Bug Summary

File:lib/CodeGen/WinEHPrepare.cpp
Location:line 2412, column 21
Description:Value stored to 'SuccBB' during its initialization is never read

Annotated Source Code

1//===-- WinEHPrepare - Prepare exception handling for code generation ---===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass lowers LLVM IR exception handling into something closer to what the
11// backend wants for functions using a personality function from a runtime
12// provided by MSVC. Functions with other personality functions are left alone
13// and may be prepared by other passes. In particular, all supported MSVC
14// personality functions require cleanup code to be outlined, and the C++
15// personality requires catch handler code to be outlined.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/CodeGen/Passes.h"
20#include "llvm/ADT/MapVector.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/SetVector.h"
24#include "llvm/ADT/Triple.h"
25#include "llvm/ADT/TinyPtrVector.h"
26#include "llvm/Analysis/LibCallSemantics.h"
27#include "llvm/Analysis/TargetLibraryInfo.h"
28#include "llvm/CodeGen/WinEHFuncInfo.h"
29#include "llvm/IR/Dominators.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/IRBuilder.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/Module.h"
35#include "llvm/IR/PatternMatch.h"
36#include "llvm/Pass.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/raw_ostream.h"
39#include "llvm/Transforms/Utils/BasicBlockUtils.h"
40#include "llvm/Transforms/Utils/Cloning.h"
41#include "llvm/Transforms/Utils/Local.h"
42#include "llvm/Transforms/Utils/PromoteMemToReg.h"
43#include <memory>
44
45using namespace llvm;
46using namespace llvm::PatternMatch;
47
48#define DEBUG_TYPE"winehprepare" "winehprepare"
49
50namespace {
51
52// This map is used to model frame variable usage during outlining, to
53// construct a structure type to hold the frame variables in a frame
54// allocation block, and to remap the frame variable allocas (including
55// spill locations as needed) to GEPs that get the variable from the
56// frame allocation structure.
57typedef MapVector<Value *, TinyPtrVector<AllocaInst *>> FrameVarInfoMap;
58
59// TinyPtrVector cannot hold nullptr, so we need our own sentinel that isn't
60// quite null.
61AllocaInst *getCatchObjectSentinel() {
62 return static_cast<AllocaInst *>(nullptr) + 1;
63}
64
65typedef SmallSet<BasicBlock *, 4> VisitedBlockSet;
66
67class LandingPadActions;
68class LandingPadMap;
69
70typedef DenseMap<const BasicBlock *, CatchHandler *> CatchHandlerMapTy;
71typedef DenseMap<const BasicBlock *, CleanupHandler *> CleanupHandlerMapTy;
72
73class WinEHPrepare : public FunctionPass {
74public:
75 static char ID; // Pass identification, replacement for typeid.
76 WinEHPrepare(const TargetMachine *TM = nullptr)
77 : FunctionPass(ID) {
78 if (TM)
79 TheTriple = TM->getTargetTriple();
80 }
81
82 bool runOnFunction(Function &Fn) override;
83
84 bool doFinalization(Module &M) override;
85
86 void getAnalysisUsage(AnalysisUsage &AU) const override;
87
88 const char *getPassName() const override {
89 return "Windows exception handling preparation";
90 }
91
92private:
93 bool prepareExceptionHandlers(Function &F,
94 SmallVectorImpl<LandingPadInst *> &LPads);
95 void identifyEHBlocks(Function &F, SmallVectorImpl<LandingPadInst *> &LPads);
96 void promoteLandingPadValues(LandingPadInst *LPad);
97 void demoteValuesLiveAcrossHandlers(Function &F,
98 SmallVectorImpl<LandingPadInst *> &LPads);
99 void findSEHEHReturnPoints(Function &F,
100 SetVector<BasicBlock *> &EHReturnBlocks);
101 void findCXXEHReturnPoints(Function &F,
102 SetVector<BasicBlock *> &EHReturnBlocks);
103 void getPossibleReturnTargets(Function *ParentF, Function *HandlerF,
104 SetVector<BasicBlock*> &Targets);
105 void completeNestedLandingPad(Function *ParentFn,
106 LandingPadInst *OutlinedLPad,
107 const LandingPadInst *OriginalLPad,
108 FrameVarInfoMap &VarInfo);
109 Function *createHandlerFunc(Type *RetTy, const Twine &Name, Module *M,
110 Value *&ParentFP);
111 bool outlineHandler(ActionHandler *Action, Function *SrcFn,
112 LandingPadInst *LPad, BasicBlock *StartBB,
113 FrameVarInfoMap &VarInfo);
114 void addStubInvokeToHandlerIfNeeded(Function *Handler);
115
116 void mapLandingPadBlocks(LandingPadInst *LPad, LandingPadActions &Actions);
117 CatchHandler *findCatchHandler(BasicBlock *BB, BasicBlock *&NextBB,
118 VisitedBlockSet &VisitedBlocks);
119 void findCleanupHandlers(LandingPadActions &Actions, BasicBlock *StartBB,
120 BasicBlock *EndBB);
121
122 void processSEHCatchHandler(CatchHandler *Handler, BasicBlock *StartBB);
123
124 Triple TheTriple;
125
126 // All fields are reset by runOnFunction.
127 DominatorTree *DT = nullptr;
128 const TargetLibraryInfo *LibInfo = nullptr;
129 EHPersonality Personality = EHPersonality::Unknown;
130 CatchHandlerMapTy CatchHandlerMap;
131 CleanupHandlerMapTy CleanupHandlerMap;
132 DenseMap<const LandingPadInst *, LandingPadMap> LPadMaps;
133 SmallPtrSet<BasicBlock *, 4> NormalBlocks;
134 SmallPtrSet<BasicBlock *, 4> EHBlocks;
135 SetVector<BasicBlock *> EHReturnBlocks;
136
137 // This maps landing pad instructions found in outlined handlers to
138 // the landing pad instruction in the parent function from which they
139 // were cloned. The cloned/nested landing pad is used as the key
140 // because the landing pad may be cloned into multiple handlers.
141 // This map will be used to add the llvm.eh.actions call to the nested
142 // landing pads after all handlers have been outlined.
143 DenseMap<LandingPadInst *, const LandingPadInst *> NestedLPtoOriginalLP;
144
145 // This maps blocks in the parent function which are destinations of
146 // catch handlers to cloned blocks in (other) outlined handlers. This
147 // handles the case where a nested landing pads has a catch handler that
148 // returns to a handler function rather than the parent function.
149 // The original block is used as the key here because there should only
150 // ever be one handler function from which the cloned block is not pruned.
151 // The original block will be pruned from the parent function after all
152 // handlers have been outlined. This map will be used to adjust the
153 // return instructions of handlers which return to the block that was
154 // outlined into a handler. This is done after all handlers have been
155 // outlined but before the outlined code is pruned from the parent function.
156 DenseMap<const BasicBlock *, BasicBlock *> LPadTargetBlocks;
157
158 // Map from outlined handler to call to llvm.frameaddress(1). Only used for
159 // 32-bit EH.
160 DenseMap<Function *, Value *> HandlerToParentFP;
161
162 AllocaInst *SEHExceptionCodeSlot = nullptr;
163};
164
165class WinEHFrameVariableMaterializer : public ValueMaterializer {
166public:
167 WinEHFrameVariableMaterializer(Function *OutlinedFn, Value *ParentFP,
168 FrameVarInfoMap &FrameVarInfo);
169 ~WinEHFrameVariableMaterializer() override {}
170
171 Value *materializeValueFor(Value *V) override;
172
173 void escapeCatchObject(Value *V);
174
175private:
176 FrameVarInfoMap &FrameVarInfo;
177 IRBuilder<> Builder;
178};
179
180class LandingPadMap {
181public:
182 LandingPadMap() : OriginLPad(nullptr) {}
183 void mapLandingPad(const LandingPadInst *LPad);
184
185 bool isInitialized() { return OriginLPad != nullptr; }
186
187 bool isOriginLandingPadBlock(const BasicBlock *BB) const;
188 bool isLandingPadSpecificInst(const Instruction *Inst) const;
189
190 void remapEHValues(ValueToValueMapTy &VMap, Value *EHPtrValue,
191 Value *SelectorValue) const;
192
193private:
194 const LandingPadInst *OriginLPad;
195 // We will normally only see one of each of these instructions, but
196 // if more than one occurs for some reason we can handle that.
197 TinyPtrVector<const ExtractValueInst *> ExtractedEHPtrs;
198 TinyPtrVector<const ExtractValueInst *> ExtractedSelectors;
199};
200
201class WinEHCloningDirectorBase : public CloningDirector {
202public:
203 WinEHCloningDirectorBase(Function *HandlerFn, Value *ParentFP,
204 FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap)
205 : Materializer(HandlerFn, ParentFP, VarInfo),
206 SelectorIDType(Type::getInt32Ty(HandlerFn->getContext())),
207 Int8PtrType(Type::getInt8PtrTy(HandlerFn->getContext())),
208 LPadMap(LPadMap), ParentFP(ParentFP) {}
209
210 CloningAction handleInstruction(ValueToValueMapTy &VMap,
211 const Instruction *Inst,
212 BasicBlock *NewBB) override;
213
214 virtual CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
215 const Instruction *Inst,
216 BasicBlock *NewBB) = 0;
217 virtual CloningAction handleEndCatch(ValueToValueMapTy &VMap,
218 const Instruction *Inst,
219 BasicBlock *NewBB) = 0;
220 virtual CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
221 const Instruction *Inst,
222 BasicBlock *NewBB) = 0;
223 virtual CloningAction handleIndirectBr(ValueToValueMapTy &VMap,
224 const IndirectBrInst *IBr,
225 BasicBlock *NewBB) = 0;
226 virtual CloningAction handleInvoke(ValueToValueMapTy &VMap,
227 const InvokeInst *Invoke,
228 BasicBlock *NewBB) = 0;
229 virtual CloningAction handleResume(ValueToValueMapTy &VMap,
230 const ResumeInst *Resume,
231 BasicBlock *NewBB) = 0;
232 virtual CloningAction handleCompare(ValueToValueMapTy &VMap,
233 const CmpInst *Compare,
234 BasicBlock *NewBB) = 0;
235 virtual CloningAction handleLandingPad(ValueToValueMapTy &VMap,
236 const LandingPadInst *LPad,
237 BasicBlock *NewBB) = 0;
238
239 ValueMaterializer *getValueMaterializer() override { return &Materializer; }
240
241protected:
242 WinEHFrameVariableMaterializer Materializer;
243 Type *SelectorIDType;
244 Type *Int8PtrType;
245 LandingPadMap &LPadMap;
246
247 /// The value representing the parent frame pointer.
248 Value *ParentFP;
249};
250
251class WinEHCatchDirector : public WinEHCloningDirectorBase {
252public:
253 WinEHCatchDirector(
254 Function *CatchFn, Value *ParentFP, Value *Selector,
255 FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap,
256 DenseMap<LandingPadInst *, const LandingPadInst *> &NestedLPads,
257 DominatorTree *DT, SmallPtrSetImpl<BasicBlock *> &EHBlocks)
258 : WinEHCloningDirectorBase(CatchFn, ParentFP, VarInfo, LPadMap),
259 CurrentSelector(Selector->stripPointerCasts()),
260 ExceptionObjectVar(nullptr), NestedLPtoOriginalLP(NestedLPads),
261 DT(DT), EHBlocks(EHBlocks) {}
262
263 CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
264 const Instruction *Inst,
265 BasicBlock *NewBB) override;
266 CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst,
267 BasicBlock *NewBB) override;
268 CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
269 const Instruction *Inst,
270 BasicBlock *NewBB) override;
271 CloningAction handleIndirectBr(ValueToValueMapTy &VMap,
272 const IndirectBrInst *IBr,
273 BasicBlock *NewBB) override;
274 CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke,
275 BasicBlock *NewBB) override;
276 CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume,
277 BasicBlock *NewBB) override;
278 CloningAction handleCompare(ValueToValueMapTy &VMap, const CmpInst *Compare,
279 BasicBlock *NewBB) override;
280 CloningAction handleLandingPad(ValueToValueMapTy &VMap,
281 const LandingPadInst *LPad,
282 BasicBlock *NewBB) override;
283
284 Value *getExceptionVar() { return ExceptionObjectVar; }
285 TinyPtrVector<BasicBlock *> &getReturnTargets() { return ReturnTargets; }
286
287private:
288 Value *CurrentSelector;
289
290 Value *ExceptionObjectVar;
291 TinyPtrVector<BasicBlock *> ReturnTargets;
292
293 // This will be a reference to the field of the same name in the WinEHPrepare
294 // object which instantiates this WinEHCatchDirector object.
295 DenseMap<LandingPadInst *, const LandingPadInst *> &NestedLPtoOriginalLP;
296 DominatorTree *DT;
297 SmallPtrSetImpl<BasicBlock *> &EHBlocks;
298};
299
300class WinEHCleanupDirector : public WinEHCloningDirectorBase {
301public:
302 WinEHCleanupDirector(Function *CleanupFn, Value *ParentFP,
303 FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap)
304 : WinEHCloningDirectorBase(CleanupFn, ParentFP, VarInfo,
305 LPadMap) {}
306
307 CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
308 const Instruction *Inst,
309 BasicBlock *NewBB) override;
310 CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst,
311 BasicBlock *NewBB) override;
312 CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
313 const Instruction *Inst,
314 BasicBlock *NewBB) override;
315 CloningAction handleIndirectBr(ValueToValueMapTy &VMap,
316 const IndirectBrInst *IBr,
317 BasicBlock *NewBB) override;
318 CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke,
319 BasicBlock *NewBB) override;
320 CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume,
321 BasicBlock *NewBB) override;
322 CloningAction handleCompare(ValueToValueMapTy &VMap, const CmpInst *Compare,
323 BasicBlock *NewBB) override;
324 CloningAction handleLandingPad(ValueToValueMapTy &VMap,
325 const LandingPadInst *LPad,
326 BasicBlock *NewBB) override;
327};
328
329class LandingPadActions {
330public:
331 LandingPadActions() : HasCleanupHandlers(false) {}
332
333 void insertCatchHandler(CatchHandler *Action) { Actions.push_back(Action); }
334 void insertCleanupHandler(CleanupHandler *Action) {
335 Actions.push_back(Action);
336 HasCleanupHandlers = true;
337 }
338
339 bool includesCleanup() const { return HasCleanupHandlers; }
340
341 SmallVectorImpl<ActionHandler *> &actions() { return Actions; }
342 SmallVectorImpl<ActionHandler *>::iterator begin() { return Actions.begin(); }
343 SmallVectorImpl<ActionHandler *>::iterator end() { return Actions.end(); }
344
345private:
346 // Note that this class does not own the ActionHandler objects in this vector.
347 // The ActionHandlers are owned by the CatchHandlerMap and CleanupHandlerMap
348 // in the WinEHPrepare class.
349 SmallVector<ActionHandler *, 4> Actions;
350 bool HasCleanupHandlers;
351};
352
353} // end anonymous namespace
354
355char WinEHPrepare::ID = 0;
356INITIALIZE_TM_PASS(WinEHPrepare, "winehprepare", "Prepare Windows exceptions",static void* initializeWinEHPreparePassOnce(PassRegistry &
Registry) { PassInfo *PI = new PassInfo("Prepare Windows exceptions"
, "winehprepare", & WinEHPrepare ::ID, PassInfo::NormalCtor_t
(callDefaultCtor< WinEHPrepare >), false, false, PassInfo
::TargetMachineCtor_t(callTargetMachineCtor< WinEHPrepare >
)); Registry.registerPass(*PI, true); return PI; } void llvm::
initializeWinEHPreparePass(PassRegistry &Registry) { static
volatile sys::cas_flag initialized = 0; sys::cas_flag old_val
= sys::CompareAndSwap(&initialized, 1, 0); if (old_val ==
0) { initializeWinEHPreparePassOnce(Registry); sys::MemoryFence
(); AnnotateIgnoreWritesBegin("/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 357); AnnotateHappensBefore("/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 357, &initialized); initialized = 2; AnnotateIgnoreWritesEnd
("/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 357); } else { sys::cas_flag tmp = initialized; sys::MemoryFence
(); while (tmp != 2) { tmp = initialized; sys::MemoryFence();
} } AnnotateHappensAfter("/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 357, &initialized); }
357 false, false)static void* initializeWinEHPreparePassOnce(PassRegistry &
Registry) { PassInfo *PI = new PassInfo("Prepare Windows exceptions"
, "winehprepare", & WinEHPrepare ::ID, PassInfo::NormalCtor_t
(callDefaultCtor< WinEHPrepare >), false, false, PassInfo
::TargetMachineCtor_t(callTargetMachineCtor< WinEHPrepare >
)); Registry.registerPass(*PI, true); return PI; } void llvm::
initializeWinEHPreparePass(PassRegistry &Registry) { static
volatile sys::cas_flag initialized = 0; sys::cas_flag old_val
= sys::CompareAndSwap(&initialized, 1, 0); if (old_val ==
0) { initializeWinEHPreparePassOnce(Registry); sys::MemoryFence
(); AnnotateIgnoreWritesBegin("/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 357); AnnotateHappensBefore("/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 357, &initialized); initialized = 2; AnnotateIgnoreWritesEnd
("/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 357); } else { sys::cas_flag tmp = initialized; sys::MemoryFence
(); while (tmp != 2) { tmp = initialized; sys::MemoryFence();
} } AnnotateHappensAfter("/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 357, &initialized); }
358
359FunctionPass *llvm::createWinEHPass(const TargetMachine *TM) {
360 return new WinEHPrepare(TM);
361}
362
363bool WinEHPrepare::runOnFunction(Function &Fn) {
364 // No need to prepare outlined handlers.
365 if (Fn.hasFnAttribute("wineh-parent"))
366 return false;
367
368 SmallVector<LandingPadInst *, 4> LPads;
369 SmallVector<ResumeInst *, 4> Resumes;
370 for (BasicBlock &BB : Fn) {
371 if (auto *LP = BB.getLandingPadInst())
372 LPads.push_back(LP);
373 if (auto *Resume = dyn_cast<ResumeInst>(BB.getTerminator()))
374 Resumes.push_back(Resume);
375 }
376
377 // No need to prepare functions that lack landing pads.
378 if (LPads.empty())
379 return false;
380
381 // Classify the personality to see what kind of preparation we need.
382 Personality = classifyEHPersonality(Fn.getPersonalityFn());
383
384 // Do nothing if this is not an MSVC personality.
385 if (!isMSVCEHPersonality(Personality))
386 return false;
387
388 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
389 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
390
391 // If there were any landing pads, prepareExceptionHandlers will make changes.
392 prepareExceptionHandlers(Fn, LPads);
393 return true;
394}
395
396bool WinEHPrepare::doFinalization(Module &M) { return false; }
397
398void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {
399 AU.addRequired<DominatorTreeWrapperPass>();
400 AU.addRequired<TargetLibraryInfoWrapperPass>();
401}
402
403static bool isSelectorDispatch(BasicBlock *BB, BasicBlock *&CatchHandler,
404 Constant *&Selector, BasicBlock *&NextBB);
405
406// Finds blocks reachable from the starting set Worklist. Does not follow unwind
407// edges or blocks listed in StopPoints.
