Bug Summary

File:lib/CodeGen/WinEHPrepare.cpp
Location:line 2510, column 23
Description:Value stored to 'SuccBB' during its initialization is never read

Annotated Source Code

1//===-- WinEHPrepare - Prepare exception handling for code generation ---===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass lowers LLVM IR exception handling into something closer to what the
11// backend wants for functions using a personality function from a runtime
12// provided by MSVC. Functions with other personality functions are left alone
13// and may be prepared by other passes. In particular, all supported MSVC
14// personality functions require cleanup code to be outlined, and the C++
15// personality requires catch handler code to be outlined.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/CodeGen/Passes.h"
20#include "llvm/ADT/MapVector.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/SetVector.h"
24#include "llvm/ADT/Triple.h"
25#include "llvm/ADT/TinyPtrVector.h"
26#include "llvm/Analysis/CFG.h"
27#include "llvm/Analysis/LibCallSemantics.h"
28#include "llvm/Analysis/TargetLibraryInfo.h"
29#include "llvm/CodeGen/WinEHFuncInfo.h"
30#include "llvm/IR/Dominators.h"
31#include "llvm/IR/Function.h"
32#include "llvm/IR/IRBuilder.h"
33#include "llvm/IR/Instructions.h"
34#include "llvm/IR/IntrinsicInst.h"
35#include "llvm/IR/Module.h"
36#include "llvm/IR/PatternMatch.h"
37#include "llvm/MC/MCSymbol.h"
38#include "llvm/Pass.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/raw_ostream.h"
41#include "llvm/Transforms/Utils/BasicBlockUtils.h"
42#include "llvm/Transforms/Utils/Cloning.h"
43#include "llvm/Transforms/Utils/Local.h"
44#include "llvm/Transforms/Utils/PromoteMemToReg.h"
45#include "llvm/Transforms/Utils/SSAUpdater.h"
46#include <memory>
47
48using namespace llvm;
49using namespace llvm::PatternMatch;
50
51#define DEBUG_TYPE"winehprepare" "winehprepare"
52
53static cl::opt<bool> DisableDemotion(
54 "disable-demotion", cl::Hidden,
55 cl::desc(
56 "Clone multicolor basic blocks but do not demote cross funclet values"),
57 cl::init(false));
58
59static cl::opt<bool> DisableCleanups(
60 "disable-cleanups", cl::Hidden,
61 cl::desc("Do not remove implausible terminators or other similar cleanups"),
62 cl::init(false));
63
64namespace {
65
66// This map is used to model frame variable usage during outlining, to
67// construct a structure type to hold the frame variables in a frame
68// allocation block, and to remap the frame variable allocas (including
69// spill locations as needed) to GEPs that get the variable from the
70// frame allocation structure.
71typedef MapVector<Value *, TinyPtrVector<AllocaInst *>> FrameVarInfoMap;
72
73// TinyPtrVector cannot hold nullptr, so we need our own sentinel that isn't
74// quite null.
75AllocaInst *getCatchObjectSentinel() {
76 return static_cast<AllocaInst *>(nullptr) + 1;
77}
78
79typedef SmallSet<BasicBlock *, 4> VisitedBlockSet;
80
81class LandingPadActions;
82class LandingPadMap;
83
84typedef DenseMap<const BasicBlock *, CatchHandler *> CatchHandlerMapTy;
85typedef DenseMap<const BasicBlock *, CleanupHandler *> CleanupHandlerMapTy;
86
87class WinEHPrepare : public FunctionPass {
88public:
89 static char ID; // Pass identification, replacement for typeid.
90 WinEHPrepare(const TargetMachine *TM = nullptr)
91 : FunctionPass(ID) {
92 if (TM)
93 TheTriple = TM->getTargetTriple();
94 }
95
96 bool runOnFunction(Function &Fn) override;
97
98 bool doFinalization(Module &M) override;
99
100 void getAnalysisUsage(AnalysisUsage &AU) const override;
101
102 const char *getPassName() const override {
103 return "Windows exception handling preparation";
104 }
105
106private:
107 bool prepareExceptionHandlers(Function &F,
108 SmallVectorImpl<LandingPadInst *> &LPads);
109 void identifyEHBlocks(Function &F, SmallVectorImpl<LandingPadInst *> &LPads);
110 void promoteLandingPadValues(LandingPadInst *LPad);
111 void demoteValuesLiveAcrossHandlers(Function &F,
112 SmallVectorImpl<LandingPadInst *> &LPads);
113 void findSEHEHReturnPoints(Function &F,
114 SetVector<BasicBlock *> &EHReturnBlocks);
115 void findCXXEHReturnPoints(Function &F,
116 SetVector<BasicBlock *> &EHReturnBlocks);
117 void getPossibleReturnTargets(Function *ParentF, Function *HandlerF,
118 SetVector<BasicBlock*> &Targets);
119 void completeNestedLandingPad(Function *ParentFn,
120 LandingPadInst *OutlinedLPad,
121 const LandingPadInst *OriginalLPad,
122 FrameVarInfoMap &VarInfo);
123 Function *createHandlerFunc(Function *ParentFn, Type *RetTy,
124 const Twine &Name, Module *M, Value *&ParentFP);
125 bool outlineHandler(ActionHandler *Action, Function *SrcFn,
126 LandingPadInst *LPad, BasicBlock *StartBB,
127 FrameVarInfoMap &VarInfo);
128 void addStubInvokeToHandlerIfNeeded(Function *Handler);
129
130 void mapLandingPadBlocks(LandingPadInst *LPad, LandingPadActions &Actions);
131 CatchHandler *findCatchHandler(BasicBlock *BB, BasicBlock *&NextBB,
132 VisitedBlockSet &VisitedBlocks);
133 void findCleanupHandlers(LandingPadActions &Actions, BasicBlock *StartBB,
134 BasicBlock *EndBB);
135
136 void processSEHCatchHandler(CatchHandler *Handler, BasicBlock *StartBB);
137 void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot);
138 void
139 insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
140 SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist);
141 AllocaInst *insertPHILoads(PHINode *PN, Function &F);
142 void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
143 DenseMap<BasicBlock *, Value *> &Loads, Function &F);
144 void demoteNonlocalUses(Value *V, std::set<BasicBlock *> &ColorsForBB,
145 Function &F);
146 bool prepareExplicitEH(Function &F,
147 SmallVectorImpl<BasicBlock *> &EntryBlocks);
148 void replaceTerminatePadWithCleanup(Function &F);
149 void colorFunclets(Function &F, SmallVectorImpl<BasicBlock *> &EntryBlocks);
150 void demotePHIsOnFunclets(Function &F);
151 void demoteUsesBetweenFunclets(Function &F);
152 void demoteArgumentUses(Function &F);
153 void cloneCommonBlocks(Function &F,
154 SmallVectorImpl<BasicBlock *> &EntryBlocks);
155 void removeImplausibleTerminators(Function &F);
156 void cleanupPreparedFunclets(Function &F);
157 void verifyPreparedFunclets(Function &F);
158
159 Triple TheTriple;
160
161 // All fields are reset by runOnFunction.
162 DominatorTree *DT = nullptr;
163 const TargetLibraryInfo *LibInfo = nullptr;
164 EHPersonality Personality = EHPersonality::Unknown;
165 CatchHandlerMapTy CatchHandlerMap;
166 CleanupHandlerMapTy CleanupHandlerMap;
167 DenseMap<const LandingPadInst *, LandingPadMap> LPadMaps;
168 SmallPtrSet<BasicBlock *, 4> NormalBlocks;
169 SmallPtrSet<BasicBlock *, 4> EHBlocks;
170 SetVector<BasicBlock *> EHReturnBlocks;
171
172 // This maps landing pad instructions found in outlined handlers to
173 // the landing pad instruction in the parent function from which they
174 // were cloned. The cloned/nested landing pad is used as the key
175 // because the landing pad may be cloned into multiple handlers.
