setSyncScopeID(SyncScope::ID SSID) {
486 this->SSID = SSID;
487 }
488
489 // Methods for support type inquiry through isa, cast, and dyn_cast:
490 static bool classof(const Instruction *I) {
491 return I->getOpcode() == Instruction::Fence;
492 }
493 static bool classof(const Value *V) {
494 return isa<Instruction>(V) && classof(cast<Instruction>(V));
495 }
496
497private:
498 // Shadow Instruction::setInstructionSubclassData with a private forwarding
499 // method so that subclasses cannot accidentally use it.
500 template <typename Bitfield>
501 void setSubclassData(typename Bitfield::Type Value) {
502 Instruction::setSubclassData<Bitfield>(Value);
503 }
504
505 /// The synchronization scope ID of this fence instruction. Not quite enough
506 /// room in SubClassData for everything, so synchronization scope ID gets its
507 /// own field.
508 SyncScope::ID SSID;
509};
510
511//===----------------------------------------------------------------------===//
512// AtomicCmpXchgInst Class
513//===----------------------------------------------------------------------===//
514
515/// An instruction that atomically checks whether a
516/// specified value is in a memory location, and, if it is, stores a new value
517/// there. The value returned by this instruction is a pair containing the
518/// original value as first element, and an i1 indicating success (true) or
519/// failure (false) as second element.
520///
521class AtomicCmpXchgInst : public Instruction {
522 void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align,
523 AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
524 SyncScope::ID SSID);
525
526 template <unsigned Offset>
527 using AtomicOrderingBitfieldElement =
528 typename Bitfield::Element<AtomicOrdering, Offset, 3,
529 AtomicOrdering::LAST>;
530
531protected:
532 // Note: Instruction needs to be a friend here to call cloneImpl.
533 friend class Instruction;
534
535 AtomicCmpXchgInst *cloneImpl() const;
536
537public:
538 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
539 AtomicOrdering SuccessOrdering,
540 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
541 Instruction *InsertBefore = nullptr);
542 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
543 AtomicOrdering SuccessOrdering,
544 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
545 BasicBlock *InsertAtEnd);
546
547 // allocate space for exactly three operands
548 void *operator new(size_t S) { return User::operator new(S, 3); }
549 void operator delete(void *Ptr) { User::operator delete(Ptr); }
550
551 using VolatileField = BoolBitfieldElementT<0>;
552 using WeakField = BoolBitfieldElementT<VolatileField::NextBit>;
553 using SuccessOrderingField =
554 AtomicOrderingBitfieldElementT<WeakField::NextBit>;
555 using FailureOrderingField =
556 AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>;
557 using AlignmentField =
558 AlignmentBitfieldElementT<FailureOrderingField::NextBit>;
559 static_assert(
560 Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField,
561 FailureOrderingField, AlignmentField>(),
562 "Bitfields must be contiguous");
563
564 /// Return the alignment of the memory that is being allocated by the
565 /// instruction.
566 Align getAlign() const {
567 return Align(1ULL << getSubclassData<AlignmentField>());
568 }
569
570 void setAlignment(Align Align) {
571 setSubclassData<AlignmentField>(Log2(Align));
572 }
573
574 /// Return true if this is a cmpxchg from a volatile memory
575 /// location.
576 ///
577 bool isVolatile() const { return getSubclassData<VolatileField>(); }
578
579 /// Specify whether this is a volatile cmpxchg.
580 ///
581 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
582
583 /// Return true if this cmpxchg may spuriously fail.
584 bool isWeak() const { return getSubclassData<WeakField>(); }
585
586 void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); }
587
588 /// Transparently provide more efficient getOperand methods.
589 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
590
591 static bool isValidSuccessOrdering(AtomicOrdering Ordering) {
592 return Ordering != AtomicOrdering::NotAtomic &&
593 Ordering != AtomicOrdering::Unordered;
594 }
595
596 static bool isValidFailureOrdering(AtomicOrdering Ordering) {
597 return Ordering != AtomicOrdering::NotAtomic &&
598 Ordering != AtomicOrdering::Unordered &&
599 Ordering != AtomicOrdering::AcquireRelease &&
600 Ordering != AtomicOrdering::Release;
601 }
602
603 /// Returns the success ordering constraint of this cmpxchg instruction.
604 AtomicOrdering getSuccessOrdering() const {
605 return getSubclassData<SuccessOrderingField>();
606 }
607
608 /// Sets the success ordering constraint of this cmpxchg instruction.
609 void setSuccessOrdering(AtomicOrdering Ordering) {
610 assert(isValidSuccessOrdering(Ordering) &&(static_cast <bool> (isValidSuccessOrdering(Ordering) &&
"invalid CmpXchg success ordering") ? void (0) : __assert_fail
("isValidSuccessOrdering(Ordering) && \"invalid CmpXchg success ordering\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 611, __extension__ __PRETTY_FUNCTION__))
611 "invalid CmpXchg success ordering")(static_cast <bool> (isValidSuccessOrdering(Ordering) &&
"invalid CmpXchg success ordering") ? void (0) : __assert_fail
("isValidSuccessOrdering(Ordering) && \"invalid CmpXchg success ordering\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 611, __extension__ __PRETTY_FUNCTION__))
;
612 setSubclassData<SuccessOrderingField>(Ordering);
613 }
614
615 /// Returns the failure ordering constraint of this cmpxchg instruction.
616 AtomicOrdering getFailureOrdering() const {
617 return getSubclassData<FailureOrderingField>();
618 }
619
620 /// Sets the failure ordering constraint of this cmpxchg instruction.
621 void setFailureOrdering(AtomicOrdering Ordering) {
622 assert(isValidFailureOrdering(Ordering) &&(static_cast <bool> (isValidFailureOrdering(Ordering) &&
"invalid CmpXchg failure ordering") ? void (0) : __assert_fail
("isValidFailureOrdering(Ordering) && \"invalid CmpXchg failure ordering\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 623, __extension__ __PRETTY_FUNCTION__))
623 "invalid CmpXchg failure ordering")(static_cast <bool> (isValidFailureOrdering(Ordering) &&
"invalid CmpXchg failure ordering") ? void (0) : __assert_fail
("isValidFailureOrdering(Ordering) && \"invalid CmpXchg failure ordering\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 623, __extension__ __PRETTY_FUNCTION__))
;
624 setSubclassData<FailureOrderingField>(Ordering);
625 }
626
627 /// Returns a single ordering which is at least as strong as both the
628 /// success and failure orderings for this cmpxchg.
629 AtomicOrdering getMergedOrdering() const {
630 if (getFailureOrdering() == AtomicOrdering::SequentiallyConsistent)
631 return AtomicOrdering::SequentiallyConsistent;
632 if (getFailureOrdering() == AtomicOrdering::Acquire) {
633 if (getSuccessOrdering() == AtomicOrdering::Monotonic)
634 return AtomicOrdering::Acquire;
635 if (getSuccessOrdering() == AtomicOrdering::Release)
636 return AtomicOrdering::AcquireRelease;
637 }
638 return getSuccessOrdering();
639 }
640
641 /// Returns the synchronization scope ID of this cmpxchg instruction.
642 SyncScope::ID getSyncScopeID() const {
643 return SSID;
644 }
645
646 /// Sets the synchronization scope ID of this cmpxchg instruction.
647 void setSyncScopeID(SyncScope::ID SSID) {
648 this->SSID = SSID;
649 }
650
651 Value *getPointerOperand() { return getOperand(0); }
652 const Value *getPointerOperand() const { return getOperand(0); }
653 static unsigned getPointerOperandIndex() { return 0U; }
654
655 Value *getCompareOperand() { return getOperand(1); }
656 const Value *getCompareOperand() const { return getOperand(1); }
657
658 Value *getNewValOperand() { return getOperand(2); }
659 const Value *getNewValOperand() const { return getOperand(2); }
660
661 /// Returns the address space of the pointer operand.
662 unsigned getPointerAddressSpace() const {
663 return getPointerOperand()->getType()->getPointerAddressSpace();
664 }
665
666 /// Returns the strongest permitted ordering on failure, given the
667 /// desired ordering on success.
668 ///
669 /// If the comparison in a cmpxchg operation fails, there is no atomic store
670 /// so release semantics cannot be provided. So this function drops explicit
671 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
672 /// operation would remain SequentiallyConsistent.
673 static AtomicOrdering
674 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
675 switch (SuccessOrdering) {
676 default:
677 llvm_unreachable("invalid cmpxchg success ordering")::llvm::llvm_unreachable_internal("invalid cmpxchg success ordering"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 677)
;
678 case AtomicOrdering::Release:
679 case AtomicOrdering::Monotonic:
680 return AtomicOrdering::Monotonic;
681 case AtomicOrdering::AcquireRelease:
682 case AtomicOrdering::Acquire:
683 return AtomicOrdering::Acquire;
684 case AtomicOrdering::SequentiallyConsistent:
685 return AtomicOrdering::SequentiallyConsistent;
686 }
687 }
688
689 // Methods for support type inquiry through isa, cast, and dyn_cast:
690 static bool classof(const Instruction *I) {
691 return I->getOpcode() == Instruction::AtomicCmpXchg;
692 }
693 static bool classof(const Value *V) {
694 return isa<Instruction>(V) && classof(cast<Instruction>(V));
695 }
696
697private:
698 // Shadow Instruction::setInstructionSubclassData with a private forwarding
699 // method so that subclasses cannot accidentally use it.
700 template <typename Bitfield>
701 void setSubclassData(typename Bitfield::Type Value) {
702 Instruction::setSubclassData<Bitfield>(Value);
703 }
704
705 /// The synchronization scope ID of this cmpxchg instruction. Not quite
706 /// enough room in SubClassData for everything, so synchronization scope ID
707 /// gets its own field.
708 SyncScope::ID SSID;
709};
710
711template <>
712struct OperandTraits<AtomicCmpXchgInst> :
713 public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
714};
715
716DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() {
return OperandTraits<AtomicCmpXchgInst>::op_begin(this
); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst::
op_begin() const { return OperandTraits<AtomicCmpXchgInst>
::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst
::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits
<AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst::
const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits
<AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst
*>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned
i_nocapture) const { (static_cast <bool> (i_nocapture <
OperandTraits<AtomicCmpXchgInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 716, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<AtomicCmpXchgInst>::op_begin
(const_cast<AtomicCmpXchgInst*>(this))[i_nocapture].get
()); } void AtomicCmpXchgInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<AtomicCmpXchgInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 716, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
AtomicCmpXchgInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned AtomicCmpXchgInst::getNumOperands() const { return
OperandTraits<AtomicCmpXchgInst>::operands(this); } template
<int Idx_nocapture> Use &AtomicCmpXchgInst::Op() {
return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &AtomicCmpXchgInst::
Op() const { return this->OpFrom<Idx_nocapture>(this
); }
717
718//===----------------------------------------------------------------------===//
719// AtomicRMWInst Class
720//===----------------------------------------------------------------------===//
721
722/// an instruction that atomically reads a memory location,
723/// combines it with another value, and then stores the result back. Returns
724/// the old value.
725///
726class AtomicRMWInst : public Instruction {
727protected:
728 // Note: Instruction needs to be a friend here to call cloneImpl.
729 friend class Instruction;
730
731 AtomicRMWInst *cloneImpl() const;
732
733public:
734 /// This enumeration lists the possible modifications atomicrmw can make. In
735 /// the descriptions, 'p' is the pointer to the instruction's memory location,
736 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
737 /// instruction. These instructions always return 'old'.
738 enum BinOp : unsigned {
739 /// *p = v
740 Xchg,
741 /// *p = old + v
742 Add,
743 /// *p = old - v
744 Sub,
745 /// *p = old & v
746 And,
747 /// *p = ~(old & v)
748 Nand,
749 /// *p = old | v
750 Or,
751 /// *p = old ^ v
752 Xor,
753 /// *p = old >signed v ? old : v
754 Max,
755 /// *p = old <signed v ? old : v
756 Min,
757 /// *p = old >unsigned v ? old : v
758 UMax,
759 /// *p = old <unsigned v ? old : v
760 UMin,
761
762 /// *p = old + v
763 FAdd,
764
765 /// *p = old - v
766 FSub,
767
768 FIRST_BINOP = Xchg,
769 LAST_BINOP = FSub,
770 BAD_BINOP
771 };
772
773private:
774 template <unsigned Offset>
775 using AtomicOrderingBitfieldElement =
776 typename Bitfield::Element<AtomicOrdering, Offset, 3,
777 AtomicOrdering::LAST>;
778
779 template <unsigned Offset>
780 using BinOpBitfieldElement =
781 typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>;
782
783public:
784 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
785 AtomicOrdering Ordering, SyncScope::ID SSID,
786 Instruction *InsertBefore = nullptr);
787 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
788 AtomicOrdering Ordering, SyncScope::ID SSID,
789 BasicBlock *InsertAtEnd);
790
791 // allocate space for exactly two operands
792 void *operator new(size_t S) { return User::operator new(S, 2); }
793 void operator delete(void *Ptr) { User::operator delete(Ptr); }
794
795 using VolatileField = BoolBitfieldElementT<0>;
796 using AtomicOrderingField =
797 AtomicOrderingBitfieldElementT<VolatileField::NextBit>;
798 using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>;
799 using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>;
800 static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField,
801 OperationField, AlignmentField>(),
802 "Bitfields must be contiguous");
803
804 BinOp getOperation() const { return getSubclassData<OperationField>(); }
805
806 static StringRef getOperationName(BinOp Op);
807
808 static bool isFPOperation(BinOp Op) {
809 switch (Op) {
810 case AtomicRMWInst::FAdd:
811 case AtomicRMWInst::FSub:
812 return true;
813 default:
814 return false;
815 }
816 }
817
818 void setOperation(BinOp Operation) {
819 setSubclassData<OperationField>(Operation);
820 }
821
822 /// Return the alignment of the memory that is being allocated by the
823 /// instruction.
824 Align getAlign() const {
825 return Align(1ULL << getSubclassData<AlignmentField>());
826 }
827
828 void setAlignment(Align Align) {
829 setSubclassData<AlignmentField>(Log2(Align));
830 }
831
832 /// Return true if this is a RMW on a volatile memory location.
833 ///
834 bool isVolatile() const { return getSubclassData<VolatileField>(); }
835
836 /// Specify whether this is a volatile RMW or not.
837 ///
838 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
839
840 /// Transparently provide more efficient getOperand methods.
841 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
842
843 /// Returns the ordering constraint of this rmw instruction.
844 AtomicOrdering getOrdering() const {
845 return getSubclassData<AtomicOrderingField>();
846 }
847
848 /// Sets the ordering constraint of this rmw instruction.
849 void setOrdering(AtomicOrdering Ordering) {
850 assert(Ordering != AtomicOrdering::NotAtomic &&(static_cast <bool> (Ordering != AtomicOrdering::NotAtomic
&& "atomicrmw instructions can only be atomic.") ? void
(0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 851, __extension__ __PRETTY_FUNCTION__))
851 "atomicrmw instructions can only be atomic.")(static_cast <bool> (Ordering != AtomicOrdering::NotAtomic
&& "atomicrmw instructions can only be atomic.") ? void
(0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 851, __extension__ __PRETTY_FUNCTION__))
;
852 setSubclassData<AtomicOrderingField>(Ordering);
853 }
854
855 /// Returns the synchronization scope ID of this rmw instruction.
856 SyncScope::ID getSyncScopeID() const {
857 return SSID;
858 }
859
860 /// Sets the synchronization scope ID of this rmw instruction.
861 void setSyncScopeID(SyncScope::ID SSID) {
862 this->SSID = SSID;
863 }
864
865 Value *getPointerOperand() { return getOperand(0); }
866 const Value *getPointerOperand() const { return getOperand(0); }
867 static unsigned getPointerOperandIndex() { return 0U; }
868
869 Value *getValOperand() { return getOperand(1); }
870 const Value *getValOperand() const { return getOperand(1); }
871
872 /// Returns the address space of the pointer operand.
873 unsigned getPointerAddressSpace() const {
874 return getPointerOperand()->getType()->getPointerAddressSpace();
875 }
876
877 bool isFloatingPointOperation() const {
878 return isFPOperation(getOperation());
879 }
880
881 // Methods for support type inquiry through isa, cast, and dyn_cast:
882 static bool classof(const Instruction *I) {
883 return I->getOpcode() == Instruction::AtomicRMW;
884 }
885 static bool classof(const Value *V) {
886 return isa<Instruction>(V) && classof(cast<Instruction>(V));
887 }
888
889private:
890 void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align,
891 AtomicOrdering Ordering, SyncScope::ID SSID);
892
893 // Shadow Instruction::setInstructionSubclassData with a private forwarding
894 // method so that subclasses cannot accidentally use it.
895 template <typename Bitfield>
896 void setSubclassData(typename Bitfield::Type Value) {
897 Instruction::setSubclassData<Bitfield>(Value);
898 }
899
900 /// The synchronization scope ID of this rmw instruction. Not quite enough
901 /// room in SubClassData for everything, so synchronization scope ID gets its
902 /// own field.
903 SyncScope::ID SSID;
904};
905
906template <>
907struct OperandTraits<AtomicRMWInst>
908 : public FixedNumOperandTraits<AtomicRMWInst,2> {
909};
910
911DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return
OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst
::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits
<AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*>
(this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end()
{ return OperandTraits<AtomicRMWInst>::op_end(this); }
AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const
{ return OperandTraits<AtomicRMWInst>::op_end(const_cast
<AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand
(unsigned i_nocapture) const { (static_cast <bool> (i_nocapture
< OperandTraits<AtomicRMWInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 911, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<AtomicRMWInst>::op_begin(const_cast
<AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast
<bool> (i_nocapture < OperandTraits<AtomicRMWInst
>::operands(this) && "setOperand() out of range!")
? void (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 911, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
AtomicRMWInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned AtomicRMWInst::getNumOperands() const { return OperandTraits
<AtomicRMWInst>::operands(this); } template <int Idx_nocapture
> Use &AtomicRMWInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &AtomicRMWInst::Op() const { return this->OpFrom
<Idx_nocapture>(this); }
912
913//===----------------------------------------------------------------------===//
914// GetElementPtrInst Class
915//===----------------------------------------------------------------------===//
916
917// checkGEPType - Simple wrapper function to give a better assertion failure
918// message on bad indexes for a gep instruction.
919//
920inline Type *checkGEPType(Type *Ty) {
921 assert(Ty && "Invalid GetElementPtrInst indices for type!")(static_cast <bool> (Ty && "Invalid GetElementPtrInst indices for type!"
) ? void (0) : __assert_fail ("Ty && \"Invalid GetElementPtrInst indices for type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 921, __extension__ __PRETTY_FUNCTION__))
;
922 return Ty;
923}
924
925/// an instruction for type-safe pointer arithmetic to
926/// access elements of arrays and structs
927///
928class GetElementPtrInst : public Instruction {
929 Type *SourceElementType;
930 Type *ResultElementType;
931
932 GetElementPtrInst(const GetElementPtrInst &GEPI);
933
934 /// Constructors - Create a getelementptr instruction with a base pointer an
935 /// list of indices. The first ctor can optionally insert before an existing
936 /// instruction, the second appends the new instruction to the specified
937 /// BasicBlock.
938 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
939 ArrayRef<Value *> IdxList, unsigned Values,
940 const Twine &NameStr, Instruction *InsertBefore);
941 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
942 ArrayRef<Value *> IdxList, unsigned Values,
943 const Twine &NameStr, BasicBlock *InsertAtEnd);
944
945 void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
946
947protected:
948 // Note: Instruction needs to be a friend here to call cloneImpl.
949 friend class Instruction;
950
951 GetElementPtrInst *cloneImpl() const;
952
953public:
954 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
955 ArrayRef<Value *> IdxList,
956 const Twine &NameStr = "",
957 Instruction *InsertBefore = nullptr) {
958 unsigned Values = 1 + unsigned(IdxList.size());
959 assert(PointeeType && "Must specify element type")(static_cast <bool> (PointeeType && "Must specify element type"
) ? void (0) : __assert_fail ("PointeeType && \"Must specify element type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 959, __extension__ __PRETTY_FUNCTION__))
;
960 assert(cast<PointerType>(Ptr->getType()->getScalarType())(static_cast <bool> (cast<PointerType>(Ptr->getType
()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType
)) ? void (0) : __assert_fail ("cast<PointerType>(Ptr->getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 961, __extension__ __PRETTY_FUNCTION__))
961 ->isOpaqueOrPointeeTypeMatches(PointeeType))(static_cast <bool> (cast<PointerType>(Ptr->getType
()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType
)) ? void (0) : __assert_fail ("cast<PointerType>(Ptr->getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 961, __extension__ __PRETTY_FUNCTION__))
;
962 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
963 NameStr, InsertBefore);
964 }
965
966 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
967 ArrayRef<Value *> IdxList,
968 const Twine &NameStr,
969 BasicBlock *InsertAtEnd) {
970 unsigned Values = 1 + unsigned(IdxList.size());
971 assert(PointeeType && "Must specify element type")(static_cast <bool> (PointeeType && "Must specify element type"
) ? void (0) : __assert_fail ("PointeeType && \"Must specify element type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 971, __extension__ __PRETTY_FUNCTION__))
;
972 assert(cast<PointerType>(Ptr->getType()->getScalarType())(static_cast <bool> (cast<PointerType>(Ptr->getType
()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType
)) ? void (0) : __assert_fail ("cast<PointerType>(Ptr->getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 973, __extension__ __PRETTY_FUNCTION__))
973 ->isOpaqueOrPointeeTypeMatches(PointeeType))(static_cast <bool> (cast<PointerType>(Ptr->getType
()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType
)) ? void (0) : __assert_fail ("cast<PointerType>(Ptr->getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 973, __extension__ __PRETTY_FUNCTION__))
;
974 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
975 NameStr, InsertAtEnd);
976 }
977
978 LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
979 Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr = "",[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
980 Instruction *InsertBefore = nullptr),[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
981 "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
{
982 return CreateInBounds(
983 Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList,
984 NameStr, InsertBefore);
985 }
986
987 /// Create an "inbounds" getelementptr. See the documentation for the
988 /// "inbounds" flag in LangRef.html for details.
989 static GetElementPtrInst *
990 CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
991 const Twine &NameStr = "",
992 Instruction *InsertBefore = nullptr) {
993 GetElementPtrInst *GEP =
994 Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
995 GEP->setIsInBounds(true);
996 return GEP;
997 }
998
999 LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
1000 Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr,[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
1001 BasicBlock *InsertAtEnd),[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
1002 "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
{
1003 return CreateInBounds(
1004 Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList,
1005 NameStr, InsertAtEnd);
1006 }
1007
1008 static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
1009 ArrayRef<Value *> IdxList,
1010 const Twine &NameStr,
1011 BasicBlock *InsertAtEnd) {
1012 GetElementPtrInst *GEP =
1013 Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
1014 GEP->setIsInBounds(true);
1015 return GEP;
1016 }
1017
1018 /// Transparently provide more efficient getOperand methods.
1019 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1020
1021 Type *getSourceElementType() const { return SourceElementType; }
1022
1023 void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
1024 void setResultElementType(Type *Ty) { ResultElementType = Ty; }
1025
1026 Type *getResultElementType() const {
1027 assert(cast<PointerType>(getType()->getScalarType())(static_cast <bool> (cast<PointerType>(getType()->
getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType
)) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1028, __extension__ __PRETTY_FUNCTION__))
1028 ->isOpaqueOrPointeeTypeMatches(ResultElementType))(static_cast <bool> (cast<PointerType>(getType()->
getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType
)) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1028, __extension__ __PRETTY_FUNCTION__))
;
1029 return ResultElementType;
1030 }
1031
1032 /// Returns the address space of this instruction's pointer type.
1033 unsigned getAddressSpace() const {
1034 // Note that this is always the same as the pointer operand's address space
1035 // and that is cheaper to compute, so cheat here.
1036 return getPointerAddressSpace();
1037 }
1038
1039 /// Returns the result type of a getelementptr with the given source
1040 /// element type and indexes.
1041 ///
1042 /// Null is returned if the indices are invalid for the specified
1043 /// source element type.
1044 static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
1045 static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
1046 static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
1047
1048 /// Return the type of the element at the given index of an indexable
1049 /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})".
1050 ///
1051 /// Returns null if the type can't be indexed, or the given index is not
1052 /// legal for the given type.
1053 static Type *getTypeAtIndex(Type *Ty, Value *Idx);
1054 static Type *getTypeAtIndex(Type *Ty, uint64_t Idx);
1055
1056 inline op_iterator idx_begin() { return op_begin()+1; }
1057 inline const_op_iterator idx_begin() const { return op_begin()+1; }
1058 inline op_iterator idx_end() { return op_end(); }
1059 inline const_op_iterator idx_end() const { return op_end(); }
1060
1061 inline iterator_range<op_iterator> indices() {
1062 return make_range(idx_begin(), idx_end());
1063 }
1064
1065 inline iterator_range<const_op_iterator> indices() const {
1066 return make_range(idx_begin(), idx_end());
1067 }
1068
1069 Value *getPointerOperand() {
1070 return getOperand(0);
1071 }
1072 const Value *getPointerOperand() const {
1073 return getOperand(0);
1074 }
1075 static unsigned getPointerOperandIndex() {
1076 return 0U; // get index for modifying correct operand.
1077 }
1078
1079 /// Method to return the pointer operand as a
1080 /// PointerType.
1081 Type *getPointerOperandType() const {
1082 return getPointerOperand()->getType();
1083 }
1084
1085 /// Returns the address space of the pointer operand.
1086 unsigned getPointerAddressSpace() const {
1087 return getPointerOperandType()->getPointerAddressSpace();
1088 }
1089
1090 /// Returns the pointer type returned by the GEP
1091 /// instruction, which may be a vector of pointers.
1092 static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1093 ArrayRef<Value *> IdxList) {
1094 PointerType *OrigPtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
1095 unsigned AddrSpace = OrigPtrTy->getAddressSpace();
1096 Type *ResultElemTy = checkGEPType(getIndexedType(ElTy, IdxList));
1097 Type *PtrTy = OrigPtrTy->isOpaque()
1098 ? PointerType::get(OrigPtrTy->getContext(), AddrSpace)
1099 : PointerType::get(ResultElemTy, AddrSpace);
1100 // Vector GEP
1101 if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) {
1102 ElementCount EltCount = PtrVTy->getElementCount();
1103 return VectorType::get(PtrTy, EltCount);
1104 }
1105 for (Value *Index : IdxList)
1106 if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) {
1107 ElementCount EltCount = IndexVTy->getElementCount();
1108 return VectorType::get(PtrTy, EltCount);
1109 }
1110 // Scalar GEP
1111 return PtrTy;
1112 }
1113
1114 unsigned getNumIndices() const { // Note: always non-negative
1115 return getNumOperands() - 1;
1116 }
1117
1118 bool hasIndices() const {
1119 return getNumOperands() > 1;
1120 }
1121
1122 /// Return true if all of the indices of this GEP are
1123 /// zeros. If so, the result pointer and the first operand have the same
1124 /// value, just potentially different types.
1125 bool hasAllZeroIndices() const;
1126
1127 /// Return true if all of the indices of this GEP are
1128 /// constant integers. If so, the result pointer and the first operand have
1129 /// a constant offset between them.