408static void findReachableBlocks(SmallPtrSetImpl<BasicBlock *> &ReachableBBs,
409 SetVector<BasicBlock *> &Worklist,
410 const SetVector<BasicBlock *> *StopPoints) {
411 while (!Worklist.empty()) {
412 BasicBlock *BB = Worklist.pop_back_val();
413
414 // Don't cross blocks that we should stop at.
415 if (StopPoints && StopPoints->count(BB))
416 continue;
417
418 if (!ReachableBBs.insert(BB).second)
419 continue; // Already visited.
420
421 // Don't follow unwind edges of invokes.
422 if (auto *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
423 Worklist.insert(II->getNormalDest());
424 continue;
425 }
426
427 // Otherwise, follow all successors.
428 Worklist.insert(succ_begin(BB), succ_end(BB));
429 }
430}
431
432// Attempt to find an instruction where a block can be split before
433// a call to llvm.eh.begincatch and its operands. If the block
434// begins with the begincatch call or one of its adjacent operands
435// the block will not be split.
436static Instruction *findBeginCatchSplitPoint(BasicBlock *BB,
437 IntrinsicInst *II) {
438 // If the begincatch call is already the first instruction in the block,
439 // don't split.
440 Instruction *FirstNonPHI = BB->getFirstNonPHI();
441 if (II == FirstNonPHI)
442 return nullptr;
443
444 // If either operand is in the same basic block as the instruction and
445 // isn't used by another instruction before the begincatch call, include it
446 // in the split block.
447 auto *Op0 = dyn_cast<Instruction>(II->getOperand(0));
448 auto *Op1 = dyn_cast<Instruction>(II->getOperand(1));
449
450 Instruction *I = II->getPrevNode();
451 Instruction *LastI = II;
452
453 while (I == Op0 || I == Op1) {
454 // If the block begins with one of the operands and there are no other
455 // instructions between the operand and the begincatch call, don't split.
456 if (I == FirstNonPHI)
457 return nullptr;
458
459 LastI = I;
460 I = I->getPrevNode();
461 }
462
463 // If there is at least one instruction in the block before the begincatch
464 // call and its operands, split the block at either the begincatch or
465 // its operand.
466 return LastI;
467}
468
469/// Find all points where exceptional control rejoins normal control flow via
470/// llvm.eh.endcatch. Add them to the normal bb reachability worklist.
471void WinEHPrepare::findCXXEHReturnPoints(
472 Function &F, SetVector<BasicBlock *> &EHReturnBlocks) {
473 for (auto BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) {
474 BasicBlock *BB = BBI;
475 for (Instruction &I : *BB) {
476 if (match(&I, m_Intrinsic<Intrinsic::eh_begincatch>())) {
477 Instruction *SplitPt =
478 findBeginCatchSplitPoint(BB, cast<IntrinsicInst>(&I));
479 if (SplitPt) {
480 // Split the block before the llvm.eh.begincatch call to allow
481 // cleanup and catch code to be distinguished later.
482 // Do not update BBI because we still need to process the
483 // portion of the block that we are splitting off.
484 SplitBlock(BB, SplitPt, DT);
485 break;
486 }
487 }
488 if (match(&I, m_Intrinsic<Intrinsic::eh_endcatch>())) {
489 // Split the block after the call to llvm.eh.endcatch if there is
490 // anything other than an unconditional branch, or if the successor
491 // starts with a phi.
492 auto *Br = dyn_cast<BranchInst>(I.getNextNode());
493 if (!Br || !Br->isUnconditional() ||
494 isa<PHINode>(Br->getSuccessor(0)->begin())) {
495 DEBUG(dbgs() << "splitting block " << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "splitting block " <<
BB->getName() << " with llvm.eh.endcatch\n"; } } while
(0)
496 << " with llvm.eh.endcatch\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "splitting block " <<
BB->getName() << " with llvm.eh.endcatch\n"; } } while
(0)
;
497 BBI = SplitBlock(BB, I.getNextNode(), DT);
498 }
499 // The next BB is normal control flow.
500 EHReturnBlocks.insert(BB->getTerminator()->getSuccessor(0));
501 break;
502 }
503 }
504 }
505}
506
507static bool isCatchAllLandingPad(const BasicBlock *BB) {
508 const LandingPadInst *LP = BB->getLandingPadInst();
509 if (!LP)
510 return false;
511 unsigned N = LP->getNumClauses();
512 return (N > 0 && LP->isCatch(N - 1) &&
513 isa<ConstantPointerNull>(LP->getClause(N - 1)));
514}
515
516/// Find all points where exceptions control rejoins normal control flow via
517/// selector dispatch.
518void WinEHPrepare::findSEHEHReturnPoints(
519 Function &F, SetVector<BasicBlock *> &EHReturnBlocks) {
520 for (auto BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) {
521 BasicBlock *BB = BBI;
522 // If the landingpad is a catch-all, treat the whole lpad as if it is
523 // reachable from normal control flow.
524 // FIXME: This is imprecise. We need a better way of identifying where a
525 // catch-all starts and cleanups stop. As far as LLVM is concerned, there
526 // is no difference.
527 if (isCatchAllLandingPad(BB)) {
528 EHReturnBlocks.insert(BB);
529 continue;
530 }
531
532 BasicBlock *CatchHandler;
533 BasicBlock *NextBB;
534 Constant *Selector;
535 if (isSelectorDispatch(BB, CatchHandler, Selector, NextBB)) {
536 // Split the edge if there is a phi node. Returning from EH to a phi node
537 // is just as impossible as having a phi after an indirectbr.
538 if (isa<PHINode>(CatchHandler->begin())) {
539 DEBUG(dbgs() << "splitting EH return edge from " << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "splitting EH return edge from "
<< BB->getName() << " to " << CatchHandler
->getName() << '\n'; } } while (0)
540 << " to " << CatchHandler->getName() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "splitting EH return edge from "
<< BB->getName() << " to " << CatchHandler
->getName() << '\n'; } } while (0)
;
541 BBI = CatchHandler = SplitCriticalEdge(
542 BB, std::find(succ_begin(BB), succ_end(BB), CatchHandler));
543 }
544 EHReturnBlocks.insert(CatchHandler);
545 }
546 }
547}
548
549void WinEHPrepare::identifyEHBlocks(Function &F,
550 SmallVectorImpl<LandingPadInst *> &LPads) {
551 DEBUG(dbgs() << "Demoting values live across exception handlers in function "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Demoting values live across exception handlers in function "
<< F.getName() << '\n'; } } while (0)
552 << F.getName() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Demoting values live across exception handlers in function "
<< F.getName() << '\n'; } } while (0)
;
553
554 // Build a set of all non-exceptional blocks and exceptional blocks.
555 // - Non-exceptional blocks are blocks reachable from the entry block while
556 // not following invoke unwind edges.
557 // - Exceptional blocks are blocks reachable from landingpads. Analysis does
558 // not follow llvm.eh.endcatch blocks, which mark a transition from
559 // exceptional to normal control.
560
561 if (Personality == EHPersonality::MSVC_CXX)
562 findCXXEHReturnPoints(F, EHReturnBlocks);
563 else
564 findSEHEHReturnPoints(F, EHReturnBlocks);
565
566 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "identified the following blocks as EH return points:\n"
; for (BasicBlock *BB : EHReturnBlocks) dbgs() << " " <<
BB->getName() << '\n'; }; } } while (0)
567 dbgs() << "identified the following blocks as EH return points:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "identified the following blocks as EH return points:\n"
; for (BasicBlock *BB : EHReturnBlocks) dbgs() << " " <<
BB->getName() << '\n'; }; } } while (0)
568 for (BasicBlock *BB : EHReturnBlocks)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "identified the following blocks as EH return points:\n"
; for (BasicBlock *BB : EHReturnBlocks) dbgs() << " " <<
BB->getName() << '\n'; }; } } while (0)
569 dbgs() << " " << BB->getName() << '\n';do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "identified the following blocks as EH return points:\n"
; for (BasicBlock *BB : EHReturnBlocks) dbgs() << " " <<
BB->getName() << '\n'; }; } } while (0)
570 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "identified the following blocks as EH return points:\n"
; for (BasicBlock *BB : EHReturnBlocks) dbgs() << " " <<
BB->getName() << '\n'; }; } } while (0)
;
571
572// Join points should not have phis at this point, unless they are a
573// landingpad, in which case we will demote their phis later.
574#ifndef NDEBUG
575 for (BasicBlock *BB : EHReturnBlocks)
576 assert((BB->isLandingPad() || !isa<PHINode>(BB->begin())) &&(((BB->isLandingPad() || !isa<PHINode>(BB->begin(
))) && "non-lpad EH return block has phi") ? static_cast
<void> (0) : __assert_fail ("(BB->isLandingPad() || !isa<PHINode>(BB->begin())) && \"non-lpad EH return block has phi\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 577, __PRETTY_FUNCTION__))
577 "non-lpad EH return block has phi")(((BB->isLandingPad() || !isa<PHINode>(BB->begin(
))) && "non-lpad EH return block has phi") ? static_cast
<void> (0) : __assert_fail ("(BB->isLandingPad() || !isa<PHINode>(BB->begin())) && \"non-lpad EH return block has phi\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 577, __PRETTY_FUNCTION__))
;
578#endif
579
580 // Normal blocks are the blocks reachable from the entry block and all EH
581 // return points.
582 SetVector<BasicBlock *> Worklist;
583 Worklist = EHReturnBlocks;
584 Worklist.insert(&F.getEntryBlock());
585 findReachableBlocks(NormalBlocks, Worklist, nullptr);
586 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "marked the following blocks as normal:\n"
; for (BasicBlock *BB : NormalBlocks) dbgs() << " " <<
BB->getName() << '\n'; }; } } while (0)
587 dbgs() << "marked the following blocks as normal:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "marked the following blocks as normal:\n"
; for (BasicBlock *BB : NormalBlocks) dbgs() << " " <<
BB->getName() << '\n'; }; } } while (0)
588 for (BasicBlock *BB : NormalBlocks)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "marked the following blocks as normal:\n"
; for (BasicBlock *BB : NormalBlocks) dbgs() << " " <<
BB->getName() << '\n'; }; } } while (0)
589 dbgs() << " " << BB->getName() << '\n';do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "marked the following blocks as normal:\n"
; for (BasicBlock *BB : NormalBlocks) dbgs() << " " <<
BB->getName() << '\n'; }; } } while (0)
590 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "marked the following blocks as normal:\n"
; for (BasicBlock *BB : NormalBlocks) dbgs() << " " <<
BB->getName() << '\n'; }; } } while (0)
;
591
592 // Exceptional blocks are the blocks reachable from landingpads that don't
593 // cross EH return points.
594 Worklist.clear();
595 for (auto *LPI : LPads)
596 Worklist.insert(LPI->getParent());
597 findReachableBlocks(EHBlocks, Worklist, &EHReturnBlocks);
598 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "marked the following blocks as exceptional:\n"
; for (BasicBlock *BB : EHBlocks) dbgs() << " " <<
BB->getName() << '\n'; }; } } while (0)
599 dbgs() << "marked the following blocks as exceptional:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "marked the following blocks as exceptional:\n"
; for (BasicBlock *BB : EHBlocks) dbgs() << " " <<
BB->getName() << '\n'; }; } } while (0)
600 for (BasicBlock *BB : EHBlocks)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "marked the following blocks as exceptional:\n"
; for (BasicBlock *BB : EHBlocks) dbgs() << " " <<
BB->getName() << '\n'; }; } } while (0)
601 dbgs() << " " << BB->getName() << '\n';do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "marked the following blocks as exceptional:\n"
; for (BasicBlock *BB : EHBlocks) dbgs() << " " <<
BB->getName() << '\n'; }; } } while (0)
602 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "marked the following blocks as exceptional:\n"
; for (BasicBlock *BB : EHBlocks) dbgs() << " " <<
BB->getName() << '\n'; }; } } while (0)
;
603
604}
605
606/// Ensure that all values live into and out of exception handlers are stored
607/// in memory.
608/// FIXME: This falls down when values are defined in one handler and live into
609/// another handler. For example, a cleanup defines a value used only by a
610/// catch handler.
611void WinEHPrepare::demoteValuesLiveAcrossHandlers(
612 Function &F, SmallVectorImpl<LandingPadInst *> &LPads) {
613 DEBUG(dbgs() << "Demoting values live across exception handlers in function "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Demoting values live across exception handlers in function "
<< F.getName() << '\n'; } } while (0)
614 << F.getName() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Demoting values live across exception handlers in function "
<< F.getName() << '\n'; } } while (0)
;
615
616 // identifyEHBlocks() should have been called before this function.
617 assert(!NormalBlocks.empty())((!NormalBlocks.empty()) ? static_cast<void> (0) : __assert_fail
("!NormalBlocks.empty()", "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 617, __PRETTY_FUNCTION__))
;
618
619 SetVector<Argument *> ArgsToDemote;
620 SetVector<Instruction *> InstrsToDemote;
621 for (BasicBlock &BB : F) {
622 bool IsNormalBB = NormalBlocks.count(&BB);
623 bool IsEHBB = EHBlocks.count(&BB);
624 if (!IsNormalBB && !IsEHBB)
625 continue; // Blocks that are neither normal nor EH are unreachable.
626 for (Instruction &I : BB) {
627 for (Value *Op : I.operands()) {
628 // Don't demote static allocas, constants, and labels.
629 if (isa<Constant>(Op) || isa<BasicBlock>(Op) || isa<InlineAsm>(Op))
630 continue;
631 auto *AI = dyn_cast<AllocaInst>(Op);
632 if (AI && AI->isStaticAlloca())
633 continue;
634
635 if (auto *Arg = dyn_cast<Argument>(Op)) {
636 if (IsEHBB) {
637 DEBUG(dbgs() << "Demoting argument " << *Argdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Demoting argument " <<
*Arg << " used by EH instr: " << I << "\n"
; } } while (0)
638 << " used by EH instr: " << I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Demoting argument " <<
*Arg << " used by EH instr: " << I << "\n"
; } } while (0)
;
639 ArgsToDemote.insert(Arg);
640 }
641 continue;
642 }
643
644 auto *OpI = cast<Instruction>(Op);
645 BasicBlock *OpBB = OpI->getParent();
646 // If a value is produced and consumed in the same BB, we don't need to
647 // demote it.
648 if (OpBB == &BB)
649 continue;
650 bool IsOpNormalBB = NormalBlocks.count(OpBB);
651 bool IsOpEHBB = EHBlocks.count(OpBB);
652 if (IsNormalBB != IsOpNormalBB || IsEHBB != IsOpEHBB) {
653 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "Demoting instruction live in-out from EH:\n"
; dbgs() << "Instr: " << *OpI << '\n'; dbgs
() << "User: " << I << '\n'; }; } } while (
0)
654 dbgs() << "Demoting instruction live in-out from EH:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "Demoting instruction live in-out from EH:\n"
; dbgs() << "Instr: " << *OpI << '\n'; dbgs
() << "User: " << I << '\n'; }; } } while (
0)
655 dbgs() << "Instr: " << *OpI << '\n';do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "Demoting instruction live in-out from EH:\n"
; dbgs() << "Instr: " << *OpI << '\n'; dbgs
() << "User: " << I << '\n'; }; } } while (
0)
656 dbgs() << "User: " << I << '\n';do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "Demoting instruction live in-out from EH:\n"
; dbgs() << "Instr: " << *OpI << '\n'; dbgs
() << "User: " << I << '\n'; }; } } while (
0)
657 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "Demoting instruction live in-out from EH:\n"
; dbgs() << "Instr: " << *OpI << '\n'; dbgs
() << "User: " << I << '\n'; }; } } while (
0)
;
658 InstrsToDemote.insert(OpI);
659 }
660 }
661 }
662 }
663
664 // Demote values live into and out of handlers.
665 // FIXME: This demotion is inefficient. We should insert spills at the point
666 // of definition, insert one reload in each handler that uses the value, and
667 // insert reloads in the BB used to rejoin normal control flow.
668 Instruction *AllocaInsertPt = F.getEntryBlock().getFirstInsertionPt();
669 for (Instruction *I : InstrsToDemote)
670 DemoteRegToStack(*I, false, AllocaInsertPt);
671
672 // Demote arguments separately, and only for uses in EH blocks.
673 for (Argument *Arg : ArgsToDemote) {
674 auto *Slot = new AllocaInst(Arg->getType(), nullptr,
675 Arg->getName() + ".reg2mem", AllocaInsertPt);
676 SmallVector<User *, 4> Users(Arg->user_begin(), Arg->user_end());
677 for (User *U : Users) {
678 auto *I = dyn_cast<Instruction>(U);
679 if (I && EHBlocks.count(I->getParent())) {
680 auto *Reload = new LoadInst(Slot, Arg->getName() + ".reload", false, I);
681 U->replaceUsesOfWith(Arg, Reload);
682 }
683 }
684 new StoreInst(Arg, Slot, AllocaInsertPt);
685 }
686
687 // Demote landingpad phis, as the landingpad will be removed from the machine
688 // CFG.
689 for (LandingPadInst *LPI : LPads) {
690 BasicBlock *BB = LPI->getParent();
691 while (auto *Phi = dyn_cast<PHINode>(BB->begin()))
692 DemotePHIToStack(Phi, AllocaInsertPt);
693 }
694
695 DEBUG(dbgs() << "Demoted " << InstrsToDemote.size() << " instructions and "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Demoted " << InstrsToDemote
.size() << " instructions and " << ArgsToDemote.size
() << " arguments for WinEHPrepare\n\n"; } } while (0)
696 << ArgsToDemote.size() << " arguments for WinEHPrepare\n\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Demoted " << InstrsToDemote
.size() << " instructions and " << ArgsToDemote.size
() << " arguments for WinEHPrepare\n\n"; } } while (0)
;
697}
698
699bool WinEHPrepare::prepareExceptionHandlers(
700 Function &F, SmallVectorImpl<LandingPadInst *> &LPads) {
701 // Don't run on functions that are already prepared.
702 for (LandingPadInst *LPad : LPads) {
703 BasicBlock *LPadBB = LPad->getParent();
704 for (Instruction &Inst : *LPadBB)
705 if (match(&Inst, m_Intrinsic<Intrinsic::eh_actions>()))
706 return false;
707 }
708
709 identifyEHBlocks(F, LPads);
710 demoteValuesLiveAcrossHandlers(F, LPads);
711
712 // These containers are used to re-map frame variables that are used in
713 // outlined catch and cleanup handlers. They will be populated as the
714 // handlers are outlined.
715 FrameVarInfoMap FrameVarInfo;
716
717 bool HandlersOutlined = false;
718
719 Module *M = F.getParent();
720 LLVMContext &Context = M->getContext();
721
722 // Create a new function to receive the handler contents.
723 PointerType *Int8PtrType = Type::getInt8PtrTy(Context);
724 Type *Int32Type = Type::getInt32Ty(Context);
725 Function *ActionIntrin = Intrinsic::getDeclaration(M, Intrinsic::eh_actions);
726
727 if (isAsynchronousEHPersonality(Personality)) {
728 // FIXME: Switch the ehptr type to i32 and then switch this.