176 // This map will be used to add the llvm.eh.actions call to the nested
177 // landing pads after all handlers have been outlined.
178 DenseMap<LandingPadInst *, const LandingPadInst *> NestedLPtoOriginalLP;
179
180 // This maps blocks in the parent function which are destinations of
181 // catch handlers to cloned blocks in (other) outlined handlers. This
182 // handles the case where a nested landing pads has a catch handler that
183 // returns to a handler function rather than the parent function.
184 // The original block is used as the key here because there should only
185 // ever be one handler function from which the cloned block is not pruned.
186 // The original block will be pruned from the parent function after all
187 // handlers have been outlined. This map will be used to adjust the
188 // return instructions of handlers which return to the block that was
189 // outlined into a handler. This is done after all handlers have been
190 // outlined but before the outlined code is pruned from the parent function.
191 DenseMap<const BasicBlock *, BasicBlock *> LPadTargetBlocks;
192
193 // Map from outlined handler to call to parent local address. Only used for
194 // 32-bit EH.
195 DenseMap<Function *, Value *> HandlerToParentFP;
196
197 AllocaInst *SEHExceptionCodeSlot = nullptr;
198
199 std::map<BasicBlock *, std::set<BasicBlock *>> BlockColors;
200 std::map<BasicBlock *, std::set<BasicBlock *>> FuncletBlocks;
201 std::map<BasicBlock *, std::set<BasicBlock *>> FuncletChildren;
202};
203
204class WinEHFrameVariableMaterializer : public ValueMaterializer {
205public:
206 WinEHFrameVariableMaterializer(Function *OutlinedFn, Value *ParentFP,
207 FrameVarInfoMap &FrameVarInfo);
208 ~WinEHFrameVariableMaterializer() override {}
209
210 Value *materializeValueFor(Value *V) override;
211
212 void escapeCatchObject(Value *V);
213
214private:
215 FrameVarInfoMap &FrameVarInfo;
216 IRBuilder<> Builder;
217};
218
219class LandingPadMap {
220public:
221 LandingPadMap() : OriginLPad(nullptr) {}
222 void mapLandingPad(const LandingPadInst *LPad);
223
224 bool isInitialized() { return OriginLPad != nullptr; }
225
226 bool isOriginLandingPadBlock(const BasicBlock *BB) const;
227 bool isLandingPadSpecificInst(const Instruction *Inst) const;
228
229 void remapEHValues(ValueToValueMapTy &VMap, Value *EHPtrValue,
230 Value *SelectorValue) const;
231
232private:
233 const LandingPadInst *OriginLPad;
234 // We will normally only see one of each of these instructions, but
235 // if more than one occurs for some reason we can handle that.
236 TinyPtrVector<const ExtractValueInst *> ExtractedEHPtrs;
237 TinyPtrVector<const ExtractValueInst *> ExtractedSelectors;
238};
239
240class WinEHCloningDirectorBase : public CloningDirector {
241public:
242 WinEHCloningDirectorBase(Function *HandlerFn, Value *ParentFP,
243 FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap)
244 : Materializer(HandlerFn, ParentFP, VarInfo),
245 SelectorIDType(Type::getInt32Ty(HandlerFn->getContext())),
246 Int8PtrType(Type::getInt8PtrTy(HandlerFn->getContext())),
247 LPadMap(LPadMap), ParentFP(ParentFP) {}
248
249 CloningAction handleInstruction(ValueToValueMapTy &VMap,
250 const Instruction *Inst,
251 BasicBlock *NewBB) override;
252
253 virtual CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
254 const Instruction *Inst,
255 BasicBlock *NewBB) = 0;
256 virtual CloningAction handleEndCatch(ValueToValueMapTy &VMap,
257 const Instruction *Inst,
258 BasicBlock *NewBB) = 0;
259 virtual CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
260 const Instruction *Inst,
261 BasicBlock *NewBB) = 0;
262 virtual CloningAction handleIndirectBr(ValueToValueMapTy &VMap,
263 const IndirectBrInst *IBr,
264 BasicBlock *NewBB) = 0;
265 virtual CloningAction handleInvoke(ValueToValueMapTy &VMap,
266 const InvokeInst *Invoke,
267 BasicBlock *NewBB) = 0;
268 virtual CloningAction handleResume(ValueToValueMapTy &VMap,
269 const ResumeInst *Resume,
270 BasicBlock *NewBB) = 0;
271 virtual CloningAction handleCompare(ValueToValueMapTy &VMap,
272 const CmpInst *Compare,
273 BasicBlock *NewBB) = 0;
274 virtual CloningAction handleLandingPad(ValueToValueMapTy &VMap,
275 const LandingPadInst *LPad,
276 BasicBlock *NewBB) = 0;
277
278 ValueMaterializer *getValueMaterializer() override { return &Materializer; }
279
280protected:
281 WinEHFrameVariableMaterializer Materializer;
282 Type *SelectorIDType;
283 Type *Int8PtrType;
284 LandingPadMap &LPadMap;
285
286 /// The value representing the parent frame pointer.
287 Value *ParentFP;
288};
289
290class WinEHCatchDirector : public WinEHCloningDirectorBase {
291public:
292 WinEHCatchDirector(
293 Function *CatchFn, Value *ParentFP, Value *Selector,
294 FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap,
295 DenseMap<LandingPadInst *, const LandingPadInst *> &NestedLPads,
296 DominatorTree *DT, SmallPtrSetImpl<BasicBlock *> &EHBlocks)
297 : WinEHCloningDirectorBase(CatchFn, ParentFP, VarInfo, LPadMap),
298 CurrentSelector(Selector->stripPointerCasts()),
299 ExceptionObjectVar(nullptr), NestedLPtoOriginalLP(NestedLPads),
300 DT(DT), EHBlocks(EHBlocks) {}
301
302 CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
303 const Instruction *Inst,
304 BasicBlock *NewBB) override;
305 CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst,
306 BasicBlock *NewBB) override;
307 CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
308 const Instruction *Inst,
309 BasicBlock *NewBB) override;
310 CloningAction handleIndirectBr(ValueToValueMapTy &VMap,
311 const IndirectBrInst *IBr,
312 BasicBlock *NewBB) override;
313 CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke,
314 BasicBlock *NewBB) override;
315 CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume,
316 BasicBlock *NewBB) override;
317 CloningAction handleCompare(ValueToValueMapTy &VMap, const CmpInst *Compare,
318 BasicBlock *NewBB) override;
319 CloningAction handleLandingPad(ValueToValueMapTy &VMap,
320 const LandingPadInst *LPad,
321 BasicBlock *NewBB) override;
322
323 Value *getExceptionVar() { return ExceptionObjectVar; }
324 TinyPtrVector<BasicBlock *> &getReturnTargets() { return ReturnTargets; }
325
326private:
327 Value *CurrentSelector;
328
329 Value *ExceptionObjectVar;
330 TinyPtrVector<BasicBlock *> ReturnTargets;
331
332 // This will be a reference to the field of the same name in the WinEHPrepare
333 // object which instantiates this WinEHCatchDirector object.