1130 bool hasAllConstantIndices() const;
1131
1132 /// Set or clear the inbounds flag on this GEP instruction.
1133 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1134 void setIsInBounds(bool b = true);
1135
1136 /// Determine whether the GEP has the inbounds flag.
1137 bool isInBounds() const;
1138
1139 /// Accumulate the constant address offset of this GEP if possible.
1140 ///
1141 /// This routine accepts an APInt into which it will accumulate the constant
1142 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1143 /// all-constant, it returns false and the value of the offset APInt is
1144 /// undefined (it is *not* preserved!). The APInt passed into this routine
1145 /// must be at least as wide as the IntPtr type for the address space of
1146 /// the base GEP pointer.
1147 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1148 bool collectOffset(const DataLayout &DL, unsigned BitWidth,
1149 MapVector<Value *, APInt> &VariableOffsets,
1150 APInt &ConstantOffset) const;
1151 // Methods for support type inquiry through isa, cast, and dyn_cast:
1152 static bool classof(const Instruction *I) {
1153 return (I->getOpcode() == Instruction::GetElementPtr);
1154 }
1155 static bool classof(const Value *V) {
1156 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1157 }
1158};
1159
1160template <>
1161struct OperandTraits<GetElementPtrInst> :
1162 public VariadicOperandTraits<GetElementPtrInst, 1> {
1163};
1164
1165GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1166 ArrayRef<Value *> IdxList, unsigned Values,
1167 const Twine &NameStr,
1168 Instruction *InsertBefore)
1169 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1170 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1171 Values, InsertBefore),
1172 SourceElementType(PointeeType),
1173 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1174 assert(cast<PointerType>(getType()->getScalarType())(static_cast <bool> (cast<PointerType>(getType()->
getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType
)) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1175, __extension__ __PRETTY_FUNCTION__))
1175 ->isOpaqueOrPointeeTypeMatches(ResultElementType))(static_cast <bool> (cast<PointerType>(getType()->
getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType
)) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1175, __extension__ __PRETTY_FUNCTION__))
;
1176 init(Ptr, IdxList, NameStr);
1177}
1178
1179GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1180 ArrayRef<Value *> IdxList, unsigned Values,
1181 const Twine &NameStr,
1182 BasicBlock *InsertAtEnd)
1183 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1184 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1185 Values, InsertAtEnd),
1186 SourceElementType(PointeeType),
1187 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1188 assert(cast<PointerType>(getType()->getScalarType())(static_cast <bool> (cast<PointerType>(getType()->
getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType
)) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1189, __extension__ __PRETTY_FUNCTION__))
1189 ->isOpaqueOrPointeeTypeMatches(ResultElementType))(static_cast <bool> (cast<PointerType>(getType()->
getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType
)) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1189, __extension__ __PRETTY_FUNCTION__))
;
1190 init(Ptr, IdxList, NameStr);
1191}
1192
1193DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() {
return OperandTraits<GetElementPtrInst>::op_begin(this
); } GetElementPtrInst::const_op_iterator GetElementPtrInst::
op_begin() const { return OperandTraits<GetElementPtrInst>
::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst
::op_iterator GetElementPtrInst::op_end() { return OperandTraits
<GetElementPtrInst>::op_end(this); } GetElementPtrInst::
const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits
<GetElementPtrInst>::op_end(const_cast<GetElementPtrInst
*>(this)); } Value *GetElementPtrInst::getOperand(unsigned
i_nocapture) const { (static_cast <bool> (i_nocapture <
OperandTraits<GetElementPtrInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1193, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<GetElementPtrInst>::op_begin
(const_cast<GetElementPtrInst*>(this))[i_nocapture].get
()); } void GetElementPtrInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<GetElementPtrInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1193, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
GetElementPtrInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned GetElementPtrInst::getNumOperands() const { return
OperandTraits<GetElementPtrInst>::operands(this); } template
<int Idx_nocapture> Use &GetElementPtrInst::Op() {
return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &GetElementPtrInst::
Op() const { return this->OpFrom<Idx_nocapture>(this
); }
1194
1195//===----------------------------------------------------------------------===//
1196// ICmpInst Class
1197//===----------------------------------------------------------------------===//
1198
1199/// This instruction compares its operands according to the predicate given
1200/// to the constructor. It only operates on integers or pointers. The operands
1201/// must be identical types.
1202/// Represent an integer comparison operator.
1203class ICmpInst: public CmpInst {
1204 void AssertOK() {
1205 assert(isIntPredicate() &&(static_cast <bool> (isIntPredicate() && "Invalid ICmp predicate value"
) ? void (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1206, __extension__ __PRETTY_FUNCTION__))
1206 "Invalid ICmp predicate value")(static_cast <bool> (isIntPredicate() && "Invalid ICmp predicate value"
) ? void (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1206, __extension__ __PRETTY_FUNCTION__))
;
1207 assert(getOperand(0)->getType() == getOperand(1)->getType() &&(static_cast <bool> (getOperand(0)->getType() == getOperand
(1)->getType() && "Both operands to ICmp instruction are not of the same type!"
) ? void (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1208, __extension__ __PRETTY_FUNCTION__))
1208 "Both operands to ICmp instruction are not of the same type!")(static_cast <bool> (getOperand(0)->getType() == getOperand
(1)->getType() && "Both operands to ICmp instruction are not of the same type!"
) ? void (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1208, __extension__ __PRETTY_FUNCTION__))
;
1209 // Check that the operands are the right type
1210 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||(static_cast <bool> ((getOperand(0)->getType()->isIntOrIntVectorTy
() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
"Invalid operand types for ICmp instruction") ? void (0) : __assert_fail
("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1212, __extension__ __PRETTY_FUNCTION__))
1211 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&(static_cast <bool> ((getOperand(0)->getType()->isIntOrIntVectorTy
() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
"Invalid operand types for ICmp instruction") ? void (0) : __assert_fail
("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1212, __extension__ __PRETTY_FUNCTION__))
1212 "Invalid operand types for ICmp instruction")(static_cast <bool> ((getOperand(0)->getType()->isIntOrIntVectorTy
() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
"Invalid operand types for ICmp instruction") ? void (0) : __assert_fail
("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1212, __extension__ __PRETTY_FUNCTION__))
;
1213 }
1214
1215protected:
1216 // Note: Instruction needs to be a friend here to call cloneImpl.
1217 friend class Instruction;
1218
1219 /// Clone an identical ICmpInst
1220 ICmpInst *cloneImpl() const;
1221
1222public:
1223 /// Constructor with insert-before-instruction semantics.
1224 ICmpInst(
1225 Instruction *InsertBefore, ///< Where to insert
1226 Predicate pred, ///< The predicate to use for the comparison
1227 Value *LHS, ///< The left-hand-side of the expression
1228 Value *RHS, ///< The right-hand-side of the expression
1229 const Twine &NameStr = "" ///< Name of the instruction
1230 ) : CmpInst(makeCmpResultType(LHS->getType()),
1231 Instruction::ICmp, pred, LHS, RHS, NameStr,
1232 InsertBefore) {
1233#ifndef NDEBUG
1234 AssertOK();
1235#endif
1236 }
1237
1238 /// Constructor with insert-at-end semantics.
1239 ICmpInst(
1240 BasicBlock &InsertAtEnd, ///< Block to insert into.
1241 Predicate pred, ///< The predicate to use for the comparison
1242 Value *LHS, ///< The left-hand-side of the expression
1243 Value *RHS, ///< The right-hand-side of the expression
1244 const Twine &NameStr = "" ///< Name of the instruction
1245 ) : CmpInst(makeCmpResultType(LHS->getType()),
1246 Instruction::ICmp, pred, LHS, RHS, NameStr,
1247 &InsertAtEnd) {
1248#ifndef NDEBUG
1249 AssertOK();
1250#endif
1251 }
1252
1253 /// Constructor with no-insertion semantics
1254 ICmpInst(
1255 Predicate pred, ///< The predicate to use for the comparison
1256 Value *LHS, ///< The left-hand-side of the expression
1257 Value *RHS, ///< The right-hand-side of the expression
1258 const Twine &NameStr = "" ///< Name of the instruction
1259 ) : CmpInst(makeCmpResultType(LHS->getType()),
1260 Instruction::ICmp, pred, LHS, RHS, NameStr) {
1261#ifndef NDEBUG
1262 AssertOK();
1263#endif
1264 }
1265
1266 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1267 /// @returns the predicate that would be the result if the operand were
1268 /// regarded as signed.
1269 /// Return the signed version of the predicate
1270 Predicate getSignedPredicate() const {
1271 return getSignedPredicate(getPredicate());
1272 }
1273
1274 /// This is a static version that you can use without an instruction.
1275 /// Return the signed version of the predicate.
1276 static Predicate getSignedPredicate(Predicate pred);
1277
1278 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1279 /// @returns the predicate that would be the result if the operand were
1280 /// regarded as unsigned.
1281 /// Return the unsigned version of the predicate
1282 Predicate getUnsignedPredicate() const {
1283 return getUnsignedPredicate(getPredicate());
1284 }
1285
1286 /// This is a static version that you can use without an instruction.
1287 /// Return the unsigned version of the predicate.
1288 static Predicate getUnsignedPredicate(Predicate pred);
1289
1290 /// Return true if this predicate is either EQ or NE. This also
1291 /// tests for commutativity.
1292 static bool isEquality(Predicate P) {
1293 return P == ICMP_EQ || P == ICMP_NE;
1294 }
1295
1296 /// Return true if this predicate is either EQ or NE. This also
1297 /// tests for commutativity.
1298 bool isEquality() const {
1299 return isEquality(getPredicate());
1300 }
1301
1302 /// @returns true if the predicate of this ICmpInst is commutative
1303 /// Determine if this relation is commutative.
1304 bool isCommutative() const { return isEquality(); }
1305
1306 /// Return true if the predicate is relational (not EQ or NE).
1307 ///
1308 bool isRelational() const {
1309 return !isEquality();
1310 }
1311
1312 /// Return true if the predicate is relational (not EQ or NE).
1313 ///
1314 static bool isRelational(Predicate P) {
1315 return !isEquality(P);
1316 }
1317
1318 /// Return true if the predicate is SGT or UGT.
1319 ///
1320 static bool isGT(Predicate P) {
1321 return P == ICMP_SGT || P == ICMP_UGT;
1322 }
1323
1324 /// Return true if the predicate is SLT or ULT.
1325 ///
1326 static bool isLT(Predicate P) {
1327 return P == ICMP_SLT || P == ICMP_ULT;
1328 }
1329
1330 /// Return true if the predicate is SGE or UGE.
1331 ///
1332 static bool isGE(Predicate P) {
1333 return P == ICMP_SGE || P == ICMP_UGE;
1334 }
1335
1336 /// Return true if the predicate is SLE or ULE.
1337 ///
1338 static bool isLE(Predicate P) {
1339 return P == ICMP_SLE || P == ICMP_ULE;
1340 }
1341
1342 /// Exchange the two operands to this instruction in such a way that it does
1343 /// not modify the semantics of the instruction. The predicate value may be
1344 /// changed to retain the same result if the predicate is order dependent
1345 /// (e.g. ult).
1346 /// Swap operands and adjust predicate.
1347 void swapOperands() {
1348 setPredicate(getSwappedPredicate());
1349 Op<0>().swap(Op<1>());
1350 }
1351
1352 // Methods for support type inquiry through isa, cast, and dyn_cast:
1353 static bool classof(const Instruction *I) {
1354 return I->getOpcode() == Instruction::ICmp;
1355 }
1356 static bool classof(const Value *V) {
1357 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1358 }
1359};
1360
1361//===----------------------------------------------------------------------===//
1362// FCmpInst Class
1363//===----------------------------------------------------------------------===//
1364
1365/// This instruction compares its operands according to the predicate given
1366/// to the constructor. It only operates on floating point values or packed
1367/// vectors of floating point values. The operands must be identical types.
1368/// Represents a floating point comparison operator.
1369class FCmpInst: public CmpInst {
1370 void AssertOK() {
1371 assert(isFPPredicate() && "Invalid FCmp predicate value")(static_cast <bool> (isFPPredicate() && "Invalid FCmp predicate value"
) ? void (0) : __assert_fail ("isFPPredicate() && \"Invalid FCmp predicate value\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1371, __extension__ __PRETTY_FUNCTION__))
;
1372 assert(getOperand(0)->getType() == getOperand(1)->getType() &&(static_cast <bool> (getOperand(0)->getType() == getOperand
(1)->getType() && "Both operands to FCmp instruction are not of the same type!"
) ? void (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1373, __extension__ __PRETTY_FUNCTION__))
1373 "Both operands to FCmp instruction are not of the same type!")(static_cast <bool> (getOperand(0)->getType() == getOperand
(1)->getType() && "Both operands to FCmp instruction are not of the same type!"
) ? void (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1373, __extension__ __PRETTY_FUNCTION__))
;
1374 // Check that the operands are the right type
1375 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&(static_cast <bool> (getOperand(0)->getType()->isFPOrFPVectorTy
() && "Invalid operand types for FCmp instruction") ?
void (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1376, __extension__ __PRETTY_FUNCTION__))
1376 "Invalid operand types for FCmp instruction")(static_cast <bool> (getOperand(0)->getType()->isFPOrFPVectorTy
() && "Invalid operand types for FCmp instruction") ?
void (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1376, __extension__ __PRETTY_FUNCTION__))
;
1377 }
1378
1379protected:
1380 // Note: Instruction needs to be a friend here to call cloneImpl.
1381 friend class Instruction;
1382
1383 /// Clone an identical FCmpInst
1384 FCmpInst *cloneImpl() const;
1385
1386public:
1387 /// Constructor with insert-before-instruction semantics.
1388 FCmpInst(
1389 Instruction *InsertBefore, ///< Where to insert
1390 Predicate pred, ///< The predicate to use for the comparison
1391 Value *LHS, ///< The left-hand-side of the expression
1392 Value *RHS, ///< The right-hand-side of the expression
1393 const Twine &NameStr = "" ///< Name of the instruction
1394 ) : CmpInst(makeCmpResultType(LHS->getType()),
1395 Instruction::FCmp, pred, LHS, RHS, NameStr,
1396 InsertBefore) {
1397 AssertOK();
1398 }
1399
1400 /// Constructor with insert-at-end semantics.
1401 FCmpInst(
1402 BasicBlock &InsertAtEnd, ///< Block to insert into.
1403 Predicate pred, ///< The predicate to use for the comparison
1404 Value *LHS, ///< The left-hand-side of the expression
1405 Value *RHS, ///< The right-hand-side of the expression
1406 const Twine &NameStr = "" ///< Name of the instruction
1407 ) : CmpInst(makeCmpResultType(LHS->getType()),
1408 Instruction::FCmp, pred, LHS, RHS, NameStr,
1409 &InsertAtEnd) {
1410 AssertOK();
1411 }
1412
1413 /// Constructor with no-insertion semantics
1414 FCmpInst(
1415 Predicate Pred, ///< The predicate to use for the comparison
1416 Value *LHS, ///< The left-hand-side of the expression
1417 Value *RHS, ///< The right-hand-side of the expression
1418 const Twine &NameStr = "", ///< Name of the instruction
1419 Instruction *FlagsSource = nullptr
1420 ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1421 RHS, NameStr, nullptr, FlagsSource) {
1422 AssertOK();
1423 }
1424
1425 /// @returns true if the predicate of this instruction is EQ or NE.
1426 /// Determine if this is an equality predicate.
1427 static bool isEquality(Predicate Pred) {
1428 return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1429 Pred == FCMP_UNE;
1430 }
1431
1432 /// @returns true if the predicate of this instruction is EQ or NE.
1433 /// Determine if this is an equality predicate.
1434 bool isEquality() const { return isEquality(getPredicate()); }
1435
1436 /// @returns true if the predicate of this instruction is commutative.
1437 /// Determine if this is a commutative predicate.
1438 bool isCommutative() const {
1439 return isEquality() ||
1440 getPredicate() == FCMP_FALSE ||
1441 getPredicate() == FCMP_TRUE ||
1442 getPredicate() == FCMP_ORD ||
1443 getPredicate() == FCMP_UNO;
1444 }
1445
1446 /// @returns true if the predicate is relational (not EQ or NE).
1447 /// Determine if this a relational predicate.
1448 bool isRelational() const { return !isEquality(); }
1449
1450 /// Exchange the two operands to this instruction in such a way that it does
1451 /// not modify the semantics of the instruction. The predicate value may be
1452 /// changed to retain the same result if the predicate is order dependent
1453 /// (e.g. ult).
1454 /// Swap operands and adjust predicate.
1455 void swapOperands() {
1456 setPredicate(getSwappedPredicate());
1457 Op<0>().swap(Op<1>());
1458 }
1459
1460 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1461 static bool classof(const Instruction *I) {
1462 return I->getOpcode() == Instruction::FCmp;
1463 }
1464 static bool classof(const Value *V) {
1465 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1466 }
1467};
1468
1469//===----------------------------------------------------------------------===//
1470/// This class represents a function call, abstracting a target
1471/// machine's calling convention. This class uses low bit of the SubClassData
1472/// field to indicate whether or not this is a tail call. The rest of the bits
1473/// hold the calling convention of the call.
1474///
1475class CallInst : public CallBase {
1476 CallInst(const CallInst &CI);
1477
1478 /// Construct a CallInst given a range of arguments.
1479 /// Construct a CallInst from a range of arguments
1480 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1481 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1482 Instruction *InsertBefore);
1483
1484 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1485 const Twine &NameStr, Instruction *InsertBefore)
1486 : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
1487
1488 /// Construct a CallInst given a range of arguments.
1489 /// Construct a CallInst from a range of arguments
1490 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1491 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1492 BasicBlock *InsertAtEnd);
1493
1494 explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1495 Instruction *InsertBefore);
1496
1497 CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1498 BasicBlock *InsertAtEnd);
1499
1500 void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1501 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1502 void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1503
1504 /// Compute the number of operands to allocate.
1505 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1506 // We need one operand for the called function, plus the input operand
1507 // counts provided.
1508 return 1 + NumArgs + NumBundleInputs;
1509 }
1510
1511protected:
1512 // Note: Instruction needs to be a friend here to call cloneImpl.
1513 friend class Instruction;
1514
1515 CallInst *cloneImpl() const;
1516
1517public:
1518 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1519 Instruction *InsertBefore = nullptr) {
1520 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1521 }
1522
1523 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1524 const Twine &NameStr,
1525 Instruction *InsertBefore = nullptr) {
1526 return new (ComputeNumOperands(Args.size()))
1527 CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1528 }
1529
1530 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1531 ArrayRef<OperandBundleDef> Bundles = None,
1532 const Twine &NameStr = "",
1533 Instruction *InsertBefore = nullptr) {
1534 const int NumOperands =
1535 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1536 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1537
1538 return new (NumOperands, DescriptorBytes)
1539 CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1540 }
1541
1542 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1543 BasicBlock *InsertAtEnd) {
1544 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1545 }
1546
1547 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1548 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1549 return new (ComputeNumOperands(Args.size()))
1550 CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
1551 }
1552
1553 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1554 ArrayRef<OperandBundleDef> Bundles,
1555 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1556 const int NumOperands =
1557 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1558 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1559
1560 return new (NumOperands, DescriptorBytes)
1561 CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1562 }
1563
1564 static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1565 Instruction *InsertBefore = nullptr) {
1566 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1567 InsertBefore);
1568 }
1569
1570 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1571 ArrayRef<OperandBundleDef> Bundles = None,
1572 const Twine &NameStr = "",
1573 Instruction *InsertBefore = nullptr) {
1574 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1575 NameStr, InsertBefore);
1576 }
1577
1578 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1579 const Twine &NameStr,
1580 Instruction *InsertBefore = nullptr) {
1581 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1582 InsertBefore);
1583 }
1584
1585 static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
1586 BasicBlock *InsertAtEnd) {
1587 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1588 InsertAtEnd);
1589 }
1590
1591 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1592 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1593 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1594 InsertAtEnd);
1595 }
1596
1597 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1598 ArrayRef<OperandBundleDef> Bundles,
1599 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1600 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1601 NameStr, InsertAtEnd);
1602 }
1603
1604 /// Create a clone of \p CI with a different set of operand bundles and
1605 /// insert it before \p InsertPt.
1606 ///
1607 /// The returned call instruction is identical \p CI in every way except that
1608 /// the operand bundles for the new instruction are set to the operand bundles
1609 /// in \p Bundles.
1610 static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1611 Instruction *InsertPt = nullptr);
1612
1613 /// Generate the IR for a call to malloc:
1614 /// 1. Compute the malloc call's argument as the specified type's size,
1615 /// possibly multiplied by the array size if the array size is not
1616 /// constant 1.
1617 /// 2. Call malloc with that argument.
1618 /// 3. Bitcast the result of the malloc call to the specified type.
1619 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1620 Type *AllocTy, Value *AllocSize,
1621 Value *ArraySize = nullptr,
1622 Function *MallocF = nullptr,
1623 const Twine &Name = "");
1624 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1625 Type *AllocTy, Value *AllocSize,
1626 Value *ArraySize = nullptr,
1627 Function *MallocF = nullptr,
1628 const Twine &Name = "");
1629 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1630 Type *AllocTy, Value *AllocSize,
1631 Value *ArraySize = nullptr,
1632 ArrayRef<OperandBundleDef> Bundles = None,
1633 Function *MallocF = nullptr,
1634 const Twine &Name = "");
1635 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1636 Type *AllocTy, Value *AllocSize,
1637 Value *ArraySize = nullptr,
1638 ArrayRef<OperandBundleDef> Bundles = None,
1639 Function *MallocF = nullptr,
1640 const Twine &Name = "");
1641 /// Generate the IR for a call to the builtin free function.
1642 static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1643 static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1644 static Instruction *CreateFree(Value *Source,
1645 ArrayRef<OperandBundleDef> Bundles,
1646 Instruction *InsertBefore);
1647 static Instruction *CreateFree(Value *Source,
1648 ArrayRef<OperandBundleDef> Bundles,
1649 BasicBlock *InsertAtEnd);
1650
1651 // Note that 'musttail' implies 'tail'.
1652 enum TailCallKind : unsigned {
1653 TCK_None = 0,
1654 TCK_Tail = 1,
1655 TCK_MustTail = 2,
1656 TCK_NoTail = 3,
1657 TCK_LAST = TCK_NoTail
1658 };
1659
1660 using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>;
1661 static_assert(
1662 Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(),
1663 "Bitfields must be contiguous");
1664
1665 TailCallKind getTailCallKind() const {
1666 return getSubclassData<TailCallKindField>();
1667 }
1668
1669 bool isTailCall() const {
1670 TailCallKind Kind = getTailCallKind();
1671 return Kind == TCK_Tail || Kind == TCK_MustTail;
1672 }
1673
1674 bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; }
1675
1676 bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; }
1677
1678 void setTailCallKind(TailCallKind TCK) {
1679 setSubclassData<TailCallKindField>(TCK);
1680 }
1681
1682 void setTailCall(bool IsTc = true) {
1683 setTailCallKind(IsTc ? TCK_Tail : TCK_None);
1684 }
1685
1686 /// Return true if the call can return twice
1687 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1688 void setCanReturnTwice() { addFnAttr(Attribute::ReturnsTwice); }
1689
1690 // Methods for support type inquiry through isa, cast, and dyn_cast:
1691 static bool classof(const Instruction *I) {
1692 return I->getOpcode() == Instruction::Call;
1693 }
1694 static bool classof(const Value *V) {
1695 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1696 }
1697
1698 /// Updates profile metadata by scaling it by \p S / \p T.
1699 void updateProfWeight(uint64_t S, uint64_t T);
1700
1701private:
1702 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1703 // method so that subclasses cannot accidentally use it.
1704 template <typename Bitfield>
1705 void setSubclassData(typename Bitfield::Type Value) {
1706 Instruction::setSubclassData<Bitfield>(Value);
1707 }
1708};
1709
1710CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1711 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1712 BasicBlock *InsertAtEnd)
1713 : CallBase(Ty->getReturnType(), Instruction::Call,
1714 OperandTraits<CallBase>::op_end(this) -
1715 (Args.size() + CountBundleInputs(Bundles) + 1),
1716 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1717 InsertAtEnd) {
1718 init(Ty, Func, Args, Bundles, NameStr);
1719}
1720
1721CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1722 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1723 Instruction *InsertBefore)
1724 : CallBase(Ty->getReturnType(), Instruction::Call,
1725 OperandTraits<CallBase>::op_end(this) -
1726 (Args.size() + CountBundleInputs(Bundles) + 1),
1727 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1728 InsertBefore) {
1729 init(Ty, Func, Args, Bundles, NameStr);
1730}
1731
1732//===----------------------------------------------------------------------===//
1733// SelectInst Class
1734//===----------------------------------------------------------------------===//
1735
1736/// This class represents the LLVM 'select' instruction.
1737///
1738class SelectInst : public Instruction {
1739 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1740 Instruction *InsertBefore)
1741 : Instruction(S1->getType(), Instruction::Select,
1742 &Op<0>(), 3, InsertBefore) {
1743 init(C, S1, S2);
1744 setName(NameStr);
1745 }
1746
1747 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1748 BasicBlock *InsertAtEnd)
1749 : Instruction(S1->getType(), Instruction::Select,
1750 &Op<0>(), 3, InsertAtEnd) {
1751 init(C, S1, S2);
1752 setName(NameStr);
1753 }
1754
1755 void init(Value *C, Value *S1, Value *S2) {
1756 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")(static_cast <bool> (!areInvalidOperands(C, S1, S2) &&
"Invalid operands for select") ? void (0) : __assert_fail ("!areInvalidOperands(C, S1, S2) && \"Invalid operands for select\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1756, __extension__ __PRETTY_FUNCTION__))
;
1757 Op<0>() = C;
1758 Op<1>() = S1;
1759 Op<2>() = S2;
1760 }
1761
1762protected:
1763 // Note: Instruction needs to be a friend here to call cloneImpl.
1764 friend class Instruction;
1765
1766 SelectInst *cloneImpl() const;
1767
1768public:
1769 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1770 const Twine &NameStr = "",
1771 Instruction *InsertBefore = nullptr,
1772 Instruction *MDFrom = nullptr) {
1773 SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1774 if (MDFrom)
1775 Sel->copyMetadata(*MDFrom);
1776 return Sel;
1777 }
1778
1779 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1780 const Twine &NameStr,
1781 BasicBlock *InsertAtEnd) {
1782 return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1783 }
1784
1785 const Value *getCondition() const { return Op<0>(); }
1786 const Value *getTrueValue() const { return Op<1>(); }
1787 const Value *getFalseValue() const { return Op<2>(); }
1788 Value *getCondition() { return Op<0>(); }
1789 Value *getTrueValue() { return Op<1>(); }
1790 Value *getFalseValue() { return Op<2>(); }
1791
1792 void setCondition(Value *V) { Op<0>() = V; }
1793 void setTrueValue(Value *V) { Op<1>() = V; }
1794 void setFalseValue(Value *V) { Op<2>() = V; }
1795
1796 /// Swap the true and false values of the select instruction.
1797 /// This doesn't swap prof metadata.
1798 void swapValues() { Op<1>().swap(Op<2>()); }
1799
1800 /// Return a string if the specified operands are invalid
1801 /// for a select operation, otherwise return null.