729 SEHExceptionCodeSlot =
730 new AllocaInst(Int8PtrType, nullptr, "seh_exception_code",
731 F.getEntryBlock().getFirstInsertionPt());
732 }
733
734 // In order to handle the case where one outlined catch handler returns
735 // to a block within another outlined catch handler that would otherwise
736 // be unreachable, we need to outline the nested landing pad before we
737 // outline the landing pad which encloses it.
738 if (!isAsynchronousEHPersonality(Personality))
739 std::sort(LPads.begin(), LPads.end(),
740 [this](LandingPadInst *const &L, LandingPadInst *const &R) {
741 return DT->properlyDominates(R->getParent(), L->getParent());
742 });
743
744 // This container stores the llvm.eh.recover and IndirectBr instructions
745 // that make up the body of each landing pad after it has been outlined.
746 // We need to defer the population of the target list for the indirectbr
747 // until all landing pads have been outlined so that we can handle the
748 // case of blocks in the target that are reached only from nested
749 // landing pads.
750 SmallVector<std::pair<CallInst*, IndirectBrInst *>, 4> LPadImpls;
751
752 for (LandingPadInst *LPad : LPads) {
753 // Look for evidence that this landingpad has already been processed.
754 bool LPadHasActionList = false;
755 BasicBlock *LPadBB = LPad->getParent();
756 for (Instruction &Inst : *LPadBB) {
757 if (match(&Inst, m_Intrinsic<Intrinsic::eh_actions>())) {
758 LPadHasActionList = true;
759 break;
760 }
761 }
762
763 // If we've already outlined the handlers for this landingpad,
764 // there's nothing more to do here.
765 if (LPadHasActionList)
766 continue;
767
768 // If either of the values in the aggregate returned by the landing pad is
769 // extracted and stored to memory, promote the stored value to a register.
770 promoteLandingPadValues(LPad);
771
772 LandingPadActions Actions;
773 mapLandingPadBlocks(LPad, Actions);
774
775 HandlersOutlined |= !Actions.actions().empty();
776 for (ActionHandler *Action : Actions) {
777 if (Action->hasBeenProcessed())
778 continue;
779 BasicBlock *StartBB = Action->getStartBlock();
780
781 // SEH doesn't do any outlining for catches. Instead, pass the handler
782 // basic block addr to llvm.eh.actions and list the block as a return
783 // target.
784 if (isAsynchronousEHPersonality(Personality)) {
785 if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
786 processSEHCatchHandler(CatchAction, StartBB);
787 continue;
788 }
789 }
790
791 outlineHandler(Action, &F, LPad, StartBB, FrameVarInfo);
792 }
793
794 // Split the block after the landingpad instruction so that it is just a
795 // call to llvm.eh.actions followed by indirectbr.
796 assert(!isa<PHINode>(LPadBB->begin()) && "lpad phi not removed")((!isa<PHINode>(LPadBB->begin()) && "lpad phi not removed"
) ? static_cast<void> (0) : __assert_fail ("!isa<PHINode>(LPadBB->begin()) && \"lpad phi not removed\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 796, __PRETTY_FUNCTION__))
;
797 SplitBlock(LPadBB, LPad->getNextNode(), DT);
798 // Erase the branch inserted by the split so we can insert indirectbr.
799 LPadBB->getTerminator()->eraseFromParent();
800
801 // Replace all extracted values with undef and ultimately replace the
802 // landingpad with undef.
803 SmallVector<Instruction *, 4> SEHCodeUses;
804 SmallVector<Instruction *, 4> EHUndefs;
805 for (User *U : LPad->users()) {
806 auto *E = dyn_cast<ExtractValueInst>(U);
807 if (!E)
808 continue;
809 assert(E->getNumIndices() == 1 &&((E->getNumIndices() == 1 && "Unexpected operation: extracting both landing pad values"
) ? static_cast<void> (0) : __assert_fail ("E->getNumIndices() == 1 && \"Unexpected operation: extracting both landing pad values\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 810, __PRETTY_FUNCTION__))
810 "Unexpected operation: extracting both landing pad values")((E->getNumIndices() == 1 && "Unexpected operation: extracting both landing pad values"
) ? static_cast<void> (0) : __assert_fail ("E->getNumIndices() == 1 && \"Unexpected operation: extracting both landing pad values\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 810, __PRETTY_FUNCTION__))
;
811 unsigned Idx = *E->idx_begin();
812 assert((Idx == 0 || Idx == 1) && "unexpected index")(((Idx == 0 || Idx == 1) && "unexpected index") ? static_cast
<void> (0) : __assert_fail ("(Idx == 0 || Idx == 1) && \"unexpected index\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 812, __PRETTY_FUNCTION__))
;
813 if (Idx == 0 && isAsynchronousEHPersonality(Personality))
814 SEHCodeUses.push_back(E);
815 else
816 EHUndefs.push_back(E);
817 }
818 for (Instruction *E : EHUndefs) {
819 E->replaceAllUsesWith(UndefValue::get(E->getType()));
820 E->eraseFromParent();
821 }
822 LPad->replaceAllUsesWith(UndefValue::get(LPad->getType()));
823
824 // Rewrite uses of the exception pointer to loads of an alloca.
825 for (Instruction *E : SEHCodeUses) {
826 SmallVector<Use *, 4> Uses;
827 for (Use &U : E->uses())
828 Uses.push_back(&U);
829 for (Use *U : Uses) {
830 auto *I = cast<Instruction>(U->getUser());
831 if (isa<ResumeInst>(I))
832 continue;
833 LoadInst *LI;
834 if (auto *Phi = dyn_cast<PHINode>(I))
835 LI = new LoadInst(SEHExceptionCodeSlot, "sehcode", false,
836 Phi->getIncomingBlock(*U));
837 else
838 LI = new LoadInst(SEHExceptionCodeSlot, "sehcode", false, I);
839 U->set(LI);
840 }
841 E->replaceAllUsesWith(UndefValue::get(E->getType()));
842 E->eraseFromParent();
843 }
844
845 // Add a call to describe the actions for this landing pad.
846 std::vector<Value *> ActionArgs;
847 for (ActionHandler *Action : Actions) {
848 // Action codes from docs are: 0 cleanup, 1 catch.
849 if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
850 ActionArgs.push_back(ConstantInt::get(Int32Type, 1));
851 ActionArgs.push_back(CatchAction->getSelector());
852 // Find the frame escape index of the exception object alloca in the
853 // parent.
854 int FrameEscapeIdx = -1;
855 Value *EHObj = const_cast<Value *>(CatchAction->getExceptionVar());
856 if (EHObj && !isa<ConstantPointerNull>(EHObj)) {
857 auto I = FrameVarInfo.find(EHObj);
858 assert(I != FrameVarInfo.end() &&((I != FrameVarInfo.end() && "failed to map llvm.eh.begincatch var"
) ? static_cast<void> (0) : __assert_fail ("I != FrameVarInfo.end() && \"failed to map llvm.eh.begincatch var\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 859, __PRETTY_FUNCTION__))
859 "failed to map llvm.eh.begincatch var")((I != FrameVarInfo.end() && "failed to map llvm.eh.begincatch var"
) ? static_cast<void> (0) : __assert_fail ("I != FrameVarInfo.end() && \"failed to map llvm.eh.begincatch var\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 859, __PRETTY_FUNCTION__))
;
860 FrameEscapeIdx = std::distance(FrameVarInfo.begin(), I);
861 }
862 ActionArgs.push_back(ConstantInt::get(Int32Type, FrameEscapeIdx));
863 } else {
864 ActionArgs.push_back(ConstantInt::get(Int32Type, 0));
865 }
866 ActionArgs.push_back(Action->getHandlerBlockOrFunc());
867 }
868 CallInst *Recover =
869 CallInst::Create(ActionIntrin, ActionArgs, "recover", LPadBB);
870
871 SetVector<BasicBlock *> ReturnTargets;
872 for (ActionHandler *Action : Actions) {
873 if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
874 const auto &CatchTargets = CatchAction->getReturnTargets();
875 ReturnTargets.insert(CatchTargets.begin(), CatchTargets.end());
876 }
877 }
878 IndirectBrInst *Branch =
879 IndirectBrInst::Create(Recover, ReturnTargets.size(), LPadBB);
880 for (BasicBlock *Target : ReturnTargets)
881 Branch->addDestination(Target);
882
883 if (!isAsynchronousEHPersonality(Personality)) {
884 // C++ EH must repopulate the targets later to handle the case of
885 // targets that are reached indirectly through nested landing pads.
886 LPadImpls.push_back(std::make_pair(Recover, Branch));
887 }
888
889 } // End for each landingpad
890
891 // If nothing got outlined, there is no more processing to be done.
892 if (!HandlersOutlined)
893 return false;
894
895 // Replace any nested landing pad stubs with the correct action handler.
896 // This must be done before we remove unreachable blocks because it
897 // cleans up references to outlined blocks that will be deleted.
898 for (auto &LPadPair : NestedLPtoOriginalLP)
899 completeNestedLandingPad(&F, LPadPair.first, LPadPair.second, FrameVarInfo);
900 NestedLPtoOriginalLP.clear();
901
902 // Update the indirectbr instructions' target lists if necessary.
903 SetVector<BasicBlock*> CheckedTargets;
904 SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList;
905 for (auto &LPadImplPair : LPadImpls) {
906 IntrinsicInst *Recover = cast<IntrinsicInst>(LPadImplPair.first);
907 IndirectBrInst *Branch = LPadImplPair.second;
908
909 // Get a list of handlers called by
910 parseEHActions(Recover, ActionList);
911
912 // Add an indirect branch listing possible successors of the catch handlers.
913 SetVector<BasicBlock *> ReturnTargets;
914 for (const auto &Action : ActionList) {
915 if (auto *CA = dyn_cast<CatchHandler>(Action.get())) {
916 Function *Handler = cast<Function>(CA->getHandlerBlockOrFunc());
917 getPossibleReturnTargets(&F, Handler, ReturnTargets);
918 }
919 }
920 ActionList.clear();
921 // Clear any targets we already knew about.
922 for (unsigned int I = 0, E = Branch->getNumDestinations(); I < E; ++I) {
923 BasicBlock *KnownTarget = Branch->getDestination(I);
924 if (ReturnTargets.count(KnownTarget))
925 ReturnTargets.remove(KnownTarget);
926 }
927 for (BasicBlock *Target : ReturnTargets) {
928 Branch->addDestination(Target);
929 // The target may be a block that we excepted to get pruned.
930 // If it is, it may contain a call to llvm.eh.endcatch.
931 if (CheckedTargets.insert(Target)) {
932 // Earlier preparations guarantee that all calls to llvm.eh.endcatch
933 // will be followed by an unconditional branch.
934 auto *Br = dyn_cast<BranchInst>(Target->getTerminator());
935 if (Br && Br->isUnconditional() &&
936 Br != Target->getFirstNonPHIOrDbgOrLifetime()) {
937 Instruction *Prev = Br->getPrevNode();
938 if (match(cast<Value>(Prev), m_Intrinsic<Intrinsic::eh_endcatch>()))
939 Prev->eraseFromParent();
940 }
941 }
942 }
943 }
944 LPadImpls.clear();
945
946 F.addFnAttr("wineh-parent", F.getName());
947
948 // Delete any blocks that were only used by handlers that were outlined above.
949 removeUnreachableBlocks(F);
950
951 BasicBlock *Entry = &F.getEntryBlock();
952 IRBuilder<> Builder(F.getParent()->getContext());
953 Builder.SetInsertPoint(Entry->getFirstInsertionPt());
954
955 Function *FrameEscapeFn =
956 Intrinsic::getDeclaration(M, Intrinsic::frameescape);
957 Function *RecoverFrameFn =
958 Intrinsic::getDeclaration(M, Intrinsic::framerecover);
959 SmallVector<Value *, 8> AllocasToEscape;
960
961 // Scan the entry block for an existing call to llvm.frameescape. We need to
962 // keep escaping those objects.
963 for (Instruction &I : F.front()) {
964 auto *II = dyn_cast<IntrinsicInst>(&I);
965 if (II && II->getIntrinsicID() == Intrinsic::frameescape) {
966 auto Args = II->arg_operands();
967 AllocasToEscape.append(Args.begin(), Args.end());
968 II->eraseFromParent();
969 break;
970 }
971 }
972
973 // Finally, replace all of the temporary allocas for frame variables used in
974 // the outlined handlers with calls to llvm.framerecover.
975 for (auto &VarInfoEntry : FrameVarInfo) {
976 Value *ParentVal = VarInfoEntry.first;
977 TinyPtrVector<AllocaInst *> &Allocas = VarInfoEntry.second;
978 AllocaInst *ParentAlloca = cast<AllocaInst>(ParentVal);
979
980 // FIXME: We should try to sink unescaped allocas from the parent frame into
981 // the child frame. If the alloca is escaped, we have to use the lifetime
982 // markers to ensure that the alloca is only live within the child frame.
983
984 // Add this alloca to the list of things to escape.
985 AllocasToEscape.push_back(ParentAlloca);
986
987 // Next replace all outlined allocas that are mapped to it.
988 for (AllocaInst *TempAlloca : Allocas) {
989 if (TempAlloca == getCatchObjectSentinel())
990 continue; // Skip catch parameter sentinels.
991 Function *HandlerFn = TempAlloca->getParent()->getParent();
992 llvm::Value *FP = HandlerToParentFP[HandlerFn];
993 assert(FP)((FP) ? static_cast<void> (0) : __assert_fail ("FP", "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 993, __PRETTY_FUNCTION__))
;
994
995 // FIXME: Sink this framerecover into the blocks where it is used.
996 Builder.SetInsertPoint(TempAlloca);
997 Builder.SetCurrentDebugLocation(TempAlloca->getDebugLoc());
998 Value *RecoverArgs[] = {
999 Builder.CreateBitCast(&F, Int8PtrType, ""), FP,
1000 llvm::ConstantInt::get(Int32Type, AllocasToEscape.size() - 1)};
1001 Instruction *RecoveredAlloca =
1002 Builder.CreateCall(RecoverFrameFn, RecoverArgs);
1003
1004 // Add a pointer bitcast if the alloca wasn't an i8.
1005 if (RecoveredAlloca->getType() != TempAlloca->getType()) {
1006 RecoveredAlloca->setName(Twine(TempAlloca->getName()) + ".i8");
1007 RecoveredAlloca = cast<Instruction>(
1008 Builder.CreateBitCast(RecoveredAlloca, TempAlloca->getType()));
1009 }
1010 TempAlloca->replaceAllUsesWith(RecoveredAlloca);
1011 TempAlloca->removeFromParent();
1012 RecoveredAlloca->takeName(TempAlloca);
1013 delete TempAlloca;
1014 }
1015 } // End for each FrameVarInfo entry.
1016
1017 // Insert 'call void (...)* @llvm.frameescape(...)' at the end of the entry
1018 // block.
1019 Builder.SetInsertPoint(&F.getEntryBlock().back());
1020 Builder.CreateCall(FrameEscapeFn, AllocasToEscape);
1021
1022 if (SEHExceptionCodeSlot) {
1023 if (isAllocaPromotable(SEHExceptionCodeSlot)) {
1024 SmallPtrSet<BasicBlock *, 4> UserBlocks;
1025 for (User *U : SEHExceptionCodeSlot->users()) {
1026 if (auto *Inst = dyn_cast<Instruction>(U))
1027 UserBlocks.insert(Inst->getParent());
1028 }
1029 PromoteMemToReg(SEHExceptionCodeSlot, *DT);
1030 // After the promotion, kill off dead instructions.
1031 for (BasicBlock *BB : UserBlocks)
1032 SimplifyInstructionsInBlock(BB, LibInfo);
1033 }
1034 }
1035
1036 // Clean up the handler action maps we created for this function
1037 DeleteContainerSeconds(CatchHandlerMap);
1038 CatchHandlerMap.clear();
1039 DeleteContainerSeconds(CleanupHandlerMap);
1040 CleanupHandlerMap.clear();
1041 HandlerToParentFP.clear();
1042 DT = nullptr;
1043 LibInfo = nullptr;
1044 SEHExceptionCodeSlot = nullptr;
1045 EHBlocks.clear();
1046 NormalBlocks.clear();
1047 EHReturnBlocks.clear();
1048
1049 return HandlersOutlined;
1050}
1051
1052void WinEHPrepare::promoteLandingPadValues(LandingPadInst *LPad) {
1053 // If the return values of the landing pad instruction are extracted and
1054 // stored to memory, we want to promote the store locations to reg values.
1055 SmallVector<AllocaInst *, 2> EHAllocas;
1056
1057 // The landingpad instruction returns an aggregate value. Typically, its
1058 // value will be passed to a pair of extract value instructions and the
1059 // results of those extracts are often passed to store instructions.
1060 // In unoptimized code the stored value will often be loaded and then stored
1061 // again.
1062 for (auto *U : LPad->users()) {
1063 ExtractValueInst *Extract = dyn_cast<ExtractValueInst>(U);
1064 if (!Extract)
1065 continue;
1066
1067 for (auto *EU : Extract->users()) {
1068 if (auto *Store = dyn_cast<StoreInst>(EU)) {
1069 auto *AV = cast<AllocaInst>(Store->getPointerOperand());
1070 EHAllocas.push_back(AV);
1071 }
1072 }
1073 }
1074
1075 // We can't do this without a dominator tree.
1076 assert(DT)((DT) ? static_cast<void> (0) : __assert_fail ("DT", "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 1076, __PRETTY_FUNCTION__))
;
1077
1078 if (!EHAllocas.empty()) {
1079 PromoteMemToReg(EHAllocas, *DT);
1080 EHAllocas.clear();
1081 }
1082
1083 // After promotion, some extracts may be trivially dead. Remove them.
1084 SmallVector<Value *, 4> Users(LPad->user_begin(), LPad->user_end());
1085 for (auto *U : Users)
1086 RecursivelyDeleteTriviallyDeadInstructions(U);
1087}
1088
1089void WinEHPrepare::getPossibleReturnTargets(Function *ParentF,
1090 Function *HandlerF,
1091 SetVector<BasicBlock*> &Targets) {
1092 for (BasicBlock &BB : *HandlerF) {
1093 // If the handler contains landing pads, check for any
1094 // handlers that may return directly to a block in the
1095 // parent function.
1096 if (auto *LPI = BB.getLandingPadInst()) {
1097 IntrinsicInst *Recover = cast<IntrinsicInst>(LPI->getNextNode());
1098 SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList;
1099 parseEHActions(Recover, ActionList);
1100 for (const auto &Action : ActionList) {
1101 if (auto *CH = dyn_cast<CatchHandler>(Action.get())) {
1102 Function *NestedF = cast<Function>(CH->getHandlerBlockOrFunc());
1103 getPossibleReturnTargets(ParentF, NestedF, Targets);
1104 }
1105 }
1106 }
1107
1108 auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator());
1109 if (!Ret)
1110 continue;
1111
1112 // Handler functions must always return a block address.
1113 BlockAddress *BA = cast<BlockAddress>(Ret->getReturnValue());
1114
1115 // If this is the handler for a nested landing pad, the
1116 // return address may have been remapped to a block in the
1117 // parent handler. We're not interested in those.