334 DenseMap<LandingPadInst *, const LandingPadInst *> &NestedLPtoOriginalLP;
335 DominatorTree *DT;
336 SmallPtrSetImpl<BasicBlock *> &EHBlocks;
337};
338
339class WinEHCleanupDirector : public WinEHCloningDirectorBase {
340public:
341 WinEHCleanupDirector(Function *CleanupFn, Value *ParentFP,
342 FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap)
343 : WinEHCloningDirectorBase(CleanupFn, ParentFP, VarInfo,
344 LPadMap) {}
345
346 CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
347 const Instruction *Inst,
348 BasicBlock *NewBB) override;
349 CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst,
350 BasicBlock *NewBB) override;
351 CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
352 const Instruction *Inst,
353 BasicBlock *NewBB) override;
354 CloningAction handleIndirectBr(ValueToValueMapTy &VMap,
355 const IndirectBrInst *IBr,
356 BasicBlock *NewBB) override;
357 CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke,
358 BasicBlock *NewBB) override;
359 CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume,
360 BasicBlock *NewBB) override;
361 CloningAction handleCompare(ValueToValueMapTy &VMap, const CmpInst *Compare,
362 BasicBlock *NewBB) override;
363 CloningAction handleLandingPad(ValueToValueMapTy &VMap,
364 const LandingPadInst *LPad,
365 BasicBlock *NewBB) override;
366};
367
368class LandingPadActions {
369public:
370 LandingPadActions() : HasCleanupHandlers(false) {}
371
372 void insertCatchHandler(CatchHandler *Action) { Actions.push_back(Action); }
373 void insertCleanupHandler(CleanupHandler *Action) {
374 Actions.push_back(Action);
375 HasCleanupHandlers = true;
376 }
377
378 bool includesCleanup() const { return HasCleanupHandlers; }
379
380 SmallVectorImpl<ActionHandler *> &actions() { return Actions; }
381 SmallVectorImpl<ActionHandler *>::iterator begin() { return Actions.begin(); }
382 SmallVectorImpl<ActionHandler *>::iterator end() { return Actions.end(); }
383
384private:
385 // Note that this class does not own the ActionHandler objects in this vector.
386 // The ActionHandlers are owned by the CatchHandlerMap and CleanupHandlerMap
387 // in the WinEHPrepare class.
388 SmallVector<ActionHandler *, 4> Actions;
389 bool HasCleanupHandlers;
390};
391
392} // end anonymous namespace
393
394char WinEHPrepare::ID = 0;
395INITIALIZE_TM_PASS(WinEHPrepare, "winehprepare", "Prepare Windows exceptions",static void* initializeWinEHPreparePassOnce(PassRegistry &
Registry) { PassInfo *PI = new PassInfo("Prepare Windows exceptions"
, "winehprepare", & WinEHPrepare ::ID, PassInfo::NormalCtor_t
(callDefaultCtor< WinEHPrepare >), false, false, PassInfo
::TargetMachineCtor_t(callTargetMachineCtor< WinEHPrepare >
)); Registry.registerPass(*PI, true); return PI; } void llvm::
initializeWinEHPreparePass(PassRegistry &Registry) { static
volatile sys::cas_flag initialized = 0; sys::cas_flag old_val
= sys::CompareAndSwap(&initialized, 1, 0); if (old_val ==
0) { initializeWinEHPreparePassOnce(Registry); sys::MemoryFence
(); ; ; initialized = 2; ; } else { sys::cas_flag tmp = initialized
; sys::MemoryFence(); while (tmp != 2) { tmp = initialized; sys
::MemoryFence(); } } ; }
396 false, false)static void* initializeWinEHPreparePassOnce(PassRegistry &
Registry) { PassInfo *PI = new PassInfo("Prepare Windows exceptions"
, "winehprepare", & WinEHPrepare ::ID, PassInfo::NormalCtor_t
(callDefaultCtor< WinEHPrepare >), false, false, PassInfo
::TargetMachineCtor_t(callTargetMachineCtor< WinEHPrepare >
)); Registry.registerPass(*PI, true); return PI; } void llvm::
initializeWinEHPreparePass(PassRegistry &Registry) { static
volatile sys::cas_flag initialized = 0; sys::cas_flag old_val
= sys::CompareAndSwap(&initialized, 1, 0); if (old_val ==
0) { initializeWinEHPreparePassOnce(Registry); sys::MemoryFence
(); ; ; initialized = 2; ; } else { sys::cas_flag tmp = initialized
; sys::MemoryFence(); while (tmp != 2) { tmp = initialized; sys
::MemoryFence(); } } ; }
397
398FunctionPass *llvm::createWinEHPass(const TargetMachine *TM) {
399 return new WinEHPrepare(TM);
400}
401
402static bool
403findExceptionalConstructs(Function &Fn,
404 SmallVectorImpl<LandingPadInst *> &LPads,
405 SmallVectorImpl<ResumeInst *> &Resumes,
406 SmallVectorImpl<BasicBlock *> &EntryBlocks) {
407 bool ForExplicitEH = false;
408 for (BasicBlock &BB : Fn) {
409 Instruction *First = BB.getFirstNonPHI();
410 if (auto *LP = dyn_cast<LandingPadInst>(First)) {
411 LPads.push_back(LP);
412 } else if (First->isEHPad()) {
413 if (!ForExplicitEH)
414 EntryBlocks.push_back(&Fn.getEntryBlock());
415 if (!isa<CatchEndPadInst>(First) && !isa<CleanupEndPadInst>(First))
416 EntryBlocks.push_back(&BB);
417 ForExplicitEH = true;
418 }
419 if (auto *Resume = dyn_cast<ResumeInst>(BB.getTerminator()))
420 Resumes.push_back(Resume);
421 }
422 return ForExplicitEH;
423}
424
425bool WinEHPrepare::runOnFunction(Function &Fn) {
426 if (!Fn.hasPersonalityFn())
427 return false;
428
429 // No need to prepare outlined handlers.
430 if (Fn.hasFnAttribute("wineh-parent"))
431 return false;
432
433 // Classify the personality to see what kind of preparation we need.
434 Personality = classifyEHPersonality(Fn.getPersonalityFn());
435
436 // Do nothing if this is not a funclet-based personality.
437 if (!isFuncletEHPersonality(Personality))
438 return false;
439
440 // Remove unreachable blocks. It is not valuable to assign them a color and
441 // their existence can trick us into thinking values are alive when they are
442 // not.
443 removeUnreachableBlocks(Fn);
444
445 SmallVector<LandingPadInst *, 4> LPads;
446 SmallVector<ResumeInst *, 4> Resumes;
447 SmallVector<BasicBlock *, 4> EntryBlocks;
448 bool ForExplicitEH =
449 findExceptionalConstructs(Fn, LPads, Resumes, EntryBlocks);
450
451 if (ForExplicitEH)
452 return prepareExplicitEH(Fn, EntryBlocks);
453
454 // No need to prepare functions that lack landing pads.
455 if (LPads.empty())
456 return false;
457
458 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
459 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
460
461 // If there were any landing pads, prepareExceptionHandlers will make changes.
462 prepareExceptionHandlers(Fn, LPads);
463 return true;
464}
465
466bool WinEHPrepare::doFinalization(Module &M) { return false; }
467
468void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {
469 AU.addRequired<DominatorTreeWrapperPass>();
470 AU.addRequired<TargetLibraryInfoWrapperPass>();
471}
472
473static bool isSelectorDispatch(BasicBlock *BB, BasicBlock *&CatchHandler,
474 Constant *&Selector, BasicBlock *&NextBB);
475
476// Finds blocks reachable from the starting set Worklist. Does not follow unwind
477// edges or blocks listed in StopPoints.
478static void findReachableBlocks(SmallPtrSetImpl<BasicBlock *> &ReachableBBs,
479 SetVector<BasicBlock *> &Worklist,
480 const SetVector<BasicBlock *> *StopPoints) {
481 while (!Worklist.empty()) {
482 BasicBlock *BB = Worklist.pop_back_val();
483
484 // Don't cross blocks that we should stop at.
485 if (StopPoints && StopPoints->count(BB))
486 continue;
487
488 if (!ReachableBBs.insert(BB).second)
489 continue; // Already visited.
490
491 // Don't follow unwind edges of invokes.
492 if (auto *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
493 Worklist.insert(II->getNormalDest());
494 continue;
495 }
496
497 // Otherwise, follow all successors.
498 Worklist.insert(succ_begin(BB), succ_end(BB));
499 }
500}
501
502// Attempt to find an instruction where a block can be split before
503// a call to llvm.eh.begincatch and its operands. If the block
504// begins with the begincatch call or one of its adjacent operands
505// the block will not be split.