1802 static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1803
1804 /// Transparently provide more efficient getOperand methods.
1805 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1806
1807 OtherOps getOpcode() const {
1808 return static_cast<OtherOps>(Instruction::getOpcode());
1809 }
1810
1811 // Methods for support type inquiry through isa, cast, and dyn_cast:
1812 static bool classof(const Instruction *I) {
1813 return I->getOpcode() == Instruction::Select;
1814 }
1815 static bool classof(const Value *V) {
1816 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1817 }
1818};
1819
1820template <>
1821struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1822};
1823
1824DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits
<SelectInst>::op_begin(this); } SelectInst::const_op_iterator
SelectInst::op_begin() const { return OperandTraits<SelectInst
>::op_begin(const_cast<SelectInst*>(this)); } SelectInst
::op_iterator SelectInst::op_end() { return OperandTraits<
SelectInst>::op_end(this); } SelectInst::const_op_iterator
SelectInst::op_end() const { return OperandTraits<SelectInst
>::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<SelectInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1824, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<SelectInst>::op_begin(const_cast
<SelectInst*>(this))[i_nocapture].get()); } void SelectInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast
<bool> (i_nocapture < OperandTraits<SelectInst>
::operands(this) && "setOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1824, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
SelectInst>::op_begin(this)[i_nocapture] = Val_nocapture; }
unsigned SelectInst::getNumOperands() const { return OperandTraits
<SelectInst>::operands(this); } template <int Idx_nocapture
> Use &SelectInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
SelectInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
1825
1826//===----------------------------------------------------------------------===//
1827// VAArgInst Class
1828//===----------------------------------------------------------------------===//
1829
1830/// This class represents the va_arg llvm instruction, which returns
1831/// an argument of the specified type given a va_list and increments that list
1832///
1833class VAArgInst : public UnaryInstruction {
1834protected:
1835 // Note: Instruction needs to be a friend here to call cloneImpl.
1836 friend class Instruction;
1837
1838 VAArgInst *cloneImpl() const;
1839
1840public:
1841 VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1842 Instruction *InsertBefore = nullptr)
1843 : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1844 setName(NameStr);
1845 }
1846
1847 VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1848 BasicBlock *InsertAtEnd)
1849 : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1850 setName(NameStr);
1851 }
1852
1853 Value *getPointerOperand() { return getOperand(0); }
1854 const Value *getPointerOperand() const { return getOperand(0); }
1855 static unsigned getPointerOperandIndex() { return 0U; }
1856
1857 // Methods for support type inquiry through isa, cast, and dyn_cast:
1858 static bool classof(const Instruction *I) {
1859 return I->getOpcode() == VAArg;
1860 }
1861 static bool classof(const Value *V) {
1862 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1863 }
1864};
1865
1866//===----------------------------------------------------------------------===//
1867// ExtractElementInst Class
1868//===----------------------------------------------------------------------===//
1869
1870/// This instruction extracts a single (scalar)
1871/// element from a VectorType value
1872///
1873class ExtractElementInst : public Instruction {
1874 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1875 Instruction *InsertBefore = nullptr);
1876 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1877 BasicBlock *InsertAtEnd);
1878
1879protected:
1880 // Note: Instruction needs to be a friend here to call cloneImpl.
1881 friend class Instruction;
1882
1883 ExtractElementInst *cloneImpl() const;
1884
1885public:
1886 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1887 const Twine &NameStr = "",
1888 Instruction *InsertBefore = nullptr) {
1889 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1890 }
1891
1892 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1893 const Twine &NameStr,
1894 BasicBlock *InsertAtEnd) {
1895 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1896 }
1897
1898 /// Return true if an extractelement instruction can be
1899 /// formed with the specified operands.
1900 static bool isValidOperands(const Value *Vec, const Value *Idx);
1901
1902 Value *getVectorOperand() { return Op<0>(); }
1903 Value *getIndexOperand() { return Op<1>(); }
1904 const Value *getVectorOperand() const { return Op<0>(); }
1905 const Value *getIndexOperand() const { return Op<1>(); }
1906
1907 VectorType *getVectorOperandType() const {
1908 return cast<VectorType>(getVectorOperand()->getType());
1909 }
1910
1911 /// Transparently provide more efficient getOperand methods.
1912 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1913
1914 // Methods for support type inquiry through isa, cast, and dyn_cast:
1915 static bool classof(const Instruction *I) {
1916 return I->getOpcode() == Instruction::ExtractElement;
1917 }
1918 static bool classof(const Value *V) {
1919 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1920 }
1921};
1922
1923template <>
1924struct OperandTraits<ExtractElementInst> :
1925 public FixedNumOperandTraits<ExtractElementInst, 2> {
1926};
1927
1928DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin(
) { return OperandTraits<ExtractElementInst>::op_begin(
this); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_begin() const { return OperandTraits<ExtractElementInst
>::op_begin(const_cast<ExtractElementInst*>(this)); }
ExtractElementInst::op_iterator ExtractElementInst::op_end()
{ return OperandTraits<ExtractElementInst>::op_end(this
); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_end() const { return OperandTraits<ExtractElementInst
>::op_end(const_cast<ExtractElementInst*>(this)); } Value
*ExtractElementInst::getOperand(unsigned i_nocapture) const {
(static_cast <bool> (i_nocapture < OperandTraits<
ExtractElementInst>::operands(this) && "getOperand() out of range!"
) ? void (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1928, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<ExtractElementInst>::op_begin
(const_cast<ExtractElementInst*>(this))[i_nocapture].get
()); } void ExtractElementInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<ExtractElementInst>::operands(this)
&& "setOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1928, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
ExtractElementInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned ExtractElementInst::getNumOperands() const { return
OperandTraits<ExtractElementInst>::operands(this); } template
<int Idx_nocapture> Use &ExtractElementInst::Op() {
return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &ExtractElementInst::
Op() const { return this->OpFrom<Idx_nocapture>(this
); }
1929
1930//===----------------------------------------------------------------------===//
1931// InsertElementInst Class
1932//===----------------------------------------------------------------------===//
1933
1934/// This instruction inserts a single (scalar)
1935/// element into a VectorType value
1936///
1937class InsertElementInst : public Instruction {
1938 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1939 const Twine &NameStr = "",
1940 Instruction *InsertBefore = nullptr);
1941 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1942 BasicBlock *InsertAtEnd);
1943
1944protected:
1945 // Note: Instruction needs to be a friend here to call cloneImpl.
1946 friend class Instruction;
1947
1948 InsertElementInst *cloneImpl() const;
1949
1950public:
1951 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1952 const Twine &NameStr = "",
1953 Instruction *InsertBefore = nullptr) {
1954 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1955 }
1956
1957 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1958 const Twine &NameStr,
1959 BasicBlock *InsertAtEnd) {
1960 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1961 }
1962
1963 /// Return true if an insertelement instruction can be
1964 /// formed with the specified operands.
1965 static bool isValidOperands(const Value *Vec, const Value *NewElt,
1966 const Value *Idx);
1967
1968 /// Overload to return most specific vector type.
1969 ///
1970 VectorType *getType() const {
1971 return cast<VectorType>(Instruction::getType());
1972 }
1973
1974 /// Transparently provide more efficient getOperand methods.
1975 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1976
1977 // Methods for support type inquiry through isa, cast, and dyn_cast:
1978 static bool classof(const Instruction *I) {
1979 return I->getOpcode() == Instruction::InsertElement;
1980 }
1981 static bool classof(const Value *V) {
1982 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1983 }
1984};
1985
1986template <>
1987struct OperandTraits<InsertElementInst> :
1988 public FixedNumOperandTraits<InsertElementInst, 3> {
1989};
1990
1991DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() {
return OperandTraits<InsertElementInst>::op_begin(this
); } InsertElementInst::const_op_iterator InsertElementInst::
op_begin() const { return OperandTraits<InsertElementInst>
::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst
::op_iterator InsertElementInst::op_end() { return OperandTraits
<InsertElementInst>::op_end(this); } InsertElementInst::
const_op_iterator InsertElementInst::op_end() const { return OperandTraits
<InsertElementInst>::op_end(const_cast<InsertElementInst
*>(this)); } Value *InsertElementInst::getOperand(unsigned
i_nocapture) const { (static_cast <bool> (i_nocapture <
OperandTraits<InsertElementInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1991, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<InsertElementInst>::op_begin
(const_cast<InsertElementInst*>(this))[i_nocapture].get
()); } void InsertElementInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<InsertElementInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1991, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
InsertElementInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned InsertElementInst::getNumOperands() const { return
OperandTraits<InsertElementInst>::operands(this); } template
<int Idx_nocapture> Use &InsertElementInst::Op() {
return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &InsertElementInst::
Op() const { return this->OpFrom<Idx_nocapture>(this
); }
1992
1993//===----------------------------------------------------------------------===//
1994// ShuffleVectorInst Class
1995//===----------------------------------------------------------------------===//
1996
1997constexpr int UndefMaskElem = -1;
1998
1999/// This instruction constructs a fixed permutation of two
2000/// input vectors.
2001///
2002/// For each element of the result vector, the shuffle mask selects an element
2003/// from one of the input vectors to copy to the result. Non-negative elements
2004/// in the mask represent an index into the concatenated pair of input vectors.
2005/// UndefMaskElem (-1) specifies that the result element is undefined.
2006///
2007/// For scalable vectors, all the elements of the mask must be 0 or -1. This
2008/// requirement may be relaxed in the future.
2009class ShuffleVectorInst : public Instruction {
2010 SmallVector<int, 4> ShuffleMask;
2011 Constant *ShuffleMaskForBitcode;
2012
2013protected:
2014 // Note: Instruction needs to be a friend here to call cloneImpl.
2015 friend class Instruction;
2016
2017 ShuffleVectorInst *cloneImpl() const;
2018
2019public:
2020 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2021 const Twine &NameStr = "",
2022 Instruction *InsertBefor = nullptr);
2023 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2024 const Twine &NameStr, BasicBlock *InsertAtEnd);
2025 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2026 const Twine &NameStr = "",
2027 Instruction *InsertBefor = nullptr);
2028 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2029 const Twine &NameStr, BasicBlock *InsertAtEnd);
2030
2031 void *operator new(size_t S) { return User::operator new(S, 2); }
2032 void operator delete(void *Ptr) { return User::operator delete(Ptr); }
2033
2034 /// Swap the operands and adjust the mask to preserve the semantics
2035 /// of the instruction.
2036 void commute();
2037
2038 /// Return true if a shufflevector instruction can be
2039 /// formed with the specified operands.
2040 static bool isValidOperands(const Value *V1, const Value *V2,
2041 const Value *Mask);
2042 static bool isValidOperands(const Value *V1, const Value *V2,
2043 ArrayRef<int> Mask);
2044
2045 /// Overload to return most specific vector type.
2046 ///
2047 VectorType *getType() const {
2048 return cast<VectorType>(Instruction::getType());
2049 }
2050
2051 /// Transparently provide more efficient getOperand methods.
2052 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2053
2054 /// Return the shuffle mask value of this instruction for the given element
2055 /// index. Return UndefMaskElem if the element is undef.
2056 int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; }
2057
2058 /// Convert the input shuffle mask operand to a vector of integers. Undefined
2059 /// elements of the mask are returned as UndefMaskElem.
2060 static void getShuffleMask(const Constant *Mask,
2061 SmallVectorImpl<int> &Result);
2062
2063 /// Return the mask for this instruction as a vector of integers. Undefined
2064 /// elements of the mask are returned as UndefMaskElem.
2065 void getShuffleMask(SmallVectorImpl<int> &Result) const {
2066 Result.assign(ShuffleMask.begin(), ShuffleMask.end());
2067 }
2068
2069 /// Return the mask for this instruction, for use in bitcode.
2070 ///
2071 /// TODO: This is temporary until we decide a new bitcode encoding for
2072 /// shufflevector.
2073 Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; }
2074
2075 static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2076 Type *ResultTy);
2077
2078 void setShuffleMask(ArrayRef<int> Mask);
2079
2080 ArrayRef<int> getShuffleMask() const { return ShuffleMask; }
2081
2082 /// Return true if this shuffle returns a vector with a different number of
2083 /// elements than its source vectors.
2084 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2085 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2086 bool changesLength() const {
2087 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2088 ->getElementCount()
2089 .getKnownMinValue();
2090 unsigned NumMaskElts = ShuffleMask.size();
2091 return NumSourceElts != NumMaskElts;
2092 }
2093
2094 /// Return true if this shuffle returns a vector with a greater number of
2095 /// elements than its source vectors.
2096 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2097 bool increasesLength() const {
2098 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2099 ->getElementCount()
2100 .getKnownMinValue();
2101 unsigned NumMaskElts = ShuffleMask.size();
2102 return NumSourceElts < NumMaskElts;
2103 }
2104
2105 /// Return true if this shuffle mask chooses elements from exactly one source
2106 /// vector.
2107 /// Example: <7,5,undef,7>
2108 /// This assumes that vector operands are the same length as the mask.
2109 static bool isSingleSourceMask(ArrayRef<int> Mask);
2110 static bool isSingleSourceMask(const Constant *Mask) {
2111 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2111, __extension__ __PRETTY_FUNCTION__))
;
2112 SmallVector<int, 16> MaskAsInts;
2113 getShuffleMask(Mask, MaskAsInts);
2114 return isSingleSourceMask(MaskAsInts);
2115 }
2116
2117 /// Return true if this shuffle chooses elements from exactly one source
2118 /// vector without changing the length of that vector.
2119 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2120 /// TODO: Optionally allow length-changing shuffles.
2121 bool isSingleSource() const {
2122 return !changesLength() && isSingleSourceMask(ShuffleMask);
2123 }
2124
2125 /// Return true if this shuffle mask chooses elements from exactly one source
2126 /// vector without lane crossings. A shuffle using this mask is not
2127 /// necessarily a no-op because it may change the number of elements from its
2128 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2129 /// Example: <undef,undef,2,3>
2130 static bool isIdentityMask(ArrayRef<int> Mask);
2131 static bool isIdentityMask(const Constant *Mask) {
2132 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2132, __extension__ __PRETTY_FUNCTION__))
;
2133 SmallVector<int, 16> MaskAsInts;
2134 getShuffleMask(Mask, MaskAsInts);
2135 return isIdentityMask(MaskAsInts);
2136 }
2137
2138 /// Return true if this shuffle chooses elements from exactly one source
2139 /// vector without lane crossings and does not change the number of elements
2140 /// from its input vectors.
2141 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2142 bool isIdentity() const {
2143 return !changesLength() && isIdentityMask(ShuffleMask);
2144 }
2145
2146 /// Return true if this shuffle lengthens exactly one source vector with
2147 /// undefs in the high elements.
2148 bool isIdentityWithPadding() const;
2149
2150 /// Return true if this shuffle extracts the first N elements of exactly one
2151 /// source vector.
2152 bool isIdentityWithExtract() const;
2153
2154 /// Return true if this shuffle concatenates its 2 source vectors. This
2155 /// returns false if either input is undefined. In that case, the shuffle is
2156 /// is better classified as an identity with padding operation.
2157 bool isConcat() const;
2158
2159 /// Return true if this shuffle mask chooses elements from its source vectors
2160 /// without lane crossings. A shuffle using this mask would be
2161 /// equivalent to a vector select with a constant condition operand.
2162 /// Example: <4,1,6,undef>
2163 /// This returns false if the mask does not choose from both input vectors.
2164 /// In that case, the shuffle is better classified as an identity shuffle.
2165 /// This assumes that vector operands are the same length as the mask
2166 /// (a length-changing shuffle can never be equivalent to a vector select).
2167 static bool isSelectMask(ArrayRef<int> Mask);
2168 static bool isSelectMask(const Constant *Mask) {
2169 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2169, __extension__ __PRETTY_FUNCTION__))
;
2170 SmallVector<int, 16> MaskAsInts;
2171 getShuffleMask(Mask, MaskAsInts);
2172 return isSelectMask(MaskAsInts);
2173 }
2174
2175 /// Return true if this shuffle chooses elements from its source vectors
2176 /// without lane crossings and all operands have the same number of elements.
2177 /// In other words, this shuffle is equivalent to a vector select with a
2178 /// constant condition operand.
2179 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2180 /// This returns false if the mask does not choose from both input vectors.
2181 /// In that case, the shuffle is better classified as an identity shuffle.
2182 /// TODO: Optionally allow length-changing shuffles.
2183 bool isSelect() const {
2184 return !changesLength() && isSelectMask(ShuffleMask);
2185 }
2186
2187 /// Return true if this shuffle mask swaps the order of elements from exactly
2188 /// one source vector.
2189 /// Example: <7,6,undef,4>
2190 /// This assumes that vector operands are the same length as the mask.
2191 static bool isReverseMask(ArrayRef<int> Mask);
2192 static bool isReverseMask(const Constant *Mask) {
2193 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2193, __extension__ __PRETTY_FUNCTION__))
;
2194 SmallVector<int, 16> MaskAsInts;
2195 getShuffleMask(Mask, MaskAsInts);
2196 return isReverseMask(MaskAsInts);
2197 }
2198
2199 /// Return true if this shuffle swaps the order of elements from exactly
2200 /// one source vector.
2201 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2202 /// TODO: Optionally allow length-changing shuffles.
2203 bool isReverse() const {
2204 return !changesLength() && isReverseMask(ShuffleMask);
2205 }
2206
2207 /// Return true if this shuffle mask chooses all elements with the same value
2208 /// as the first element of exactly one source vector.
2209 /// Example: <4,undef,undef,4>
2210 /// This assumes that vector operands are the same length as the mask.
2211 static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2212 static bool isZeroEltSplatMask(const Constant *Mask) {
2213 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2213, __extension__ __PRETTY_FUNCTION__))
;
2214 SmallVector<int, 16> MaskAsInts;
2215 getShuffleMask(Mask, MaskAsInts);
2216 return isZeroEltSplatMask(MaskAsInts);
2217 }
2218
2219 /// Return true if all elements of this shuffle are the same value as the
2220 /// first element of exactly one source vector without changing the length
2221 /// of that vector.
2222 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2223 /// TODO: Optionally allow length-changing shuffles.
2224 /// TODO: Optionally allow splats from other elements.
2225 bool isZeroEltSplat() const {
2226 return !changesLength() && isZeroEltSplatMask(ShuffleMask);
2227 }
2228
2229 /// Return true if this shuffle mask is a transpose mask.
2230 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2231 /// even- or odd-numbered vector elements from two n-dimensional source
2232 /// vectors and write each result into consecutive elements of an
2233 /// n-dimensional destination vector. Two shuffles are necessary to complete
2234 /// the transpose, one for the even elements and another for the odd elements.
2235 /// This description closely follows how the TRN1 and TRN2 AArch64
2236 /// instructions operate.
2237 ///
2238 /// For example, a simple 2x2 matrix can be transposed with:
2239 ///
2240 /// ; Original matrix
2241 /// m0 = < a, b >
2242 /// m1 = < c, d >
2243 ///
2244 /// ; Transposed matrix
2245 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2246 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2247 ///
2248 /// For matrices having greater than n columns, the resulting nx2 transposed
2249 /// matrix is stored in two result vectors such that one vector contains
2250 /// interleaved elements from all the even-numbered rows and the other vector
2251 /// contains interleaved elements from all the odd-numbered rows. For example,
2252 /// a 2x4 matrix can be transposed with:
2253 ///
2254 /// ; Original matrix
2255 /// m0 = < a, b, c, d >
2256 /// m1 = < e, f, g, h >
2257 ///
2258 /// ; Transposed matrix
2259 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2260 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2261 static bool isTransposeMask(ArrayRef<int> Mask);
2262 static bool isTransposeMask(const Constant *Mask) {
2263 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2263, __extension__ __PRETTY_FUNCTION__))
;
2264 SmallVector<int, 16> MaskAsInts;
2265 getShuffleMask(Mask, MaskAsInts);
2266 return isTransposeMask(MaskAsInts);
2267 }
2268
2269 /// Return true if this shuffle transposes the elements of its inputs without
2270 /// changing the length of the vectors. This operation may also be known as a
2271 /// merge or interleave. See the description for isTransposeMask() for the
2272 /// exact specification.
2273 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2274 bool isTranspose() const {
2275 return !changesLength() && isTransposeMask(ShuffleMask);
2276 }
2277
2278 /// Return true if this shuffle mask is an extract subvector mask.
2279 /// A valid extract subvector mask returns a smaller vector from a single
2280 /// source operand. The base extraction index is returned as well.
2281 static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2282 int &Index);
2283 static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2284 int &Index) {
2285 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2285, __extension__ __PRETTY_FUNCTION__))
;
2286 // Not possible to express a shuffle mask for a scalable vector for this
2287 // case.
2288 if (isa<ScalableVectorType>(Mask->getType()))
2289 return false;
2290 SmallVector<int, 16> MaskAsInts;
2291 getShuffleMask(Mask, MaskAsInts);
2292 return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2293 }
2294
2295 /// Return true if this shuffle mask is an extract subvector mask.
2296 bool isExtractSubvectorMask(int &Index) const {
2297 // Not possible to express a shuffle mask for a scalable vector for this
2298 // case.
2299 if (isa<ScalableVectorType>(getType()))
2300 return false;
2301
2302 int NumSrcElts =
2303 cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2304 return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index);
2305 }
2306
2307 /// Return true if this shuffle mask is an insert subvector mask.
2308 /// A valid insert subvector mask inserts the lowest elements of a second
2309 /// source operand into an in-place first source operand operand.
2310 /// Both the sub vector width and the insertion index is returned.
2311 static bool isInsertSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2312 int &NumSubElts, int &Index);
2313 static bool isInsertSubvectorMask(const Constant *Mask, int NumSrcElts,
2314 int &NumSubElts, int &Index) {
2315 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2315, __extension__ __PRETTY_FUNCTION__))
;
2316 // Not possible to express a shuffle mask for a scalable vector for this
2317 // case.
2318 if (isa<ScalableVectorType>(Mask->getType()))
2319 return false;
2320 SmallVector<int, 16> MaskAsInts;
2321 getShuffleMask(Mask, MaskAsInts);
2322 return isInsertSubvectorMask(MaskAsInts, NumSrcElts, NumSubElts, Index);
2323 }
2324
2325 /// Return true if this shuffle mask is an insert subvector mask.
2326 bool isInsertSubvectorMask(int &NumSubElts, int &Index) const {
2327 // Not possible to express a shuffle mask for a scalable vector for this
2328 // case.
2329 if (isa<ScalableVectorType>(getType()))
2330 return false;
2331
2332 int NumSrcElts =
2333 cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2334 return isInsertSubvectorMask(ShuffleMask, NumSrcElts, NumSubElts, Index);
2335 }
2336
2337 /// Change values in a shuffle permute mask assuming the two vector operands
2338 /// of length InVecNumElts have swapped position.
2339 static void commuteShuffleMask(MutableArrayRef<int> Mask,
2340 unsigned InVecNumElts) {
2341 for (int &Idx : Mask) {
2342 if (Idx == -1)
2343 continue;
2344 Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2345 assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&(static_cast <bool> (Idx >= 0 && Idx < (int
)InVecNumElts * 2 && "shufflevector mask index out of range"
) ? void (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2346, __extension__ __PRETTY_FUNCTION__))
2346 "shufflevector mask index out of range")(static_cast <bool> (Idx >= 0 && Idx < (int
)InVecNumElts * 2 && "shufflevector mask index out of range"
) ? void (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2346, __extension__ __PRETTY_FUNCTION__))
;
2347 }
2348 }
2349
2350 // Methods for support type inquiry through isa, cast, and dyn_cast:
2351 static bool classof(const Instruction *I) {
2352 return I->getOpcode() == Instruction::ShuffleVector;
2353 }
2354 static bool classof(const Value *V) {
2355 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2356 }
2357};
2358
2359template <>
2360struct OperandTraits<ShuffleVectorInst>
2361 : public FixedNumOperandTraits<ShuffleVectorInst, 2> {};
2362
2363DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() {
return OperandTraits<ShuffleVectorInst>::op_begin(this
); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst::
op_begin() const { return OperandTraits<ShuffleVectorInst>
::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst
::op_iterator ShuffleVectorInst::op_end() { return OperandTraits
<ShuffleVectorInst>::op_end(this); } ShuffleVectorInst::
const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits
<ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst
*>(this)); } Value *ShuffleVectorInst::getOperand(unsigned
i_nocapture) const { (static_cast <bool> (i_nocapture <
OperandTraits<ShuffleVectorInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2363, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<ShuffleVectorInst>::op_begin
(const_cast<ShuffleVectorInst*>(this))[i_nocapture].get
()); } void ShuffleVectorInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<ShuffleVectorInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2363, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
ShuffleVectorInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned ShuffleVectorInst::getNumOperands() const { return
OperandTraits<ShuffleVectorInst>::operands(this); } template
<int Idx_nocapture> Use &ShuffleVectorInst::Op() {
return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &ShuffleVectorInst::
Op() const { return this->OpFrom<Idx_nocapture>(this
); }
2364
2365//===----------------------------------------------------------------------===//
2366// ExtractValueInst Class
2367//===----------------------------------------------------------------------===//
2368
2369/// This instruction extracts a struct member or array
2370/// element value from an aggregate value.
2371///
2372class ExtractValueInst : public UnaryInstruction {
2373 SmallVector<unsigned, 4> Indices;
2374
2375 ExtractValueInst(const ExtractValueInst &EVI);
2376
2377 /// Constructors - Create a extractvalue instruction with a base aggregate
2378 /// value and a list of indices. The first ctor can optionally insert before
2379 /// an existing instruction, the second appends the new instruction to the
2380 /// specified BasicBlock.
2381 inline ExtractValueInst(Value *Agg,
2382 ArrayRef<unsigned> Idxs,
2383 const Twine &NameStr,
2384 Instruction *InsertBefore);
2385 inline ExtractValueInst(Value *Agg,
2386 ArrayRef<unsigned> Idxs,
2387 const Twine &NameStr, BasicBlock *InsertAtEnd);
2388
2389 void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2390
2391protected:
2392 // Note: Instruction needs to be a friend here to call cloneImpl.
2393 friend class Instruction;
2394
2395 ExtractValueInst *cloneImpl() const;
2396
2397public:
2398 static ExtractValueInst *Create(Value *Agg,
2399 ArrayRef<unsigned> Idxs,
2400 const Twine &NameStr = "",
2401 Instruction *InsertBefore = nullptr) {
2402 return new
2403 ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2404 }
2405
2406 static ExtractValueInst *Create(Value *Agg,
2407 ArrayRef<unsigned> Idxs,
2408 const Twine &NameStr,
2409 BasicBlock *InsertAtEnd) {
2410 return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2411 }
2412
2413 /// Returns the type of the element that would be extracted
2414 /// with an extractvalue instruction with the specified parameters.
2415 ///
2416 /// Null is returned if the indices are invalid for the specified type.