1118 if (BA->getFunction() != ParentF)
1119 continue;
1120
1121 Targets.insert(BA->getBasicBlock());
1122 }
1123}
1124
1125void WinEHPrepare::completeNestedLandingPad(Function *ParentFn,
1126 LandingPadInst *OutlinedLPad,
1127 const LandingPadInst *OriginalLPad,
1128 FrameVarInfoMap &FrameVarInfo) {
1129 // Get the nested block and erase the unreachable instruction that was
1130 // temporarily inserted as its terminator.
1131 LLVMContext &Context = ParentFn->getContext();
1132 BasicBlock *OutlinedBB = OutlinedLPad->getParent();
1133 // If the nested landing pad was outlined before the landing pad that enclosed
1134 // it, it will already be in outlined form. In that case, we just need to see
1135 // if the returns and the enclosing branch instruction need to be updated.
1136 IndirectBrInst *Branch =
1137 dyn_cast<IndirectBrInst>(OutlinedBB->getTerminator());
1138 if (!Branch) {
1139 // If the landing pad wasn't in outlined form, it should be a stub with
1140 // an unreachable terminator.
1141 assert(isa<UnreachableInst>(OutlinedBB->getTerminator()))((isa<UnreachableInst>(OutlinedBB->getTerminator()))
? static_cast<void> (0) : __assert_fail ("isa<UnreachableInst>(OutlinedBB->getTerminator())"
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 1141, __PRETTY_FUNCTION__))
;
1142 OutlinedBB->getTerminator()->eraseFromParent();
1143 // That should leave OutlinedLPad as the last instruction in its block.
1144 assert(&OutlinedBB->back() == OutlinedLPad)((&OutlinedBB->back() == OutlinedLPad) ? static_cast<
void> (0) : __assert_fail ("&OutlinedBB->back() == OutlinedLPad"
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 1144, __PRETTY_FUNCTION__))
;
1145 }
1146
1147 // The original landing pad will have already had its action intrinsic
1148 // built by the outlining loop. We need to clone that into the outlined
1149 // location. It may also be necessary to add references to the exception
1150 // variables to the outlined handler in which this landing pad is nested
1151 // and remap return instructions in the nested handlers that should return
1152 // to an address in the outlined handler.
1153 Function *OutlinedHandlerFn = OutlinedBB->getParent();
1154 BasicBlock::const_iterator II = OriginalLPad;
1155 ++II;
1156 // The instruction after the landing pad should now be a call to eh.actions.
1157 const Instruction *Recover = II;
1158 const IntrinsicInst *EHActions = cast<IntrinsicInst>(Recover);
1159
1160 // Remap the return target in the nested handler.
1161 SmallVector<BlockAddress *, 4> ActionTargets;
1162 SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList;
1163 parseEHActions(EHActions, ActionList);
1164 for (const auto &Action : ActionList) {
1165 auto *Catch = dyn_cast<CatchHandler>(Action.get());
1166 if (!Catch)
1167 continue;
1168 // The dyn_cast to function here selects C++ catch handlers and skips
1169 // SEH catch handlers.
1170 auto *Handler = dyn_cast<Function>(Catch->getHandlerBlockOrFunc());
1171 if (!Handler)
1172 continue;
1173 // Visit all the return instructions, looking for places that return
1174 // to a location within OutlinedHandlerFn.
1175 for (BasicBlock &NestedHandlerBB : *Handler) {
1176 auto *Ret = dyn_cast<ReturnInst>(NestedHandlerBB.getTerminator());
1177 if (!Ret)
1178 continue;
1179
1180 // Handler functions must always return a block address.
1181 BlockAddress *BA = cast<BlockAddress>(Ret->getReturnValue());
1182 // The original target will have been in the main parent function,
1183 // but if it is the address of a block that has been outlined, it
1184 // should be a block that was outlined into OutlinedHandlerFn.
1185 assert(BA->getFunction() == ParentFn)((BA->getFunction() == ParentFn) ? static_cast<void>
(0) : __assert_fail ("BA->getFunction() == ParentFn", "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 1185, __PRETTY_FUNCTION__))
;
1186
1187 // Ignore targets that aren't part of an outlined handler function.
1188 if (!LPadTargetBlocks.count(BA->getBasicBlock()))
1189 continue;
1190
1191 // If the return value is the address ofF a block that we
1192 // previously outlined into the parent handler function, replace
1193 // the return instruction and add the mapped target to the list
1194 // of possible return addresses.
1195 BasicBlock *MappedBB = LPadTargetBlocks[BA->getBasicBlock()];
1196 assert(MappedBB->getParent() == OutlinedHandlerFn)((MappedBB->getParent() == OutlinedHandlerFn) ? static_cast
<void> (0) : __assert_fail ("MappedBB->getParent() == OutlinedHandlerFn"
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 1196, __PRETTY_FUNCTION__))
;
1197 BlockAddress *NewBA = BlockAddress::get(OutlinedHandlerFn, MappedBB);
1198 Ret->eraseFromParent();
1199 ReturnInst::Create(Context, NewBA, &NestedHandlerBB);
1200 ActionTargets.push_back(NewBA);
1201 }
1202 }
1203 ActionList.clear();
1204
1205 if (Branch) {
1206 // If the landing pad was already in outlined form, just update its targets.
1207 for (unsigned int I = Branch->getNumDestinations(); I > 0; --I)
1208 Branch->removeDestination(I);
1209 // Add the previously collected action targets.
1210 for (auto *Target : ActionTargets)
1211 Branch->addDestination(Target->getBasicBlock());
1212 } else {
1213 // If the landing pad was previously stubbed out, fill in its outlined form.
1214 IntrinsicInst *NewEHActions = cast<IntrinsicInst>(EHActions->clone());
1215 OutlinedBB->getInstList().push_back(NewEHActions);
1216
1217 // Insert an indirect branch into the outlined landing pad BB.
1218 IndirectBrInst *IBr = IndirectBrInst::Create(NewEHActions, 0, OutlinedBB);
1219 // Add the previously collected action targets.
1220 for (auto *Target : ActionTargets)
1221 IBr->addDestination(Target->getBasicBlock());
1222 }
1223}
1224
1225// This function examines a block to determine whether the block ends with a
1226// conditional branch to a catch handler based on a selector comparison.
1227// This function is used both by the WinEHPrepare::findSelectorComparison() and
1228// WinEHCleanupDirector::handleTypeIdFor().
1229static bool isSelectorDispatch(BasicBlock *BB, BasicBlock *&CatchHandler,
1230 Constant *&Selector, BasicBlock *&NextBB) {
1231 ICmpInst::Predicate Pred;
1232 BasicBlock *TBB, *FBB;
1233 Value *LHS, *RHS;
1234
1235 if (!match(BB->getTerminator(),
1236 m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TBB, FBB)))
1237 return false;
1238
1239 if (!match(LHS,
1240 m_Intrinsic<Intrinsic::eh_typeid_for>(m_Constant(Selector))) &&
1241 !match(RHS, m_Intrinsic<Intrinsic::eh_typeid_for>(m_Constant(Selector))))
1242 return false;
1243
1244 if (Pred == CmpInst::ICMP_EQ) {
1245 CatchHandler = TBB;
1246 NextBB = FBB;
1247 return true;
1248 }
1249
1250 if (Pred == CmpInst::ICMP_NE) {
1251 CatchHandler = FBB;
1252 NextBB = TBB;
1253 return true;
1254 }
1255
1256 return false;
1257}
1258
1259static bool isCatchBlock(BasicBlock *BB) {
1260 for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end();
1261 II != IE; ++II) {
1262 if (match(cast<Value>(II), m_Intrinsic<Intrinsic::eh_begincatch>()))
1263 return true;
1264 }
1265 return false;
1266}
1267
1268static BasicBlock *createStubLandingPad(Function *Handler) {
1269 // FIXME: Finish this!
1270 LLVMContext &Context = Handler->getContext();
1271 BasicBlock *StubBB = BasicBlock::Create(Context, "stub");
1272 Handler->getBasicBlockList().push_back(StubBB);
1273 IRBuilder<> Builder(StubBB);
1274 LandingPadInst *LPad = Builder.CreateLandingPad(
1275 llvm::StructType::get(Type::getInt8PtrTy(Context),
1276 Type::getInt32Ty(Context), nullptr),
1277 0);
1278 // Insert a call to llvm.eh.actions so that we don't try to outline this lpad.
1279 Function *ActionIntrin =
1280 Intrinsic::getDeclaration(Handler->getParent(), Intrinsic::eh_actions);
1281 Builder.CreateCall(ActionIntrin, {}, "recover");
1282 LPad->setCleanup(true);
1283 Builder.CreateUnreachable();
1284 return StubBB;
1285}
1286
1287// Cycles through the blocks in an outlined handler function looking for an
1288// invoke instruction and inserts an invoke of llvm.donothing with an empty
1289// landing pad if none is found. The code that generates the .xdata tables for
1290// the handler needs at least one landing pad to identify the parent function's
1291// personality.
1292void WinEHPrepare::addStubInvokeToHandlerIfNeeded(Function *Handler) {
1293 ReturnInst *Ret = nullptr;
1294 UnreachableInst *Unreached = nullptr;
1295 for (BasicBlock &BB : *Handler) {
1296 TerminatorInst *Terminator = BB.getTerminator();
1297 // If we find an invoke, there is nothing to be done.
1298 auto *II = dyn_cast<InvokeInst>(Terminator);
1299 if (II)
1300 return;
1301 // If we've already recorded a return instruction, keep looking for invokes.
1302 if (!Ret)
1303 Ret = dyn_cast<ReturnInst>(Terminator);
1304 // If we haven't recorded an unreachable instruction, try this terminator.
1305 if (!Unreached)
1306 Unreached = dyn_cast<UnreachableInst>(Terminator);
1307 }
1308
1309 // If we got this far, the handler contains no invokes. We should have seen
1310 // at least one return or unreachable instruction. We'll insert an invoke of
1311 // llvm.donothing ahead of that instruction.
1312 assert(Ret || Unreached)((Ret || Unreached) ? static_cast<void> (0) : __assert_fail
("Ret || Unreached", "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 1312, __PRETTY_FUNCTION__))
;
1313 TerminatorInst *Term;
1314 if (Ret)
1315 Term = Ret;
1316 else
1317 Term = Unreached;
1318 BasicBlock *OldRetBB = Term->getParent();
1319 BasicBlock *NewRetBB = SplitBlock(OldRetBB, Term, DT);
1320 // SplitBlock adds an unconditional branch instruction at the end of the
1321 // parent block. We want to replace that with an invoke call, so we can
1322 // erase it now.
1323 OldRetBB->getTerminator()->eraseFromParent();
1324 BasicBlock *StubLandingPad = createStubLandingPad(Handler);
1325 Function *F =
1326 Intrinsic::getDeclaration(Handler->getParent(), Intrinsic::donothing);
1327 InvokeInst::Create(F, NewRetBB, StubLandingPad, None, "", OldRetBB);
1328}
1329
1330// FIXME: Consider sinking this into lib/Target/X86 somehow. TargetLowering
1331// usually doesn't build LLVM IR, so that's probably the wrong place.
1332Function *WinEHPrepare::createHandlerFunc(Type *RetTy, const Twine &Name,
1333 Module *M, Value *&ParentFP) {
1334 // x64 uses a two-argument prototype where the parent FP is the second
1335 // argument. x86 uses no arguments, just the incoming EBP value.
1336 LLVMContext &Context = M->getContext();
1337 FunctionType *FnType;
1338 if (TheTriple.getArch() == Triple::x86_64) {
1339 Type *Int8PtrType = Type::getInt8PtrTy(Context);
1340 Type *ArgTys[2] = {Int8PtrType, Int8PtrType};
1341 FnType = FunctionType::get(RetTy, ArgTys, false);
1342 } else {
1343 FnType = FunctionType::get(RetTy, None, false);
1344 }
1345
1346 Function *Handler =
1347 Function::Create(FnType, GlobalVariable::InternalLinkage, Name, M);
1348 BasicBlock *Entry = BasicBlock::Create(Context, "entry");
1349 Handler->getBasicBlockList().push_front(Entry);
1350 if (TheTriple.getArch() == Triple::x86_64) {
1351 ParentFP = &(Handler->getArgumentList().back());
1352 } else {
1353 assert(M)((M) ? static_cast<void> (0) : __assert_fail ("M", "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 1353, __PRETTY_FUNCTION__))
;
1354 Function *FrameAddressFn =
1355 Intrinsic::getDeclaration(M, Intrinsic::frameaddress);
1356 Value *Args[1] = {ConstantInt::get(Type::getInt32Ty(Context), 1)};
1357 ParentFP = CallInst::Create(FrameAddressFn, Args, "parent_fp",
1358 &Handler->getEntryBlock());
1359 }
1360 return Handler;
1361}
1362
1363bool WinEHPrepare::outlineHandler(ActionHandler *Action, Function *SrcFn,
1364 LandingPadInst *LPad, BasicBlock *StartBB,
1365 FrameVarInfoMap &VarInfo) {
1366 Module *M = SrcFn->getParent();
1367 LLVMContext &Context = M->getContext();
1368 Type *Int8PtrType = Type::getInt8PtrTy(Context);
1369
1370 // Create a new function to receive the handler contents.
1371 Value *ParentFP;
1372 Function *Handler;
1373 if (Action->getType() == Catch) {
1374 Handler = createHandlerFunc(Int8PtrType, SrcFn->getName() + ".catch", M,
1375 ParentFP);
1376 } else {
1377 Handler = createHandlerFunc(Type::getVoidTy(Context),
1378 SrcFn->getName() + ".cleanup", M, ParentFP);
1379 }
1380 Handler->setPersonalityFn(SrcFn->getPersonalityFn());
1381 HandlerToParentFP[Handler] = ParentFP;
1382 Handler->addFnAttr("wineh-parent", SrcFn->getName());
1383 BasicBlock *Entry = &Handler->getEntryBlock();
1384
1385 // Generate a standard prolog to setup the frame recovery structure.
1386 IRBuilder<> Builder(Context);
1387 Builder.SetInsertPoint(Entry);
1388 Builder.SetCurrentDebugLocation(LPad->getDebugLoc());
1389
1390 std::unique_ptr<WinEHCloningDirectorBase> Director;
1391
1392 ValueToValueMapTy VMap;
1393
1394 LandingPadMap &LPadMap = LPadMaps[LPad];
1395 if (!LPadMap.isInitialized())
1396 LPadMap.mapLandingPad(LPad);
1397 if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
1398 Constant *Sel = CatchAction->getSelector();
1399 Director.reset(new WinEHCatchDirector(Handler, ParentFP, Sel, VarInfo,
1400 LPadMap, NestedLPtoOriginalLP, DT,
1401 EHBlocks));
1402 LPadMap.remapEHValues(VMap, UndefValue::get(Int8PtrType),
1403 ConstantInt::get(Type::getInt32Ty(Context), 1));
1404 } else {
1405 Director.reset(
1406 new WinEHCleanupDirector(Handler, ParentFP, VarInfo, LPadMap));
1407 LPadMap.remapEHValues(VMap, UndefValue::get(Int8PtrType),
1408 UndefValue::get(Type::getInt32Ty(Context)));
1409 }
1410
1411 SmallVector<ReturnInst *, 8> Returns;
1412 ClonedCodeInfo OutlinedFunctionInfo;
1413
1414 // If the start block contains PHI nodes, we need to map them.
1415 BasicBlock::iterator II = StartBB->begin();
1416 while (auto *PN = dyn_cast<PHINode>(II)) {
1417 bool Mapped = false;
1418 // Look for PHI values that we have already mapped (such as the selector).
1419 for (Value *Val : PN->incoming_values()) {
1420 if (VMap.count(Val)) {
1421 VMap[PN] = VMap[Val];
1422 Mapped = true;
1423 }
1424 }
1425 // If we didn't find a match for this value, map it as an undef.
1426 if (!Mapped) {
1427 VMap[PN] = UndefValue::get(PN->getType());
1428 }
1429 ++II;
1430 }
1431
1432 // The landing pad value may be used by PHI nodes. It will ultimately be
1433 // eliminated, but we need it in the map for intermediate handling.
1434 VMap[LPad] = UndefValue::get(LPad->getType());
1435
1436 // Skip over PHIs and, if applicable, landingpad instructions.
1437 II = StartBB->getFirstInsertionPt();
1438
1439 CloneAndPruneIntoFromInst(Handler, SrcFn, II, VMap,
1440 /*ModuleLevelChanges=*/false, Returns, "",
1441 &OutlinedFunctionInfo, Director.get());
1442
1443 // Move all the instructions in the cloned "entry" block into our entry block.
1444 // Depending on how the parent function was laid out, the block that will
1445 // correspond to the outlined entry block may not be the first block in the
1446 // list. We can recognize it, however, as the cloned block which has no
1447 // predecessors. Any other block wouldn't have been cloned if it didn't
1448 // have a predecessor which was also cloned.
1449 Function::iterator ClonedIt = std::next(Function::iterator(Entry));
1450 while (!pred_empty(ClonedIt))
1451 ++ClonedIt;
1452 BasicBlock *ClonedEntryBB = ClonedIt;
1453 assert(ClonedEntryBB)((ClonedEntryBB) ? static_cast<void> (0) : __assert_fail
("ClonedEntryBB", "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 1453, __PRETTY_FUNCTION__))
;
1454 Entry->getInstList().splice(Entry->end(), ClonedEntryBB->getInstList());
1455 ClonedEntryBB->eraseFromParent();
1456
1457 // Make sure we can identify the handler's personality later.
1458 addStubInvokeToHandlerIfNeeded(Handler);
1459
1460 if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
1461 WinEHCatchDirector *CatchDirector =
1462 reinterpret_cast<WinEHCatchDirector *>(Director.get());
1463 CatchAction->setExceptionVar(CatchDirector->getExceptionVar());
1464 CatchAction->setReturnTargets(CatchDirector->getReturnTargets());
1465
1466 // Look for blocks that are not part of the landing pad that we just
1467 // outlined but terminate with a call to llvm.eh.endcatch and a
1468 // branch to a block that is in the handler we just outlined.
1469 // These blocks will be part of a nested landing pad that intends to
1470 // return to an address in this handler. This case is best handled
1471 // after both landing pads have been outlined, so for now we'll just
1472 // save the association of the blocks in LPadTargetBlocks. The
1473 // return instructions which are created from these branches will be
1474 // replaced after all landing pads have been outlined.
1475 for (const auto MapEntry : VMap) {
1476 // VMap maps all values and blocks that were just cloned, but dead
1477 // blocks which were pruned will map to nullptr.
1478 if (!isa<BasicBlock>(MapEntry.first) || MapEntry.second == nullptr)
1479 continue;
1480 const BasicBlock *MappedBB = cast<BasicBlock>(MapEntry.first);
1481 for (auto *Pred : predecessors(const_cast<BasicBlock *>(MappedBB))) {
1482 auto *Branch = dyn_cast<BranchInst>(Pred->getTerminator());
1483 if (!Branch || !Branch->isUnconditional() || Pred->size() <= 1)
1484 continue;
1485 BasicBlock::iterator II = const_cast<BranchInst *>(Branch);
1486 --II;
1487 if (match(cast<Value>(II), m_Intrinsic<Intrinsic::eh_endcatch>())) {
1488 // This would indicate that a nested landing pad wants to return
1489 // to a block that is outlined into two different handlers.