506static Instruction *findBeginCatchSplitPoint(BasicBlock *BB,
507 IntrinsicInst *II) {
508 // If the begincatch call is already the first instruction in the block,
509 // don't split.
510 Instruction *FirstNonPHI = BB->getFirstNonPHI();
511 if (II == FirstNonPHI)
512 return nullptr;
513
514 // If either operand is in the same basic block as the instruction and
515 // isn't used by another instruction before the begincatch call, include it
516 // in the split block.
517 auto *Op0 = dyn_cast<Instruction>(II->getOperand(0));
518 auto *Op1 = dyn_cast<Instruction>(II->getOperand(1));
519
520 Instruction *I = II->getPrevNode();
521 Instruction *LastI = II;
522
523 while (I == Op0 || I == Op1) {
524 // If the block begins with one of the operands and there are no other
525 // instructions between the operand and the begincatch call, don't split.
526 if (I == FirstNonPHI)
527 return nullptr;
528
529 LastI = I;
530 I = I->getPrevNode();
531 }
532
533 // If there is at least one instruction in the block before the begincatch
534 // call and its operands, split the block at either the begincatch or
535 // its operand.
536 return LastI;
537}
538
539/// Find all points where exceptional control rejoins normal control flow via
540/// llvm.eh.endcatch. Add them to the normal bb reachability worklist.
541void WinEHPrepare::findCXXEHReturnPoints(
542 Function &F, SetVector<BasicBlock *> &EHReturnBlocks) {
543 for (auto BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) {
544 BasicBlock *BB = BBI;
545 for (Instruction &I : *BB) {
546 if (match(&I, m_Intrinsic<Intrinsic::eh_begincatch>())) {
547 Instruction *SplitPt =
548 findBeginCatchSplitPoint(BB, cast<IntrinsicInst>(&I));
549 if (SplitPt) {
550 // Split the block before the llvm.eh.begincatch call to allow
551 // cleanup and catch code to be distinguished later.
552 // Do not update BBI because we still need to process the
553 // portion of the block that we are splitting off.
554 SplitBlock(BB, SplitPt, DT);
555 break;
556 }
557 }
558 if (match(&I, m_Intrinsic<Intrinsic::eh_endcatch>())) {
559 // Split the block after the call to llvm.eh.endcatch if there is
560 // anything other than an unconditional branch, or if the successor
561 // starts with a phi.
562 auto *Br = dyn_cast<BranchInst>(I.getNextNode());
563 if (!Br || !Br->isUnconditional() ||
564 isa<PHINode>(Br->getSuccessor(0)->begin())) {
565 DEBUG(dbgs() << "splitting block " << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "splitting block " <<
BB->getName() << " with llvm.eh.endcatch\n"; } } while
(0)
566 << " with llvm.eh.endcatch\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "splitting block " <<
BB->getName() << " with llvm.eh.endcatch\n"; } } while
(0)
;
567 BBI = SplitBlock(BB, I.getNextNode(), DT);
568 }
569 // The next BB is normal control flow.
570 EHReturnBlocks.insert(BB->getTerminator()->getSuccessor(0));
571 break;
572 }
573 }
574 }
575}
576
577static bool isCatchAllLandingPad(const BasicBlock *BB) {
578 const LandingPadInst *LP = BB->getLandingPadInst();
579 if (!LP)
580 return false;
581 unsigned N = LP->getNumClauses();
582 return (N > 0 && LP->isCatch(N - 1) &&
583 isa<ConstantPointerNull>(LP->getClause(N - 1)));
584}
585
586/// Find all points where exceptions control rejoins normal control flow via
587/// selector dispatch.
588void WinEHPrepare::findSEHEHReturnPoints(
589 Function &F, SetVector<BasicBlock *> &EHReturnBlocks) {
590 for (auto BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) {
591 BasicBlock *BB = BBI;
592 // If the landingpad is a catch-all, treat the whole lpad as if it is
593 // reachable from normal control flow.
594 // FIXME: This is imprecise. We need a better way of identifying where a
595 // catch-all starts and cleanups stop. As far as LLVM is concerned, there
596 // is no difference.
597 if (isCatchAllLandingPad(BB)) {
598 EHReturnBlocks.insert(BB);
599 continue;
600 }
601
602 BasicBlock *CatchHandler;
603 BasicBlock *NextBB;
604 Constant *Selector;
605 if (isSelectorDispatch(BB, CatchHandler, Selector, NextBB)) {
606 // Split the edge if there are multiple predecessors. This creates a place
607 // where we can insert EH recovery code.
608 if (!CatchHandler->getSinglePredecessor()) {
609 DEBUG(dbgs() << "splitting EH return edge from " << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "splitting EH return edge from "
<< BB->getName() << " to " << CatchHandler
->getName() << '\n'; } } while (0)
610 << " to " << CatchHandler->getName() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "splitting EH return edge from "
<< BB->getName() << " to " << CatchHandler
->getName() << '\n'; } } while (0)
;
611 BBI = CatchHandler = SplitCriticalEdge(
612 BB, std::find(succ_begin(BB), succ_end(BB), CatchHandler));
613 }
614 EHReturnBlocks.insert(CatchHandler);
615 }
616 }
617}
618
619void WinEHPrepare::identifyEHBlocks(Function &F,
620 SmallVectorImpl<LandingPadInst *> &LPads) {
621 DEBUG(dbgs() << "Demoting values live across exception handlers in function "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Demoting values live across exception handlers in function "
<< F.getName() << '\n'; } } while (0)
622 << F.getName() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Demoting values live across exception handlers in function "
<< F.getName() << '\n'; } } while (0)
;
623
624 // Build a set of all non-exceptional blocks and exceptional blocks.
625 // - Non-exceptional blocks are blocks reachable from the entry block while
626 // not following invoke unwind edges.
627 // - Exceptional blocks are blocks reachable from landingpads. Analysis does
628 // not follow llvm.eh.endcatch blocks, which mark a transition from
629 // exceptional to normal control.
630
631 if (Personality == EHPersonality::MSVC_CXX)
632 findCXXEHReturnPoints(F, EHReturnBlocks);
633 else
634 findSEHEHReturnPoints(F, EHReturnBlocks);
635
636 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "identified the following blocks as EH return points:\n"
; for (BasicBlock *BB : EHReturnBlocks) dbgs() << " " <<
BB->getName() << '\n'; }; } } while (0)
637 dbgs() << "identified the following blocks as EH return points:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "identified the following blocks as EH return points:\n"
; for (BasicBlock *BB : EHReturnBlocks) dbgs() << " " <<
BB->getName() << '\n'; }; } } while (0)
638 for (BasicBlock *BB : EHReturnBlocks)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "identified the following blocks as EH return points:\n"
; for (BasicBlock *BB : EHReturnBlocks) dbgs() << " " <<
BB->getName() << '\n'; }; } } while (0)
639 dbgs() << " " << BB->getName() << '\n';do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "identified the following blocks as EH return points:\n"
; for (BasicBlock *BB : EHReturnBlocks) dbgs() << " " <<
BB->getName() << '\n'; }; } } while (0)
640 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "identified the following blocks as EH return points:\n"
; for (BasicBlock *BB : EHReturnBlocks) dbgs() << " " <<
BB->getName() << '\n'; }; } } while (0)
;
641
642// Join points should not have phis at this point, unless they are a
643// landingpad, in which case we will demote their phis later.