2417 static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2418
2419 using idx_iterator = const unsigned*;
2420
2421 inline idx_iterator idx_begin() const { return Indices.begin(); }
2422 inline idx_iterator idx_end() const { return Indices.end(); }
2423 inline iterator_range<idx_iterator> indices() const {
2424 return make_range(idx_begin(), idx_end());
2425 }
2426
2427 Value *getAggregateOperand() {
2428 return getOperand(0);
2429 }
2430 const Value *getAggregateOperand() const {
2431 return getOperand(0);
2432 }
2433 static unsigned getAggregateOperandIndex() {
2434 return 0U; // get index for modifying correct operand
2435 }
2436
2437 ArrayRef<unsigned> getIndices() const {
2438 return Indices;
2439 }
2440
2441 unsigned getNumIndices() const {
2442 return (unsigned)Indices.size();
2443 }
2444
2445 bool hasIndices() const {
2446 return true;
2447 }
2448
2449 // Methods for support type inquiry through isa, cast, and dyn_cast:
2450 static bool classof(const Instruction *I) {
2451 return I->getOpcode() == Instruction::ExtractValue;
2452 }
2453 static bool classof(const Value *V) {
2454 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2455 }
2456};
2457
2458ExtractValueInst::ExtractValueInst(Value *Agg,
2459 ArrayRef<unsigned> Idxs,
2460 const Twine &NameStr,
2461 Instruction *InsertBefore)
2462 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2463 ExtractValue, Agg, InsertBefore) {
2464 init(Idxs, NameStr);
2465}
2466
2467ExtractValueInst::ExtractValueInst(Value *Agg,
2468 ArrayRef<unsigned> Idxs,
2469 const Twine &NameStr,
2470 BasicBlock *InsertAtEnd)
2471 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2472 ExtractValue, Agg, InsertAtEnd) {
2473 init(Idxs, NameStr);
2474}
2475
2476//===----------------------------------------------------------------------===//
2477// InsertValueInst Class
2478//===----------------------------------------------------------------------===//
2479
2480/// This instruction inserts a struct field of array element
2481/// value into an aggregate value.
2482///
2483class InsertValueInst : public Instruction {
2484 SmallVector<unsigned, 4> Indices;
2485
2486 InsertValueInst(const InsertValueInst &IVI);
2487
2488 /// Constructors - Create a insertvalue instruction with a base aggregate
2489 /// value, a value to insert, and a list of indices. The first ctor can
2490 /// optionally insert before an existing instruction, the second appends
2491 /// the new instruction to the specified BasicBlock.
2492 inline InsertValueInst(Value *Agg, Value *Val,
2493 ArrayRef<unsigned> Idxs,
2494 const Twine &NameStr,
2495 Instruction *InsertBefore);
2496 inline InsertValueInst(Value *Agg, Value *Val,
2497 ArrayRef<unsigned> Idxs,
2498 const Twine &NameStr, BasicBlock *InsertAtEnd);
2499
2500 /// Constructors - These two constructors are convenience methods because one
2501 /// and two index insertvalue instructions are so common.
2502 InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2503 const Twine &NameStr = "",
2504 Instruction *InsertBefore = nullptr);
2505 InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2506 BasicBlock *InsertAtEnd);
2507
2508 void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2509 const Twine &NameStr);
2510
2511protected:
2512 // Note: Instruction needs to be a friend here to call cloneImpl.
2513 friend class Instruction;
2514
2515 InsertValueInst *cloneImpl() const;
2516
2517public:
2518 // allocate space for exactly two operands
2519 void *operator new(size_t S) { return User::operator new(S, 2); }
2520 void operator delete(void *Ptr) { User::operator delete(Ptr); }
2521
2522 static InsertValueInst *Create(Value *Agg, Value *Val,
2523 ArrayRef<unsigned> Idxs,
2524 const Twine &NameStr = "",
2525 Instruction *InsertBefore = nullptr) {
2526 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2527 }
2528
2529 static InsertValueInst *Create(Value *Agg, Value *Val,
2530 ArrayRef<unsigned> Idxs,
2531 const Twine &NameStr,
2532 BasicBlock *InsertAtEnd) {
2533 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2534 }
2535
2536 /// Transparently provide more efficient getOperand methods.
2537 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2538
2539 using idx_iterator = const unsigned*;
2540
2541 inline idx_iterator idx_begin() const { return Indices.begin(); }
2542 inline idx_iterator idx_end() const { return Indices.end(); }
2543 inline iterator_range<idx_iterator> indices() const {
2544 return make_range(idx_begin(), idx_end());
2545 }
2546
2547 Value *getAggregateOperand() {
2548 return getOperand(0);
2549 }
2550 const Value *getAggregateOperand() const {
2551 return getOperand(0);
2552 }
2553 static unsigned getAggregateOperandIndex() {
2554 return 0U; // get index for modifying correct operand
2555 }
2556
2557 Value *getInsertedValueOperand() {
2558 return getOperand(1);
2559 }
2560 const Value *getInsertedValueOperand() const {
2561 return getOperand(1);
2562 }
2563 static unsigned getInsertedValueOperandIndex() {
2564 return 1U; // get index for modifying correct operand
2565 }
2566
2567 ArrayRef<unsigned> getIndices() const {
2568 return Indices;
2569 }
2570
2571 unsigned getNumIndices() const {
2572 return (unsigned)Indices.size();
2573 }
2574
2575 bool hasIndices() const {
2576 return true;
2577 }
2578
2579 // Methods for support type inquiry through isa, cast, and dyn_cast:
2580 static bool classof(const Instruction *I) {
2581 return I->getOpcode() == Instruction::InsertValue;
2582 }
2583 static bool classof(const Value *V) {
2584 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2585 }
2586};
2587
2588template <>
2589struct OperandTraits<InsertValueInst> :
2590 public FixedNumOperandTraits<InsertValueInst, 2> {
2591};
2592
2593InsertValueInst::InsertValueInst(Value *Agg,
2594 Value *Val,
2595 ArrayRef<unsigned> Idxs,
2596 const Twine &NameStr,
2597 Instruction *InsertBefore)
2598 : Instruction(Agg->getType(), InsertValue,
2599 OperandTraits<InsertValueInst>::op_begin(this),
2600 2, InsertBefore) {
2601 init(Agg, Val, Idxs, NameStr);
2602}
2603
2604InsertValueInst::InsertValueInst(Value *Agg,
2605 Value *Val,
2606 ArrayRef<unsigned> Idxs,
2607 const Twine &NameStr,
2608 BasicBlock *InsertAtEnd)
2609 : Instruction(Agg->getType(), InsertValue,
2610 OperandTraits<InsertValueInst>::op_begin(this),
2611 2, InsertAtEnd) {
2612 init(Agg, Val, Idxs, NameStr);
2613}
2614
2615DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return
OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst
::const_op_iterator InsertValueInst::op_begin() const { return
OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst
::op_end() { return OperandTraits<InsertValueInst>::op_end
(this); } InsertValueInst::const_op_iterator InsertValueInst::
op_end() const { return OperandTraits<InsertValueInst>::
op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<InsertValueInst>::
operands(this) && "getOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2615, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<InsertValueInst>::op_begin
(const_cast<InsertValueInst*>(this))[i_nocapture].get()
); } void InsertValueInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { (static_cast <bool> (i_nocapture <
OperandTraits<InsertValueInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2615, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
InsertValueInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned InsertValueInst::getNumOperands() const { return
OperandTraits<InsertValueInst>::operands(this); } template
<int Idx_nocapture> Use &InsertValueInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &InsertValueInst::Op() const
{ return this->OpFrom<Idx_nocapture>(this); }
2616
2617//===----------------------------------------------------------------------===//
2618// PHINode Class
2619//===----------------------------------------------------------------------===//
2620
2621// PHINode - The PHINode class is used to represent the magical mystical PHI
2622// node, that can not exist in nature, but can be synthesized in a computer
2623// scientist's overactive imagination.
2624//
2625class PHINode : public Instruction {
2626 /// The number of operands actually allocated. NumOperands is
2627 /// the number actually in use.
2628 unsigned ReservedSpace;
2629
2630 PHINode(const PHINode &PN);
2631
2632 explicit PHINode(Type *Ty, unsigned NumReservedValues,
2633 const Twine &NameStr = "",
2634 Instruction *InsertBefore = nullptr)
2635 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2636 ReservedSpace(NumReservedValues) {
2637 assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")(static_cast <bool> (!Ty->isTokenTy() && "PHI nodes cannot have token type!"
) ? void (0) : __assert_fail ("!Ty->isTokenTy() && \"PHI nodes cannot have token type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2637, __extension__ __PRETTY_FUNCTION__))
;
2638 setName(NameStr);
2639 allocHungoffUses(ReservedSpace);
2640 }
2641
2642 PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2643 BasicBlock *InsertAtEnd)
2644 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2645 ReservedSpace(NumReservedValues) {
2646 assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")(static_cast <bool> (!Ty->isTokenTy() && "PHI nodes cannot have token type!"
) ? void (0) : __assert_fail ("!Ty->isTokenTy() && \"PHI nodes cannot have token type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2646, __extension__ __PRETTY_FUNCTION__))
;
2647 setName(NameStr);
2648 allocHungoffUses(ReservedSpace);
2649 }
2650
2651protected:
2652 // Note: Instruction needs to be a friend here to call cloneImpl.
2653 friend class Instruction;
2654
2655 PHINode *cloneImpl() const;
2656
2657 // allocHungoffUses - this is more complicated than the generic
2658 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2659 // values and pointers to the incoming blocks, all in one allocation.
2660 void allocHungoffUses(unsigned N) {
2661 User::allocHungoffUses(N, /* IsPhi */ true);
2662 }
2663
2664public:
2665 /// Constructors - NumReservedValues is a hint for the number of incoming
2666 /// edges that this phi node will have (use 0 if you really have no idea).
2667 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2668 const Twine &NameStr = "",
2669 Instruction *InsertBefore = nullptr) {
2670 return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2671 }
2672
2673 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2674 const Twine &NameStr, BasicBlock *InsertAtEnd) {
2675 return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2676 }
2677
2678 /// Provide fast operand accessors
2679 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2680
2681 // Block iterator interface. This provides access to the list of incoming
2682 // basic blocks, which parallels the list of incoming values.
2683
2684 using block_iterator = BasicBlock **;
2685 using const_block_iterator = BasicBlock * const *;
2686
2687 block_iterator block_begin() {
2688 return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace);
2689 }
2690
2691 const_block_iterator block_begin() const {
2692 return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
2693 }
2694
2695 block_iterator block_end() {
2696 return block_begin() + getNumOperands();
2697 }
2698
2699 const_block_iterator block_end() const {
2700 return block_begin() + getNumOperands();
2701 }
2702
2703 iterator_range<block_iterator> blocks() {
2704 return make_range(block_begin(), block_end());
2705 }
2706
2707 iterator_range<const_block_iterator> blocks() const {
2708 return make_range(block_begin(), block_end());
2709 }
2710
2711 op_range incoming_values() { return operands(); }
2712
2713 const_op_range incoming_values() const { return operands(); }
2714
2715 /// Return the number of incoming edges
2716 ///
2717 unsigned getNumIncomingValues() const { return getNumOperands(); }
2718
2719 /// Return incoming value number x
2720 ///
2721 Value *getIncomingValue(unsigned i) const {
2722 return getOperand(i);
2723 }
2724 void setIncomingValue(unsigned i, Value *V) {
2725 assert(V && "PHI node got a null value!")(static_cast <bool> (V && "PHI node got a null value!"
) ? void (0) : __assert_fail ("V && \"PHI node got a null value!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2725, __extension__ __PRETTY_FUNCTION__))
;
2726 assert(getType() == V->getType() &&(static_cast <bool> (getType() == V->getType() &&
"All operands to PHI node must be the same type as the PHI node!"
) ? void (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2727, __extension__ __PRETTY_FUNCTION__))
2727 "All operands to PHI node must be the same type as the PHI node!")(static_cast <bool> (getType() == V->getType() &&
"All operands to PHI node must be the same type as the PHI node!"
) ? void (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2727, __extension__ __PRETTY_FUNCTION__))
;
2728 setOperand(i, V);
2729 }
2730
2731 static unsigned getOperandNumForIncomingValue(unsigned i) {
2732 return i;
2733 }
2734
2735 static unsigned getIncomingValueNumForOperand(unsigned i) {
2736 return i;
2737 }
2738
2739 /// Return incoming basic block number @p i.
2740 ///
2741 BasicBlock *getIncomingBlock(unsigned i) const {
2742 return block_begin()[i];
2743 }
2744
2745 /// Return incoming basic block corresponding
2746 /// to an operand of the PHI.
2747 ///
2748 BasicBlock *getIncomingBlock(const Use &U) const {
2749 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")(static_cast <bool> (this == U.getUser() && "Iterator doesn't point to PHI's Uses?"
) ? void (0) : __assert_fail ("this == U.getUser() && \"Iterator doesn't point to PHI's Uses?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2749, __extension__ __PRETTY_FUNCTION__))
;
2750 return getIncomingBlock(unsigned(&U - op_begin()));
2751 }
2752
2753 /// Return incoming basic block corresponding
2754 /// to value use iterator.
2755 ///
2756 BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
2757 return getIncomingBlock(I.getUse());
2758 }
2759
2760 void setIncomingBlock(unsigned i, BasicBlock *BB) {
2761 assert(BB && "PHI node got a null basic block!")(static_cast <bool> (BB && "PHI node got a null basic block!"
) ? void (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2761, __extension__ __PRETTY_FUNCTION__))
;
2762 block_begin()[i] = BB;
2763 }
2764
2765 /// Replace every incoming basic block \p Old to basic block \p New.
2766 void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) {
2767 assert(New && Old && "PHI node got a null basic block!")(static_cast <bool> (New && Old && "PHI node got a null basic block!"
) ? void (0) : __assert_fail ("New && Old && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2767, __extension__ __PRETTY_FUNCTION__))
;
2768 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2769 if (getIncomingBlock(Op) == Old)
2770 setIncomingBlock(Op, New);
2771 }
2772
2773 /// Add an incoming value to the end of the PHI list
2774 ///
2775 void addIncoming(Value *V, BasicBlock *BB) {
2776 if (getNumOperands() == ReservedSpace)
2777 growOperands(); // Get more space!
2778 // Initialize some new operands.
2779 setNumHungOffUseOperands(getNumOperands() + 1);
2780 setIncomingValue(getNumOperands() - 1, V);
2781 setIncomingBlock(getNumOperands() - 1, BB);
2782 }
2783
2784 /// Remove an incoming value. This is useful if a
2785 /// predecessor basic block is deleted. The value removed is returned.
2786 ///
2787 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2788 /// is true), the PHI node is destroyed and any uses of it are replaced with
2789 /// dummy values. The only time there should be zero incoming values to a PHI
2790 /// node is when the block is dead, so this strategy is sound.
2791 ///
2792 Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2793
2794 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2795 int Idx = getBasicBlockIndex(BB);
2796 assert(Idx >= 0 && "Invalid basic block argument to remove!")(static_cast <bool> (Idx >= 0 && "Invalid basic block argument to remove!"
) ? void (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument to remove!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2796, __extension__ __PRETTY_FUNCTION__))
;
2797 return removeIncomingValue(Idx, DeletePHIIfEmpty);
2798 }
2799
2800 /// Return the first index of the specified basic
2801 /// block in the value list for this PHI. Returns -1 if no instance.
2802 ///
2803 int getBasicBlockIndex(const BasicBlock *BB) const {
2804 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2805 if (block_begin()[i] == BB)
2806 return i;
2807 return -1;
2808 }
2809
2810 Value *getIncomingValueForBlock(const BasicBlock *BB) const {
2811 int Idx = getBasicBlockIndex(BB);
2812 assert(Idx >= 0 && "Invalid basic block argument!")(static_cast <bool> (Idx >= 0 && "Invalid basic block argument!"
) ? void (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2812, __extension__ __PRETTY_FUNCTION__))
;
2813 return getIncomingValue(Idx);
2814 }
2815
2816 /// Set every incoming value(s) for block \p BB to \p V.
2817 void setIncomingValueForBlock(const BasicBlock *BB, Value *V) {
2818 assert(BB && "PHI node got a null basic block!")(static_cast <bool> (BB && "PHI node got a null basic block!"
) ? void (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2818, __extension__ __PRETTY_FUNCTION__))
;
2819 bool Found = false;
2820 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2821 if (getIncomingBlock(Op) == BB) {
2822 Found = true;
2823 setIncomingValue(Op, V);
2824 }
2825 (void)Found;
2826 assert(Found && "Invalid basic block argument to set!")(static_cast <bool> (Found && "Invalid basic block argument to set!"
) ? void (0) : __assert_fail ("Found && \"Invalid basic block argument to set!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2826, __extension__ __PRETTY_FUNCTION__))
;
2827 }
2828
2829 /// If the specified PHI node always merges together the
2830 /// same value, return the value, otherwise return null.
2831 Value *hasConstantValue() const;
2832
2833 /// Whether the specified PHI node always merges
2834 /// together the same value, assuming undefs are equal to a unique
2835 /// non-undef value.
2836 bool hasConstantOrUndefValue() const;
2837
2838 /// If the PHI node is complete which means all of its parent's predecessors
2839 /// have incoming value in this PHI, return true, otherwise return false.
2840 bool isComplete() const {
2841 return llvm::all_of(predecessors(getParent()),
2842 [this](const BasicBlock *Pred) {
2843 return getBasicBlockIndex(Pred) >= 0;
2844 });
2845 }
2846
2847 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2848 static bool classof(const Instruction *I) {
2849 return I->getOpcode() == Instruction::PHI;
2850 }
2851 static bool classof(const Value *V) {
2852 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2853 }
2854
2855private:
2856 void growOperands();
2857};
2858
2859template <>
2860struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
2861};
2862
2863DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits
<PHINode>::op_begin(this); } PHINode::const_op_iterator
PHINode::op_begin() const { return OperandTraits<PHINode>
::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator
PHINode::op_end() { return OperandTraits<PHINode>::op_end
(this); } PHINode::const_op_iterator PHINode::op_end() const {
return OperandTraits<PHINode>::op_end(const_cast<PHINode
*>(this)); } Value *PHINode::getOperand(unsigned i_nocapture
) const { (static_cast <bool> (i_nocapture < OperandTraits
<PHINode>::operands(this) && "getOperand() out of range!"
) ? void (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2863, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<PHINode>::op_begin(const_cast
<PHINode*>(this))[i_nocapture].get()); } void PHINode::
setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast
<bool> (i_nocapture < OperandTraits<PHINode>::
operands(this) && "setOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2863, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
PHINode>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
PHINode::getNumOperands() const { return OperandTraits<PHINode
>::operands(this); } template <int Idx_nocapture> Use
&PHINode::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
PHINode::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
2864
2865//===----------------------------------------------------------------------===//
2866// LandingPadInst Class
2867//===----------------------------------------------------------------------===//
2868
2869//===---------------------------------------------------------------------------
2870/// The landingpad instruction holds all of the information
2871/// necessary to generate correct exception handling. The landingpad instruction
2872/// cannot be moved from the top of a landing pad block, which itself is
2873/// accessible only from the 'unwind' edge of an invoke. This uses the
2874/// SubclassData field in Value to store whether or not the landingpad is a
2875/// cleanup.
2876///
2877class LandingPadInst : public Instruction {
2878 using CleanupField = BoolBitfieldElementT<0>;
2879
2880 /// The number of operands actually allocated. NumOperands is
2881 /// the number actually in use.
2882 unsigned ReservedSpace;
2883
2884 LandingPadInst(const LandingPadInst &LP);
2885
2886public:
2887 enum ClauseType { Catch, Filter };
2888
2889private:
2890 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2891 const Twine &NameStr, Instruction *InsertBefore);
2892 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2893 const Twine &NameStr, BasicBlock *InsertAtEnd);
2894
2895 // Allocate space for exactly zero operands.
2896 void *operator new(size_t S) { return User::operator new(S); }
2897
2898 void growOperands(unsigned Size);
2899 void init(unsigned NumReservedValues, const Twine &NameStr);
2900
2901protected:
2902 // Note: Instruction needs to be a friend here to call cloneImpl.
2903 friend class Instruction;
2904
2905 LandingPadInst *cloneImpl() const;
2906
2907public:
2908 void operator delete(void *Ptr) { User::operator delete(Ptr); }
2909
2910 /// Constructors - NumReservedClauses is a hint for the number of incoming
2911 /// clauses that this landingpad will have (use 0 if you really have no idea).
2912 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2913 const Twine &NameStr = "",
2914 Instruction *InsertBefore = nullptr);
2915 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2916 const Twine &NameStr, BasicBlock *InsertAtEnd);
2917
2918 /// Provide fast operand accessors
2919 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2920
2921 /// Return 'true' if this landingpad instruction is a
2922 /// cleanup. I.e., it should be run when unwinding even if its landing pad
2923 /// doesn't catch the exception.
2924 bool isCleanup() const { return getSubclassData<CleanupField>(); }
2925
2926 /// Indicate that this landingpad instruction is a cleanup.
2927 void setCleanup(bool V) { setSubclassData<CleanupField>(V); }
2928
2929 /// Add a catch or filter clause to the landing pad.
2930 void addClause(Constant *ClauseVal);
2931
2932 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2933 /// determine what type of clause this is.
2934 Constant *getClause(unsigned Idx) const {
2935 return cast<Constant>(getOperandList()[Idx]);
2936 }
2937
2938 /// Return 'true' if the clause and index Idx is a catch clause.
2939 bool isCatch(unsigned Idx) const {
2940 return !isa<ArrayType>(getOperandList()[Idx]->getType());
2941 }
2942
2943 /// Return 'true' if the clause and index Idx is a filter clause.
2944 bool isFilter(unsigned Idx) const {
2945 return isa<ArrayType>(getOperandList()[Idx]->getType());
2946 }
2947
2948 /// Get the number of clauses for this landing pad.
2949 unsigned getNumClauses() const { return getNumOperands(); }
2950
2951 /// Grow the size of the operand list to accommodate the new
2952 /// number of clauses.
2953 void reserveClauses(unsigned Size) { growOperands(Size); }
2954
2955 // Methods for support type inquiry through isa, cast, and dyn_cast:
2956 static bool classof(const Instruction *I) {
2957 return I->getOpcode() == Instruction::LandingPad;
2958 }
2959 static bool classof(const Value *V) {
2960 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2961 }
2962};
2963
2964template <>
2965struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> {
2966};
2967
2968DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return
OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst
::const_op_iterator LandingPadInst::op_begin() const { return
OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst
::op_end() { return OperandTraits<LandingPadInst>::op_end
(this); } LandingPadInst::const_op_iterator LandingPadInst::op_end
() const { return OperandTraits<LandingPadInst>::op_end
(const_cast<LandingPadInst*>(this)); } Value *LandingPadInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<LandingPadInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2968, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<LandingPadInst>::op_begin(
const_cast<LandingPadInst*>(this))[i_nocapture].get());
} void LandingPadInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { (static_cast <bool> (i_nocapture <
OperandTraits<LandingPadInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2968, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
LandingPadInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned LandingPadInst::getNumOperands() const { return OperandTraits
<LandingPadInst>::operands(this); } template <int Idx_nocapture
> Use &LandingPadInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &LandingPadInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2969
2970//===----------------------------------------------------------------------===//
2971// ReturnInst Class
2972//===----------------------------------------------------------------------===//
2973
2974//===---------------------------------------------------------------------------
2975/// Return a value (possibly void), from a function. Execution
2976/// does not continue in this function any longer.
2977///
2978class ReturnInst : public Instruction {
2979 ReturnInst(const ReturnInst &RI);
2980
2981private:
2982 // ReturnInst constructors:
2983 // ReturnInst() - 'ret void' instruction
2984 // ReturnInst( null) - 'ret void' instruction
2985 // ReturnInst(Value* X) - 'ret X' instruction
2986 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
2987 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
2988 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
2989 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
2990 //
2991 // NOTE: If the Value* passed is of type void then the constructor behaves as
2992 // if it was passed NULL.
2993 explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
2994 Instruction *InsertBefore = nullptr);
2995 ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
2996 explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2997
2998protected:
2999 // Note: Instruction needs to be a friend here to call cloneImpl.
3000 friend class Instruction;
3001
3002 ReturnInst *cloneImpl() const;
3003
3004public:
3005 static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
3006 Instruction *InsertBefore = nullptr) {
3007 return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
3008 }
3009
3010 static ReturnInst* Create(LLVMContext &C, Value *retVal,
3011 BasicBlock *InsertAtEnd) {
3012 return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
3013 }
3014
3015 static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
3016 return new(0) ReturnInst(C, InsertAtEnd);
3017 }
3018
3019 /// Provide fast operand accessors
3020 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3021
3022 /// Convenience accessor. Returns null if there is no return value.
3023 Value *getReturnValue() const {
3024 return getNumOperands() != 0 ? getOperand(0) : nullptr;
3025 }
3026
3027 unsigned getNumSuccessors() const { return 0; }
3028
3029 // Methods for support type inquiry through isa, cast, and dyn_cast:
3030 static bool classof(const Instruction *I) {
3031 return (I->getOpcode() == Instruction::Ret);
3032 }
3033 static bool classof(const Value *V) {
3034 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3035 }
3036
3037private:
3038 BasicBlock *getSuccessor(unsigned idx) const {
3039 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3039)
;
3040 }
3041
3042 void setSuccessor(unsigned idx, BasicBlock *B) {
3043 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3043)
;
3044 }
3045};
3046
3047template <>
3048struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
3049};
3050
3051DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits
<ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator
ReturnInst::op_begin() const { return OperandTraits<ReturnInst
>::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst
::op_iterator ReturnInst::op_end() { return OperandTraits<
ReturnInst>::op_end(this); } ReturnInst::const_op_iterator
ReturnInst::op_end() const { return OperandTraits<ReturnInst
>::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<ReturnInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3051, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<ReturnInst>::op_begin(const_cast
<ReturnInst*>(this))[i_nocapture].get()); } void ReturnInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast
<bool> (i_nocapture < OperandTraits<ReturnInst>
::operands(this) && "setOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3051, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
ReturnInst>::op_begin(this)[i_nocapture] = Val_nocapture; }
unsigned ReturnInst::getNumOperands() const { return OperandTraits
<ReturnInst>::operands(this); } template <int Idx_nocapture
> Use &ReturnInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ReturnInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
3052
3053//===----------------------------------------------------------------------===//
3054// BranchInst Class
3055//===----------------------------------------------------------------------===//
3056
3057//===---------------------------------------------------------------------------
3058/// Conditional or Unconditional Branch instruction.
3059///
3060class BranchInst : public Instruction {
3061 /// Ops list - Branches are strange. The operands are ordered:
3062 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
3063 /// they don't have to check for cond/uncond branchness. These are mostly
3064 /// accessed relative from op_end().
3065 BranchInst(const BranchInst &BI);
3066 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
3067 // BranchInst(BB *B) - 'br B'
3068 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
3069 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
3070 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
3071 // BranchInst(BB* B, BB *I) - 'br B' insert at end
3072 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
3073 explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
3074 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3075 Instruction *InsertBefore = nullptr);
3076 BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
3077 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3078 BasicBlock *InsertAtEnd);
3079
3080 void AssertOK();
3081
3082protected:
3083 // Note: Instruction needs to be a friend here to call cloneImpl.
3084 friend class Instruction;
3085
3086 BranchInst *cloneImpl() const;
3087
3088public:
3089 /// Iterator type that casts an operand to a basic block.