1490 assert(!LPadTargetBlocks.count(MappedBB))((!LPadTargetBlocks.count(MappedBB)) ? static_cast<void>
(0) : __assert_fail ("!LPadTargetBlocks.count(MappedBB)", "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 1490, __PRETTY_FUNCTION__))
;
1491 LPadTargetBlocks[MappedBB] = cast<BasicBlock>(MapEntry.second);
1492 }
1493 }
1494 }
1495 } // End if (CatchAction)
1496
1497 Action->setHandlerBlockOrFunc(Handler);
1498
1499 return true;
1500}
1501
1502/// This BB must end in a selector dispatch. All we need to do is pass the
1503/// handler block to llvm.eh.actions and list it as a possible indirectbr
1504/// target.
1505void WinEHPrepare::processSEHCatchHandler(CatchHandler *CatchAction,
1506 BasicBlock *StartBB) {
1507 BasicBlock *HandlerBB;
1508 BasicBlock *NextBB;
1509 Constant *Selector;
1510 bool Res = isSelectorDispatch(StartBB, HandlerBB, Selector, NextBB);
1511 if (Res) {
1512 // If this was EH dispatch, this must be a conditional branch to the handler
1513 // block.
1514 // FIXME: Handle instructions in the dispatch block. Currently we drop them,
1515 // leading to crashes if some optimization hoists stuff here.
1516 assert(CatchAction->getSelector() && HandlerBB &&((CatchAction->getSelector() && HandlerBB &&
"expected catch EH dispatch") ? static_cast<void> (0) :
__assert_fail ("CatchAction->getSelector() && HandlerBB && \"expected catch EH dispatch\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 1517, __PRETTY_FUNCTION__))
1517 "expected catch EH dispatch")((CatchAction->getSelector() && HandlerBB &&
"expected catch EH dispatch") ? static_cast<void> (0) :
__assert_fail ("CatchAction->getSelector() && HandlerBB && \"expected catch EH dispatch\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 1517, __PRETTY_FUNCTION__))
;
1518 } else {
1519 // This must be a catch-all. Split the block after the landingpad.
1520 assert(CatchAction->getSelector()->isNullValue() && "expected catch-all")((CatchAction->getSelector()->isNullValue() && "expected catch-all"
) ? static_cast<void> (0) : __assert_fail ("CatchAction->getSelector()->isNullValue() && \"expected catch-all\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 1520, __PRETTY_FUNCTION__))
;
1521 HandlerBB = SplitBlock(StartBB, StartBB->getFirstInsertionPt(), DT);
1522 }
1523 IRBuilder<> Builder(HandlerBB->getFirstInsertionPt());
1524 Function *EHCodeFn = Intrinsic::getDeclaration(
1525 StartBB->getParent()->getParent(), Intrinsic::eh_exceptioncode);
1526 Value *Code = Builder.CreateCall(EHCodeFn, {}, "sehcode");
1527 Code = Builder.CreateIntToPtr(Code, SEHExceptionCodeSlot->getAllocatedType());
1528 Builder.CreateStore(Code, SEHExceptionCodeSlot);
1529 CatchAction->setHandlerBlockOrFunc(BlockAddress::get(HandlerBB));
1530 TinyPtrVector<BasicBlock *> Targets(HandlerBB);
1531 CatchAction->setReturnTargets(Targets);
1532}
1533
1534void LandingPadMap::mapLandingPad(const LandingPadInst *LPad) {
1535 // Each instance of this class should only ever be used to map a single
1536 // landing pad.
1537 assert(OriginLPad == nullptr || OriginLPad == LPad)((OriginLPad == nullptr || OriginLPad == LPad) ? static_cast<
void> (0) : __assert_fail ("OriginLPad == nullptr || OriginLPad == LPad"
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 1537, __PRETTY_FUNCTION__))
;
1538
1539 // If the landing pad has already been mapped, there's nothing more to do.
1540 if (OriginLPad == LPad)
1541 return;
1542
1543 OriginLPad = LPad;
1544
1545 // The landingpad instruction returns an aggregate value. Typically, its
1546 // value will be passed to a pair of extract value instructions and the
1547 // results of those extracts will have been promoted to reg values before
1548 // this routine is called.
1549 for (auto *U : LPad->users()) {
1550 const ExtractValueInst *Extract = dyn_cast<ExtractValueInst>(U);
1551 if (!Extract)
1552 continue;
1553 assert(Extract->getNumIndices() == 1 &&((Extract->getNumIndices() == 1 && "Unexpected operation: extracting both landing pad values"
) ? static_cast<void> (0) : __assert_fail ("Extract->getNumIndices() == 1 && \"Unexpected operation: extracting both landing pad values\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 1554, __PRETTY_FUNCTION__))
1554 "Unexpected operation: extracting both landing pad values")((Extract->getNumIndices() == 1 && "Unexpected operation: extracting both landing pad values"
) ? static_cast<void> (0) : __assert_fail ("Extract->getNumIndices() == 1 && \"Unexpected operation: extracting both landing pad values\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 1554, __PRETTY_FUNCTION__))
;
1555 unsigned int Idx = *(Extract->idx_begin());
1556 assert((Idx == 0 || Idx == 1) &&(((Idx == 0 || Idx == 1) && "Unexpected operation: extracting an unknown landing pad element"
) ? static_cast<void> (0) : __assert_fail ("(Idx == 0 || Idx == 1) && \"Unexpected operation: extracting an unknown landing pad element\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 1557, __PRETTY_FUNCTION__))
1557 "Unexpected operation: extracting an unknown landing pad element")(((Idx == 0 || Idx == 1) && "Unexpected operation: extracting an unknown landing pad element"
) ? static_cast<void> (0) : __assert_fail ("(Idx == 0 || Idx == 1) && \"Unexpected operation: extracting an unknown landing pad element\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 1557, __PRETTY_FUNCTION__))
;
1558 if (Idx == 0) {
1559 ExtractedEHPtrs.push_back(Extract);
1560 } else if (Idx == 1) {
1561 ExtractedSelectors.push_back(Extract);
1562 }
1563 }
1564}
1565
1566bool LandingPadMap::isOriginLandingPadBlock(const BasicBlock *BB) const {
1567 return BB->getLandingPadInst() == OriginLPad;
1568}
1569
1570bool LandingPadMap::isLandingPadSpecificInst(const Instruction *Inst) const {
1571 if (Inst == OriginLPad)
1572 return true;
1573 for (auto *Extract : ExtractedEHPtrs) {
1574 if (Inst == Extract)
1575 return true;
1576 }
1577 for (auto *Extract : ExtractedSelectors) {
1578 if (Inst == Extract)
1579 return true;
1580 }
1581 return false;
1582}
1583
1584void LandingPadMap::remapEHValues(ValueToValueMapTy &VMap, Value *EHPtrValue,
1585 Value *SelectorValue) const {
1586 // Remap all landing pad extract instructions to the specified values.
1587 for (auto *Extract : ExtractedEHPtrs)
1588 VMap[Extract] = EHPtrValue;
1589 for (auto *Extract : ExtractedSelectors)
1590 VMap[Extract] = SelectorValue;
1591}
1592
1593static bool isFrameAddressCall(const Value *V) {
1594 return match(const_cast<Value *>(V),
1595 m_Intrinsic<Intrinsic::frameaddress>(m_SpecificInt(0)));
1596}
1597
1598CloningDirector::CloningAction WinEHCloningDirectorBase::handleInstruction(
1599 ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
1600 // If this is one of the boilerplate landing pad instructions, skip it.
1601 // The instruction will have already been remapped in VMap.
1602 if (LPadMap.isLandingPadSpecificInst(Inst))
1603 return CloningDirector::SkipInstruction;
1604
1605 // Nested landing pads that have not already been outlined will be cloned as
1606 // stubs, with just the landingpad instruction and an unreachable instruction.
1607 // When all landingpads have been outlined, we'll replace this with the
1608 // llvm.eh.actions call and indirect branch created when the landing pad was
1609 // outlined.
1610 if (auto *LPad = dyn_cast<LandingPadInst>(Inst)) {
1611 return handleLandingPad(VMap, LPad, NewBB);
1612 }
1613
1614 // Nested landing pads that have already been outlined will be cloned in their
1615 // outlined form, but we need to intercept the ibr instruction to filter out
1616 // targets that do not return to the handler we are outlining.
1617 if (auto *IBr = dyn_cast<IndirectBrInst>(Inst)) {
1618 return handleIndirectBr(VMap, IBr, NewBB);
1619 }
1620
1621 if (auto *Invoke = dyn_cast<InvokeInst>(Inst))
1622 return handleInvoke(VMap, Invoke, NewBB);
1623
1624 if (auto *Resume = dyn_cast<ResumeInst>(Inst))
1625 return handleResume(VMap, Resume, NewBB);
1626
1627 if (auto *Cmp = dyn_cast<CmpInst>(Inst))
1628 return handleCompare(VMap, Cmp, NewBB);
1629
1630 if (match(Inst, m_Intrinsic<Intrinsic::eh_begincatch>()))
1631 return handleBeginCatch(VMap, Inst, NewBB);
1632 if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>()))
1633 return handleEndCatch(VMap, Inst, NewBB);
1634 if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>()))
1635 return handleTypeIdFor(VMap, Inst, NewBB);
1636
1637 // When outlining llvm.frameaddress(i32 0), remap that to the second argument,
1638 // which is the FP of the parent.
1639 if (isFrameAddressCall(Inst)) {
1640 VMap[Inst] = ParentFP;
1641 return CloningDirector::SkipInstruction;
1642 }
1643
1644 // Continue with the default cloning behavior.
1645 return CloningDirector::CloneInstruction;
1646}
1647
1648CloningDirector::CloningAction WinEHCatchDirector::handleLandingPad(
1649 ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) {
1650 // If the instruction after the landing pad is a call to llvm.eh.actions
1651 // the landing pad has already been outlined. In this case, we should
1652 // clone it because it may return to a block in the handler we are
1653 // outlining now that would otherwise be unreachable. The landing pads
1654 // are sorted before outlining begins to enable this case to work
1655 // properly.
1656 const Instruction *NextI = LPad->getNextNode();
1657 if (match(NextI, m_Intrinsic<Intrinsic::eh_actions>()))
1658 return CloningDirector::CloneInstruction;
1659
1660 // If the landing pad hasn't been outlined yet, the landing pad we are
1661 // outlining now does not dominate it and so it cannot return to a block
1662 // in this handler. In that case, we can just insert a stub landing
1663 // pad now and patch it up later.
1664 Instruction *NewInst = LPad->clone();
1665 if (LPad->hasName())
1666 NewInst->setName(LPad->getName());
1667 // Save this correlation for later processing.
1668 NestedLPtoOriginalLP[cast<LandingPadInst>(NewInst)] = LPad;
1669 VMap[LPad] = NewInst;
1670 BasicBlock::InstListType &InstList = NewBB->getInstList();
1671 InstList.push_back(NewInst);
1672 InstList.push_back(new UnreachableInst(NewBB->getContext()));
1673 return CloningDirector::StopCloningBB;
1674}
1675
1676CloningDirector::CloningAction WinEHCatchDirector::handleBeginCatch(
1677 ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
1678 // The argument to the call is some form of the first element of the
1679 // landingpad aggregate value, but that doesn't matter. It isn't used
1680 // here.
1681 // The second argument is an outparameter where the exception object will be
1682 // stored. Typically the exception object is a scalar, but it can be an
1683 // aggregate when catching by value.
1684 // FIXME: Leave something behind to indicate where the exception object lives
1685 // for this handler. Should it be part of llvm.eh.actions?
1686 assert(ExceptionObjectVar == nullptr && "Multiple calls to "((ExceptionObjectVar == nullptr && "Multiple calls to "
"llvm.eh.begincatch found while " "outlining catch handler."
) ? static_cast<void> (0) : __assert_fail ("ExceptionObjectVar == nullptr && \"Multiple calls to \" \"llvm.eh.begincatch found while \" \"outlining catch handler.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 1688, __PRETTY_FUNCTION__))
1687 "llvm.eh.begincatch found while "((ExceptionObjectVar == nullptr && "Multiple calls to "
"llvm.eh.begincatch found while " "outlining catch handler."
) ? static_cast<void> (0) : __assert_fail ("ExceptionObjectVar == nullptr && \"Multiple calls to \" \"llvm.eh.begincatch found while \" \"outlining catch handler.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 1688, __PRETTY_FUNCTION__))
1688 "outlining catch handler.")((ExceptionObjectVar == nullptr && "Multiple calls to "
"llvm.eh.begincatch found while " "outlining catch handler."
) ? static_cast<void> (0) : __assert_fail ("ExceptionObjectVar == nullptr && \"Multiple calls to \" \"llvm.eh.begincatch found while \" \"outlining catch handler.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 1688, __PRETTY_FUNCTION__))
;
1689 ExceptionObjectVar = Inst->getOperand(1)->stripPointerCasts();
1690 if (isa<ConstantPointerNull>(ExceptionObjectVar))
1691 return CloningDirector::SkipInstruction;
1692 assert(cast<AllocaInst>(ExceptionObjectVar)->isStaticAlloca() &&((cast<AllocaInst>(ExceptionObjectVar)->isStaticAlloca
() && "catch parameter is not static alloca") ? static_cast
<void> (0) : __assert_fail ("cast<AllocaInst>(ExceptionObjectVar)->isStaticAlloca() && \"catch parameter is not static alloca\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 1693, __PRETTY_FUNCTION__))
1693 "catch parameter is not static alloca")((cast<AllocaInst>(ExceptionObjectVar)->isStaticAlloca
() && "catch parameter is not static alloca") ? static_cast
<void> (0) : __assert_fail ("cast<AllocaInst>(ExceptionObjectVar)->isStaticAlloca() && \"catch parameter is not static alloca\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 1693, __PRETTY_FUNCTION__))
;
1694 Materializer.escapeCatchObject(ExceptionObjectVar);
1695 return CloningDirector::SkipInstruction;
1696}
1697
1698CloningDirector::CloningAction
1699WinEHCatchDirector::handleEndCatch(ValueToValueMapTy &VMap,
1700 const Instruction *Inst, BasicBlock *NewBB) {
1701 auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst);
1702 // It might be interesting to track whether or not we are inside a catch
1703 // function, but that might make the algorithm more brittle than it needs
1704 // to be.
1705
1706 // The end catch call can occur in one of two places: either in a
1707 // landingpad block that is part of the catch handlers exception mechanism,
1708 // or at the end of the catch block. However, a catch-all handler may call
1709 // end catch from the original landing pad. If the call occurs in a nested
1710 // landing pad block, we must skip it and continue so that the landing pad
1711 // gets cloned.
1712 auto *ParentBB = IntrinCall->getParent();
1713 if (ParentBB->isLandingPad() && !LPadMap.isOriginLandingPadBlock(ParentBB))
1714 return CloningDirector::SkipInstruction;
1715
1716 // If an end catch occurs anywhere else we want to terminate the handler
1717 // with a return to the code that follows the endcatch call. If the
1718 // next instruction is not an unconditional branch, we need to split the
1719 // block to provide a clear target for the return instruction.
1720 BasicBlock *ContinueBB;
1721 auto Next = std::next(BasicBlock::const_iterator(IntrinCall));
1722 const BranchInst *Branch = dyn_cast<BranchInst>(Next);
1723 if (!Branch || !Branch->isUnconditional()) {
1724 // We're interrupting the cloning process at this location, so the
1725 // const_cast we're doing here will not cause a problem.
1726 ContinueBB = SplitBlock(const_cast<BasicBlock *>(ParentBB),
1727 const_cast<Instruction *>(cast<Instruction>(Next)));
1728 } else {
1729 ContinueBB = Branch->getSuccessor(0);
1730 }
1731
1732 ReturnInst::Create(NewBB->getContext(), BlockAddress::get(ContinueBB), NewBB);
1733 ReturnTargets.push_back(ContinueBB);
1734
1735 // We just added a terminator to the cloned block.
1736 // Tell the caller to stop processing the current basic block so that
1737 // the branch instruction will be skipped.
1738 return CloningDirector::StopCloningBB;
1739}
1740
1741CloningDirector::CloningAction WinEHCatchDirector::handleTypeIdFor(
1742 ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
1743 auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst);
1744 Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts();
1745 // This causes a replacement that will collapse the landing pad CFG based
1746 // on the filter function we intend to match.
1747 if (Selector == CurrentSelector)
1748 VMap[Inst] = ConstantInt::get(SelectorIDType, 1);
1749 else
1750 VMap[Inst] = ConstantInt::get(SelectorIDType, 0);
1751 // Tell the caller not to clone this instruction.
1752 return CloningDirector::SkipInstruction;
1753}
1754
1755CloningDirector::CloningAction WinEHCatchDirector::handleIndirectBr(
1756 ValueToValueMapTy &VMap,
1757 const IndirectBrInst *IBr,
1758 BasicBlock *NewBB) {
1759 // If this indirect branch is not part of a landing pad block, just clone it.
1760 const BasicBlock *ParentBB = IBr->getParent();
1761 if (!ParentBB->isLandingPad())
1762 return CloningDirector::CloneInstruction;
1763
1764 // If it is part of a landing pad, we want to filter out target blocks
1765 // that are not part of the handler we are outlining.
1766 const LandingPadInst *LPad = ParentBB->getLandingPadInst();
1767
1768 // Save this correlation for later processing.
1769 NestedLPtoOriginalLP[cast<LandingPadInst>(VMap[LPad])] = LPad;
1770
1771 // We should only get here for landing pads that have already been outlined.
1772 assert(match(LPad->getNextNode(), m_Intrinsic<Intrinsic::eh_actions>()))((match(LPad->getNextNode(), m_Intrinsic<Intrinsic::eh_actions
>())) ? static_cast<void> (0) : __assert_fail ("match(LPad->getNextNode(), m_Intrinsic<Intrinsic::eh_actions>())"
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 1772, __PRETTY_FUNCTION__))
;
1773
1774 // Copy the indirectbr, but only include targets that were previously
1775 // identified as EH blocks and are dominated by the nested landing pad.
1776 SetVector<const BasicBlock *> ReturnTargets;
1777 for (int I = 0, E = IBr->getNumDestinations(); I < E; ++I) {
1778 auto *TargetBB = IBr->getDestination(I);
1779 if (EHBlocks.count(const_cast<BasicBlock*>(TargetBB)) &&
1780 DT->dominates(ParentBB, TargetBB)) {
1781 DEBUG(dbgs() << " Adding destination " << TargetBB->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Adding destination " <<
TargetBB->getName() << "\n"; } } while (0)
;
1782 ReturnTargets.insert(TargetBB);
1783 }
1784 }
1785 IndirectBrInst *NewBranch =
1786 IndirectBrInst::Create(const_cast<Value *>(IBr->getAddress()),
1787 ReturnTargets.size(), NewBB);
1788 for (auto *Target : ReturnTargets)
1789 NewBranch->addDestination(const_cast<BasicBlock*>(Target));
1790
1791 // The operands and targets of the branch instruction are remapped later
1792 // because it is a terminator. Tell the cloning code to clone the
1793 // blocks we just added to the target list.
1794 return CloningDirector::CloneSuccessors;
1795}
1796
1797CloningDirector::CloningAction
1798WinEHCatchDirector::handleInvoke(ValueToValueMapTy &VMap,
1799 const InvokeInst *Invoke, BasicBlock *NewBB) {
1800 return CloningDirector::CloneInstruction;
1801}
1802
1803CloningDirector::CloningAction
1804WinEHCatchDirector::handleResume(ValueToValueMapTy &VMap,
1805 const ResumeInst *Resume, BasicBlock *NewBB) {
1806 // Resume instructions shouldn't be reachable from catch handlers.