644#ifndef NDEBUG
645 for (BasicBlock *BB : EHReturnBlocks)
646 assert((BB->isLandingPad() || !isa<PHINode>(BB->begin())) &&(((BB->isLandingPad() || !isa<PHINode>(BB->begin(
))) && "non-lpad EH return block has phi") ? static_cast
<void> (0) : __assert_fail ("(BB->isLandingPad() || !isa<PHINode>(BB->begin())) && \"non-lpad EH return block has phi\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 647, __PRETTY_FUNCTION__))
647 "non-lpad EH return block has phi")(((BB->isLandingPad() || !isa<PHINode>(BB->begin(
))) && "non-lpad EH return block has phi") ? static_cast
<void> (0) : __assert_fail ("(BB->isLandingPad() || !isa<PHINode>(BB->begin())) && \"non-lpad EH return block has phi\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 647, __PRETTY_FUNCTION__))
;
648#endif
649
650 // Normal blocks are the blocks reachable from the entry block and all EH
651 // return points.
652 SetVector<BasicBlock *> Worklist;
653 Worklist = EHReturnBlocks;
654 Worklist.insert(&F.getEntryBlock());
655 findReachableBlocks(NormalBlocks, Worklist, nullptr);
656 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "marked the following blocks as normal:\n"
; for (BasicBlock *BB : NormalBlocks) dbgs() << " " <<
BB->getName() << '\n'; }; } } while (0)
657 dbgs() << "marked the following blocks as normal:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "marked the following blocks as normal:\n"
; for (BasicBlock *BB : NormalBlocks) dbgs() << " " <<
BB->getName() << '\n'; }; } } while (0)
658 for (BasicBlock *BB : NormalBlocks)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "marked the following blocks as normal:\n"
; for (BasicBlock *BB : NormalBlocks) dbgs() << " " <<
BB->getName() << '\n'; }; } } while (0)
659 dbgs() << " " << BB->getName() << '\n';do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "marked the following blocks as normal:\n"
; for (BasicBlock *BB : NormalBlocks) dbgs() << " " <<
BB->getName() << '\n'; }; } } while (0)
660 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "marked the following blocks as normal:\n"
; for (BasicBlock *BB : NormalBlocks) dbgs() << " " <<
BB->getName() << '\n'; }; } } while (0)
;
661
662 // Exceptional blocks are the blocks reachable from landingpads that don't
663 // cross EH return points.
664 Worklist.clear();
665 for (auto *LPI : LPads)
666 Worklist.insert(LPI->getParent());
667 findReachableBlocks(EHBlocks, Worklist, &EHReturnBlocks);
668 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "marked the following blocks as exceptional:\n"
; for (BasicBlock *BB : EHBlocks) dbgs() << " " <<
BB->getName() << '\n'; }; } } while (0)
669 dbgs() << "marked the following blocks as exceptional:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "marked the following blocks as exceptional:\n"
; for (BasicBlock *BB : EHBlocks) dbgs() << " " <<
BB->getName() << '\n'; }; } } while (0)
670 for (BasicBlock *BB : EHBlocks)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "marked the following blocks as exceptional:\n"
; for (BasicBlock *BB : EHBlocks) dbgs() << " " <<
BB->getName() << '\n'; }; } } while (0)
671 dbgs() << " " << BB->getName() << '\n';do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "marked the following blocks as exceptional:\n"
; for (BasicBlock *BB : EHBlocks) dbgs() << " " <<
BB->getName() << '\n'; }; } } while (0)
672 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "marked the following blocks as exceptional:\n"
; for (BasicBlock *BB : EHBlocks) dbgs() << " " <<
BB->getName() << '\n'; }; } } while (0)
;
673
674}
675
676/// Ensure that all values live into and out of exception handlers are stored
677/// in memory.
678/// FIXME: This falls down when values are defined in one handler and live into
679/// another handler. For example, a cleanup defines a value used only by a
680/// catch handler.
681void WinEHPrepare::demoteValuesLiveAcrossHandlers(
682 Function &F, SmallVectorImpl<LandingPadInst *> &LPads) {
683 DEBUG(dbgs() << "Demoting values live across exception handlers in function "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Demoting values live across exception handlers in function "
<< F.getName() << '\n'; } } while (0)
684 << F.getName() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Demoting values live across exception handlers in function "
<< F.getName() << '\n'; } } while (0)
;
685
686 // identifyEHBlocks() should have been called before this function.
687 assert(!NormalBlocks.empty())((!NormalBlocks.empty()) ? static_cast<void> (0) : __assert_fail
("!NormalBlocks.empty()", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 687, __PRETTY_FUNCTION__))
;
688
689 // Try to avoid demoting EH pointer and selector values. They get in the way
690 // of our pattern matching.
691 SmallPtrSet<Instruction *, 10> EHVals;
692 for (BasicBlock &BB : F) {
693 LandingPadInst *LP = BB.getLandingPadInst();
694 if (!LP)
695 continue;
696 EHVals.insert(LP);
697 for (User *U : LP->users()) {
698 auto *EI = dyn_cast<ExtractValueInst>(U);
699 if (!EI)
700 continue;
701 EHVals.insert(EI);
702 for (User *U2 : EI->users()) {
703 if (auto *PN = dyn_cast<PHINode>(U2))
704 EHVals.insert(PN);
705 }
706 }
707 }
708
709 SetVector<Argument *> ArgsToDemote;
710 SetVector<Instruction *> InstrsToDemote;
711 for (BasicBlock &BB : F) {
712 bool IsNormalBB = NormalBlocks.count(&BB);
713 bool IsEHBB = EHBlocks.count(&BB);
714 if (!IsNormalBB && !IsEHBB)
715 continue; // Blocks that are neither normal nor EH are unreachable.
716 for (Instruction &I : BB) {
717 for (Value *Op : I.operands()) {
718 // Don't demote static allocas, constants, and labels.
719 if (isa<Constant>(Op) || isa<BasicBlock>(Op) || isa<InlineAsm>(Op))
720 continue;
721 auto *AI = dyn_cast<AllocaInst>(Op);
722 if (AI && AI->isStaticAlloca())
723 continue;
724
725 if (auto *Arg = dyn_cast<Argument>(Op)) {
726 if (IsEHBB) {
727 DEBUG(dbgs() << "Demoting argument " << *Argdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Demoting argument " <<
*Arg << " used by EH instr: " << I << "\n"
; } } while (0)
728 << " used by EH instr: " << I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Demoting argument " <<
*Arg << " used by EH instr: " << I << "\n"
; } } while (0)
;
729 ArgsToDemote.insert(Arg);
730 }
731 continue;
732 }
733
734 // Don't demote EH values.
735 auto *OpI = cast<Instruction>(Op);
736 if (EHVals.count(OpI))
737 continue;
738
739 BasicBlock *OpBB = OpI->getParent();
740 // If a value is produced and consumed in the same BB, we don't need to
741 // demote it.
742 if (OpBB == &BB)
743 continue;
744 bool IsOpNormalBB = NormalBlocks.count(OpBB);
745 bool IsOpEHBB = EHBlocks.count(OpBB);
746 if (IsNormalBB != IsOpNormalBB || IsEHBB != IsOpEHBB) {
747 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "Demoting instruction live in-out from EH:\n"
; dbgs() << "Instr: " << *OpI << '\n'; dbgs
() << "User: " << I << '\n'; }; } } while (
0)
748 dbgs() << "Demoting instruction live in-out from EH:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "Demoting instruction live in-out from EH:\n"
; dbgs() << "Instr: " << *OpI << '\n'; dbgs
() << "User: " << I << '\n'; }; } } while (
0)
749 dbgs() << "Instr: " << *OpI << '\n';do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "Demoting instruction live in-out from EH:\n"
; dbgs() << "Instr: " << *OpI << '\n'; dbgs
() << "User: " << I << '\n'; }; } } while (
0)
750 dbgs() << "User: " << I << '\n';do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "Demoting instruction live in-out from EH:\n"
; dbgs() << "Instr: " << *OpI << '\n'; dbgs
() << "User: " << I << '\n'; }; } } while (
0)
751 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { { dbgs() << "Demoting instruction live in-out from EH:\n"
; dbgs() << "Instr: " << *OpI << '\n'; dbgs
() << "User: " << I << '\n'; }; } } while (
0)
;
752 InstrsToDemote.insert(OpI);
753 }
754 }
755 }
756 }
757
758 // Demote values live into and out of handlers.