3090 ///
3091 /// This only makes sense because the successors are stored as adjacent
3092 /// operands for branch instructions.
3093 struct succ_op_iterator
3094 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3095 std::random_access_iterator_tag, BasicBlock *,
3096 ptrdiff_t, BasicBlock *, BasicBlock *> {
3097 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3098
3099 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3100 BasicBlock *operator->() const { return operator*(); }
3101 };
3102
3103 /// The const version of `succ_op_iterator`.
3104 struct const_succ_op_iterator
3105 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3106 std::random_access_iterator_tag,
3107 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3108 const BasicBlock *> {
3109 explicit const_succ_op_iterator(const_value_op_iterator I)
3110 : iterator_adaptor_base(I) {}
3111
3112 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3113 const BasicBlock *operator->() const { return operator*(); }
3114 };
3115
3116 static BranchInst *Create(BasicBlock *IfTrue,
3117 Instruction *InsertBefore = nullptr) {
3118 return new(1) BranchInst(IfTrue, InsertBefore);
3119 }
3120
3121 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3122 Value *Cond, Instruction *InsertBefore = nullptr) {
3123 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3124 }
3125
3126 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3127 return new(1) BranchInst(IfTrue, InsertAtEnd);
3128 }
3129
3130 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3131 Value *Cond, BasicBlock *InsertAtEnd) {
3132 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3133 }
3134
3135 /// Transparently provide more efficient getOperand methods.
3136 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3137
3138 bool isUnconditional() const { return getNumOperands() == 1; }
3139 bool isConditional() const { return getNumOperands() == 3; }
3140
3141 Value *getCondition() const {
3142 assert(isConditional() && "Cannot get condition of an uncond branch!")(static_cast <bool> (isConditional() && "Cannot get condition of an uncond branch!"
) ? void (0) : __assert_fail ("isConditional() && \"Cannot get condition of an uncond branch!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3142, __extension__ __PRETTY_FUNCTION__))
;
3143 return Op<-3>();
3144 }
3145
3146 void setCondition(Value *V) {
3147 assert(isConditional() && "Cannot set condition of unconditional branch!")(static_cast <bool> (isConditional() && "Cannot set condition of unconditional branch!"
) ? void (0) : __assert_fail ("isConditional() && \"Cannot set condition of unconditional branch!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3147, __extension__ __PRETTY_FUNCTION__))
;
3148 Op<-3>() = V;
3149 }
3150
3151 unsigned getNumSuccessors() const { return 1+isConditional(); }
3152
3153 BasicBlock *getSuccessor(unsigned i) const {
3154 assert(i < getNumSuccessors() && "Successor # out of range for Branch!")(static_cast <bool> (i < getNumSuccessors() &&
"Successor # out of range for Branch!") ? void (0) : __assert_fail
("i < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3154, __extension__ __PRETTY_FUNCTION__))
;
3155 return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3156 }
3157
3158 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3159 assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")(static_cast <bool> (idx < getNumSuccessors() &&
"Successor # out of range for Branch!") ? void (0) : __assert_fail
("idx < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3159, __extension__ __PRETTY_FUNCTION__))
;
3160 *(&Op<-1>() - idx) = NewSucc;
3161 }
3162
3163 /// Swap the successors of this branch instruction.
3164 ///
3165 /// Swaps the successors of the branch instruction. This also swaps any
3166 /// branch weight metadata associated with the instruction so that it
3167 /// continues to map correctly to each operand.
3168 void swapSuccessors();
3169
3170 iterator_range<succ_op_iterator> successors() {
3171 return make_range(
3172 succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3173 succ_op_iterator(value_op_end()));
3174 }
3175
3176 iterator_range<const_succ_op_iterator> successors() const {
3177 return make_range(const_succ_op_iterator(
3178 std::next(value_op_begin(), isConditional() ? 1 : 0)),
3179 const_succ_op_iterator(value_op_end()));
3180 }
3181
3182 // Methods for support type inquiry through isa, cast, and dyn_cast:
3183 static bool classof(const Instruction *I) {
3184 return (I->getOpcode() == Instruction::Br);
3185 }
3186 static bool classof(const Value *V) {
3187 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3188 }
3189};
3190
3191template <>
3192struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
3193};
3194
3195DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits
<BranchInst>::op_begin(this); } BranchInst::const_op_iterator
BranchInst::op_begin() const { return OperandTraits<BranchInst
>::op_begin(const_cast<BranchInst*>(this)); } BranchInst
::op_iterator BranchInst::op_end() { return OperandTraits<
BranchInst>::op_end(this); } BranchInst::const_op_iterator
BranchInst::op_end() const { return OperandTraits<BranchInst
>::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<BranchInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3195, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<BranchInst>::op_begin(const_cast
<BranchInst*>(this))[i_nocapture].get()); } void BranchInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast
<bool> (i_nocapture < OperandTraits<BranchInst>
::operands(this) && "setOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3195, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
BranchInst>::op_begin(this)[i_nocapture] = Val_nocapture; }
unsigned BranchInst::getNumOperands() const { return OperandTraits
<BranchInst>::operands(this); } template <int Idx_nocapture
> Use &BranchInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
BranchInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
3196
3197//===----------------------------------------------------------------------===//
3198// SwitchInst Class
3199//===----------------------------------------------------------------------===//
3200
3201//===---------------------------------------------------------------------------
3202/// Multiway switch
3203///
3204class SwitchInst : public Instruction {
3205 unsigned ReservedSpace;
3206
3207 // Operand[0] = Value to switch on
3208 // Operand[1] = Default basic block destination
3209 // Operand[2n ] = Value to match
3210 // Operand[2n+1] = BasicBlock to go to on match
3211 SwitchInst(const SwitchInst &SI);
3212
3213 /// Create a new switch instruction, specifying a value to switch on and a
3214 /// default destination. The number of additional cases can be specified here
3215 /// to make memory allocation more efficient. This constructor can also
3216 /// auto-insert before another instruction.
3217 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3218 Instruction *InsertBefore);
3219
3220 /// Create a new switch instruction, specifying a value to switch on and a
3221 /// default destination. The number of additional cases can be specified here
3222 /// to make memory allocation more efficient. This constructor also
3223 /// auto-inserts at the end of the specified BasicBlock.
3224 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3225 BasicBlock *InsertAtEnd);
3226
3227 // allocate space for exactly zero operands
3228 void *operator new(size_t S) { return User::operator new(S); }
3229
3230 void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3231 void growOperands();
3232
3233protected:
3234 // Note: Instruction needs to be a friend here to call cloneImpl.
3235 friend class Instruction;
3236
3237 SwitchInst *cloneImpl() const;
3238
3239public:
3240 void operator delete(void *Ptr) { User::operator delete(Ptr); }
3241
3242 // -2
3243 static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3244
3245 template <typename CaseHandleT> class CaseIteratorImpl;
3246
3247 /// A handle to a particular switch case. It exposes a convenient interface
3248 /// to both the case value and the successor block.
3249 ///
3250 /// We define this as a template and instantiate it to form both a const and
3251 /// non-const handle.
3252 template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3253 class CaseHandleImpl {
3254 // Directly befriend both const and non-const iterators.
3255 friend class SwitchInst::CaseIteratorImpl<
3256 CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3257
3258 protected:
3259 // Expose the switch type we're parameterized with to the iterator.
3260 using SwitchInstType = SwitchInstT;
3261
3262 SwitchInstT *SI;
3263 ptrdiff_t Index;
3264
3265 CaseHandleImpl() = default;
3266 CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
3267
3268 public:
3269 /// Resolves case value for current case.
3270 ConstantIntT *getCaseValue() const {
3271 assert((unsigned)Index < SI->getNumCases() &&(static_cast <bool> ((unsigned)Index < SI->getNumCases
() && "Index out the number of cases.") ? void (0) : __assert_fail
("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3272, __extension__ __PRETTY_FUNCTION__))
3272 "Index out the number of cases.")(static_cast <bool> ((unsigned)Index < SI->getNumCases
() && "Index out the number of cases.") ? void (0) : __assert_fail
("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3272, __extension__ __PRETTY_FUNCTION__))
;
3273 return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3274 }
3275
3276 /// Resolves successor for current case.
3277 BasicBlockT *getCaseSuccessor() const {
3278 assert(((unsigned)Index < SI->getNumCases() ||(static_cast <bool> (((unsigned)Index < SI->getNumCases
() || (unsigned)Index == DefaultPseudoIndex) && "Index out the number of cases."
) ? void (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3280, __extension__ __PRETTY_FUNCTION__))
3279 (unsigned)Index == DefaultPseudoIndex) &&(static_cast <bool> (((unsigned)Index < SI->getNumCases
() || (unsigned)Index == DefaultPseudoIndex) && "Index out the number of cases."
) ? void (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3280, __extension__ __PRETTY_FUNCTION__))
3280 "Index out the number of cases.")(static_cast <bool> (((unsigned)Index < SI->getNumCases
() || (unsigned)Index == DefaultPseudoIndex) && "Index out the number of cases."
) ? void (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3280, __extension__ __PRETTY_FUNCTION__))
;
3281 return SI->getSuccessor(getSuccessorIndex());
3282 }
3283
3284 /// Returns number of current case.
3285 unsigned getCaseIndex() const { return Index; }
3286
3287 /// Returns successor index for current case successor.
3288 unsigned getSuccessorIndex() const {
3289 assert(((unsigned)Index == DefaultPseudoIndex ||(static_cast <bool> (((unsigned)Index == DefaultPseudoIndex
|| (unsigned)Index < SI->getNumCases()) && "Index out the number of cases."
) ? void (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3291, __extension__ __PRETTY_FUNCTION__))
3290 (unsigned)Index < SI->getNumCases()) &&(static_cast <bool> (((unsigned)Index == DefaultPseudoIndex
|| (unsigned)Index < SI->getNumCases()) && "Index out the number of cases."
) ? void (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3291, __extension__ __PRETTY_FUNCTION__))
3291 "Index out the number of cases.")(static_cast <bool> (((unsigned)Index == DefaultPseudoIndex
|| (unsigned)Index < SI->getNumCases()) && "Index out the number of cases."
) ? void (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3291, __extension__ __PRETTY_FUNCTION__))
;
3292 return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3293 }
3294
3295 bool operator==(const CaseHandleImpl &RHS) const {
3296 assert(SI == RHS.SI && "Incompatible operators.")(static_cast <bool> (SI == RHS.SI && "Incompatible operators."
) ? void (0) : __assert_fail ("SI == RHS.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3296, __extension__ __PRETTY_FUNCTION__))
;
3297 return Index == RHS.Index;
3298 }
3299 };
3300
3301 using ConstCaseHandle =
3302 CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>;
3303
3304 class CaseHandle
3305 : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3306 friend class SwitchInst::CaseIteratorImpl<CaseHandle>;
3307
3308 public:
3309 CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {}
3310
3311 /// Sets the new value for current case.
3312 void setValue(ConstantInt *V) {
3313 assert((unsigned)Index < SI->getNumCases() &&(static_cast <bool> ((unsigned)Index < SI->getNumCases
() && "Index out the number of cases.") ? void (0) : __assert_fail
("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3314, __extension__ __PRETTY_FUNCTION__))
3314 "Index out the number of cases.")(static_cast <bool> ((unsigned)Index < SI->getNumCases
() && "Index out the number of cases.") ? void (0) : __assert_fail
("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3314, __extension__ __PRETTY_FUNCTION__))
;
3315 SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3316 }
3317
3318 /// Sets the new successor for current case.
3319 void setSuccessor(BasicBlock *S) {
3320 SI->setSuccessor(getSuccessorIndex(), S);
3321 }
3322 };
3323
3324 template <typename CaseHandleT>
3325 class CaseIteratorImpl
3326 : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3327 std::random_access_iterator_tag,
3328 CaseHandleT> {
3329 using SwitchInstT = typename CaseHandleT::SwitchInstType;
3330
3331 CaseHandleT Case;
3332
3333 public:
3334 /// Default constructed iterator is in an invalid state until assigned to
3335 /// a case for a particular switch.
3336 CaseIteratorImpl() = default;
3337
3338 /// Initializes case iterator for given SwitchInst and for given
3339 /// case number.
3340 CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3341
3342 /// Initializes case iterator for given SwitchInst and for given
3343 /// successor index.
3344 static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
3345 unsigned SuccessorIndex) {
3346 assert(SuccessorIndex < SI->getNumSuccessors() &&(static_cast <bool> (SuccessorIndex < SI->getNumSuccessors
() && "Successor index # out of range!") ? void (0) :
__assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3347, __extension__ __PRETTY_FUNCTION__))
3347 "Successor index # out of range!")(static_cast <bool> (SuccessorIndex < SI->getNumSuccessors
() && "Successor index # out of range!") ? void (0) :
__assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3347, __extension__ __PRETTY_FUNCTION__))
;
3348 return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3349 : CaseIteratorImpl(SI, DefaultPseudoIndex);
3350 }
3351
3352 /// Support converting to the const variant. This will be a no-op for const
3353 /// variant.
3354 operator CaseIteratorImpl<ConstCaseHandle>() const {
3355 return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3356 }
3357
3358 CaseIteratorImpl &operator+=(ptrdiff_t N) {
3359 // Check index correctness after addition.
3360 // Note: Index == getNumCases() means end().
3361 assert(Case.Index + N >= 0 &&(static_cast <bool> (Case.Index + N >= 0 && (
unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.") ? void (0) : __assert_fail
("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3363, __extension__ __PRETTY_FUNCTION__))
3362 (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&(static_cast <bool> (Case.Index + N >= 0 && (
unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.") ? void (0) : __assert_fail
("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3363, __extension__ __PRETTY_FUNCTION__))
3363 "Case.Index out the number of cases.")(static_cast <bool> (Case.Index + N >= 0 && (
unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.") ? void (0) : __assert_fail
("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3363, __extension__ __PRETTY_FUNCTION__))
;
3364 Case.Index += N;
3365 return *this;
3366 }
3367 CaseIteratorImpl &operator-=(ptrdiff_t N) {
3368 // Check index correctness after subtraction.
3369 // Note: Case.Index == getNumCases() means end().
3370 assert(Case.Index - N >= 0 &&(static_cast <bool> (Case.Index - N >= 0 && (
unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.") ? void (0) : __assert_fail
("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3372, __extension__ __PRETTY_FUNCTION__))
3371 (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&(static_cast <bool> (Case.Index - N >= 0 && (
unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.") ? void (0) : __assert_fail
("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3372, __extension__ __PRETTY_FUNCTION__))
3372 "Case.Index out the number of cases.")(static_cast <bool> (Case.Index - N >= 0 && (
unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.") ? void (0) : __assert_fail
("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3372, __extension__ __PRETTY_FUNCTION__))
;
3373 Case.Index -= N;
3374 return *this;
3375 }
3376 ptrdiff_t operator-(const CaseIteratorImpl &RHS) const {
3377 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")(static_cast <bool> (Case.SI == RHS.Case.SI && "Incompatible operators."
) ? void (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3377, __extension__ __PRETTY_FUNCTION__))
;
3378 return Case.Index - RHS.Case.Index;
3379 }
3380 bool operator==(const CaseIteratorImpl &RHS) const {
3381 return Case == RHS.Case;
3382 }
3383 bool operator<(const CaseIteratorImpl &RHS) const {
3384 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")(static_cast <bool> (Case.SI == RHS.Case.SI && "Incompatible operators."
) ? void (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3384, __extension__ __PRETTY_FUNCTION__))
;
3385 return Case.Index < RHS.Case.Index;
3386 }
3387 CaseHandleT &operator*() { return Case; }
3388 const CaseHandleT &operator*() const { return Case; }
3389 };
3390
3391 using CaseIt = CaseIteratorImpl<CaseHandle>;
3392 using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>;
3393
3394 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3395 unsigned NumCases,
3396 Instruction *InsertBefore = nullptr) {
3397 return new SwitchInst(Value, Default, NumCases, InsertBefore);
3398 }
3399
3400 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3401 unsigned NumCases, BasicBlock *InsertAtEnd) {
3402 return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
3403 }
3404
3405 /// Provide fast operand accessors
3406 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3407
3408 // Accessor Methods for Switch stmt
3409 Value *getCondition() const { return getOperand(0); }
3410 void setCondition(Value *V) { setOperand(0, V); }
3411
3412 BasicBlock *getDefaultDest() const {
3413 return cast<BasicBlock>(getOperand(1));
3414 }
3415
3416 void setDefaultDest(BasicBlock *DefaultCase) {
3417 setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3418 }
3419
3420 /// Return the number of 'cases' in this switch instruction, excluding the
3421 /// default case.
3422 unsigned getNumCases() const {
3423 return getNumOperands()/2 - 1;
3424 }
3425
3426 /// Returns a read/write iterator that points to the first case in the
3427 /// SwitchInst.
3428 CaseIt case_begin() {
3429 return CaseIt(this, 0);
3430 }
3431
3432 /// Returns a read-only iterator that points to the first case in the
3433 /// SwitchInst.
3434 ConstCaseIt case_begin() const {
3435 return ConstCaseIt(this, 0);
3436 }
3437
3438 /// Returns a read/write iterator that points one past the last in the
3439 /// SwitchInst.
3440 CaseIt case_end() {
3441 return CaseIt(this, getNumCases());
3442 }
3443
3444 /// Returns a read-only iterator that points one past the last in the
3445 /// SwitchInst.
3446 ConstCaseIt case_end() const {
3447 return ConstCaseIt(this, getNumCases());
3448 }
3449
3450 /// Iteration adapter for range-for loops.
3451 iterator_range<CaseIt> cases() {
3452 return make_range(case_begin(), case_end());
3453 }
3454
3455 /// Constant iteration adapter for range-for loops.
3456 iterator_range<ConstCaseIt> cases() const {
3457 return make_range(case_begin(), case_end());
3458 }
3459
3460 /// Returns an iterator that points to the default case.
3461 /// Note: this iterator allows to resolve successor only. Attempt
3462 /// to resolve case value causes an assertion.
3463 /// Also note, that increment and decrement also causes an assertion and
3464 /// makes iterator invalid.
3465 CaseIt case_default() {
3466 return CaseIt(this, DefaultPseudoIndex);
3467 }
3468 ConstCaseIt case_default() const {
3469 return ConstCaseIt(this, DefaultPseudoIndex);
3470 }
3471
3472 /// Search all of the case values for the specified constant. If it is
3473 /// explicitly handled, return the case iterator of it, otherwise return
3474 /// default case iterator to indicate that it is handled by the default
3475 /// handler.
3476 CaseIt findCaseValue(const ConstantInt *C) {
3477 CaseIt I = llvm::find_if(
3478 cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; });
3479 if (I != case_end())
3480 return I;
3481
3482 return case_default();
3483 }
3484 ConstCaseIt findCaseValue(const ConstantInt *C) const {
3485 ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) {
3486 return Case.getCaseValue() == C;
3487 });
3488 if (I != case_end())
3489 return I;
3490
3491 return case_default();
3492 }
3493
3494 /// Finds the unique case value for a given successor. Returns null if the
3495 /// successor is not found, not unique, or is the default case.
3496 ConstantInt *findCaseDest(BasicBlock *BB) {
3497 if (BB == getDefaultDest())
3498 return nullptr;
3499
3500 ConstantInt *CI = nullptr;
3501 for (auto Case : cases()) {
3502 if (Case.getCaseSuccessor() != BB)
3503 continue;
3504
3505 if (CI)
3506 return nullptr; // Multiple cases lead to BB.
3507
3508 CI = Case.getCaseValue();
3509 }
3510
3511 return CI;
3512 }
3513
3514 /// Add an entry to the switch instruction.
3515 /// Note:
3516 /// This action invalidates case_end(). Old case_end() iterator will
3517 /// point to the added case.
3518 void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3519
3520 /// This method removes the specified case and its successor from the switch
3521 /// instruction. Note that this operation may reorder the remaining cases at
3522 /// index idx and above.
3523 /// Note:
3524 /// This action invalidates iterators for all cases following the one removed,
3525 /// including the case_end() iterator. It returns an iterator for the next
3526 /// case.
3527 CaseIt removeCase(CaseIt I);
3528
3529 unsigned getNumSuccessors() const { return getNumOperands()/2; }
3530 BasicBlock *getSuccessor(unsigned idx) const {
3531 assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!")(static_cast <bool> (idx < getNumSuccessors() &&
"Successor idx out of range for switch!") ? void (0) : __assert_fail
("idx < getNumSuccessors() &&\"Successor idx out of range for switch!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3531, __extension__ __PRETTY_FUNCTION__))
;
3532 return cast<BasicBlock>(getOperand(idx*2+1));
3533 }
3534 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3535 assert(idx < getNumSuccessors() && "Successor # out of range for switch!")(static_cast <bool> (idx < getNumSuccessors() &&
"Successor # out of range for switch!") ? void (0) : __assert_fail
("idx < getNumSuccessors() && \"Successor # out of range for switch!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3535, __extension__ __PRETTY_FUNCTION__))
;
3536 setOperand(idx * 2 + 1, NewSucc);
3537 }
3538
3539 // Methods for support type inquiry through isa, cast, and dyn_cast:
3540 static bool classof(const Instruction *I) {
3541 return I->getOpcode() == Instruction::Switch;
3542 }
3543 static bool classof(const Value *V) {
3544 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3545 }
3546};
3547
3548/// A wrapper class to simplify modification of SwitchInst cases along with
3549/// their prof branch_weights metadata.
3550class SwitchInstProfUpdateWrapper {
3551 SwitchInst &SI;
3552 Optional<SmallVector<uint32_t, 8> > Weights = None;
3553 bool Changed = false;
3554
3555protected:
3556 static MDNode *getProfBranchWeightsMD(const SwitchInst &SI);
3557
3558 MDNode *buildProfBranchWeightsMD();
3559
3560 void init();
3561
3562public:
3563 using CaseWeightOpt = Optional<uint32_t>;
3564 SwitchInst *operator->() { return &SI; }
3565 SwitchInst &operator*() { return SI; }
3566 operator SwitchInst *() { return &SI; }
3567
3568 SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); }
3569
3570 ~SwitchInstProfUpdateWrapper() {
3571 if (Changed)
3572 SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD());
3573 }
3574
3575 /// Delegate the call to the underlying SwitchInst::removeCase() and remove
3576 /// correspondent branch weight.
3577 SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I);
3578
3579 /// Delegate the call to the underlying SwitchInst::addCase() and set the
3580 /// specified branch weight for the added case.
3581 void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W);
3582
3583 /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
3584 /// this object to not touch the underlying SwitchInst in destructor.
3585 SymbolTableList<Instruction>::iterator eraseFromParent();
3586
3587 void setSuccessorWeight(unsigned idx, CaseWeightOpt W);
3588 CaseWeightOpt getSuccessorWeight(unsigned idx);
3589
3590 static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx);
3591};
3592
3593template <>
3594struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
3595};
3596
3597DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)SwitchInst::op_iterator SwitchInst::op_begin() { return OperandTraits
<SwitchInst>::op_begin(this); } SwitchInst::const_op_iterator
SwitchInst::op_begin() const { return OperandTraits<SwitchInst
>::op_begin(const_cast<SwitchInst*>(this)); } SwitchInst
::op_iterator SwitchInst::op_end() { return OperandTraits<
SwitchInst>::op_end(this); } SwitchInst::const_op_iterator
SwitchInst::op_end() const { return OperandTraits<SwitchInst
>::op_end(const_cast<SwitchInst*>(this)); } Value *SwitchInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<SwitchInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<SwitchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3597, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<SwitchInst>::op_begin(const_cast
<SwitchInst*>(this))[i_nocapture].get()); } void SwitchInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast
<bool> (i_nocapture < OperandTraits<SwitchInst>
::operands(this) && "setOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<SwitchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3597, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
SwitchInst>::op_begin(this)[i_nocapture] = Val_nocapture; }
unsigned SwitchInst::getNumOperands() const { return OperandTraits
<SwitchInst>::operands(this); } template <int Idx_nocapture
> Use &SwitchInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
SwitchInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
3598
3599//===----------------------------------------------------------------------===//
3600// IndirectBrInst Class
3601//===----------------------------------------------------------------------===//
3602
3603//===---------------------------------------------------------------------------
3604/// Indirect Branch Instruction.
3605///
3606class IndirectBrInst : public Instruction {
3607 unsigned ReservedSpace;
3608
3609 // Operand[0] = Address to jump to
3610 // Operand[n+1] = n-th destination
3611 IndirectBrInst(const IndirectBrInst &IBI);
3612
3613 /// Create a new indirectbr instruction, specifying an
3614 /// Address to jump to. The number of expected destinations can be specified
3615 /// here to make memory allocation more efficient. This constructor can also
3616 /// autoinsert before another instruction.
3617 IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
3618
3619 /// Create a new indirectbr instruction, specifying an
3620 /// Address to jump to. The number of expected destinations can be specified
3621 /// here to make memory allocation more efficient. This constructor also
3622 /// autoinserts at the end of the specified BasicBlock.
3623 IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
3624
3625 // allocate space for exactly zero operands
3626 void *operator new(size_t S) { return User::operator new(S); }
3627
3628 void init(Value *Address, unsigned NumDests);
3629 void growOperands();
3630
3631protected:
3632 // Note: Instruction needs to be a friend here to call cloneImpl.
3633 friend class Instruction;
3634
3635 IndirectBrInst *cloneImpl() const;
3636
3637public:
3638 void operator delete(void *Ptr) { User::operator delete(Ptr); }
3639
3640 /// Iterator type that casts an operand to a basic block.
3641 ///
3642 /// This only makes sense because the successors are stored as adjacent
3643 /// operands for indirectbr instructions.
3644 struct succ_op_iterator
3645 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3646 std::random_access_iterator_tag, BasicBlock *,
3647 ptrdiff_t, BasicBlock *, BasicBlock *> {
3648 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3649
3650 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3651 BasicBlock *operator->() const { return operator*(); }
3652 };
3653
3654 /// The const version of `succ_op_iterator`.
3655 struct const_succ_op_iterator
3656 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3657 std::random_access_iterator_tag,
3658 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3659 const BasicBlock *> {
3660 explicit const_succ_op_iterator(const_value_op_iterator I)
3661 : iterator_adaptor_base(I) {}
3662
3663 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3664 const BasicBlock *operator->() const { return operator*(); }
3665 };
3666
3667 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3668 Instruction *InsertBefore = nullptr) {
3669 return new IndirectBrInst(Address, NumDests, InsertBefore);
3670 }
3671
3672 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3673 BasicBlock *InsertAtEnd) {
3674 return new IndirectBrInst(Address, NumDests, InsertAtEnd);
3675 }
3676
3677 /// Provide fast operand accessors.
3678 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3679
3680 // Accessor Methods for IndirectBrInst instruction.
3681 Value *getAddress() { return getOperand(0); }
3682 const Value *getAddress() const { return getOperand(0); }
3683 void setAddress(Value *V) { setOperand(0, V); }
3684
3685 /// return the number of possible destinations in this
3686 /// indirectbr instruction.
3687 unsigned getNumDestinations() const { return getNumOperands()-1; }
3688
3689 /// Return the specified destination.
3690 BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3691 const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3692
3693 /// Add a destination.
3694 ///
3695 void addDestination(BasicBlock *Dest);
3696
3697 /// This method removes the specified successor from the
3698 /// indirectbr instruction.