1807 // We still need to handle it, but it will be pruned.
1808 BasicBlock::InstListType &InstList = NewBB->getInstList();
1809 InstList.push_back(new UnreachableInst(NewBB->getContext()));
1810 return CloningDirector::StopCloningBB;
1811}
1812
1813CloningDirector::CloningAction
1814WinEHCatchDirector::handleCompare(ValueToValueMapTy &VMap,
1815 const CmpInst *Compare, BasicBlock *NewBB) {
1816 const IntrinsicInst *IntrinCall = nullptr;
1817 if (match(Compare->getOperand(0), m_Intrinsic<Intrinsic::eh_typeid_for>())) {
1818 IntrinCall = dyn_cast<IntrinsicInst>(Compare->getOperand(0));
1819 } else if (match(Compare->getOperand(1),
1820 m_Intrinsic<Intrinsic::eh_typeid_for>())) {
1821 IntrinCall = dyn_cast<IntrinsicInst>(Compare->getOperand(1));
1822 }
1823 if (IntrinCall) {
1824 Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts();
1825 // This causes a replacement that will collapse the landing pad CFG based
1826 // on the filter function we intend to match.
1827 if (Selector == CurrentSelector->stripPointerCasts()) {
1828 VMap[Compare] = ConstantInt::get(SelectorIDType, 1);
1829 } else {
1830 VMap[Compare] = ConstantInt::get(SelectorIDType, 0);
1831 }
1832 return CloningDirector::SkipInstruction;
1833 }
1834 return CloningDirector::CloneInstruction;
1835}
1836
1837CloningDirector::CloningAction WinEHCleanupDirector::handleLandingPad(
1838 ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) {
1839 // The MS runtime will terminate the process if an exception occurs in a
1840 // cleanup handler, so we shouldn't encounter landing pads in the actual
1841 // cleanup code, but they may appear in catch blocks. Depending on where
1842 // we started cloning we may see one, but it will get dropped during dead
1843 // block pruning.
1844 Instruction *NewInst = new UnreachableInst(NewBB->getContext());
1845 VMap[LPad] = NewInst;
1846 BasicBlock::InstListType &InstList = NewBB->getInstList();
1847 InstList.push_back(NewInst);
1848 return CloningDirector::StopCloningBB;
1849}
1850
1851CloningDirector::CloningAction WinEHCleanupDirector::handleBeginCatch(
1852 ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
1853 // Cleanup code may flow into catch blocks or the catch block may be part
1854 // of a branch that will be optimized away. We'll insert a return
1855 // instruction now, but it may be pruned before the cloning process is
1856 // complete.
1857 ReturnInst::Create(NewBB->getContext(), nullptr, NewBB);
1858 return CloningDirector::StopCloningBB;
1859}
1860
1861CloningDirector::CloningAction WinEHCleanupDirector::handleEndCatch(
1862 ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
1863 // Cleanup handlers nested within catch handlers may begin with a call to
1864 // eh.endcatch. We can just ignore that instruction.
1865 return CloningDirector::SkipInstruction;
1866}
1867
1868CloningDirector::CloningAction WinEHCleanupDirector::handleTypeIdFor(
1869 ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
1870 // If we encounter a selector comparison while cloning a cleanup handler,
1871 // we want to stop cloning immediately. Anything after the dispatch
1872 // will be outlined into a different handler.
1873 BasicBlock *CatchHandler;
1874 Constant *Selector;
1875 BasicBlock *NextBB;
1876 if (isSelectorDispatch(const_cast<BasicBlock *>(Inst->getParent()),
1877 CatchHandler, Selector, NextBB)) {
1878 ReturnInst::Create(NewBB->getContext(), nullptr, NewBB);
1879 return CloningDirector::StopCloningBB;
1880 }
1881 // If eg.typeid.for is called for any other reason, it can be ignored.
1882 VMap[Inst] = ConstantInt::get(SelectorIDType, 0);
1883 return CloningDirector::SkipInstruction;
1884}
1885
1886CloningDirector::CloningAction WinEHCleanupDirector::handleIndirectBr(
1887 ValueToValueMapTy &VMap,
1888 const IndirectBrInst *IBr,
1889 BasicBlock *NewBB) {
1890 // No special handling is required for cleanup cloning.
1891 return CloningDirector::CloneInstruction;
1892}
1893
1894CloningDirector::CloningAction WinEHCleanupDirector::handleInvoke(
1895 ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) {
1896 // All invokes in cleanup handlers can be replaced with calls.
1897 SmallVector<Value *, 16> CallArgs(Invoke->op_begin(), Invoke->op_end() - 3);
1898 // Insert a normal call instruction...
1899 CallInst *NewCall =
1900 CallInst::Create(const_cast<Value *>(Invoke->getCalledValue()), CallArgs,
1901 Invoke->getName(), NewBB);
1902 NewCall->setCallingConv(Invoke->getCallingConv());
1903 NewCall->setAttributes(Invoke->getAttributes());
1904 NewCall->setDebugLoc(Invoke->getDebugLoc());
1905 VMap[Invoke] = NewCall;
1906
1907 // Remap the operands.
1908 llvm::RemapInstruction(NewCall, VMap, RF_None, nullptr, &Materializer);
1909
1910 // Insert an unconditional branch to the normal destination.
1911 BranchInst::Create(Invoke->getNormalDest(), NewBB);
1912
1913 // The unwind destination won't be cloned into the new function, so
1914 // we don't need to clean up its phi nodes.
1915
1916 // We just added a terminator to the cloned block.
1917 // Tell the caller to stop processing the current basic block.
1918 return CloningDirector::CloneSuccessors;
1919}
1920
1921CloningDirector::CloningAction WinEHCleanupDirector::handleResume(
1922 ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) {
1923 ReturnInst::Create(NewBB->getContext(), nullptr, NewBB);
1924
1925 // We just added a terminator to the cloned block.
1926 // Tell the caller to stop processing the current basic block so that
1927 // the branch instruction will be skipped.
1928 return CloningDirector::StopCloningBB;
1929}
1930
1931CloningDirector::CloningAction
1932WinEHCleanupDirector::handleCompare(ValueToValueMapTy &VMap,
1933 const CmpInst *Compare, BasicBlock *NewBB) {
1934 if (match(Compare->getOperand(0), m_Intrinsic<Intrinsic::eh_typeid_for>()) ||
1935 match(Compare->getOperand(1), m_Intrinsic<Intrinsic::eh_typeid_for>())) {
1936 VMap[Compare] = ConstantInt::get(SelectorIDType, 1);
1937 return CloningDirector::SkipInstruction;
1938 }
1939 return CloningDirector::CloneInstruction;
1940}
1941
1942WinEHFrameVariableMaterializer::WinEHFrameVariableMaterializer(
1943 Function *OutlinedFn, Value *ParentFP, FrameVarInfoMap &FrameVarInfo)
1944 : FrameVarInfo(FrameVarInfo), Builder(OutlinedFn->getContext()) {
1945 BasicBlock *EntryBB = &OutlinedFn->getEntryBlock();
1946
1947 // New allocas should be inserted in the entry block, but after the parent FP
1948 // is established if it is an instruction.
1949 Instruction *InsertPoint = EntryBB->getFirstInsertionPt();
1950 if (auto *FPInst = dyn_cast<Instruction>(ParentFP))
1951 InsertPoint = FPInst->getNextNode();
1952 Builder.SetInsertPoint(EntryBB, InsertPoint);
1953}
1954
1955Value *WinEHFrameVariableMaterializer::materializeValueFor(Value *V) {
1956 // If we're asked to materialize a static alloca, we temporarily create an
1957 // alloca in the outlined function and add this to the FrameVarInfo map. When
1958 // all the outlining is complete, we'll replace these temporary allocas with
1959 // calls to llvm.framerecover.
1960 if (auto *AV = dyn_cast<AllocaInst>(V)) {
1961 assert(AV->isStaticAlloca() &&((AV->isStaticAlloca() && "cannot materialize un-demoted dynamic alloca"
) ? static_cast<void> (0) : __assert_fail ("AV->isStaticAlloca() && \"cannot materialize un-demoted dynamic alloca\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 1962, __PRETTY_FUNCTION__))
1962 "cannot materialize un-demoted dynamic alloca")((AV->isStaticAlloca() && "cannot materialize un-demoted dynamic alloca"
) ? static_cast<void> (0) : __assert_fail ("AV->isStaticAlloca() && \"cannot materialize un-demoted dynamic alloca\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 1962, __PRETTY_FUNCTION__))
;
1963 AllocaInst *NewAlloca = dyn_cast<AllocaInst>(AV->clone());
1964 Builder.Insert(NewAlloca, AV->getName());
1965 FrameVarInfo[AV].push_back(NewAlloca);
1966 return NewAlloca;
1967 }
1968
1969 if (isa<Instruction>(V) || isa<Argument>(V)) {
1970 Function *Parent = isa<Instruction>(V)
1971 ? cast<Instruction>(V)->getParent()->getParent()
1972 : cast<Argument>(V)->getParent();
1973 errs()
1974 << "Failed to demote instruction used in exception handler of function "
1975 << GlobalValue::getRealLinkageName(Parent->getName()) << ":\n";
1976 errs() << " " << *V << '\n';
1977 report_fatal_error("WinEHPrepare failed to demote instruction");
1978 }
1979
1980 // Don't materialize other values.
1981 return nullptr;
1982}
1983
1984void WinEHFrameVariableMaterializer::escapeCatchObject(Value *V) {
1985 // Catch parameter objects have to live in the parent frame. When we see a use
1986 // of a catch parameter, add a sentinel to the multimap to indicate that it's
1987 // used from another handler. This will prevent us from trying to sink the
1988 // alloca into the handler and ensure that the catch parameter is present in
1989 // the call to llvm.frameescape.
1990 FrameVarInfo[V].push_back(getCatchObjectSentinel());
1991}
1992
1993// This function maps the catch and cleanup handlers that are reachable from the
1994// specified landing pad. The landing pad sequence will have this basic shape:
1995//
1996// <cleanup handler>
1997// <selector comparison>
1998// <catch handler>
1999// <cleanup handler>
2000// <selector comparison>
2001// <catch handler>
2002// <cleanup handler>
2003// ...
2004//
2005// Any of the cleanup slots may be absent. The cleanup slots may be occupied by
2006// any arbitrary control flow, but all paths through the cleanup code must
2007// eventually reach the next selector comparison and no path can skip to a
2008// different selector comparisons, though some paths may terminate abnormally.
2009// Therefore, we will use a depth first search from the start of any given
2010// cleanup block and stop searching when we find the next selector comparison.
2011//
2012// If the landingpad instruction does not have a catch clause, we will assume
2013// that any instructions other than selector comparisons and catch handlers can
2014// be ignored. In practice, these will only be the boilerplate instructions.
2015//
2016// The catch handlers may also have any control structure, but we are only
2017// interested in the start of the catch handlers, so we don't need to actually
2018// follow the flow of the catch handlers. The start of the catch handlers can
2019// be located from the compare instructions, but they can be skipped in the
2020// flow by following the contrary branch.
2021void WinEHPrepare::mapLandingPadBlocks(LandingPadInst *LPad,
2022 LandingPadActions &Actions) {
2023 unsigned int NumClauses = LPad->getNumClauses();
2024 unsigned int HandlersFound = 0;
2025 BasicBlock *BB = LPad->getParent();
2026
2027 DEBUG(dbgs() << "Mapping landing pad: " << BB->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Mapping landing pad: " <<
BB->getName() << "\n"; } } while (0)
;
2028
2029 if (NumClauses == 0) {
2030 findCleanupHandlers(Actions, BB, nullptr);
2031 return;
2032 }
2033
2034 VisitedBlockSet VisitedBlocks;
2035
2036 while (HandlersFound != NumClauses) {
2037 BasicBlock *NextBB = nullptr;
2038
2039 // Skip over filter clauses.
2040 if (LPad->isFilter(HandlersFound)) {
2041 ++HandlersFound;
2042 continue;
2043 }
2044
2045 // See if the clause we're looking for is a catch-all.
2046 // If so, the catch begins immediately.
2047 Constant *ExpectedSelector =
2048 LPad->getClause(HandlersFound)->stripPointerCasts();
2049 if (isa<ConstantPointerNull>(ExpectedSelector)) {
2050 // The catch all must occur last.
2051 assert(HandlersFound == NumClauses - 1)((HandlersFound == NumClauses - 1) ? static_cast<void> (
0) : __assert_fail ("HandlersFound == NumClauses - 1", "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 2051, __PRETTY_FUNCTION__))
;
2052
2053 // There can be additional selector dispatches in the call chain that we
2054 // need to ignore.
2055 BasicBlock *CatchBlock = nullptr;
2056 Constant *Selector;
2057 while (BB && isSelectorDispatch(BB, CatchBlock, Selector, NextBB)) {
2058 DEBUG(dbgs() << " Found extra catch dispatch in block "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Found extra catch dispatch in block "
<< CatchBlock->getName() << "\n"; } } while (
0)
2059 << CatchBlock->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Found extra catch dispatch in block "
<< CatchBlock->getName() << "\n"; } } while (
0)
;
2060 BB = NextBB;
2061 }
2062
2063 // Add the catch handler to the action list.
2064 CatchHandler *Action = nullptr;
2065 if (CatchHandlerMap.count(BB) && CatchHandlerMap[BB] != nullptr) {
2066 // If the CatchHandlerMap already has an entry for this BB, re-use it.
2067 Action = CatchHandlerMap[BB];
2068 assert(Action->getSelector() == ExpectedSelector)((Action->getSelector() == ExpectedSelector) ? static_cast
<void> (0) : __assert_fail ("Action->getSelector() == ExpectedSelector"
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 2068, __PRETTY_FUNCTION__))
;
2069 } else {
2070 // We don't expect a selector dispatch, but there may be a call to
2071 // llvm.eh.begincatch, which separates catch handling code from
2072 // cleanup code in the same control flow. This call looks for the
2073 // begincatch intrinsic.
2074 Action = findCatchHandler(BB, NextBB, VisitedBlocks);
2075 if (Action) {
2076 // For C++ EH, check if there is any interesting cleanup code before
2077 // we begin the catch. This is important because cleanups cannot
2078 // rethrow exceptions but code called from catches can. For SEH, it
2079 // isn't important if some finally code before a catch-all is executed
2080 // out of line or after recovering from the exception.
2081 if (Personality == EHPersonality::MSVC_CXX)
2082 findCleanupHandlers(Actions, BB, BB);
2083 } else {
2084 // If an action was not found, it means that the control flows
2085 // directly into the catch-all handler and there is no cleanup code.
2086 // That's an expected situation and we must create a catch action.
2087 // Since this is a catch-all handler, the selector won't actually
2088 // appear in the code anywhere. ExpectedSelector here is the constant
2089 // null ptr that we got from the landing pad instruction.
2090 Action = new CatchHandler(BB, ExpectedSelector, nullptr);
2091 CatchHandlerMap[BB] = Action;
2092 }
2093 }
2094 Actions.insertCatchHandler(Action);
2095 DEBUG(dbgs() << " Catch all handler at block " << BB->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Catch all handler at block "
<< BB->getName() << "\n"; } } while (0)
;
2096 ++HandlersFound;
2097
2098 // Once we reach a catch-all, don't expect to hit a resume instruction.
2099 BB = nullptr;
2100 break;
2101 }
2102
2103 CatchHandler *CatchAction = findCatchHandler(BB, NextBB, VisitedBlocks);
2104 assert(CatchAction)((CatchAction) ? static_cast<void> (0) : __assert_fail (
"CatchAction", "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 2104, __PRETTY_FUNCTION__))
;
2105
2106 // See if there is any interesting code executed before the dispatch.
2107 findCleanupHandlers(Actions, BB, CatchAction->getStartBlock());
2108
2109 // When the source program contains multiple nested try blocks the catch
2110 // handlers can get strung together in such a way that we can encounter
2111 // a dispatch for a selector that we've already had a handler for.
2112 if (CatchAction->getSelector()->stripPointerCasts() == ExpectedSelector) {
2113 ++HandlersFound;
2114
2115 // Add the catch handler to the action list.
2116 DEBUG(dbgs() << " Found catch dispatch in block "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Found catch dispatch in block "
<< CatchAction->getStartBlock()->getName() <<
"\n"; } } while (0)
2117 << CatchAction->getStartBlock()->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Found catch dispatch in block "
<< CatchAction->getStartBlock()->getName() <<
"\n"; } } while (0)
;
2118 Actions.insertCatchHandler(CatchAction);
2119 } else {
2120 // Under some circumstances optimized IR will flow unconditionally into a
2121 // handler block without checking the selector. This can only happen if
2122 // the landing pad has a catch-all handler and the handler for the
2123 // preceeding catch clause is identical to the catch-call handler
2124 // (typically an empty catch). In this case, the handler must be shared
2125 // by all remaining clauses.
2126 if (isa<ConstantPointerNull>(
2127 CatchAction->getSelector()->stripPointerCasts())) {
2128 DEBUG(dbgs() << " Applying early catch-all handler in block "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Applying early catch-all handler in block "
<< CatchAction->getStartBlock()->getName() <<
" to all remaining clauses.\n"; } } while (0)
2129 << CatchAction->getStartBlock()->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Applying early catch-all handler in block "
<< CatchAction->getStartBlock()->getName() <<
" to all remaining clauses.\n"; } } while (0)
2130 << " to all remaining clauses.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Applying early catch-all handler in block "
<< CatchAction->getStartBlock()->getName() <<
" to all remaining clauses.\n"; } } while (0)
;
2131 Actions.insertCatchHandler(CatchAction);
2132 return;
2133 }
2134
2135 DEBUG(dbgs() << " Found extra catch dispatch in block "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Found extra catch dispatch in block "
<< CatchAction->getStartBlock()->getName() <<
"\n"; } } while (0)
2136 << CatchAction->getStartBlock()->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Found extra catch dispatch in block "
<< CatchAction->getStartBlock()->getName() <<
"\n"; } } while (0)
;
2137 }
2138
2139 // Move on to the block after the catch handler.
2140 BB = NextBB;
2141 }
2142
2143 // If we didn't wind up in a catch-all, see if there is any interesting code
2144 // executed before the resume.
2145 findCleanupHandlers(Actions, BB, BB);
2146
2147 // It's possible that some optimization moved code into a landingpad that
2148 // wasn't
2149 // previously being used for cleanup. If that happens, we need to execute
2150 // that
2151 // extra code from a cleanup handler.
2152 if (Actions.includesCleanup() && !LPad->isCleanup())
2153 LPad->setCleanup(true);
2154}
2155
2156// This function searches starting with the input block for the next
2157// block that terminates with a branch whose condition is based on a selector
2158// comparison. This may be the input block. See the mapLandingPadBlocks
2159// comments for a discussion of control flow assumptions.
2160//
2161CatchHandler *WinEHPrepare::findCatchHandler(BasicBlock *BB,
2162 BasicBlock *&NextBB,
2163 VisitedBlockSet &VisitedBlocks) {
2164 // See if we've already found a catch handler use it.