759 // FIXME: This demotion is inefficient. We should insert spills at the point
760 // of definition, insert one reload in each handler that uses the value, and
761 // insert reloads in the BB used to rejoin normal control flow.
762 Instruction *AllocaInsertPt = F.getEntryBlock().getFirstInsertionPt();
763 for (Instruction *I : InstrsToDemote)
764 DemoteRegToStack(*I, false, AllocaInsertPt);
765
766 // Demote arguments separately, and only for uses in EH blocks.
767 for (Argument *Arg : ArgsToDemote) {
768 auto *Slot = new AllocaInst(Arg->getType(), nullptr,
769 Arg->getName() + ".reg2mem", AllocaInsertPt);
770 SmallVector<User *, 4> Users(Arg->user_begin(), Arg->user_end());
771 for (User *U : Users) {
772 auto *I = dyn_cast<Instruction>(U);
773 if (I && EHBlocks.count(I->getParent())) {
774 auto *Reload = new LoadInst(Slot, Arg->getName() + ".reload", false, I);
775 U->replaceUsesOfWith(Arg, Reload);
776 }
777 }
778 new StoreInst(Arg, Slot, AllocaInsertPt);
779 }
780
781 // Demote landingpad phis, as the landingpad will be removed from the machine
782 // CFG.
783 for (LandingPadInst *LPI : LPads) {
784 BasicBlock *BB = LPI->getParent();
785 while (auto *Phi = dyn_cast<PHINode>(BB->begin()))
786 DemotePHIToStack(Phi, AllocaInsertPt);
787 }
788
789 DEBUG(dbgs() << "Demoted " << InstrsToDemote.size() << " instructions and "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Demoted " << InstrsToDemote
.size() << " instructions and " << ArgsToDemote.size
() << " arguments for WinEHPrepare\n\n"; } } while (0)
790 << ArgsToDemote.size() << " arguments for WinEHPrepare\n\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Demoted " << InstrsToDemote
.size() << " instructions and " << ArgsToDemote.size
() << " arguments for WinEHPrepare\n\n"; } } while (0)
;
791}
792
793bool WinEHPrepare::prepareExceptionHandlers(
794 Function &F, SmallVectorImpl<LandingPadInst *> &LPads) {
795 // Don't run on functions that are already prepared.
796 for (LandingPadInst *LPad : LPads) {
797 BasicBlock *LPadBB = LPad->getParent();
798 for (Instruction &Inst : *LPadBB)
799 if (match(&Inst, m_Intrinsic<Intrinsic::eh_actions>()))
800 return false;
801 }
802
803 identifyEHBlocks(F, LPads);
804 demoteValuesLiveAcrossHandlers(F, LPads);
805
806 // These containers are used to re-map frame variables that are used in
807 // outlined catch and cleanup handlers. They will be populated as the
808 // handlers are outlined.
809 FrameVarInfoMap FrameVarInfo;
810
811 bool HandlersOutlined = false;
812
813 Module *M = F.getParent();
814 LLVMContext &Context = M->getContext();
815
816 // Create a new function to receive the handler contents.
817 PointerType *Int8PtrType = Type::getInt8PtrTy(Context);
818 Type *Int32Type = Type::getInt32Ty(Context);
819 Function *ActionIntrin = Intrinsic::getDeclaration(M, Intrinsic::eh_actions);
820
821 if (isAsynchronousEHPersonality(Personality)) {
822 // FIXME: Switch the ehptr type to i32 and then switch this.
823 SEHExceptionCodeSlot =
824 new AllocaInst(Int8PtrType, nullptr, "seh_exception_code",
825 F.getEntryBlock().getFirstInsertionPt());
826 }
827
828 // In order to handle the case where one outlined catch handler returns
829 // to a block within another outlined catch handler that would otherwise
830 // be unreachable, we need to outline the nested landing pad before we
831 // outline the landing pad which encloses it.
832 if (!isAsynchronousEHPersonality(Personality))
833 std::sort(LPads.begin(), LPads.end(),
834 [this](LandingPadInst *const &L, LandingPadInst *const &R) {
835 return DT->properlyDominates(R->getParent(), L->getParent());
836 });
837
838 // This container stores the llvm.eh.recover and IndirectBr instructions
839 // that make up the body of each landing pad after it has been outlined.
840 // We need to defer the population of the target list for the indirectbr
841 // until all landing pads have been outlined so that we can handle the
842 // case of blocks in the target that are reached only from nested
843 // landing pads.
844 SmallVector<std::pair<CallInst*, IndirectBrInst *>, 4> LPadImpls;
845
846 for (LandingPadInst *LPad : LPads) {
847 // Look for evidence that this landingpad has already been processed.
848 bool LPadHasActionList = false;
849 BasicBlock *LPadBB = LPad->getParent();
850 for (Instruction &Inst : *LPadBB) {
851 if (match(&Inst, m_Intrinsic<Intrinsic::eh_actions>())) {
852 LPadHasActionList = true;
853 break;
854 }
855 }
856
857 // If we've already outlined the handlers for this landingpad,
858 // there's nothing more to do here.
859 if (LPadHasActionList)
860 continue;
861
862 // If either of the values in the aggregate returned by the landing pad is
863 // extracted and stored to memory, promote the stored value to a register.
864 promoteLandingPadValues(LPad);
865
866 LandingPadActions Actions;
867 mapLandingPadBlocks(LPad, Actions);
868
869 HandlersOutlined |= !Actions.actions().empty();
870 for (ActionHandler *Action : Actions) {
871 if (Action->hasBeenProcessed())
872 continue;
873 BasicBlock *StartBB = Action->getStartBlock();
874
875 // SEH doesn't do any outlining for catches. Instead, pass the handler
876 // basic block addr to llvm.eh.actions and list the block as a return
877 // target.
878 if (isAsynchronousEHPersonality(Personality)) {
879 if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
880 processSEHCatchHandler(CatchAction, StartBB);
881 continue;
882 }
883 }
884
885 outlineHandler(Action, &F, LPad, StartBB, FrameVarInfo);
886 }
887
888 // Split the block after the landingpad instruction so that it is just a
889 // call to llvm.eh.actions followed by indirectbr.
890 assert(!isa<PHINode>(LPadBB->begin()) && "lpad phi not removed")((!isa<PHINode>(LPadBB->begin()) && "lpad phi not removed"
) ? static_cast<void> (0) : __assert_fail ("!isa<PHINode>(LPadBB->begin()) && \"lpad phi not removed\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 890, __PRETTY_FUNCTION__))
;
891 SplitBlock(LPadBB, LPad->getNextNode(), DT);
892 // Erase the branch inserted by the split so we can insert indirectbr.
893 LPadBB->getTerminator()->eraseFromParent();
894
895 // Replace all extracted values with undef and ultimately replace the
896 // landingpad with undef.