3699 void removeDestination(unsigned i);
3700
3701 unsigned getNumSuccessors() const { return getNumOperands()-1; }
3702 BasicBlock *getSuccessor(unsigned i) const {
3703 return cast<BasicBlock>(getOperand(i+1));
3704 }
3705 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3706 setOperand(i + 1, NewSucc);
3707 }
3708
3709 iterator_range<succ_op_iterator> successors() {
3710 return make_range(succ_op_iterator(std::next(value_op_begin())),
3711 succ_op_iterator(value_op_end()));
3712 }
3713
3714 iterator_range<const_succ_op_iterator> successors() const {
3715 return make_range(const_succ_op_iterator(std::next(value_op_begin())),
3716 const_succ_op_iterator(value_op_end()));
3717 }
3718
3719 // Methods for support type inquiry through isa, cast, and dyn_cast:
3720 static bool classof(const Instruction *I) {
3721 return I->getOpcode() == Instruction::IndirectBr;
3722 }
3723 static bool classof(const Value *V) {
3724 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3725 }
3726};
3727
3728template <>
3729struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
3730};
3731
3732DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)IndirectBrInst::op_iterator IndirectBrInst::op_begin() { return
OperandTraits<IndirectBrInst>::op_begin(this); } IndirectBrInst
::const_op_iterator IndirectBrInst::op_begin() const { return
OperandTraits<IndirectBrInst>::op_begin(const_cast<
IndirectBrInst*>(this)); } IndirectBrInst::op_iterator IndirectBrInst
::op_end() { return OperandTraits<IndirectBrInst>::op_end
(this); } IndirectBrInst::const_op_iterator IndirectBrInst::op_end
() const { return OperandTraits<IndirectBrInst>::op_end
(const_cast<IndirectBrInst*>(this)); } Value *IndirectBrInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<IndirectBrInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<IndirectBrInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3732, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<IndirectBrInst>::op_begin(
const_cast<IndirectBrInst*>(this))[i_nocapture].get());
} void IndirectBrInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { (static_cast <bool> (i_nocapture <
OperandTraits<IndirectBrInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<IndirectBrInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3732, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
IndirectBrInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned IndirectBrInst::getNumOperands() const { return OperandTraits
<IndirectBrInst>::operands(this); } template <int Idx_nocapture
> Use &IndirectBrInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &IndirectBrInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
3733
3734//===----------------------------------------------------------------------===//
3735// InvokeInst Class
3736//===----------------------------------------------------------------------===//
3737
3738/// Invoke instruction. The SubclassData field is used to hold the
3739/// calling convention of the call.
3740///
3741class InvokeInst : public CallBase {
3742 /// The number of operands for this call beyond the called function,
3743 /// arguments, and operand bundles.
3744 static constexpr int NumExtraOperands = 2;
3745
3746 /// The index from the end of the operand array to the normal destination.
3747 static constexpr int NormalDestOpEndIdx = -3;
3748
3749 /// The index from the end of the operand array to the unwind destination.
3750 static constexpr int UnwindDestOpEndIdx = -2;
3751
3752 InvokeInst(const InvokeInst &BI);
3753
3754 /// Construct an InvokeInst given a range of arguments.
3755 ///
3756 /// Construct an InvokeInst from a range of arguments
3757 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3758 BasicBlock *IfException, ArrayRef<Value *> Args,
3759 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3760 const Twine &NameStr, Instruction *InsertBefore);
3761
3762 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3763 BasicBlock *IfException, ArrayRef<Value *> Args,
3764 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3765 const Twine &NameStr, BasicBlock *InsertAtEnd);
3766
3767 void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3768 BasicBlock *IfException, ArrayRef<Value *> Args,
3769 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3770
3771 /// Compute the number of operands to allocate.
3772 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
3773 // We need one operand for the called function, plus our extra operands and
3774 // the input operand counts provided.
3775 return 1 + NumExtraOperands + NumArgs + NumBundleInputs;
3776 }
3777
3778protected:
3779 // Note: Instruction needs to be a friend here to call cloneImpl.
3780 friend class Instruction;
3781
3782 InvokeInst *cloneImpl() const;
3783
3784public:
3785 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3786 BasicBlock *IfException, ArrayRef<Value *> Args,
3787 const Twine &NameStr,
3788 Instruction *InsertBefore = nullptr) {
3789 int NumOperands = ComputeNumOperands(Args.size());
3790 return new (NumOperands)
3791 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3792 NameStr, InsertBefore);
3793 }
3794
3795 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3796 BasicBlock *IfException, ArrayRef<Value *> Args,
3797 ArrayRef<OperandBundleDef> Bundles = None,
3798 const Twine &NameStr = "",
3799 Instruction *InsertBefore = nullptr) {
3800 int NumOperands =
3801 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3802 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3803
3804 return new (NumOperands, DescriptorBytes)
3805 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3806 NameStr, InsertBefore);
3807 }
3808
3809 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3810 BasicBlock *IfException, ArrayRef<Value *> Args,
3811 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3812 int NumOperands = ComputeNumOperands(Args.size());
3813 return new (NumOperands)
3814 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3815 NameStr, InsertAtEnd);
3816 }
3817
3818 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3819 BasicBlock *IfException, ArrayRef<Value *> Args,
3820 ArrayRef<OperandBundleDef> Bundles,
3821 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3822 int NumOperands =
3823 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3824 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3825
3826 return new (NumOperands, DescriptorBytes)
3827 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3828 NameStr, InsertAtEnd);
3829 }
3830
3831 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3832 BasicBlock *IfException, ArrayRef<Value *> Args,
3833 const Twine &NameStr,
3834 Instruction *InsertBefore = nullptr) {
3835 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3836 IfException, Args, None, NameStr, InsertBefore);
3837 }
3838
3839 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3840 BasicBlock *IfException, ArrayRef<Value *> Args,
3841 ArrayRef<OperandBundleDef> Bundles = None,
3842 const Twine &NameStr = "",
3843 Instruction *InsertBefore = nullptr) {
3844 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3845 IfException, Args, Bundles, NameStr, InsertBefore);
3846 }
3847
3848 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3849 BasicBlock *IfException, ArrayRef<Value *> Args,
3850 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3851 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3852 IfException, Args, NameStr, InsertAtEnd);
3853 }
3854
3855 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3856 BasicBlock *IfException, ArrayRef<Value *> Args,
3857 ArrayRef<OperandBundleDef> Bundles,
3858 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3859 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3860 IfException, Args, Bundles, NameStr, InsertAtEnd);
3861 }
3862
3863 /// Create a clone of \p II with a different set of operand bundles and
3864 /// insert it before \p InsertPt.
3865 ///
3866 /// The returned invoke instruction is identical to \p II in every way except
3867 /// that the operand bundles for the new instruction are set to the operand
3868 /// bundles in \p Bundles.
3869 static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles,
3870 Instruction *InsertPt = nullptr);
3871
3872 // get*Dest - Return the destination basic blocks...
3873 BasicBlock *getNormalDest() const {
3874 return cast<BasicBlock>(Op<NormalDestOpEndIdx>());
3875 }
3876 BasicBlock *getUnwindDest() const {
3877 return cast<BasicBlock>(Op<UnwindDestOpEndIdx>());
15
Calling 'cast<llvm::BasicBlock, llvm::Use>'
28
Returning from 'cast<llvm::BasicBlock, llvm::Use>'
29
Returning pointer
3878 }
3879 void setNormalDest(BasicBlock *B) {
3880 Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3881 }
3882 void setUnwindDest(BasicBlock *B) {
3883 Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3884 }
3885
3886 /// Get the landingpad instruction from the landing pad
3887 /// block (the unwind destination).
3888 LandingPadInst *getLandingPadInst() const;
3889
3890 BasicBlock *getSuccessor(unsigned i) const {
3891 assert(i < 2 && "Successor # out of range for invoke!")(static_cast <bool> (i < 2 && "Successor # out of range for invoke!"
) ? void (0) : __assert_fail ("i < 2 && \"Successor # out of range for invoke!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3891, __extension__ __PRETTY_FUNCTION__))
;
3892 return i == 0 ? getNormalDest() : getUnwindDest();
3893 }
3894
3895 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3896 assert(i < 2 && "Successor # out of range for invoke!")(static_cast <bool> (i < 2 && "Successor # out of range for invoke!"
) ? void (0) : __assert_fail ("i < 2 && \"Successor # out of range for invoke!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3896, __extension__ __PRETTY_FUNCTION__))
;
3897 if (i == 0)
3898 setNormalDest(NewSucc);
3899 else
3900 setUnwindDest(NewSucc);
3901 }
3902
3903 unsigned getNumSuccessors() const { return 2; }
3904
3905 // Methods for support type inquiry through isa, cast, and dyn_cast:
3906 static bool classof(const Instruction *I) {
3907 return (I->getOpcode() == Instruction::Invoke);
3908 }
3909 static bool classof(const Value *V) {
3910 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3911 }
3912
3913private:
3914 // Shadow Instruction::setInstructionSubclassData with a private forwarding
3915 // method so that subclasses cannot accidentally use it.
3916 template <typename Bitfield>
3917 void setSubclassData(typename Bitfield::Type Value) {
3918 Instruction::setSubclassData<Bitfield>(Value);
3919 }
3920};
3921
3922InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3923 BasicBlock *IfException, ArrayRef<Value *> Args,
3924 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3925 const Twine &NameStr, Instruction *InsertBefore)
3926 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3927 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3928 InsertBefore) {
3929 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3930}
3931
3932InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3933 BasicBlock *IfException, ArrayRef<Value *> Args,
3934 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3935 const Twine &NameStr, BasicBlock *InsertAtEnd)
3936 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3937 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3938 InsertAtEnd) {
3939 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3940}
3941
3942//===----------------------------------------------------------------------===//
3943// CallBrInst Class
3944//===----------------------------------------------------------------------===//
3945
3946/// CallBr instruction, tracking function calls that may not return control but
3947/// instead transfer it to a third location. The SubclassData field is used to
3948/// hold the calling convention of the call.
3949///
3950class CallBrInst : public CallBase {
3951
3952 unsigned NumIndirectDests;
3953
3954 CallBrInst(const CallBrInst &BI);
3955
3956 /// Construct a CallBrInst given a range of arguments.
3957 ///
3958 /// Construct a CallBrInst from a range of arguments
3959 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3960 ArrayRef<BasicBlock *> IndirectDests,
3961 ArrayRef<Value *> Args,
3962 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3963 const Twine &NameStr, Instruction *InsertBefore);
3964
3965 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3966 ArrayRef<BasicBlock *> IndirectDests,
3967 ArrayRef<Value *> Args,
3968 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3969 const Twine &NameStr, BasicBlock *InsertAtEnd);
3970
3971 void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest,
3972 ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args,
3973 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3974
3975 /// Should the Indirect Destinations change, scan + update the Arg list.
3976 void updateArgBlockAddresses(unsigned i, BasicBlock *B);
3977
3978 /// Compute the number of operands to allocate.
3979 static int ComputeNumOperands(int NumArgs, int NumIndirectDests,
3980 int NumBundleInputs = 0) {
3981 // We need one operand for the called function, plus our extra operands and
3982 // the input operand counts provided.
3983 return 2 + NumIndirectDests + NumArgs + NumBundleInputs;
3984 }
3985
3986protected:
3987 // Note: Instruction needs to be a friend here to call cloneImpl.
3988 friend class Instruction;
3989
3990 CallBrInst *cloneImpl() const;
3991
3992public:
3993 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3994 BasicBlock *DefaultDest,
3995 ArrayRef<BasicBlock *> IndirectDests,
3996 ArrayRef<Value *> Args, const Twine &NameStr,
3997 Instruction *InsertBefore = nullptr) {
3998 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3999 return new (NumOperands)
4000 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
4001 NumOperands, NameStr, InsertBefore);
4002 }
4003
4004 static CallBrInst *Create(FunctionType *Ty, Value *Func,
4005 BasicBlock *DefaultDest,
4006 ArrayRef<BasicBlock *> IndirectDests,
4007 ArrayRef<Value *> Args,
4008 ArrayRef<OperandBundleDef> Bundles = None,
4009 const Twine &NameStr = "",
4010 Instruction *InsertBefore = nullptr) {
4011 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
4012 CountBundleInputs(Bundles));
4013 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
4014
4015 return new (NumOperands, DescriptorBytes)
4016 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
4017 NumOperands, NameStr, InsertBefore);
4018 }
4019
4020 static CallBrInst *Create(FunctionType *Ty, Value *Func,
4021 BasicBlock *DefaultDest,
4022 ArrayRef<BasicBlock *> IndirectDests,
4023 ArrayRef<Value *> Args, const Twine &NameStr,
4024 BasicBlock *InsertAtEnd) {
4025 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
4026 return new (NumOperands)
4027 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
4028 NumOperands, NameStr, InsertAtEnd);
4029 }
4030
4031 static CallBrInst *Create(FunctionType *Ty, Value *Func,
4032 BasicBlock *DefaultDest,
4033 ArrayRef<BasicBlock *> IndirectDests,
4034 ArrayRef<Value *> Args,
4035 ArrayRef<OperandBundleDef> Bundles,
4036 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4037 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
4038 CountBundleInputs(Bundles));
4039 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
4040
4041 return new (NumOperands, DescriptorBytes)
4042 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
4043 NumOperands, NameStr, InsertAtEnd);
4044 }
4045
4046 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4047 ArrayRef<BasicBlock *> IndirectDests,
4048 ArrayRef<Value *> Args, const Twine &NameStr,
4049 Instruction *InsertBefore = nullptr) {
4050 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4051 IndirectDests, Args, NameStr, InsertBefore);
4052 }
4053
4054 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4055 ArrayRef<BasicBlock *> IndirectDests,
4056 ArrayRef<Value *> Args,
4057 ArrayRef<OperandBundleDef> Bundles = None,
4058 const Twine &NameStr = "",
4059 Instruction *InsertBefore = nullptr) {
4060 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4061 IndirectDests, Args, Bundles, NameStr, InsertBefore);
4062 }
4063
4064 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4065 ArrayRef<BasicBlock *> IndirectDests,
4066 ArrayRef<Value *> Args, const Twine &NameStr,
4067 BasicBlock *InsertAtEnd) {
4068 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4069 IndirectDests, Args, NameStr, InsertAtEnd);
4070 }
4071
4072 static CallBrInst *Create(FunctionCallee Func,
4073 BasicBlock *DefaultDest,
4074 ArrayRef<BasicBlock *> IndirectDests,
4075 ArrayRef<Value *> Args,
4076 ArrayRef<OperandBundleDef> Bundles,
4077 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4078 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4079 IndirectDests, Args, Bundles, NameStr, InsertAtEnd);
4080 }
4081
4082 /// Create a clone of \p CBI with a different set of operand bundles and
4083 /// insert it before \p InsertPt.
4084 ///
4085 /// The returned callbr instruction is identical to \p CBI in every way
4086 /// except that the operand bundles for the new instruction are set to the
4087 /// operand bundles in \p Bundles.
4088 static CallBrInst *Create(CallBrInst *CBI,
4089 ArrayRef<OperandBundleDef> Bundles,
4090 Instruction *InsertPt = nullptr);
4091
4092 /// Return the number of callbr indirect dest labels.
4093 ///
4094 unsigned getNumIndirectDests() const { return NumIndirectDests; }
4095
4096 /// getIndirectDestLabel - Return the i-th indirect dest label.
4097 ///
4098 Value *getIndirectDestLabel(unsigned i) const {
4099 assert(i < getNumIndirectDests() && "Out of bounds!")(static_cast <bool> (i < getNumIndirectDests() &&
"Out of bounds!") ? void (0) : __assert_fail ("i < getNumIndirectDests() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4099, __extension__ __PRETTY_FUNCTION__))
;
4100 return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() +
4101 1);
4102 }
4103
4104 Value *getIndirectDestLabelUse(unsigned i) const {
4105 assert(i < getNumIndirectDests() && "Out of bounds!")(static_cast <bool> (i < getNumIndirectDests() &&
"Out of bounds!") ? void (0) : __assert_fail ("i < getNumIndirectDests() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4105, __extension__ __PRETTY_FUNCTION__))
;
4106 return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() +
4107 1);
4108 }
4109
4110 // Return the destination basic blocks...
4111 BasicBlock *getDefaultDest() const {
4112 return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1));
4113 }
4114 BasicBlock *getIndirectDest(unsigned i) const {
4115 return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i));
4116 }
4117 SmallVector<BasicBlock *, 16> getIndirectDests() const {
4118 SmallVector<BasicBlock *, 16> IndirectDests;
4119 for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i)
4120 IndirectDests.push_back(getIndirectDest(i));
4121 return IndirectDests;
4122 }
4123 void setDefaultDest(BasicBlock *B) {
4124 *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B);
4125 }
4126 void setIndirectDest(unsigned i, BasicBlock *B) {
4127 updateArgBlockAddresses(i, B);
4128 *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B);
4129 }
4130
4131 BasicBlock *getSuccessor(unsigned i) const {
4132 assert(i < getNumSuccessors() + 1 &&(static_cast <bool> (i < getNumSuccessors() + 1 &&
"Successor # out of range for callbr!") ? void (0) : __assert_fail
("i < getNumSuccessors() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4133, __extension__ __PRETTY_FUNCTION__))
4133 "Successor # out of range for callbr!")(static_cast <bool> (i < getNumSuccessors() + 1 &&
"Successor # out of range for callbr!") ? void (0) : __assert_fail
("i < getNumSuccessors() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4133, __extension__ __PRETTY_FUNCTION__))
;
4134 return i == 0 ? getDefaultDest() : getIndirectDest(i - 1);
4135 }
4136
4137 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
4138 assert(i < getNumIndirectDests() + 1 &&(static_cast <bool> (i < getNumIndirectDests() + 1 &&
"Successor # out of range for callbr!") ? void (0) : __assert_fail
("i < getNumIndirectDests() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4139, __extension__ __PRETTY_FUNCTION__))
4139 "Successor # out of range for callbr!")(static_cast <bool> (i < getNumIndirectDests() + 1 &&
"Successor # out of range for callbr!") ? void (0) : __assert_fail
("i < getNumIndirectDests() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4139, __extension__ __PRETTY_FUNCTION__))
;
4140 return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc);
4141 }
4142
4143 unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4144
4145 // Methods for support type inquiry through isa, cast, and dyn_cast:
4146 static bool classof(const Instruction *I) {
4147 return (I->getOpcode() == Instruction::CallBr);
4148 }
4149 static bool classof(const Value *V) {
4150 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4151 }
4152
4153private:
4154 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4155 // method so that subclasses cannot accidentally use it.
4156 template <typename Bitfield>
4157 void setSubclassData(typename Bitfield::Type Value) {
4158 Instruction::setSubclassData<Bitfield>(Value);
4159 }
4160};
4161
4162CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4163 ArrayRef<BasicBlock *> IndirectDests,
4164 ArrayRef<Value *> Args,
4165 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4166 const Twine &NameStr, Instruction *InsertBefore)
4167 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4168 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4169 InsertBefore) {
4170 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4171}
4172
4173CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4174 ArrayRef<BasicBlock *> IndirectDests,
4175 ArrayRef<Value *> Args,
4176 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4177 const Twine &NameStr, BasicBlock *InsertAtEnd)
4178 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4179 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4180 InsertAtEnd) {
4181 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4182}
4183
4184//===----------------------------------------------------------------------===//
4185// ResumeInst Class
4186//===----------------------------------------------------------------------===//
4187
4188//===---------------------------------------------------------------------------
4189/// Resume the propagation of an exception.
4190///
4191class ResumeInst : public Instruction {
4192 ResumeInst(const ResumeInst &RI);
4193
4194 explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
4195 ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
4196
4197protected:
4198 // Note: Instruction needs to be a friend here to call cloneImpl.
4199 friend class Instruction;
4200
4201 ResumeInst *cloneImpl() const;
4202
4203public:
4204 static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
4205 return new(1) ResumeInst(Exn, InsertBefore);
4206 }
4207
4208 static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
4209 return new(1) ResumeInst(Exn, InsertAtEnd);
4210 }
4211
4212 /// Provide fast operand accessors
4213 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4214
4215 /// Convenience accessor.
4216 Value *getValue() const { return Op<0>(); }
4217
4218 unsigned getNumSuccessors() const { return 0; }
4219
4220 // Methods for support type inquiry through isa, cast, and dyn_cast:
4221 static bool classof(const Instruction *I) {
4222 return I->getOpcode() == Instruction::Resume;
4223 }
4224 static bool classof(const Value *V) {
4225 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4226 }
4227
4228private:
4229 BasicBlock *getSuccessor(unsigned idx) const {
4230 llvm_unreachable("ResumeInst has no successors!")::llvm::llvm_unreachable_internal("ResumeInst has no successors!"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4230)
;
4231 }
4232
4233 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4234 llvm_unreachable("ResumeInst has no successors!")::llvm::llvm_unreachable_internal("ResumeInst has no successors!"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4234)
;
4235 }
4236};
4237
4238template <>
4239struct OperandTraits<ResumeInst> :
4240 public FixedNumOperandTraits<ResumeInst, 1> {
4241};
4242
4243DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)ResumeInst::op_iterator ResumeInst::op_begin() { return OperandTraits
<ResumeInst>::op_begin(this); } ResumeInst::const_op_iterator
ResumeInst::op_begin() const { return OperandTraits<ResumeInst
>::op_begin(const_cast<ResumeInst*>(this)); } ResumeInst
::op_iterator ResumeInst::op_end() { return OperandTraits<
ResumeInst>::op_end(this); } ResumeInst::const_op_iterator
ResumeInst::op_end() const { return OperandTraits<ResumeInst
>::op_end(const_cast<ResumeInst*>(this)); } Value *ResumeInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<ResumeInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<ResumeInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4243, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<ResumeInst>::op_begin(const_cast
<ResumeInst*>(this))[i_nocapture].get()); } void ResumeInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast
<bool> (i_nocapture < OperandTraits<ResumeInst>
::operands(this) && "setOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<ResumeInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4243, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
ResumeInst>::op_begin(this)[i_nocapture] = Val_nocapture; }
unsigned ResumeInst::getNumOperands() const { return OperandTraits
<ResumeInst>::operands(this); } template <int Idx_nocapture
> Use &ResumeInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ResumeInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
4244
4245//===----------------------------------------------------------------------===//
4246// CatchSwitchInst Class
4247//===----------------------------------------------------------------------===//
4248class CatchSwitchInst : public Instruction {
4249 using UnwindDestField = BoolBitfieldElementT<0>;
4250
4251 /// The number of operands actually allocated. NumOperands is
4252 /// the number actually in use.
4253 unsigned ReservedSpace;
4254
4255 // Operand[0] = Outer scope
4256 // Operand[1] = Unwind block destination
4257 // Operand[n] = BasicBlock to go to on match
4258 CatchSwitchInst(const CatchSwitchInst &CSI);
4259
4260 /// Create a new switch instruction, specifying a
4261 /// default destination. The number of additional handlers can be specified
4262 /// here to make memory allocation more efficient.
4263 /// This constructor can also autoinsert before another instruction.
4264 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4265 unsigned NumHandlers, const Twine &NameStr,
4266 Instruction *InsertBefore);
4267
4268 /// Create a new switch instruction, specifying a
4269 /// default destination. The number of additional handlers can be specified
4270 /// here to make memory allocation more efficient.
4271 /// This constructor also autoinserts at the end of the specified BasicBlock.
4272 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4273 unsigned NumHandlers, const Twine &NameStr,
4274 BasicBlock *InsertAtEnd);
4275
4276 // allocate space for exactly zero operands
4277 void *operator new(size_t S) { return User::operator new(S); }
4278
4279 void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
4280 void growOperands(unsigned Size);
4281
4282protected:
4283 // Note: Instruction needs to be a friend here to call cloneImpl.
4284 friend class Instruction;
4285
4286 CatchSwitchInst *cloneImpl() const;
4287
4288public:
4289 void operator delete(void *Ptr) { return User::operator delete(Ptr); }
4290
4291 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4292 unsigned NumHandlers,
4293 const Twine &NameStr = "",
4294 Instruction *InsertBefore = nullptr) {
4295 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4296 InsertBefore);
4297 }
4298
4299 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4300 unsigned NumHandlers, const Twine &NameStr,
4301 BasicBlock *InsertAtEnd) {
4302 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4303 InsertAtEnd);
4304 }
4305
4306 /// Provide fast operand accessors
4307 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4308
4309 // Accessor Methods for CatchSwitch stmt
4310 Value *getParentPad() const { return getOperand(0); }
4311 void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
4312
4313 // Accessor Methods for CatchSwitch stmt
4314 bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4315 bool unwindsToCaller() const { return !hasUnwindDest(); }
4316 BasicBlock *getUnwindDest() const {
4317 if (hasUnwindDest())
4318 return cast<BasicBlock>(getOperand(1));
4319 return nullptr;
4320 }
4321 void setUnwindDest(BasicBlock *UnwindDest) {
4322 assert(UnwindDest)(static_cast <bool> (UnwindDest) ? void (0) : __assert_fail
("UnwindDest", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4322, __extension__ __PRETTY_FUNCTION__))
;
4323 assert(hasUnwindDest())(static_cast <bool> (hasUnwindDest()) ? void (0) : __assert_fail
("hasUnwindDest()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4323, __extension__ __PRETTY_FUNCTION__))
;
4324 setOperand(1, UnwindDest);
4325 }
4326
4327 /// return the number of 'handlers' in this catchswitch
4328 /// instruction, except the default handler
4329 unsigned getNumHandlers() const {
4330 if (hasUnwindDest())
4331 return getNumOperands() - 2;
4332 return getNumOperands() - 1;
4333 }
4334
4335private:
4336 static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); }
4337 static const BasicBlock *handler_helper(const Value *V) {
4338 return cast<BasicBlock>(V);
4339 }
4340
4341public:
4342 using DerefFnTy = BasicBlock *(*)(Value *);
4343 using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>;
4344 using handler_range = iterator_range<handler_iterator>;
4345 using ConstDerefFnTy = const BasicBlock *(*)(const Value *);
4346 using const_handler_iterator =
4347 mapped_iterator<const_op_iterator, ConstDerefFnTy>;
4348 using const_handler_range = iterator_range<const_handler_iterator>;
4349
4350 /// Returns an iterator that points to the first handler in CatchSwitchInst.
4351 handler_iterator handler_begin() {
4352 op_iterator It = op_begin() + 1;
4353 if (hasUnwindDest())
4354 ++It;
4355 return handler_iterator(It, DerefFnTy(handler_helper));
4356 }
4357
4358 /// Returns an iterator that points to the first handler in the
4359 /// CatchSwitchInst.
4360 const_handler_iterator handler_begin() const {
4361 const_op_iterator It = op_begin() + 1;
4362 if (hasUnwindDest())
4363 ++It;
4364 return const_handler_iterator(It, ConstDerefFnTy(handler_helper));
4365 }
4366
4367 /// Returns a read-only iterator that points one past the last
4368 /// handler in the CatchSwitchInst.
4369 handler_iterator handler_end() {
4370 return handler_iterator(op_end(), DerefFnTy(handler_helper));
4371 }
4372
4373 /// Returns an iterator that points one past the last handler in the
4374 /// CatchSwitchInst.