2165 // Call count() first to avoid creating a null entry for blocks
2166 // we haven't seen before.
2167 if (CatchHandlerMap.count(BB) && CatchHandlerMap[BB] != nullptr) {
2168 CatchHandler *Action = cast<CatchHandler>(CatchHandlerMap[BB]);
2169 NextBB = Action->getNextBB();
2170 return Action;
2171 }
2172
2173 // VisitedBlocks applies only to the current search. We still
2174 // need to consider blocks that we've visited while mapping other
2175 // landing pads.
2176 VisitedBlocks.insert(BB);
2177
2178 BasicBlock *CatchBlock = nullptr;
2179 Constant *Selector = nullptr;
2180
2181 // If this is the first time we've visited this block from any landing pad
2182 // look to see if it is a selector dispatch block.
2183 if (!CatchHandlerMap.count(BB)) {
2184 if (isSelectorDispatch(BB, CatchBlock, Selector, NextBB)) {
2185 CatchHandler *Action = new CatchHandler(BB, Selector, NextBB);
2186 CatchHandlerMap[BB] = Action;
2187 return Action;
2188 }
2189 // If we encounter a block containing an llvm.eh.begincatch before we
2190 // find a selector dispatch block, the handler is assumed to be
2191 // reached unconditionally. This happens for catch-all blocks, but
2192 // it can also happen for other catch handlers that have been combined
2193 // with the catch-all handler during optimization.
2194 if (isCatchBlock(BB)) {
2195 PointerType *Int8PtrTy = Type::getInt8PtrTy(BB->getContext());
2196 Constant *NullSelector = ConstantPointerNull::get(Int8PtrTy);
2197 CatchHandler *Action = new CatchHandler(BB, NullSelector, nullptr);
2198 CatchHandlerMap[BB] = Action;
2199 return Action;
2200 }
2201 }
2202
2203 // Visit each successor, looking for the dispatch.
2204 // FIXME: We expect to find the dispatch quickly, so this will probably
2205 // work better as a breadth first search.
2206 for (BasicBlock *Succ : successors(BB)) {
2207 if (VisitedBlocks.count(Succ))
2208 continue;
2209
2210 CatchHandler *Action = findCatchHandler(Succ, NextBB, VisitedBlocks);
2211 if (Action)
2212 return Action;
2213 }
2214 return nullptr;
2215}
2216
2217// These are helper functions to combine repeated code from findCleanupHandlers.
2218static void createCleanupHandler(LandingPadActions &Actions,
2219 CleanupHandlerMapTy &CleanupHandlerMap,
2220 BasicBlock *BB) {
2221 CleanupHandler *Action = new CleanupHandler(BB);
2222 CleanupHandlerMap[BB] = Action;
2223 Actions.insertCleanupHandler(Action);
2224 DEBUG(dbgs() << " Found cleanup code in block "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Found cleanup code in block "
<< Action->getStartBlock()->getName() << "\n"
; } } while (0)
2225 << Action->getStartBlock()->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Found cleanup code in block "
<< Action->getStartBlock()->getName() << "\n"
; } } while (0)
;
2226}
2227
2228static CallSite matchOutlinedFinallyCall(BasicBlock *BB,
2229 Instruction *MaybeCall) {
2230 // Look for finally blocks that Clang has already outlined for us.
2231 // %fp = call i8* @llvm.frameaddress(i32 0)
2232 // call void @"fin$parent"(iN 1, i8* %fp)
2233 if (isFrameAddressCall(MaybeCall) && MaybeCall != BB->getTerminator())
2234 MaybeCall = MaybeCall->getNextNode();
2235 CallSite FinallyCall(MaybeCall);
2236 if (!FinallyCall || FinallyCall.arg_size() != 2)
2237 return CallSite();
2238 if (!match(FinallyCall.getArgument(0), m_SpecificInt(1)))
2239 return CallSite();
2240 if (!isFrameAddressCall(FinallyCall.getArgument(1)))
2241 return CallSite();
2242 return FinallyCall;
2243}
2244
2245static BasicBlock *followSingleUnconditionalBranches(BasicBlock *BB) {
2246 // Skip single ubr blocks.
2247 while (BB->getFirstNonPHIOrDbg() == BB->getTerminator()) {
2248 auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
2249 if (Br && Br->isUnconditional())
2250 BB = Br->getSuccessor(0);
2251 else
2252 return BB;
2253 }
2254 return BB;
2255}
2256
2257// This function searches starting with the input block for the next block that
2258// contains code that is not part of a catch handler and would not be eliminated
2259// during handler outlining.
2260//
2261void WinEHPrepare::findCleanupHandlers(LandingPadActions &Actions,
2262 BasicBlock *StartBB, BasicBlock *EndBB) {
2263 // Here we will skip over the following:
2264 //
2265 // landing pad prolog:
2266 //
2267 // Unconditional branches
2268 //
2269 // Selector dispatch
2270 //
2271 // Resume pattern
2272 //
2273 // Anything else marks the start of an interesting block
2274
2275 BasicBlock *BB = StartBB;
2276 // Anything other than an unconditional branch will kick us out of this loop
2277 // one way or another.
2278 while (BB) {
2279 BB = followSingleUnconditionalBranches(BB);
2280 // If we've already scanned this block, don't scan it again. If it is
2281 // a cleanup block, there will be an action in the CleanupHandlerMap.
2282 // If we've scanned it and it is not a cleanup block, there will be a
2283 // nullptr in the CleanupHandlerMap. If we have not scanned it, there will
2284 // be no entry in the CleanupHandlerMap. We must call count() first to
2285 // avoid creating a null entry for blocks we haven't scanned.
2286 if (CleanupHandlerMap.count(BB)) {
2287 if (auto *Action = CleanupHandlerMap[BB]) {
2288 Actions.insertCleanupHandler(Action);
2289 DEBUG(dbgs() << " Found cleanup code in block "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Found cleanup code in block "
<< Action->getStartBlock()->getName() << "\n"
; } } while (0)
2290 << Action->getStartBlock()->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Found cleanup code in block "
<< Action->getStartBlock()->getName() << "\n"
; } } while (0)
;
2291 // FIXME: This cleanup might chain into another, and we need to discover
2292 // that.
2293 return;
2294 } else {
2295 // Here we handle the case where the cleanup handler map contains a
2296 // value for this block but the value is a nullptr. This means that
2297 // we have previously analyzed the block and determined that it did
2298 // not contain any cleanup code. Based on the earlier analysis, we
2299 // know the block must end in either an unconditional branch, a
2300 // resume or a conditional branch that is predicated on a comparison
2301 // with a selector. Either the resume or the selector dispatch
2302 // would terminate the search for cleanup code, so the unconditional
2303 // branch is the only case for which we might need to continue
2304 // searching.
2305 BasicBlock *SuccBB = followSingleUnconditionalBranches(BB);
2306 if (SuccBB == BB || SuccBB == EndBB)
2307 return;
2308 BB = SuccBB;
2309 continue;
2310 }
2311 }
2312
2313 // Create an entry in the cleanup handler map for this block. Initially
2314 // we create an entry that says this isn't a cleanup block. If we find
2315 // cleanup code, the caller will replace this entry.
2316 CleanupHandlerMap[BB] = nullptr;
2317
2318 TerminatorInst *Terminator = BB->getTerminator();
2319
2320 // Landing pad blocks have extra instructions we need to accept.
2321 LandingPadMap *LPadMap = nullptr;
2322 if (BB->isLandingPad()) {
2323 LandingPadInst *LPad = BB->getLandingPadInst();
2324 LPadMap = &LPadMaps[LPad];
2325 if (!LPadMap->isInitialized())
2326 LPadMap->mapLandingPad(LPad);
2327 }
2328
2329 // Look for the bare resume pattern:
2330 // %lpad.val1 = insertvalue { i8*, i32 } undef, i8* %exn, 0
2331 // %lpad.val2 = insertvalue { i8*, i32 } %lpad.val1, i32 %sel, 1
2332 // resume { i8*, i32 } %lpad.val2
2333 if (auto *Resume = dyn_cast<ResumeInst>(Terminator)) {
2334 InsertValueInst *Insert1 = nullptr;
2335 InsertValueInst *Insert2 = nullptr;
2336 Value *ResumeVal = Resume->getOperand(0);
2337 // If the resume value isn't a phi or landingpad value, it should be a
2338 // series of insertions. Identify them so we can avoid them when scanning
2339 // for cleanups.
2340 if (!isa<PHINode>(ResumeVal) && !isa<LandingPadInst>(ResumeVal)) {
2341 Insert2 = dyn_cast<InsertValueInst>(ResumeVal);
2342 if (!Insert2)
2343 return createCleanupHandler(Actions, CleanupHandlerMap, BB);
2344 Insert1 = dyn_cast<InsertValueInst>(Insert2->getAggregateOperand());
2345 if (!Insert1)
2346 return createCleanupHandler(Actions, CleanupHandlerMap, BB);
2347 }
2348 for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end();
2349 II != IE; ++II) {
2350 Instruction *Inst = II;
2351 if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
2352 continue;
2353 if (Inst == Insert1 || Inst == Insert2 || Inst == Resume)
2354 continue;
2355 if (!Inst->hasOneUse() ||
2356 (Inst->user_back() != Insert1 && Inst->user_back() != Insert2)) {
2357 return createCleanupHandler(Actions, CleanupHandlerMap, BB);
2358 }
2359 }
2360 return;
2361 }
2362
2363 BranchInst *Branch = dyn_cast<BranchInst>(Terminator);
2364 if (Branch && Branch->isConditional()) {
2365 // Look for the selector dispatch.
2366 // %2 = call i32 @llvm.eh.typeid.for(i8* bitcast (i8** @_ZTIf to i8*))
2367 // %matches = icmp eq i32 %sel, %2
2368 // br i1 %matches, label %catch14, label %eh.resume
2369 CmpInst *Compare = dyn_cast<CmpInst>(Branch->getCondition());
2370 if (!Compare || !Compare->isEquality())
2371 return createCleanupHandler(Actions, CleanupHandlerMap, BB);
2372 for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end();
2373 II != IE; ++II) {
2374 Instruction *Inst = II;
2375 if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
2376 continue;
2377 if (Inst == Compare || Inst == Branch)
2378 continue;
2379 if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>()))
2380 continue;
2381 return createCleanupHandler(Actions, CleanupHandlerMap, BB);
2382 }
2383 // The selector dispatch block should always terminate our search.
2384 assert(BB == EndBB)((BB == EndBB) ? static_cast<void> (0) : __assert_fail (
"BB == EndBB", "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 2384, __PRETTY_FUNCTION__))
;
2385 return;
2386 }
2387
2388 if (isAsynchronousEHPersonality(Personality)) {
2389 // If this is a landingpad block, split the block at the first non-landing
2390 // pad instruction.
2391 Instruction *MaybeCall = BB->getFirstNonPHIOrDbg();
2392 if (LPadMap) {
2393 while (MaybeCall != BB->getTerminator() &&
2394 LPadMap->isLandingPadSpecificInst(MaybeCall))
2395 MaybeCall = MaybeCall->getNextNode();
2396 }
2397
2398 // Look for outlined finally calls.
2399 if (CallSite FinallyCall = matchOutlinedFinallyCall(BB, MaybeCall)) {
2400 Function *Fin = FinallyCall.getCalledFunction();
2401 assert(Fin && "outlined finally call should be direct")((Fin && "outlined finally call should be direct") ? static_cast
<void> (0) : __assert_fail ("Fin && \"outlined finally call should be direct\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 2401, __PRETTY_FUNCTION__))
;
2402 auto *Action = new CleanupHandler(BB);
2403 Action->setHandlerBlockOrFunc(Fin);
2404 Actions.insertCleanupHandler(Action);
2405 CleanupHandlerMap[BB] = Action;
2406 DEBUG(dbgs() << " Found frontend-outlined finally call to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Found frontend-outlined finally call to "
<< Fin->getName() << " in block " << Action
->getStartBlock()->getName() << "\n"; } } while (
0)
2407 << Fin->getName() << " in block "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Found frontend-outlined finally call to "
<< Fin->getName() << " in block " << Action
->getStartBlock()->getName() << "\n"; } } while (
0)
2408 << Action->getStartBlock()->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Found frontend-outlined finally call to "
<< Fin->getName() << " in block " << Action
->getStartBlock()->getName() << "\n"; } } while (
0)
;
2409
2410 // Split the block if there were more interesting instructions and look
2411 // for finally calls in the normal successor block.
2412 BasicBlock *SuccBB = BB;
Value stored to 'SuccBB' during its initialization is never read
2413 if (FinallyCall.getInstruction() != BB->getTerminator() &&
2414 FinallyCall.getInstruction()->getNextNode() !=
2415 BB->getTerminator()) {
2416 SuccBB =
2417 SplitBlock(BB, FinallyCall.getInstruction()->getNextNode(), DT);
2418 } else {
2419 if (FinallyCall.isInvoke()) {
2420 SuccBB =
2421 cast<InvokeInst>(FinallyCall.getInstruction())->getNormalDest();
2422 } else {
2423 SuccBB = BB->getUniqueSuccessor();
2424 assert(SuccBB &&((SuccBB && "splitOutlinedFinallyCalls didn't insert a branch"
) ? static_cast<void> (0) : __assert_fail ("SuccBB && \"splitOutlinedFinallyCalls didn't insert a branch\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 2425, __PRETTY_FUNCTION__))
2425 "splitOutlinedFinallyCalls didn't insert a branch")((SuccBB && "splitOutlinedFinallyCalls didn't insert a branch"
) ? static_cast<void> (0) : __assert_fail ("SuccBB && \"splitOutlinedFinallyCalls didn't insert a branch\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 2425, __PRETTY_FUNCTION__))
;
2426 }
2427 }
2428 BB = SuccBB;
2429 if (BB == EndBB)
2430 return;
2431 continue;
2432 }
2433 }
2434
2435 // Anything else is either a catch block or interesting cleanup code.
2436 for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end();
2437 II != IE; ++II) {
2438 Instruction *Inst = II;
2439 if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
2440 continue;
2441 // Unconditional branches fall through to this loop.
2442 if (Inst == Branch)
2443 continue;
2444 // If this is a catch block, there is no cleanup code to be found.
2445 if (match(Inst, m_Intrinsic<Intrinsic::eh_begincatch>()))
2446 return;
2447 // If this a nested landing pad, it may contain an endcatch call.
2448 if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>()))
2449 return;
2450 // Anything else makes this interesting cleanup code.
2451 return createCleanupHandler(Actions, CleanupHandlerMap, BB);
2452 }
2453
2454 // Only unconditional branches in empty blocks should get this far.
2455 assert(Branch && Branch->isUnconditional())((Branch && Branch->isUnconditional()) ? static_cast
<void> (0) : __assert_fail ("Branch && Branch->isUnconditional()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 2455, __PRETTY_FUNCTION__))
;
2456 if (BB == EndBB)
2457 return;
2458 BB = Branch->getSuccessor(0);
2459 }
2460}
2461
2462// This is a public function, declared in WinEHFuncInfo.h and is also
2463// referenced by WinEHNumbering in FunctionLoweringInfo.cpp.
2464void llvm::parseEHActions(
2465 const IntrinsicInst *II,
2466 SmallVectorImpl<std::unique_ptr<ActionHandler>> &Actions) {
2467 assert(II->getIntrinsicID() == Intrinsic::eh_actions &&((II->getIntrinsicID() == Intrinsic::eh_actions &&
"attempted to parse non eh.actions intrinsic") ? static_cast
<void> (0) : __assert_fail ("II->getIntrinsicID() == Intrinsic::eh_actions && \"attempted to parse non eh.actions intrinsic\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 2468, __PRETTY_FUNCTION__))
2468 "attempted to parse non eh.actions intrinsic")((II->getIntrinsicID() == Intrinsic::eh_actions &&
"attempted to parse non eh.actions intrinsic") ? static_cast
<void> (0) : __assert_fail ("II->getIntrinsicID() == Intrinsic::eh_actions && \"attempted to parse non eh.actions intrinsic\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 2468, __PRETTY_FUNCTION__))
;
2469 for (unsigned I = 0, E = II->getNumArgOperands(); I != E;) {
2470 uint64_t ActionKind =
2471 cast<ConstantInt>(II->getArgOperand(I))->getZExtValue();
2472 if (ActionKind == /*catch=*/1) {
2473 auto *Selector = cast<Constant>(II->getArgOperand(I + 1));
2474 ConstantInt *EHObjIndex = cast<ConstantInt>(II->getArgOperand(I + 2));
2475 int64_t EHObjIndexVal = EHObjIndex->getSExtValue();
2476 Constant *Handler = cast<Constant>(II->getArgOperand(I + 3));
2477 I += 4;
2478 auto CH = make_unique<CatchHandler>(/*BB=*/nullptr, Selector,
2479 /*NextBB=*/nullptr);
2480 CH->setHandlerBlockOrFunc(Handler);
2481 CH->setExceptionVarIndex(EHObjIndexVal);
2482 Actions.push_back(std::move(CH));
2483 } else if (ActionKind == 0) {
2484 Constant *Handler = cast<Constant>(II->getArgOperand(I + 1));
2485 I += 2;
2486 auto CH = make_unique<CleanupHandler>(/*BB=*/nullptr);
2487 CH->setHandlerBlockOrFunc(Handler);
2488 Actions.push_back(std::move(CH));
2489 } else {
2490 llvm_unreachable("Expected either a catch or cleanup handler!")::llvm::llvm_unreachable_internal("Expected either a catch or cleanup handler!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 2490)
;
2491 }
2492 }
2493 std::reverse(Actions.begin(), Actions.end());
2494}
2495
2496namespace {
2497struct WinEHNumbering {
2498 WinEHNumbering(WinEHFuncInfo &FuncInfo) : FuncInfo(FuncInfo),
2499 CurrentBaseState(-1), NextState(0) {}
2500
2501 WinEHFuncInfo &FuncInfo;
2502 int CurrentBaseState;
2503 int NextState;
2504
2505 SmallVector<std::unique_ptr<ActionHandler>, 4> HandlerStack;
2506 SmallPtrSet<const Function *, 4> VisitedHandlers;
2507
2508 int currentEHNumber() const {
2509 return HandlerStack.empty() ? CurrentBaseState : HandlerStack.back()->getEHState();
2510 }
2511
2512 void createUnwindMapEntry(int ToState, ActionHandler *AH);
2513 void createTryBlockMapEntry(int TryLow, int TryHigh,
2514 ArrayRef<CatchHandler *> Handlers);
2515 void processCallSite(MutableArrayRef<std::unique_ptr<ActionHandler>> Actions,
2516 ImmutableCallSite CS);
2517 void popUnmatchedActions(int FirstMismatch);
2518 void calculateStateNumbers(const Function &F);
2519 void findActionRootLPads(const Function &F);
2520};
2521}
2522
2523void WinEHNumbering::createUnwindMapEntry(int ToState, ActionHandler *AH) {
2524 WinEHUnwindMapEntry UME;
2525 UME.ToState = ToState;
2526 if (auto *CH = dyn_cast_or_null<CleanupHandler>(AH))
2527 UME.Cleanup = cast<Function>(CH->getHandlerBlockOrFunc());
2528 else
2529 UME.Cleanup = nullptr;
2530 FuncInfo.UnwindMap.push_back(UME);
2531}
2532
2533void WinEHNumbering::createTryBlockMapEntry(int TryLow, int TryHigh,
2534 ArrayRef<CatchHandler *> Handlers) {
2535 // See if we already have an entry for this set of handlers.