897 SmallVector<Instruction *, 4> SEHCodeUses;
898 SmallVector<Instruction *, 4> EHUndefs;
899 for (User *U : LPad->users()) {
900 auto *E = dyn_cast<ExtractValueInst>(U);
901 if (!E)
902 continue;
903 assert(E->getNumIndices() == 1 &&((E->getNumIndices() == 1 && "Unexpected operation: extracting both landing pad values"
) ? static_cast<void> (0) : __assert_fail ("E->getNumIndices() == 1 && \"Unexpected operation: extracting both landing pad values\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 904, __PRETTY_FUNCTION__))
904 "Unexpected operation: extracting both landing pad values")((E->getNumIndices() == 1 && "Unexpected operation: extracting both landing pad values"
) ? static_cast<void> (0) : __assert_fail ("E->getNumIndices() == 1 && \"Unexpected operation: extracting both landing pad values\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 904, __PRETTY_FUNCTION__))
;
905 unsigned Idx = *E->idx_begin();
906 assert((Idx == 0 || Idx == 1) && "unexpected index")(((Idx == 0 || Idx == 1) && "unexpected index") ? static_cast
<void> (0) : __assert_fail ("(Idx == 0 || Idx == 1) && \"unexpected index\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 906, __PRETTY_FUNCTION__))
;
907 if (Idx == 0 && isAsynchronousEHPersonality(Personality))
908 SEHCodeUses.push_back(E);
909 else
910 EHUndefs.push_back(E);
911 }
912 for (Instruction *E : EHUndefs) {
913 E->replaceAllUsesWith(UndefValue::get(E->getType()));
914 E->eraseFromParent();
915 }
916 LPad->replaceAllUsesWith(UndefValue::get(LPad->getType()));
917
918 // Rewrite uses of the exception pointer to loads of an alloca.
919 while (!SEHCodeUses.empty()) {
920 Instruction *E = SEHCodeUses.pop_back_val();
921 SmallVector<Use *, 4> Uses;
922 for (Use &U : E->uses())
923 Uses.push_back(&U);
924 for (Use *U : Uses) {
925 auto *I = cast<Instruction>(U->getUser());
926 if (isa<ResumeInst>(I))
927 continue;
928 if (auto *Phi = dyn_cast<PHINode>(I))
929 SEHCodeUses.push_back(Phi);
930 else
931 U->set(new LoadInst(SEHExceptionCodeSlot, "sehcode", false, I));
932 }
933 E->replaceAllUsesWith(UndefValue::get(E->getType()));
934 E->eraseFromParent();
935 }
936
937 // Add a call to describe the actions for this landing pad.
938 std::vector<Value *> ActionArgs;
939 for (ActionHandler *Action : Actions) {
940 // Action codes from docs are: 0 cleanup, 1 catch.
941 if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
942 ActionArgs.push_back(ConstantInt::get(Int32Type, 1));
943 ActionArgs.push_back(CatchAction->getSelector());
944 // Find the frame escape index of the exception object alloca in the
945 // parent.
946 int FrameEscapeIdx = -1;
947 Value *EHObj = const_cast<Value *>(CatchAction->getExceptionVar());
948 if (EHObj && !isa<ConstantPointerNull>(EHObj)) {
949 auto I = FrameVarInfo.find(EHObj);
950 assert(I != FrameVarInfo.end() &&((I != FrameVarInfo.end() && "failed to map llvm.eh.begincatch var"
) ? static_cast<void> (0) : __assert_fail ("I != FrameVarInfo.end() && \"failed to map llvm.eh.begincatch var\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 951, __PRETTY_FUNCTION__))
951 "failed to map llvm.eh.begincatch var")((I != FrameVarInfo.end() && "failed to map llvm.eh.begincatch var"
) ? static_cast<void> (0) : __assert_fail ("I != FrameVarInfo.end() && \"failed to map llvm.eh.begincatch var\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 951, __PRETTY_FUNCTION__))
;
952 FrameEscapeIdx = std::distance(FrameVarInfo.begin(), I);
953 }
954 ActionArgs.push_back(ConstantInt::get(Int32Type, FrameEscapeIdx));
955 } else {
956 ActionArgs.push_back(ConstantInt::get(Int32Type, 0));
957 }
958 ActionArgs.push_back(Action->getHandlerBlockOrFunc());
959 }
960 CallInst *Recover =
961 CallInst::Create(ActionIntrin, ActionArgs, "recover", LPadBB);
962
963 SetVector<BasicBlock *> ReturnTargets;
964 for (ActionHandler *Action : Actions) {
965 if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
966 const auto &CatchTargets = CatchAction->getReturnTargets();
967 ReturnTargets.insert(CatchTargets.begin(), CatchTargets.end());
968 }
969 }
970 IndirectBrInst *Branch =
971 IndirectBrInst::Create(Recover, ReturnTargets.size(), LPadBB);
972 for (BasicBlock *Target : ReturnTargets)
973 Branch->addDestination(Target);
974
975 if (!isAsynchronousEHPersonality(Personality)) {
976 // C++ EH must repopulate the targets later to handle the case of
977 // targets that are reached indirectly through nested landing pads.
978 LPadImpls.push_back(std::make_pair(Recover, Branch));
979 }
980
981 } // End for each landingpad
982
983 // If nothing got outlined, there is no more processing to be done.
984 if (!HandlersOutlined)
985 return false;
986
987 // Replace any nested landing pad stubs with the correct action handler.
988 // This must be done before we remove unreachable blocks because it
989 // cleans up references to outlined blocks that will be deleted.
990 for (auto &LPadPair : NestedLPtoOriginalLP)
991 completeNestedLandingPad(&F, LPadPair.first, LPadPair.second, FrameVarInfo);
992 NestedLPtoOriginalLP.clear();
993
994 // Update the indirectbr instructions' target lists if necessary.
995 SetVector<BasicBlock*> CheckedTargets;
996 SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList;
997 for (auto &LPadImplPair : LPadImpls) {
998 IntrinsicInst *Recover = cast<IntrinsicInst>(LPadImplPair.first);
999 IndirectBrInst *Branch = LPadImplPair.second;
1000
1001 // Get a list of handlers called by
1002 parseEHActions(Recover, ActionList);
1003
1004 // Add an indirect branch listing possible successors of the catch handlers.
1005 SetVector<BasicBlock *> ReturnTargets;
1006 for (const auto &Action : ActionList) {
1007 if (auto *CA = dyn_cast<CatchHandler>(Action.get())) {
1008 Function *Handler = cast<Function>(CA->getHandlerBlockOrFunc());
1009 getPossibleReturnTargets(&F, Handler, ReturnTargets);
1010 }
1011 }
1012 ActionList.clear();
1013 // Clear any targets we already knew about.
1014 for (unsigned int I = 0, E = Branch->getNumDestinations(); I < E; ++I) {
1015 BasicBlock *KnownTarget = Branch->getDestination(I);
1016 if (ReturnTargets.count(KnownTarget))
1017 ReturnTargets.remove(KnownTarget);
1018 }
1019 for (BasicBlock *Target : ReturnTargets) {
1020 Branch->addDestination(Target);
1021 // The target may be a block that we excepted to get pruned.
1022 // If it is, it may contain a call to llvm.eh.endcatch.
1023 if (CheckedTargets.insert(Target)) {
1024 // Earlier preparations guarantee that all calls to llvm.eh.endcatch
1025 // will be followed by an unconditional branch.
1026 auto *Br = dyn_cast<BranchInst>(Target->getTerminator());
1027 if (Br && Br->isUnconditional() &&
1028 Br != Target->getFirstNonPHIOrDbgOrLifetime()) {
1029 Instruction *Prev = Br->getPrevNode();
1030 if (match(cast<Value>(Prev), m_Intrinsic<Intrinsic::eh_endcatch>()))
1031 Prev->eraseFromParent();
1032 }
1033 }
1034 }
1035 }
1036 LPadImpls.clear();
1037
1038 F.addFnAttr("wineh-parent", F.getName());
1039
1040 // Delete any blocks that were only used by handlers that were outlined above.
1041 removeUnreachableBlocks(F);
1042
1043 BasicBlock *Entry = &F.getEntryBlock();
1044 IRBuilder<> Builder(F.getParent()->getContext());
1045 Builder.SetInsertPoint(Entry->getFirstInsertionPt());
1046
1047 Function *FrameEscapeFn =
1048 Intrinsic::getDeclaration(M, Intrinsic::localescape);
1049 Function *RecoverFrameFn =
1050 Intrinsic::getDeclaration(M, Intrinsic::localrecover);
1051 SmallVector<Value *, 8> AllocasToEscape;
1052
1053 // Scan the entry block for an existing call to llvm.localescape. We need to
1054 // keep escaping those objects.