4375 const_handler_iterator handler_end() const {
4376 return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper));
4377 }
4378
4379 /// iteration adapter for range-for loops.
4380 handler_range handlers() {
4381 return make_range(handler_begin(), handler_end());
4382 }
4383
4384 /// iteration adapter for range-for loops.
4385 const_handler_range handlers() const {
4386 return make_range(handler_begin(), handler_end());
4387 }
4388
4389 /// Add an entry to the switch instruction...
4390 /// Note:
4391 /// This action invalidates handler_end(). Old handler_end() iterator will
4392 /// point to the added handler.
4393 void addHandler(BasicBlock *Dest);
4394
4395 void removeHandler(handler_iterator HI);
4396
4397 unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4398 BasicBlock *getSuccessor(unsigned Idx) const {
4399 assert(Idx < getNumSuccessors() &&(static_cast <bool> (Idx < getNumSuccessors() &&
"Successor # out of range for catchswitch!") ? void (0) : __assert_fail
("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4400, __extension__ __PRETTY_FUNCTION__))
4400 "Successor # out of range for catchswitch!")(static_cast <bool> (Idx < getNumSuccessors() &&
"Successor # out of range for catchswitch!") ? void (0) : __assert_fail
("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4400, __extension__ __PRETTY_FUNCTION__))
;
4401 return cast<BasicBlock>(getOperand(Idx + 1));
4402 }
4403 void setSuccessor(unsigned Idx, BasicBlock *NewSucc) {
4404 assert(Idx < getNumSuccessors() &&(static_cast <bool> (Idx < getNumSuccessors() &&
"Successor # out of range for catchswitch!") ? void (0) : __assert_fail
("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4405, __extension__ __PRETTY_FUNCTION__))
4405 "Successor # out of range for catchswitch!")(static_cast <bool> (Idx < getNumSuccessors() &&
"Successor # out of range for catchswitch!") ? void (0) : __assert_fail
("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4405, __extension__ __PRETTY_FUNCTION__))
;
4406 setOperand(Idx + 1, NewSucc);
4407 }
4408
4409 // Methods for support type inquiry through isa, cast, and dyn_cast:
4410 static bool classof(const Instruction *I) {
4411 return I->getOpcode() == Instruction::CatchSwitch;
4412 }
4413 static bool classof(const Value *V) {
4414 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4415 }
4416};
4417
4418template <>
4419struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {};
4420
4421DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)CatchSwitchInst::op_iterator CatchSwitchInst::op_begin() { return
OperandTraits<CatchSwitchInst>::op_begin(this); } CatchSwitchInst
::const_op_iterator CatchSwitchInst::op_begin() const { return
OperandTraits<CatchSwitchInst>::op_begin(const_cast<
CatchSwitchInst*>(this)); } CatchSwitchInst::op_iterator CatchSwitchInst
::op_end() { return OperandTraits<CatchSwitchInst>::op_end
(this); } CatchSwitchInst::const_op_iterator CatchSwitchInst::
op_end() const { return OperandTraits<CatchSwitchInst>::
op_end(const_cast<CatchSwitchInst*>(this)); } Value *CatchSwitchInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<CatchSwitchInst>::
operands(this) && "getOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<CatchSwitchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4421, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<CatchSwitchInst>::op_begin
(const_cast<CatchSwitchInst*>(this))[i_nocapture].get()
); } void CatchSwitchInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { (static_cast <bool> (i_nocapture <
OperandTraits<CatchSwitchInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<CatchSwitchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4421, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
CatchSwitchInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned CatchSwitchInst::getNumOperands() const { return
OperandTraits<CatchSwitchInst>::operands(this); } template
<int Idx_nocapture> Use &CatchSwitchInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &CatchSwitchInst::Op() const
{ return this->OpFrom<Idx_nocapture>(this); }
4422
4423//===----------------------------------------------------------------------===//
4424// CleanupPadInst Class
4425//===----------------------------------------------------------------------===//
4426class CleanupPadInst : public FuncletPadInst {
4427private:
4428 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4429 unsigned Values, const Twine &NameStr,
4430 Instruction *InsertBefore)
4431 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4432 NameStr, InsertBefore) {}
4433 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4434 unsigned Values, const Twine &NameStr,
4435 BasicBlock *InsertAtEnd)
4436 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4437 NameStr, InsertAtEnd) {}
4438
4439public:
4440 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None,
4441 const Twine &NameStr = "",
4442 Instruction *InsertBefore = nullptr) {
4443 unsigned Values = 1 + Args.size();
4444 return new (Values)
4445 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore);
4446 }
4447
4448 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args,
4449 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4450 unsigned Values = 1 + Args.size();
4451 return new (Values)
4452 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd);
4453 }
4454
4455 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4456 static bool classof(const Instruction *I) {
4457 return I->getOpcode() == Instruction::CleanupPad;
4458 }
4459 static bool classof(const Value *V) {
4460 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4461 }
4462};
4463
4464//===----------------------------------------------------------------------===//
4465// CatchPadInst Class
4466//===----------------------------------------------------------------------===//
4467class CatchPadInst : public FuncletPadInst {
4468private:
4469 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4470 unsigned Values, const Twine &NameStr,
4471 Instruction *InsertBefore)
4472 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4473 NameStr, InsertBefore) {}
4474 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4475 unsigned Values, const Twine &NameStr,
4476 BasicBlock *InsertAtEnd)
4477 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4478 NameStr, InsertAtEnd) {}
4479
4480public:
4481 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4482 const Twine &NameStr = "",
4483 Instruction *InsertBefore = nullptr) {
4484 unsigned Values = 1 + Args.size();
4485 return new (Values)
4486 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore);
4487 }
4488
4489 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4490 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4491 unsigned Values = 1 + Args.size();
4492 return new (Values)
4493 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd);
4494 }
4495
4496 /// Convenience accessors
4497 CatchSwitchInst *getCatchSwitch() const {
4498 return cast<CatchSwitchInst>(Op<-1>());
4499 }
4500 void setCatchSwitch(Value *CatchSwitch) {
4501 assert(CatchSwitch)(static_cast <bool> (CatchSwitch) ? void (0) : __assert_fail
("CatchSwitch", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4501, __extension__ __PRETTY_FUNCTION__))
;
4502 Op<-1>() = CatchSwitch;
4503 }
4504
4505 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4506 static bool classof(const Instruction *I) {
4507 return I->getOpcode() == Instruction::CatchPad;
4508 }
4509 static bool classof(const Value *V) {
4510 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4511 }
4512};
4513
4514//===----------------------------------------------------------------------===//
4515// CatchReturnInst Class
4516//===----------------------------------------------------------------------===//
4517
4518class CatchReturnInst : public Instruction {
4519 CatchReturnInst(const CatchReturnInst &RI);
4520 CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore);
4521 CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd);
4522
4523 void init(Value *CatchPad, BasicBlock *BB);
4524
4525protected:
4526 // Note: Instruction needs to be a friend here to call cloneImpl.
4527 friend class Instruction;
4528
4529 CatchReturnInst *cloneImpl() const;
4530
4531public:
4532 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4533 Instruction *InsertBefore = nullptr) {
4534 assert(CatchPad)(static_cast <bool> (CatchPad) ? void (0) : __assert_fail
("CatchPad", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4534, __extension__ __PRETTY_FUNCTION__))
;
4535 assert(BB)(static_cast <bool> (BB) ? void (0) : __assert_fail ("BB"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4535, __extension__ __PRETTY_FUNCTION__))
;
4536 return new (2) CatchReturnInst(CatchPad, BB, InsertBefore);
4537 }
4538
4539 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4540 BasicBlock *InsertAtEnd) {
4541 assert(CatchPad)(static_cast <bool> (CatchPad) ? void (0) : __assert_fail
("CatchPad", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4541, __extension__ __PRETTY_FUNCTION__))
;
4542 assert(BB)(static_cast <bool> (BB) ? void (0) : __assert_fail ("BB"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4542, __extension__ __PRETTY_FUNCTION__))
;
4543 return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd);
4544 }
4545
4546 /// Provide fast operand accessors
4547 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4548
4549 /// Convenience accessors.
4550 CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); }
4551 void setCatchPad(CatchPadInst *CatchPad) {
4552 assert(CatchPad)(static_cast <bool> (CatchPad) ? void (0) : __assert_fail
("CatchPad", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4552, __extension__ __PRETTY_FUNCTION__))
;
4553 Op<0>() = CatchPad;
4554 }
4555
4556 BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); }
4557 void setSuccessor(BasicBlock *NewSucc) {
4558 assert(NewSucc)(static_cast <bool> (NewSucc) ? void (0) : __assert_fail
("NewSucc", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4558, __extension__ __PRETTY_FUNCTION__))
;
4559 Op<1>() = NewSucc;
4560 }
4561 unsigned getNumSuccessors() const { return 1; }
4562
4563 /// Get the parentPad of this catchret's catchpad's catchswitch.
4564 /// The successor block is implicitly a member of this funclet.
4565 Value *getCatchSwitchParentPad() const {
4566 return getCatchPad()->getCatchSwitch()->getParentPad();
4567 }
4568
4569 // Methods for support type inquiry through isa, cast, and dyn_cast:
4570 static bool classof(const Instruction *I) {
4571 return (I->getOpcode() == Instruction::CatchRet);
4572 }
4573 static bool classof(const Value *V) {
4574 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4575 }
4576
4577private:
4578 BasicBlock *getSuccessor(unsigned Idx) const {
4579 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")(static_cast <bool> (Idx < getNumSuccessors() &&
"Successor # out of range for catchret!") ? void (0) : __assert_fail
("Idx < getNumSuccessors() && \"Successor # out of range for catchret!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4579, __extension__ __PRETTY_FUNCTION__))
;
4580 return getSuccessor();
4581 }
4582
4583 void setSuccessor(unsigned Idx, BasicBlock *B) {
4584 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")(static_cast <bool> (Idx < getNumSuccessors() &&
"Successor # out of range for catchret!") ? void (0) : __assert_fail
("Idx < getNumSuccessors() && \"Successor # out of range for catchret!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4584, __extension__ __PRETTY_FUNCTION__))
;
4585 setSuccessor(B);
4586 }
4587};
4588
4589template <>
4590struct OperandTraits<CatchReturnInst>
4591 : public FixedNumOperandTraits<CatchReturnInst, 2> {};
4592
4593DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)CatchReturnInst::op_iterator CatchReturnInst::op_begin() { return
OperandTraits<CatchReturnInst>::op_begin(this); } CatchReturnInst
::const_op_iterator CatchReturnInst::op_begin() const { return
OperandTraits<CatchReturnInst>::op_begin(const_cast<
CatchReturnInst*>(this)); } CatchReturnInst::op_iterator CatchReturnInst
::op_end() { return OperandTraits<CatchReturnInst>::op_end
(this); } CatchReturnInst::const_op_iterator CatchReturnInst::
op_end() const { return OperandTraits<CatchReturnInst>::
op_end(const_cast<CatchReturnInst*>(this)); } Value *CatchReturnInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<CatchReturnInst>::
operands(this) && "getOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<CatchReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4593, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<CatchReturnInst>::op_begin
(const_cast<CatchReturnInst*>(this))[i_nocapture].get()
); } void CatchReturnInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { (static_cast <bool> (i_nocapture <
OperandTraits<CatchReturnInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<CatchReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4593, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
CatchReturnInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned CatchReturnInst::getNumOperands() const { return
OperandTraits<CatchReturnInst>::operands(this); } template
<int Idx_nocapture> Use &CatchReturnInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &CatchReturnInst::Op() const
{ return this->OpFrom<Idx_nocapture>(this); }
4594
4595//===----------------------------------------------------------------------===//
4596// CleanupReturnInst Class
4597//===----------------------------------------------------------------------===//
4598
4599class CleanupReturnInst : public Instruction {
4600 using UnwindDestField = BoolBitfieldElementT<0>;
4601
4602private:
4603 CleanupReturnInst(const CleanupReturnInst &RI);
4604 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4605 Instruction *InsertBefore = nullptr);
4606 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4607 BasicBlock *InsertAtEnd);
4608
4609 void init(Value *CleanupPad, BasicBlock *UnwindBB);
4610
4611protected:
4612 // Note: Instruction needs to be a friend here to call cloneImpl.
4613 friend class Instruction;
4614
4615 CleanupReturnInst *cloneImpl() const;
4616
4617public:
4618 static CleanupReturnInst *Create(Value *CleanupPad,
4619 BasicBlock *UnwindBB = nullptr,
4620 Instruction *InsertBefore = nullptr) {
4621 assert(CleanupPad)(static_cast <bool> (CleanupPad) ? void (0) : __assert_fail
("CleanupPad", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4621, __extension__ __PRETTY_FUNCTION__))
;
4622 unsigned Values = 1;
4623 if (UnwindBB)
4624 ++Values;
4625 return new (Values)
4626 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore);
4627 }
4628
4629 static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB,
4630 BasicBlock *InsertAtEnd) {
4631 assert(CleanupPad)(static_cast <bool> (CleanupPad) ? void (0) : __assert_fail
("CleanupPad", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4631, __extension__ __PRETTY_FUNCTION__))
;
4632 unsigned Values = 1;
4633 if (UnwindBB)
4634 ++Values;
4635 return new (Values)
4636 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd);
4637 }
4638
4639 /// Provide fast operand accessors
4640 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4641
4642 bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4643 bool unwindsToCaller() const { return !hasUnwindDest(); }
4644
4645 /// Convenience accessor.
4646 CleanupPadInst *getCleanupPad() const {
4647 return cast<CleanupPadInst>(Op<0>());
4648 }
4649 void setCleanupPad(CleanupPadInst *CleanupPad) {
4650 assert(CleanupPad)(static_cast <bool> (CleanupPad) ? void (0) : __assert_fail
("CleanupPad", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4650, __extension__ __PRETTY_FUNCTION__))
;
4651 Op<0>() = CleanupPad;
4652 }
4653
4654 unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4655
4656 BasicBlock *getUnwindDest() const {
4657 return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr;
4658 }
4659 void setUnwindDest(BasicBlock *NewDest) {
4660 assert(NewDest)(static_cast <bool> (NewDest) ? void (0) : __assert_fail
("NewDest", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4660, __extension__ __PRETTY_FUNCTION__))
;
4661 assert(hasUnwindDest())(static_cast <bool> (hasUnwindDest()) ? void (0) : __assert_fail
("hasUnwindDest()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4661, __extension__ __PRETTY_FUNCTION__))
;
4662 Op<1>() = NewDest;
4663 }
4664
4665 // Methods for support type inquiry through isa, cast, and dyn_cast:
4666 static bool classof(const Instruction *I) {
4667 return (I->getOpcode() == Instruction::CleanupRet);
4668 }
4669 static bool classof(const Value *V) {
4670 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4671 }
4672
4673private:
4674 BasicBlock *getSuccessor(unsigned Idx) const {
4675 assert(Idx == 0)(static_cast <bool> (Idx == 0) ? void (0) : __assert_fail
("Idx == 0", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4675, __extension__ __PRETTY_FUNCTION__))
;
4676 return getUnwindDest();
4677 }
4678
4679 void setSuccessor(unsigned Idx, BasicBlock *B) {
4680 assert(Idx == 0)(static_cast <bool> (Idx == 0) ? void (0) : __assert_fail
("Idx == 0", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4680, __extension__ __PRETTY_FUNCTION__))
;
4681 setUnwindDest(B);
4682 }
4683
4684 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4685 // method so that subclasses cannot accidentally use it.
4686 template <typename Bitfield>
4687 void setSubclassData(typename Bitfield::Type Value) {
4688 Instruction::setSubclassData<Bitfield>(Value);
4689 }
4690};
4691
4692template <>
4693struct OperandTraits<CleanupReturnInst>
4694 : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {};
4695
4696DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)CleanupReturnInst::op_iterator CleanupReturnInst::op_begin() {
return OperandTraits<CleanupReturnInst>::op_begin(this
); } CleanupReturnInst::const_op_iterator CleanupReturnInst::
op_begin() const { return OperandTraits<CleanupReturnInst>
::op_begin(const_cast<CleanupReturnInst*>(this)); } CleanupReturnInst
::op_iterator CleanupReturnInst::op_end() { return OperandTraits
<CleanupReturnInst>::op_end(this); } CleanupReturnInst::
const_op_iterator CleanupReturnInst::op_end() const { return OperandTraits
<CleanupReturnInst>::op_end(const_cast<CleanupReturnInst
*>(this)); } Value *CleanupReturnInst::getOperand(unsigned
i_nocapture) const { (static_cast <bool> (i_nocapture <
OperandTraits<CleanupReturnInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<CleanupReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4696, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<CleanupReturnInst>::op_begin
(const_cast<CleanupReturnInst*>(this))[i_nocapture].get
()); } void CleanupReturnInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<CleanupReturnInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<CleanupReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4696, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
CleanupReturnInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned CleanupReturnInst::getNumOperands() const { return
OperandTraits<CleanupReturnInst>::operands(this); } template
<int Idx_nocapture> Use &CleanupReturnInst::Op() {
return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &CleanupReturnInst::
Op() const { return this->OpFrom<Idx_nocapture>(this
); }
4697
4698//===----------------------------------------------------------------------===//
4699// UnreachableInst Class
4700//===----------------------------------------------------------------------===//
4701
4702//===---------------------------------------------------------------------------
4703/// This function has undefined behavior. In particular, the
4704/// presence of this instruction indicates some higher level knowledge that the
4705/// end of the block cannot be reached.
4706///
4707class UnreachableInst : public Instruction {
4708protected:
4709 // Note: Instruction needs to be a friend here to call cloneImpl.
4710 friend class Instruction;
4711
4712 UnreachableInst *cloneImpl() const;
4713
4714public:
4715 explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr);
4716 explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
4717
4718 // allocate space for exactly zero operands
4719 void *operator new(size_t S) { return User::operator new(S, 0); }
4720 void operator delete(void *Ptr) { User::operator delete(Ptr); }
4721
4722 unsigned getNumSuccessors() const { return 0; }
4723
4724 // Methods for support type inquiry through isa, cast, and dyn_cast:
4725 static bool classof(const Instruction *I) {
4726 return I->getOpcode() == Instruction::Unreachable;
4727 }
4728 static bool classof(const Value *V) {
4729 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4730 }
4731
4732private:
4733 BasicBlock *getSuccessor(unsigned idx) const {
4734 llvm_unreachable("UnreachableInst has no successors!")::llvm::llvm_unreachable_internal("UnreachableInst has no successors!"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4734)
;
4735 }
4736
4737 void setSuccessor(unsigned idx, BasicBlock *B) {
4738 llvm_unreachable("UnreachableInst has no successors!")::llvm::llvm_unreachable_internal("UnreachableInst has no successors!"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4738)
;
4739 }
4740};
4741
4742//===----------------------------------------------------------------------===//
4743// TruncInst Class
4744//===----------------------------------------------------------------------===//
4745
4746/// This class represents a truncation of integer types.
4747class TruncInst : public CastInst {
4748protected:
4749 // Note: Instruction needs to be a friend here to call cloneImpl.
4750 friend class Instruction;
4751
4752 /// Clone an identical TruncInst
4753 TruncInst *cloneImpl() const;
4754
4755public:
4756 /// Constructor with insert-before-instruction semantics
4757 TruncInst(
4758 Value *S, ///< The value to be truncated
4759 Type *Ty, ///< The (smaller) type to truncate to
4760 const Twine &NameStr = "", ///< A name for the new instruction
4761 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4762 );
4763
4764 /// Constructor with insert-at-end-of-block semantics
4765 TruncInst(
4766 Value *S, ///< The value to be truncated
4767 Type *Ty, ///< The (smaller) type to truncate to
4768 const Twine &NameStr, ///< A name for the new instruction
4769 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4770 );
4771
4772 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4773 static bool classof(const Instruction *I) {
4774 return I->getOpcode() == Trunc;
4775 }
4776 static bool classof(const Value *V) {
4777 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4778 }
4779};
4780
4781//===----------------------------------------------------------------------===//
4782// ZExtInst Class
4783//===----------------------------------------------------------------------===//
4784
4785/// This class represents zero extension of integer types.
4786class ZExtInst : public CastInst {
4787protected:
4788 // Note: Instruction needs to be a friend here to call cloneImpl.
4789 friend class Instruction;
4790
4791 /// Clone an identical ZExtInst
4792 ZExtInst *cloneImpl() const;
4793
4794public:
4795 /// Constructor with insert-before-instruction semantics
4796 ZExtInst(
4797 Value *S, ///< The value to be zero extended
4798 Type *Ty, ///< The type to zero extend to
4799 const Twine &NameStr = "", ///< A name for the new instruction
4800 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4801 );
4802
4803 /// Constructor with insert-at-end semantics.
4804 ZExtInst(
4805 Value *S, ///< The value to be zero extended
4806 Type *Ty, ///< The type to zero extend to
4807 const Twine &NameStr, ///< A name for the new instruction
4808 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4809 );
4810
4811 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4812 static bool classof(const Instruction *I) {
4813 return I->getOpcode() == ZExt;
4814 }
4815 static bool classof(const Value *V) {
4816 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4817 }
4818};
4819
4820//===----------------------------------------------------------------------===//
4821// SExtInst Class
4822//===----------------------------------------------------------------------===//
4823
4824/// This class represents a sign extension of integer types.
4825class SExtInst : public CastInst {
4826protected:
4827 // Note: Instruction needs to be a friend here to call cloneImpl.
4828 friend class Instruction;
4829
4830 /// Clone an identical SExtInst
4831 SExtInst *cloneImpl() const;
4832
4833public:
4834 /// Constructor with insert-before-instruction semantics
4835 SExtInst(
4836 Value *S, ///< The value to be sign extended
4837 Type *Ty, ///< The type to sign extend to
4838 const Twine &NameStr = "", ///< A name for the new instruction
4839 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4840 );
4841
4842 /// Constructor with insert-at-end-of-block semantics
4843 SExtInst(
4844 Value *S, ///< The value to be sign extended
4845 Type *Ty, ///< The type to sign extend to
4846 const Twine &NameStr, ///< A name for the new instruction
4847 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4848 );
4849
4850 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4851 static bool classof(const Instruction *I) {
4852 return I->getOpcode() == SExt;
4853 }
4854 static bool classof(const Value *V) {
4855 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4856 }
4857};
4858
4859//===----------------------------------------------------------------------===//
4860// FPTruncInst Class
4861//===----------------------------------------------------------------------===//
4862
4863/// This class represents a truncation of floating point types.
4864class FPTruncInst : public CastInst {
4865protected:
4866 // Note: Instruction needs to be a friend here to call cloneImpl.
4867 friend class Instruction;
4868
4869 /// Clone an identical FPTruncInst
4870 FPTruncInst *cloneImpl() const;
4871
4872public:
4873 /// Constructor with insert-before-instruction semantics
4874 FPTruncInst(
4875 Value *S, ///< The value to be truncated
4876 Type *Ty, ///< The type to truncate to
4877 const Twine &NameStr = "", ///< A name for the new instruction
4878 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4879 );
4880
4881 /// Constructor with insert-before-instruction semantics
4882 FPTruncInst(
4883 Value *S, ///< The value to be truncated
4884 Type *Ty, ///< The type to truncate to
4885 const Twine &NameStr, ///< A name for the new instruction
4886 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4887 );
4888
4889 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4890 static bool classof(const Instruction *I) {
4891 return I->getOpcode() == FPTrunc;
4892 }
4893 static bool classof(const Value *V) {
4894 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4895 }
4896};
4897
4898//===----------------------------------------------------------------------===//
4899// FPExtInst Class
4900//===----------------------------------------------------------------------===//
4901
4902/// This class represents an extension of floating point types.
4903class FPExtInst : public CastInst {
4904protected:
4905 // Note: Instruction needs to be a friend here to call cloneImpl.
4906 friend class Instruction;
4907
4908 /// Clone an identical FPExtInst
4909 FPExtInst *cloneImpl() const;
4910
4911public:
4912 /// Constructor with insert-before-instruction semantics
4913 FPExtInst(
4914 Value *S, ///< The value to be extended
4915 Type *Ty, ///< The type to extend to
4916 const Twine &NameStr = "", ///< A name for the new instruction
4917 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4918 );
4919
4920 /// Constructor with insert-at-end-of-block semantics
4921 FPExtInst(
4922 Value *S, ///< The value to be extended
4923 Type *Ty, ///< The type to extend to
4924 const Twine &NameStr, ///< A name for the new instruction
4925 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4926 );
4927
4928 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4929 static bool classof(const Instruction *I) {
4930 return I->getOpcode() == FPExt;
4931 }
4932 static bool classof(const Value *V) {
4933 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4934 }
4935};
4936
4937//===----------------------------------------------------------------------===//
4938// UIToFPInst Class
4939//===----------------------------------------------------------------------===//
4940
4941/// This class represents a cast unsigned integer to floating point.
4942class UIToFPInst : public CastInst {
4943protected:
4944 // Note: Instruction needs to be a friend here to call cloneImpl.
4945 friend class Instruction;
4946
4947 /// Clone an identical UIToFPInst
4948 UIToFPInst *cloneImpl() const;
4949
4950public:
4951 /// Constructor with insert-before-instruction semantics
4952 UIToFPInst(
4953 Value *S, ///< The value to be converted
4954 Type *Ty, ///< The type to convert to
4955 const Twine &NameStr = "", ///< A name for the new instruction
4956 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4957 );
4958
4959 /// Constructor with insert-at-end-of-block semantics
4960 UIToFPInst(
4961 Value *S, ///< The value to be converted
4962 Type *Ty, ///< The type to convert to
4963 const Twine &NameStr, ///< A name for the new instruction
4964 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4965 );
4966
4967 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4968 static bool classof(const Instruction *I) {
4969 return I->getOpcode() == UIToFP;
4970 }
4971 static bool classof(const Value *V) {
4972 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4973 }
4974};
4975
4976//===----------------------------------------------------------------------===//
4977// SIToFPInst Class
4978//===----------------------------------------------------------------------===//
4979
4980/// This class represents a cast from signed integer to floating point.
4981class SIToFPInst : public CastInst {
4982protected:
4983 // Note: Instruction needs to be a friend here to call cloneImpl.
4984 friend class Instruction;
4985
4986 /// Clone an identical SIToFPInst
4987 SIToFPInst *cloneImpl() const;
4988
4989public:
4990 /// Constructor with insert-before-instruction semantics
4991 SIToFPInst(
4992 Value *S, ///< The value to be converted
4993 Type *Ty, ///< The type to convert to
4994 const Twine &NameStr = "", ///< A name for the new instruction
4995 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4996 );
4997
4998 /// Constructor with insert-at-end-of-block semantics
4999 SIToFPInst(
5000 Value *S, ///< The value to be converted
5001 Type *Ty, ///< The type to convert to
5002 const Twine &NameStr, ///< A name for the new instruction
5003 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5004 );
5005
5006 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5007 static bool classof(const Instruction *I) {
5008 return I->getOpcode() == SIToFP;
5009 }
5010 static bool classof(const Value *V) {
5011 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5012 }
5013};
5014
5015//===----------------------------------------------------------------------===//
5016// FPToUIInst Class
5017//===----------------------------------------------------------------------===//
5018
5019/// This class represents a cast from floating point to unsigned integer
5020class FPToUIInst : public CastInst {
5021protected:
5022 // Note: Instruction needs to be a friend here to call cloneImpl.