2536 // This is using iterators rather than a range-based for loop because
2537 // if we find the entry we're looking for we'll need the iterator to erase it.
2538 int NumHandlers = Handlers.size();
2539 auto I = FuncInfo.TryBlockMap.begin();
2540 auto E = FuncInfo.TryBlockMap.end();
2541 for ( ; I != E; ++I) {
2542 auto &Entry = *I;
2543 if (Entry.HandlerArray.size() != (size_t)NumHandlers)
2544 continue;
2545 int N;
2546 for (N = 0; N < NumHandlers; ++N) {
2547 if (Entry.HandlerArray[N].Handler != Handlers[N]->getHandlerBlockOrFunc())
2548 break; // breaks out of inner loop
2549 }
2550 // If all the handlers match, this is what we were looking for.
2551 if (N == NumHandlers) {
2552 break;
2553 }
2554 }
2555
2556 // If we found an existing entry for this set of handlers, extend the range
2557 // but move the entry to the end of the map vector. The order of entries
2558 // in the map is critical to the way that the runtime finds handlers.
2559 // FIXME: Depending on what has happened with block ordering, this may
2560 // incorrectly combine entries that should remain separate.
2561 if (I != E) {
2562 // Copy the existing entry.
2563 WinEHTryBlockMapEntry Entry = *I;
2564 Entry.TryLow = std::min(TryLow, Entry.TryLow);
2565 Entry.TryHigh = std::max(TryHigh, Entry.TryHigh);
2566 assert(Entry.TryLow <= Entry.TryHigh)((Entry.TryLow <= Entry.TryHigh) ? static_cast<void>
(0) : __assert_fail ("Entry.TryLow <= Entry.TryHigh", "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 2566, __PRETTY_FUNCTION__))
;
2567 // Erase the old entry and add this one to the back.
2568 FuncInfo.TryBlockMap.erase(I);
2569 FuncInfo.TryBlockMap.push_back(Entry);
2570 return;
2571 }
2572
2573 // If we didn't find an entry, create a new one.
2574 WinEHTryBlockMapEntry TBME;
2575 TBME.TryLow = TryLow;
2576 TBME.TryHigh = TryHigh;
2577 assert(TBME.TryLow <= TBME.TryHigh)((TBME.TryLow <= TBME.TryHigh) ? static_cast<void> (
0) : __assert_fail ("TBME.TryLow <= TBME.TryHigh", "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 2577, __PRETTY_FUNCTION__))
;
2578 for (CatchHandler *CH : Handlers) {
2579 WinEHHandlerType HT;
2580 if (CH->getSelector()->isNullValue()) {
2581 HT.Adjectives = 0x40;
2582 HT.TypeDescriptor = nullptr;
2583 } else {
2584 auto *GV = cast<GlobalVariable>(CH->getSelector()->stripPointerCasts());
2585 // Selectors are always pointers to GlobalVariables with 'struct' type.
2586 // The struct has two fields, adjectives and a type descriptor.
2587 auto *CS = cast<ConstantStruct>(GV->getInitializer());
2588 HT.Adjectives =
2589 cast<ConstantInt>(CS->getAggregateElement(0U))->getZExtValue();
2590 HT.TypeDescriptor =
2591 cast<GlobalVariable>(CS->getAggregateElement(1)->stripPointerCasts());
2592 }
2593 HT.Handler = cast<Function>(CH->getHandlerBlockOrFunc());
2594 HT.CatchObjRecoverIdx = CH->getExceptionVarIndex();
2595 TBME.HandlerArray.push_back(HT);
2596 }
2597 FuncInfo.TryBlockMap.push_back(TBME);
2598}
2599
2600static void print_name(const Value *V) {
2601#ifndef NDEBUG
2602 if (!V) {
2603 DEBUG(dbgs() << "null")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "null"; } } while (0)
;
2604 return;
2605 }
2606
2607 if (const auto *F = dyn_cast<Function>(V))
2608 DEBUG(dbgs() << F->getName())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << F->getName(); } } while
(0)
;
2609 else
2610 DEBUG(V->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { V->dump(); } } while (0)
;
2611#endif
2612}
2613
2614void WinEHNumbering::processCallSite(
2615 MutableArrayRef<std::unique_ptr<ActionHandler>> Actions,
2616 ImmutableCallSite CS) {
2617 DEBUG(dbgs() << "processCallSite (EH state = " << currentEHNumber()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "processCallSite (EH state = "
<< currentEHNumber() << ") for: "; } } while (0)
2618 << ") for: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "processCallSite (EH state = "
<< currentEHNumber() << ") for: "; } } while (0)
;
2619 print_name(CS ? CS.getCalledValue() : nullptr);
2620 DEBUG(dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << '\n'; } } while (0)
;
2621
2622 DEBUG(dbgs() << "HandlerStack: \n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "HandlerStack: \n"; } } while
(0)
;
2623 for (int I = 0, E = HandlerStack.size(); I < E; ++I) {
2624 DEBUG(dbgs() << " ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " "; } } while (0)
;
2625 print_name(HandlerStack[I]->getHandlerBlockOrFunc());
2626 DEBUG(dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << '\n'; } } while (0)
;
2627 }
2628 DEBUG(dbgs() << "Actions: \n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Actions: \n"; } } while (
0)
;
2629 for (int I = 0, E = Actions.size(); I < E; ++I) {
2630 DEBUG(dbgs() << " ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " "; } } while (0)
;
2631 print_name(Actions[I]->getHandlerBlockOrFunc());
2632 DEBUG(dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << '\n'; } } while (0)
;
2633 }
2634 int FirstMismatch = 0;
2635 for (int E = std::min(HandlerStack.size(), Actions.size()); FirstMismatch < E;
2636 ++FirstMismatch) {
2637 if (HandlerStack[FirstMismatch]->getHandlerBlockOrFunc() !=
2638 Actions[FirstMismatch]->getHandlerBlockOrFunc())
2639 break;
2640 }
2641
2642 // Remove unmatched actions from the stack and process their EH states.
2643 popUnmatchedActions(FirstMismatch);
2644
2645 DEBUG(dbgs() << "Pushing actions for CallSite: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Pushing actions for CallSite: "
; } } while (0)
;
2646 print_name(CS ? CS.getCalledValue() : nullptr);
2647 DEBUG(dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << '\n'; } } while (0)
;
2648
2649 bool LastActionWasCatch = false;
2650 const LandingPadInst *LastRootLPad = nullptr;
2651 for (size_t I = FirstMismatch; I != Actions.size(); ++I) {
2652 // We can reuse eh states when pushing two catches for the same invoke.
2653 bool CurrActionIsCatch = isa<CatchHandler>(Actions[I].get());
2654 auto *Handler = cast<Function>(Actions[I]->getHandlerBlockOrFunc());
2655 // Various conditions can lead to a handler being popped from the
2656 // stack and re-pushed later. That shouldn't create a new state.
2657 // FIXME: Can code optimization lead to re-used handlers?
2658 if (FuncInfo.HandlerEnclosedState.count(Handler)) {
2659 // If we already assigned the state enclosed by this handler re-use it.
2660 Actions[I]->setEHState(FuncInfo.HandlerEnclosedState[Handler]);
2661 continue;
2662 }
2663 const LandingPadInst* RootLPad = FuncInfo.RootLPad[Handler];
2664 if (CurrActionIsCatch && LastActionWasCatch && RootLPad == LastRootLPad) {
2665 DEBUG(dbgs() << "setEHState for handler to " << currentEHNumber() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "setEHState for handler to "
<< currentEHNumber() << "\n"; } } while (0)
;
2666 Actions[I]->setEHState(currentEHNumber());
2667 } else {
2668 DEBUG(dbgs() << "createUnwindMapEntry(" << currentEHNumber() << ", ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "createUnwindMapEntry(" <<
currentEHNumber() << ", "; } } while (0)
;
2669 print_name(Actions[I]->getHandlerBlockOrFunc());
2670 DEBUG(dbgs() << ") with EH state " << NextState << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << ") with EH state " <<
NextState << "\n"; } } while (0)
;
2671 createUnwindMapEntry(currentEHNumber(), Actions[I].get());
2672 DEBUG(dbgs() << "setEHState for handler to " << NextState << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "setEHState for handler to "
<< NextState << "\n"; } } while (0)
;
2673 Actions[I]->setEHState(NextState);
2674 NextState++;
2675 }
2676 HandlerStack.push_back(std::move(Actions[I]));
2677 LastActionWasCatch = CurrActionIsCatch;
2678 LastRootLPad = RootLPad;
2679 }
2680
2681 // This is used to defer numbering states for a handler until after the
2682 // last time it appears in an invoke action list.
2683 if (CS.isInvoke()) {
2684 for (int I = 0, E = HandlerStack.size(); I < E; ++I) {
2685 auto *Handler = cast<Function>(HandlerStack[I]->getHandlerBlockOrFunc());
2686 if (FuncInfo.LastInvoke[Handler] != cast<InvokeInst>(CS.getInstruction()))
2687 continue;
2688 FuncInfo.LastInvokeVisited[Handler] = true;
2689 DEBUG(dbgs() << "Last invoke of ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Last invoke of "; } } while
(0)
;
2690 print_name(Handler);
2691 DEBUG(dbgs() << " has been visited.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " has been visited.\n"; }
} while (0)
;
2692 }
2693 }
2694
2695 DEBUG(dbgs() << "In EHState " << currentEHNumber() << " for CallSite: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "In EHState " << currentEHNumber
() << " for CallSite: "; } } while (0)
;
2696 print_name(CS ? CS.getCalledValue() : nullptr);
2697 DEBUG(dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << '\n'; } } while (0)
;
2698}
2699
2700void WinEHNumbering::popUnmatchedActions(int FirstMismatch) {
2701 // Don't recurse while we are looping over the handler stack. Instead, defer
2702 // the numbering of the catch handlers until we are done popping.
2703 SmallVector<CatchHandler *, 4> PoppedCatches;
2704 for (int I = HandlerStack.size() - 1; I >= FirstMismatch; --I) {
2705 std::unique_ptr<ActionHandler> Handler = HandlerStack.pop_back_val();
2706 if (isa<CatchHandler>(Handler.get()))
2707 PoppedCatches.push_back(cast<CatchHandler>(Handler.release()));
2708 }
2709
2710 int TryHigh = NextState - 1;
2711 int LastTryLowIdx = 0;
2712 for (int I = 0, E = PoppedCatches.size(); I != E; ++I) {
2713 CatchHandler *CH = PoppedCatches[I];
2714 DEBUG(dbgs() << "Popped handler with state " << CH->getEHState() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Popped handler with state "
<< CH->getEHState() << "\n"; } } while (0)
;
2715 if (I + 1 == E || CH->getEHState() != PoppedCatches[I + 1]->getEHState()) {
2716 int TryLow = CH->getEHState();
2717 auto Handlers =
2718 makeArrayRef(&PoppedCatches[LastTryLowIdx], I - LastTryLowIdx + 1);
2719 DEBUG(dbgs() << "createTryBlockMapEntry(" << TryLow << ", " << TryHigh)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "createTryBlockMapEntry("
<< TryLow << ", " << TryHigh; } } while (0
)
;
2720 for (size_t J = 0; J < Handlers.size(); ++J) {
2721 DEBUG(dbgs() << ", ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << ", "; } } while (0)
;
2722 print_name(Handlers[J]->getHandlerBlockOrFunc());
2723 }
2724 DEBUG(dbgs() << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << ")\n"; } } while (0)
;
2725 createTryBlockMapEntry(TryLow, TryHigh, Handlers);
2726 LastTryLowIdx = I + 1;
2727 }
2728 }
2729
2730 for (CatchHandler *CH : PoppedCatches) {
2731 if (auto *F = dyn_cast<Function>(CH->getHandlerBlockOrFunc())) {
2732 if (FuncInfo.LastInvokeVisited[F]) {
2733 DEBUG(dbgs() << "Assigning base state " << NextState << " to ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning base state " <<
NextState << " to "; } } while (0)
;
2734 print_name(F);
2735 DEBUG(dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << '\n'; } } while (0)
;
2736 FuncInfo.HandlerBaseState[F] = NextState;
2737 DEBUG(dbgs() << "createUnwindMapEntry(" << currentEHNumber()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "createUnwindMapEntry(" <<
currentEHNumber() << ", null)\n"; } } while (0)
2738 << ", null)\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "createUnwindMapEntry(" <<
currentEHNumber() << ", null)\n"; } } while (0)
;
2739 createUnwindMapEntry(currentEHNumber(), nullptr);
2740 ++NextState;
2741 calculateStateNumbers(*F);
2742 }
2743 else {
2744 DEBUG(dbgs() << "Deferring handling of ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Deferring handling of ";
} } while (0)
;
2745 print_name(F);
2746 DEBUG(dbgs() << " until last invoke visited.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " until last invoke visited.\n"
; } } while (0)
;
2747 }
2748 }
2749 delete CH;
2750 }
2751}
2752
2753void WinEHNumbering::calculateStateNumbers(const Function &F) {
2754 auto I = VisitedHandlers.insert(&F);
2755 if (!I.second)
2756 return; // We've already visited this handler, don't renumber it.
2757
2758 int OldBaseState = CurrentBaseState;
2759 if (FuncInfo.HandlerBaseState.count(&F)) {
2760 CurrentBaseState = FuncInfo.HandlerBaseState[&F];
2761 }
2762
2763 size_t SavedHandlerStackSize = HandlerStack.size();
2764
2765 DEBUG(dbgs() << "Calculating state numbers for: " << F.getName() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Calculating state numbers for: "
<< F.getName() << '\n'; } } while (0)
;
2766 SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList;
2767 for (const BasicBlock &BB : F) {
2768 for (const Instruction &I : BB) {
2769 const auto *CI = dyn_cast<CallInst>(&I);
2770 if (!CI || CI->doesNotThrow())
2771 continue;
2772 processCallSite(None, CI);
2773 }
2774 const auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
2775 if (!II)
2776 continue;
2777 const LandingPadInst *LPI = II->getLandingPadInst();
2778 auto *ActionsCall = dyn_cast<IntrinsicInst>(LPI->getNextNode());
2779 if (!ActionsCall)
2780 continue;
2781 parseEHActions(ActionsCall, ActionList);
2782 if (ActionList.empty())
2783 continue;
2784 processCallSite(ActionList, II);
2785 ActionList.clear();
2786 FuncInfo.LandingPadStateMap[LPI] = currentEHNumber();
2787 DEBUG(dbgs() << "Assigning state " << currentEHNumber()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state " <<
currentEHNumber() << " to landing pad at " << LPI
->getParent()->getName() << '\n'; } } while (0)
2788 << " to landing pad at " << LPI->getParent()->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state " <<
currentEHNumber() << " to landing pad at " << LPI
->getParent()->getName() << '\n'; } } while (0)
2789 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state " <<
currentEHNumber() << " to landing pad at " << LPI
->getParent()->getName() << '\n'; } } while (0)
;
2790 }
2791
2792 // Pop any actions that were pushed on the stack for this function.
2793 popUnmatchedActions(SavedHandlerStackSize);
2794
2795 DEBUG(dbgs() << "Assigning max state " << NextState - 1do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning max state " <<
NextState - 1 << " to " << F.getName() << '\n'
; } } while (0)
2796 << " to " << F.getName() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning max state " <<
NextState - 1 << " to " << F.getName() << '\n'
; } } while (0)
;
2797 FuncInfo.CatchHandlerMaxState[&F] = NextState - 1;
2798
2799 CurrentBaseState = OldBaseState;
2800}
2801
2802// This function follows the same basic traversal as calculateStateNumbers
2803// but it is necessary to identify the root landing pad associated
2804// with each action before we start assigning state numbers.
2805void WinEHNumbering::findActionRootLPads(const Function &F) {
2806 auto I = VisitedHandlers.insert(&F);
2807 if (!I.second)
2808 return; // We've already visited this handler, don't revisit it.
2809
2810 SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList;
2811 for (const BasicBlock &BB : F) {
2812 const auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
2813 if (!II)
2814 continue;
2815 const LandingPadInst *LPI = II->getLandingPadInst();
2816 auto *ActionsCall = dyn_cast<IntrinsicInst>(LPI->getNextNode());
2817 if (!ActionsCall)
2818 continue;
2819
2820 assert(ActionsCall->getIntrinsicID() == Intrinsic::eh_actions)((ActionsCall->getIntrinsicID() == Intrinsic::eh_actions) ?
static_cast<void> (0) : __assert_fail ("ActionsCall->getIntrinsicID() == Intrinsic::eh_actions"
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/CodeGen/WinEHPrepare.cpp"
, 2820, __PRETTY_FUNCTION__))
;
2821 parseEHActions(ActionsCall, ActionList);
2822 if (ActionList.empty())
2823 continue;
2824 for (int I = 0, E = ActionList.size(); I < E; ++I) {
2825 if (auto *Handler
2826 = dyn_cast<Function>(ActionList[I]->getHandlerBlockOrFunc())) {
2827 FuncInfo.LastInvoke[Handler] = II;
2828 // Don't replace the root landing pad if we previously saw this
2829 // handler in a different function.
2830 if (FuncInfo.RootLPad.count(Handler) &&
2831 FuncInfo.RootLPad[Handler]->getParent()->getParent() != &F)
2832 continue;
2833 DEBUG(dbgs() << "Setting root lpad for ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Setting root lpad for ";
} } while (0)
;
2834 print_name(Handler);
2835 DEBUG(dbgs() << " to " << LPI->getParent()->getName() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " to " << LPI->getParent
()->getName() << '\n'; } } while (0)
;
2836 FuncInfo.RootLPad[Handler] = LPI;
2837 }
2838 }
2839 // Walk the actions again and look for nested handlers. This has to
2840 // happen after all of the actions have been processed in the current
2841 // function.
2842 for (int I = 0, E = ActionList.size(); I < E; ++I)
2843 if (auto *Handler
2844 = dyn_cast<Function>(ActionList[I]->getHandlerBlockOrFunc()))
2845 findActionRootLPads(*Handler);
2846 ActionList.clear();
2847 }
2848}
2849
2850void llvm::calculateWinCXXEHStateNumbers(const Function *ParentFn,
2851 WinEHFuncInfo &FuncInfo) {
2852 // Return if it's already been done.
2853 if (!FuncInfo.LandingPadStateMap.empty())
2854 return;
2855
2856 WinEHNumbering Num(FuncInfo);
2857 Num.findActionRootLPads(*ParentFn);
2858 // The VisitedHandlers list is used by both findActionRootLPads and
2859 // calculateStateNumbers, but both functions need to visit all handlers.
2860 Num.VisitedHandlers.clear();
2861 Num.calculateStateNumbers(*ParentFn);
2862 // Pop everything on the handler stack.
2863 // It may be necessary to call this more than once because a handler can
2864 // be pushed on the stack as a result of clearing the stack.
2865 while (!Num.HandlerStack.empty())
2866 Num.processCallSite(None, ImmutableCallSite());
2867}