5023 friend class Instruction;
5024
5025 /// Clone an identical FPToUIInst
5026 FPToUIInst *cloneImpl() const;
5027
5028public:
5029 /// Constructor with insert-before-instruction semantics
5030 FPToUIInst(
5031 Value *S, ///< The value to be converted
5032 Type *Ty, ///< The type to convert to
5033 const Twine &NameStr = "", ///< A name for the new instruction
5034 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5035 );
5036
5037 /// Constructor with insert-at-end-of-block semantics
5038 FPToUIInst(
5039 Value *S, ///< The value to be converted
5040 Type *Ty, ///< The type to convert to
5041 const Twine &NameStr, ///< A name for the new instruction
5042 BasicBlock *InsertAtEnd ///< Where to insert the new instruction
5043 );
5044
5045 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5046 static bool classof(const Instruction *I) {
5047 return I->getOpcode() == FPToUI;
5048 }
5049 static bool classof(const Value *V) {
5050 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5051 }
5052};
5053
5054//===----------------------------------------------------------------------===//
5055// FPToSIInst Class
5056//===----------------------------------------------------------------------===//
5057
5058/// This class represents a cast from floating point to signed integer.
5059class FPToSIInst : public CastInst {
5060protected:
5061 // Note: Instruction needs to be a friend here to call cloneImpl.
5062 friend class Instruction;
5063
5064 /// Clone an identical FPToSIInst
5065 FPToSIInst *cloneImpl() const;
5066
5067public:
5068 /// Constructor with insert-before-instruction semantics
5069 FPToSIInst(
5070 Value *S, ///< The value to be converted
5071 Type *Ty, ///< The type to convert to
5072 const Twine &NameStr = "", ///< A name for the new instruction
5073 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5074 );
5075
5076 /// Constructor with insert-at-end-of-block semantics
5077 FPToSIInst(
5078 Value *S, ///< The value to be converted
5079 Type *Ty, ///< The type to convert to
5080 const Twine &NameStr, ///< A name for the new instruction
5081 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5082 );
5083
5084 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5085 static bool classof(const Instruction *I) {
5086 return I->getOpcode() == FPToSI;
5087 }
5088 static bool classof(const Value *V) {
5089 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5090 }
5091};
5092
5093//===----------------------------------------------------------------------===//
5094// IntToPtrInst Class
5095//===----------------------------------------------------------------------===//
5096
5097/// This class represents a cast from an integer to a pointer.
5098class IntToPtrInst : public CastInst {
5099public:
5100 // Note: Instruction needs to be a friend here to call cloneImpl.
5101 friend class Instruction;
5102
5103 /// Constructor with insert-before-instruction semantics
5104 IntToPtrInst(
5105 Value *S, ///< The value to be converted
5106 Type *Ty, ///< The type to convert to
5107 const Twine &NameStr = "", ///< A name for the new instruction
5108 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5109 );
5110
5111 /// Constructor with insert-at-end-of-block semantics
5112 IntToPtrInst(
5113 Value *S, ///< The value to be converted
5114 Type *Ty, ///< The type to convert to
5115 const Twine &NameStr, ///< A name for the new instruction
5116 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5117 );
5118
5119 /// Clone an identical IntToPtrInst.
5120 IntToPtrInst *cloneImpl() const;
5121
5122 /// Returns the address space of this instruction's pointer type.
5123 unsigned getAddressSpace() const {
5124 return getType()->getPointerAddressSpace();
5125 }
5126
5127 // Methods for support type inquiry through isa, cast, and dyn_cast:
5128 static bool classof(const Instruction *I) {
5129 return I->getOpcode() == IntToPtr;
5130 }
5131 static bool classof(const Value *V) {
5132 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5133 }
5134};
5135
5136//===----------------------------------------------------------------------===//
5137// PtrToIntInst Class
5138//===----------------------------------------------------------------------===//
5139
5140/// This class represents a cast from a pointer to an integer.
5141class PtrToIntInst : public CastInst {
5142protected:
5143 // Note: Instruction needs to be a friend here to call cloneImpl.
5144 friend class Instruction;
5145
5146 /// Clone an identical PtrToIntInst.
5147 PtrToIntInst *cloneImpl() const;
5148
5149public:
5150 /// Constructor with insert-before-instruction semantics
5151 PtrToIntInst(
5152 Value *S, ///< The value to be converted
5153 Type *Ty, ///< The type to convert to
5154 const Twine &NameStr = "", ///< A name for the new instruction
5155 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5156 );
5157
5158 /// Constructor with insert-at-end-of-block semantics
5159 PtrToIntInst(
5160 Value *S, ///< The value to be converted
5161 Type *Ty, ///< The type to convert to
5162 const Twine &NameStr, ///< A name for the new instruction
5163 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5164 );
5165
5166 /// Gets the pointer operand.
5167 Value *getPointerOperand() { return getOperand(0); }
5168 /// Gets the pointer operand.
5169 const Value *getPointerOperand() const { return getOperand(0); }
5170 /// Gets the operand index of the pointer operand.
5171 static unsigned getPointerOperandIndex() { return 0U; }
5172
5173 /// Returns the address space of the pointer operand.
5174 unsigned getPointerAddressSpace() const {
5175 return getPointerOperand()->getType()->getPointerAddressSpace();
5176 }
5177
5178 // Methods for support type inquiry through isa, cast, and dyn_cast:
5179 static bool classof(const Instruction *I) {
5180 return I->getOpcode() == PtrToInt;
5181 }
5182 static bool classof(const Value *V) {
5183 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5184 }
5185};
5186
5187//===----------------------------------------------------------------------===//
5188// BitCastInst Class
5189//===----------------------------------------------------------------------===//
5190
5191/// This class represents a no-op cast from one type to another.
5192class BitCastInst : public CastInst {
5193protected:
5194 // Note: Instruction needs to be a friend here to call cloneImpl.
5195 friend class Instruction;
5196
5197 /// Clone an identical BitCastInst.
5198 BitCastInst *cloneImpl() const;
5199
5200public:
5201 /// Constructor with insert-before-instruction semantics
5202 BitCastInst(
5203 Value *S, ///< The value to be casted
5204 Type *Ty, ///< The type to casted to
5205 const Twine &NameStr = "", ///< A name for the new instruction
5206 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5207 );
5208
5209 /// Constructor with insert-at-end-of-block semantics
5210 BitCastInst(
5211 Value *S, ///< The value to be casted
5212 Type *Ty, ///< The type to casted to
5213 const Twine &NameStr, ///< A name for the new instruction
5214 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5215 );
5216
5217 // Methods for support type inquiry through isa, cast, and dyn_cast:
5218 static bool classof(const Instruction *I) {
5219 return I->getOpcode() == BitCast;
5220 }
5221 static bool classof(const Value *V) {
5222 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5223 }
5224};
5225
5226//===----------------------------------------------------------------------===//
5227// AddrSpaceCastInst Class
5228//===----------------------------------------------------------------------===//
5229
5230/// This class represents a conversion between pointers from one address space
5231/// to another.
5232class AddrSpaceCastInst : public CastInst {
5233protected:
5234 // Note: Instruction needs to be a friend here to call cloneImpl.
5235 friend class Instruction;
5236
5237 /// Clone an identical AddrSpaceCastInst.
5238 AddrSpaceCastInst *cloneImpl() const;
5239
5240public:
5241 /// Constructor with insert-before-instruction semantics
5242 AddrSpaceCastInst(
5243 Value *S, ///< The value to be casted
5244 Type *Ty, ///< The type to casted to
5245 const Twine &NameStr = "", ///< A name for the new instruction
5246 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5247 );
5248
5249 /// Constructor with insert-at-end-of-block semantics
5250 AddrSpaceCastInst(
5251 Value *S, ///< The value to be casted
5252 Type *Ty, ///< The type to casted to
5253 const Twine &NameStr, ///< A name for the new instruction
5254 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5255 );
5256
5257 // Methods for support type inquiry through isa, cast, and dyn_cast:
5258 static bool classof(const Instruction *I) {
5259 return I->getOpcode() == AddrSpaceCast;
5260 }
5261 static bool classof(const Value *V) {
5262 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5263 }
5264
5265 /// Gets the pointer operand.
5266 Value *getPointerOperand() {
5267 return getOperand(0);
5268 }
5269
5270 /// Gets the pointer operand.
5271 const Value *getPointerOperand() const {
5272 return getOperand(0);
5273 }
5274
5275 /// Gets the operand index of the pointer operand.
5276 static unsigned getPointerOperandIndex() {
5277 return 0U;
5278 }
5279
5280 /// Returns the address space of the pointer operand.
5281 unsigned getSrcAddressSpace() const {
5282 return getPointerOperand()->getType()->getPointerAddressSpace();
5283 }
5284
5285 /// Returns the address space of the result.
5286 unsigned getDestAddressSpace() const {
5287 return getType()->getPointerAddressSpace();
5288 }
5289};
5290
5291/// A helper function that returns the pointer operand of a load or store
5292/// instruction. Returns nullptr if not load or store.
5293inline const Value *getLoadStorePointerOperand(const Value *V) {
5294 if (auto *Load = dyn_cast<LoadInst>(V))
5295 return Load->getPointerOperand();
5296 if (auto *Store = dyn_cast<StoreInst>(V))
5297 return Store->getPointerOperand();
5298 return nullptr;
5299}
5300inline Value *getLoadStorePointerOperand(Value *V) {
5301 return const_cast<Value *>(
5302 getLoadStorePointerOperand(static_cast<const Value *>(V)));
5303}
5304
5305/// A helper function that returns the pointer operand of a load, store
5306/// or GEP instruction. Returns nullptr if not load, store, or GEP.
5307inline const Value *getPointerOperand(const Value *V) {
5308 if (auto *Ptr = getLoadStorePointerOperand(V))
5309 return Ptr;
5310 if (auto *Gep = dyn_cast<GetElementPtrInst>(V))
5311 return Gep->getPointerOperand();
5312 return nullptr;
5313}
5314inline Value *getPointerOperand(Value *V) {
5315 return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V)));
5316}
5317
5318/// A helper function that returns the alignment of load or store instruction.
5319inline Align getLoadStoreAlignment(Value *I) {
5320 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 5321, __extension__ __PRETTY_FUNCTION__))
5321 "Expected Load or Store instruction")(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 5321, __extension__ __PRETTY_FUNCTION__))
;
5322 if (auto *LI = dyn_cast<LoadInst>(I))
5323 return LI->getAlign();
5324 return cast<StoreInst>(I)->getAlign();
5325}
5326
5327/// A helper function that returns the address space of the pointer operand of
5328/// load or store instruction.
5329inline unsigned getLoadStoreAddressSpace(Value *I) {
5330 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 5331, __extension__ __PRETTY_FUNCTION__))
5331 "Expected Load or Store instruction")(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 5331, __extension__ __PRETTY_FUNCTION__))
;
5332 if (auto *LI = dyn_cast<LoadInst>(I))
5333 return LI->getPointerAddressSpace();
5334 return cast<StoreInst>(I)->getPointerAddressSpace();
5335}
5336
5337/// A helper function that returns the type of a load or store instruction.
5338inline Type *getLoadStoreType(Value *I) {
5339 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 5340, __extension__ __PRETTY_FUNCTION__))
5340 "Expected Load or Store instruction")(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 5340, __extension__ __PRETTY_FUNCTION__))
;
5341 if (auto *LI = dyn_cast<LoadInst>(I))
5342 return LI->getType();
5343 return cast<StoreInst>(I)->getValueOperand()->getType();
5344}
5345
5346//===----------------------------------------------------------------------===//
5347// FreezeInst Class
5348//===----------------------------------------------------------------------===//
5349
5350/// This class represents a freeze function that returns random concrete
5351/// value if an operand is either a poison value or an undef value
5352class FreezeInst : public UnaryInstruction {
5353protected:
5354 // Note: Instruction needs to be a friend here to call cloneImpl.
5355 friend class Instruction;
5356
5357 /// Clone an identical FreezeInst
5358 FreezeInst *cloneImpl() const;
5359
5360public:
5361 explicit FreezeInst(Value *S,
5362 const Twine &NameStr = "",
5363 Instruction *InsertBefore = nullptr);
5364 FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd);
5365
5366 // Methods for support type inquiry through isa, cast, and dyn_cast:
5367 static inline bool classof(const Instruction *I) {
5368 return I->getOpcode() == Freeze;
5369 }
5370 static inline bool classof(const Value *V) {
5371 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5372 }
5373};
5374
5375} // end namespace llvm
5376
5377#endif // LLVM_IR_INSTRUCTIONS_H

/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/Casting.h

1//===- llvm/Support/Casting.h - Allow flexible, checked, casts --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the isa<X>(), cast<X>(), dyn_cast<X>(), cast_or_null<X>(),
10// and dyn_cast_or_null<X>() templates.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_CASTING_H
15#define LLVM_SUPPORT_CASTING_H
16
17#include "llvm/Support/Compiler.h"
18#include "llvm/Support/type_traits.h"
19#include <cassert>
20#include <memory>
21#include <type_traits>
22
23namespace llvm {
24
25//===----------------------------------------------------------------------===//
26// isa<x> Support Templates
27//===----------------------------------------------------------------------===//
28
29// Define a template that can be specialized by smart pointers to reflect the
30// fact that they are automatically dereferenced, and are not involved with the
31// template selection process... the default implementation is a noop.
32//
33template<typename From> struct simplify_type {
34 using SimpleType = From; // The real type this represents...
35
36 // An accessor to get the real value...
37 static SimpleType &getSimplifiedValue(From &Val) { return Val; }
38};
39
40template<typename From> struct simplify_type<const From> {
41 using NonConstSimpleType = typename simplify_type<From>::SimpleType;
42 using SimpleType =
43 typename add_const_past_pointer<NonConstSimpleType>::type;
44 using RetType =
45 typename add_lvalue_reference_if_not_pointer<SimpleType>::type;
46
47 static RetType getSimplifiedValue(const From& Val) {
48 return simplify_type<From>::getSimplifiedValue(const_cast<From&>(Val));
49 }
50};
51
52// The core of the implementation of isa<X> is here; To and From should be
53// the names of classes. This template can be specialized to customize the
54// implementation of isa<> without rewriting it from scratch.
55template <typename To, typename From, typename Enabler = void>
56struct isa_impl {
57 static inline bool doit(const From &Val) {
58 return To::classof(&Val);
59 }
60};
61
62/// Always allow upcasts, and perform no dynamic check for them.
63template <typename To, typename From>
64struct isa_impl<To, From, std::enable_if_t<std::is_base_of<To, From>::value>> {
65 static inline bool doit(const From &) { return true; }
66};
67
68template <typename To, typename From> struct isa_impl_cl {
69 static inline bool doit(const From &Val) {
70 return isa_impl<To, From>::doit(Val);
71 }
72};
73
74template <typename To, typename From> struct isa_impl_cl<To, const From> {
75 static inline bool doit(const From &Val) {
76 return isa_impl<To, From>::doit(Val);
77 }
78};
79
80template <typename To, typename From>
81struct isa_impl_cl<To, const std::unique_ptr<From>> {
82 static inline bool doit(const std::unique_ptr<From> &Val) {
83 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/Casting.h"
, 83, __extension__ __PRETTY_FUNCTION__))
;
84 return isa_impl_cl<To, From>::doit(*Val);
85 }
86};
87
88template <typename To, typename From> struct isa_impl_cl<To, From*> {
89 static inline bool doit(const From *Val) {
90 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/Casting.h"
, 90, __extension__ __PRETTY_FUNCTION__))
;
91 return isa_impl<To, From>::doit(*Val);
92 }
93};
94
95template <typename To, typename From> struct isa_impl_cl<To, From*const> {
96 static inline bool doit(const From *Val) {
97 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/Casting.h"
, 97, __extension__ __PRETTY_FUNCTION__))
;
98 return isa_impl<To, From>::doit(*Val);
99 }
100};
101
102template <typename To, typename From> struct isa_impl_cl<To, const From*> {
103 static inline bool doit(const From *Val) {
104 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/Casting.h"
, 104, __extension__ __PRETTY_FUNCTION__))
;
105 return isa_impl<To, From>::doit(*Val);
106 }
107};
108
109template <typename To, typename From> struct isa_impl_cl<To, const From*const> {
110 static inline bool doit(const From *Val) {
111 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/Casting.h"
, 111, __extension__ __PRETTY_FUNCTION__))
;
112 return isa_impl<To, From>::doit(*Val);
113 }
114};
115
116template<typename To, typename From, typename SimpleFrom>
117struct isa_impl_wrap {
118 // When From != SimplifiedType, we can simplify the type some more by using
119 // the simplify_type template.
120 static bool doit(const From &Val) {
121 return isa_impl_wrap<To, SimpleFrom,
122 typename simplify_type<SimpleFrom>::SimpleType>::doit(
123 simplify_type<const From>::getSimplifiedValue(Val));
124 }
125};
126
127template<typename To, typename FromTy>
128struct isa_impl_wrap<To, FromTy, FromTy> {
129 // When From == SimpleType, we are as simple as we are going to get.
130 static bool doit(const FromTy &Val) {
131 return isa_impl_cl<To,FromTy>::doit(Val);
132 }
133};
134
135// isa<X> - Return true if the parameter to the template is an instance of one
136// of the template type arguments. Used like this:
137//
138// if (isa<Type>(myVal)) { ... }
139// if (isa<Type0, Type1, Type2>(myVal)) { ... }
140//
141template <class X, class Y> LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isa(const Y &Val) {
142 return isa_impl_wrap<X, const Y,
143 typename simplify_type<const Y>::SimpleType>::doit(Val);
144}
145
146template <typename First, typename Second, typename... Rest, typename Y>
147LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isa(const Y &Val) {
148 return isa<First>(Val) || isa<Second, Rest...>(Val);
149}
150
151// isa_and_nonnull<X> - Functionally identical to isa, except that a null value
152// is accepted.
153//
154template <typename... X, class Y>
155LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isa_and_nonnull(const Y &Val) {
156 if (!Val)
157 return false;
158 return isa<X...>(Val);
159}
160
161//===----------------------------------------------------------------------===//
162// cast<x> Support Templates
163//===----------------------------------------------------------------------===//
164
165template<class To, class From> struct cast_retty;
166
167// Calculate what type the 'cast' function should return, based on a requested
168// type of To and a source type of From.
169template<class To, class From> struct cast_retty_impl {
170 using ret_type = To &; // Normal case, return Ty&
171};
172template<class To, class From> struct cast_retty_impl<To, const From> {
173 using ret_type = const To &; // Normal case, return Ty&
174};
175
176template<class To, class From> struct cast_retty_impl<To, From*> {
177 using ret_type = To *; // Pointer arg case, return Ty*
178};
179
180template<class To, class From> struct cast_retty_impl<To, const From*> {
181 using ret_type = const To *; // Constant pointer arg case, return const Ty*
182};
183
184template<class To, class From> struct cast_retty_impl<To, const From*const> {
185 using ret_type = const To *; // Constant pointer arg case, return const Ty*
186};
187
188template <class To, class From>
189struct cast_retty_impl<To, std::unique_ptr<From>> {
190private:
191 using PointerType = typename cast_retty_impl<To, From *>::ret_type;
192 using ResultType = std::remove_pointer_t<PointerType>;
193
194public:
195 using ret_type = std::unique_ptr<ResultType>;
196};
197
198template<class To, class From, class SimpleFrom>
199struct cast_retty_wrap {
200 // When the simplified type and the from type are not the same, use the type
201 // simplifier to reduce the type, then reuse cast_retty_impl to get the
202 // resultant type.
203 using ret_type = typename cast_retty<To, SimpleFrom>::ret_type;
204};
205
206template<class To, class FromTy>
207struct cast_retty_wrap<To, FromTy, FromTy> {
208 // When the simplified type is equal to the from type, use it directly.
209 using ret_type = typename cast_retty_impl<To,FromTy>::ret_type;
210};
211
212template<class To, class From>
213struct cast_retty {
214 using ret_type = typename cast_retty_wrap<
215 To, From, typename simplify_type<From>::SimpleType>::ret_type;
216};
217
218// Ensure the non-simple values are converted using the simplify_type template
219// that may be specialized by smart pointers...
220//
221template<class To, class From, class SimpleFrom> struct cast_convert_val {
222 // This is not a simple type, use the template to simplify it...
223 static typename cast_retty<To, From>::ret_type doit(From &Val) {
224 return cast_convert_val<To, SimpleFrom,
21
Calling 'cast_convert_val::doit'
24
Returning from 'cast_convert_val::doit'
25
Returning pointer
225 typename simplify_type<SimpleFrom>::SimpleType>::doit(
226 simplify_type<From>::getSimplifiedValue(Val));
19
Assigning value
20
Passing value via 1st parameter 'Val'
227 }
228};
229
230template<class To, class FromTy> struct cast_convert_val<To,FromTy,FromTy> {
231 // This _is_ a simple type, just cast it.
232 static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) {
233 typename cast_retty<To, FromTy>::ret_type Res2
22
'Res2' initialized here
234 = (typename cast_retty<To, FromTy>::ret_type)const_cast<FromTy&>(Val);
235 return Res2;
23
Returning pointer (loaded from 'Res2')
236 }
237};
238
239template <class X> struct is_simple_type {
240 static const bool value =
241 std::is_same<X, typename simplify_type<X>::SimpleType>::value;
242};
243
244// cast<X> - Return the argument parameter cast to the specified type. This
245// casting operator asserts that the type is correct, so it does not return null
246// on failure. It does not allow a null argument (use cast_or_null for that).
247// It is typically used like this:
248//
249// cast<Instruction>(myVal)->getParent()
250//
251template <class X, class Y>
252inline std::enable_if_t<!is_simple_type<Y>::value,
253 typename cast_retty<X, const Y>::ret_type>
254cast(const Y &Val) {
255 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/Casting.h"
, 255, __extension__ __PRETTY_FUNCTION__))
;
16
Assuming 'Val' is a 'BasicBlock'
17
'?' condition is true
256 return cast_convert_val<
18
Calling 'cast_convert_val::doit'
26
Returning from 'cast_convert_val::doit'
27
Returning pointer
257 X, const Y, typename simplify_type<const Y>::SimpleType>::doit(Val);
258}
259
260template <class X, class Y>
261inline typename cast_retty<X, Y>::ret_type cast(Y &Val) {
262 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/Casting.h"
, 262, __extension__ __PRETTY_FUNCTION__))
;
263 return cast_convert_val<X, Y,
264 typename simplify_type<Y>::SimpleType>::doit(Val);
265}
266
267template <class X, class Y>
268inline typename cast_retty<X, Y *>::ret_type cast(Y *Val) {
269 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/Casting.h"
, 269, __extension__ __PRETTY_FUNCTION__))
;
270 return cast_convert_val<X, Y*,
271 typename simplify_type<Y*>::SimpleType>::doit(Val);
272}
273
274template <class X, class Y>
275inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
276cast(std::unique_ptr<Y> &&Val) {
277 assert(isa<X>(Val.get()) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val.get()) &&
"cast<Ty>() argument of incompatible type!") ? void (0
) : __assert_fail ("isa<X>(Val.get()) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/Casting.h"
, 277, __extension__ __PRETTY_FUNCTION__))
;
278 using ret_type = typename cast_retty<X, std::unique_ptr<Y>>::ret_type;
279 return ret_type(
280 cast_convert_val<X, Y *, typename simplify_type<Y *>::SimpleType>::doit(
281 Val.release()));
282}
283
284// cast_or_null<X> - Functionally identical to cast, except that a null value is
285// accepted.
286//
287template <class X, class Y>
288LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<
289 !is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>
290cast_or_null(const Y &Val) {
291 if (!Val)
292 return nullptr;
293 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/Casting.h"
, 293, __extension__ __PRETTY_FUNCTION__))
;
294 return cast<X>(Val);
295}
296
297template <class X, class Y>
298LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<!is_simple_type<Y>::value,
299 typename cast_retty<X, Y>::ret_type>
300cast_or_null(Y &Val) {
301 if (!Val)
302 return nullptr;
303 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/Casting.h"
, 303, __extension__ __PRETTY_FUNCTION__))
;
304 return cast<X>(Val);
305}
306
307template <class X, class Y>
308LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type
309cast_or_null(Y *Val) {
310 if (!Val) return nullptr;
311 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/Casting.h"
, 311, __extension__ __PRETTY_FUNCTION__))
;
312 return cast<X>(Val);
313}
314
315template <class X, class Y>
316inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
317cast_or_null(std::unique_ptr<Y> &&Val) {
318 if (!Val)
319 return nullptr;
320 return cast<X>(std::move(Val));
321}
322
323// dyn_cast<X> - Return the argument parameter cast to the specified type. This
324// casting operator returns null if the argument is of the wrong type, so it can
325// be used to test for a type as well as cast if successful. This should be
326// used in the context of an if statement like this:
327//
328// if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... }
329//
330
331template <class X, class Y>
332LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<
333 !is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>
334dyn_cast(const Y &Val) {
335 return isa<X>(Val) ? cast<X>(Val) : nullptr;
336}
337
338template <class X, class Y>
339LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y>::ret_type dyn_cast(Y &Val) {
340 return isa<X>(Val) ? cast<X>(Val) : nullptr;
341}
342
343template <class X, class Y>
344LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type dyn_cast(Y *Val) {
345 return isa<X>(Val) ? cast<X>(Val) : nullptr;
346}
347
348// dyn_cast_or_null<X> - Functionally identical to dyn_cast, except that a null
349// value is accepted.
350//
351template <class X, class Y>
352LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<
353 !is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>
354dyn_cast_or_null(const Y &Val) {
355 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
356}
357
358template <class X, class Y>
359LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<!is_simple_type<Y>::value,
360 typename cast_retty<X, Y>::ret_type>
361dyn_cast_or_null(Y &Val) {
362 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
363}
364
365template <class X, class Y>
366LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type
367dyn_cast_or_null(Y *Val) {
368 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
369}
370
371// unique_dyn_cast<X> - Given a unique_ptr<Y>, try to return a unique_ptr<X>,
372// taking ownership of the input pointer iff isa<X>(Val) is true. If the
373// cast is successful, From refers to nullptr on exit and the casted value
374// is returned. If the cast is unsuccessful, the function returns nullptr
375// and From is unchanged.
376template <class X, class Y>
377LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast(std::unique_ptr<Y> &Val)
378 -> decltype(cast<X>(Val)) {
379 if (!isa<X>(Val))
380 return nullptr;
381 return cast<X>(std::move(Val));
382}
383
384template <class X, class Y>
385LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val) {
386 return unique_dyn_cast<X, Y>(Val);
387}
388
389// dyn_cast_or_null<X> - Functionally identical to unique_dyn_cast, except that
390// a null value is accepted.
391template <class X, class Y>
392LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &Val)
393 -> decltype(cast<X>(Val)) {
394 if (!Val)
395 return nullptr;
396 return unique_dyn_cast<X, Y>(Val);
397}
398
399template <class X, class Y>
400LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val) {
401 return unique_dyn_cast_or_null<X, Y>(Val);
402}
403
404} // end namespace llvm
405
406#endif // LLVM_SUPPORT_CASTING_H