1055 for (Instruction &I : F.front()) {
1056 auto *II = dyn_cast<IntrinsicInst>(&I);
1057 if (II && II->getIntrinsicID() == Intrinsic::localescape) {
1058 auto Args = II->arg_operands();
1059 AllocasToEscape.append(Args.begin(), Args.end());
1060 II->eraseFromParent();
1061 break;
1062 }
1063 }
1064
1065 // Finally, replace all of the temporary allocas for frame variables used in
1066 // the outlined handlers with calls to llvm.localrecover.
1067 for (auto &VarInfoEntry : FrameVarInfo) {
1068 Value *ParentVal = VarInfoEntry.first;
1069 TinyPtrVector<AllocaInst *> &Allocas = VarInfoEntry.second;
1070 AllocaInst *ParentAlloca = cast<AllocaInst>(ParentVal);
1071
1072 // FIXME: We should try to sink unescaped allocas from the parent frame into
1073 // the child frame. If the alloca is escaped, we have to use the lifetime
1074 // markers to ensure that the alloca is only live within the child frame.
1075
1076 // Add this alloca to the list of things to escape.
1077 AllocasToEscape.push_back(ParentAlloca);
1078
1079 // Next replace all outlined allocas that are mapped to it.
1080 for (AllocaInst *TempAlloca : Allocas) {
1081 if (TempAlloca == getCatchObjectSentinel())
1082 continue; // Skip catch parameter sentinels.
1083 Function *HandlerFn = TempAlloca->getParent()->getParent();
1084 llvm::Value *FP = HandlerToParentFP[HandlerFn];
1085 assert(FP)((FP) ? static_cast<void> (0) : __assert_fail ("FP", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 1085, __PRETTY_FUNCTION__))
;
1086
1087 // FIXME: Sink this localrecover into the blocks where it is used.
1088 Builder.SetInsertPoint(TempAlloca);
1089 Builder.SetCurrentDebugLocation(TempAlloca->getDebugLoc());
1090 Value *RecoverArgs[] = {
1091 Builder.CreateBitCast(&F, Int8PtrType, ""), FP,
1092 llvm::ConstantInt::get(Int32Type, AllocasToEscape.size() - 1)};
1093 Instruction *RecoveredAlloca =
1094 Builder.CreateCall(RecoverFrameFn, RecoverArgs);
1095
1096 // Add a pointer bitcast if the alloca wasn't an i8.
1097 if (RecoveredAlloca->getType() != TempAlloca->getType()) {
1098 RecoveredAlloca->setName(Twine(TempAlloca->getName()) + ".i8");
1099 RecoveredAlloca = cast<Instruction>(
1100 Builder.CreateBitCast(RecoveredAlloca, TempAlloca->getType()));
1101 }
1102 TempAlloca->replaceAllUsesWith(RecoveredAlloca);
1103 TempAlloca->removeFromParent();
1104 RecoveredAlloca->takeName(TempAlloca);
1105 delete TempAlloca;
1106 }
1107 } // End for each FrameVarInfo entry.
1108
1109 // Insert 'call void (...)* @llvm.localescape(...)' at the end of the entry
1110 // block.
1111 Builder.SetInsertPoint(&F.getEntryBlock().back());
1112 Builder.CreateCall(FrameEscapeFn, AllocasToEscape);
1113
1114 if (SEHExceptionCodeSlot) {
1115 if (isAllocaPromotable(SEHExceptionCodeSlot)) {
1116 SmallPtrSet<BasicBlock *, 4> UserBlocks;
1117 for (User *U : SEHExceptionCodeSlot->users()) {
1118 if (auto *Inst = dyn_cast<Instruction>(U))
1119 UserBlocks.insert(Inst->getParent());
1120 }
1121 PromoteMemToReg(SEHExceptionCodeSlot, *DT);
1122 // After the promotion, kill off dead instructions.
1123 for (BasicBlock *BB : UserBlocks)
1124 SimplifyInstructionsInBlock(BB, LibInfo);
1125 }
1126 }
1127
1128 // Clean up the handler action maps we created for this function
1129 DeleteContainerSeconds(CatchHandlerMap);
1130 CatchHandlerMap.clear();
1131 DeleteContainerSeconds(CleanupHandlerMap);
1132 CleanupHandlerMap.clear();
1133 HandlerToParentFP.clear();
1134 DT = nullptr;
1135 LibInfo = nullptr;
1136 SEHExceptionCodeSlot = nullptr;
1137 EHBlocks.clear();
1138 NormalBlocks.clear();
1139 EHReturnBlocks.clear();
1140
1141 return HandlersOutlined;
1142}
1143
1144void WinEHPrepare::promoteLandingPadValues(LandingPadInst *LPad) {
1145 // If the return values of the landing pad instruction are extracted and
1146 // stored to memory, we want to promote the store locations to reg values.
1147 SmallVector<AllocaInst *, 2> EHAllocas;
1148
1149 // The landingpad instruction returns an aggregate value. Typically, its
1150 // value will be passed to a pair of extract value instructions and the
1151 // results of those extracts are often passed to store instructions.
1152 // In unoptimized code the stored value will often be loaded and then stored
1153 // again.
1154 for (auto *U : LPad->users()) {
1155 ExtractValueInst *Extract = dyn_cast<ExtractValueInst>(U);
1156 if (!Extract)
1157 continue;
1158
1159 for (auto *EU : Extract->users()) {
1160 if (auto *Store = dyn_cast<StoreInst>(EU)) {
1161 auto *AV = cast<AllocaInst>(Store->getPointerOperand());
1162 EHAllocas.push_back(AV);
1163 }
1164 }
1165 }
1166
1167 // We can't do this without a dominator tree.
1168 assert(DT)((DT) ? static_cast<void> (0) : __assert_fail ("DT", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 1168, __PRETTY_FUNCTION__))
;
1169
1170 if (!EHAllocas.empty()) {
1171 PromoteMemToReg(EHAllocas, *DT);
1172 EHAllocas.clear();
1173 }
1174
1175 // After promotion, some extracts may be trivially dead. Remove them.
1176 SmallVector<Value *, 4> Users(LPad->user_begin(), LPad->user_end());
1177 for (auto *U : Users)
1178 RecursivelyDeleteTriviallyDeadInstructions(U);
1179}
1180
1181void WinEHPrepare::getPossibleReturnTargets(Function *ParentF,
1182 Function *HandlerF,
1183 SetVector<BasicBlock*> &Targets) {
1184 for (BasicBlock &BB : *HandlerF) {
1185 // If the handler contains landing pads, check for any
1186 // handlers that may return directly to a block in the
1187 // parent function.
1188 if (auto *LPI = BB.getLandingPadInst()) {
1189 IntrinsicInst *Recover = cast<IntrinsicInst>(LPI->getNextNode());
1190 SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList;
1191 parseEHActions(Recover, ActionList);
1192 for (const auto &Action : ActionList) {
1193 if (auto *CH = dyn_cast<CatchHandler>(Action.get())) {
1194 Function *NestedF = cast<Function>(CH->getHandlerBlockOrFunc());
1195 getPossibleReturnTargets(ParentF, NestedF, Targets);
1196 }
1197 }
1198 }
1199
1200 auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator());
1201 if (!Ret)
1202 continue;
1203
1204 // Handler functions must always return a block address.
1205 BlockAddress *BA = cast<BlockAddress>(Ret->getReturnValue());
1206
1207 // If this is the handler for a nested landing pad, the
1208 // return address may have been remapped to a block in the
1209 // parent handler. We're not interested in those.
1210 if (BA->getFunction() != ParentF)
1211 continue;
1212
1213 Targets.insert(BA->getBasicBlock());
1214 }
1215}
1216
1217void WinEHPrepare::completeNestedLandingPad(Function *ParentFn,
1218 LandingPadInst *OutlinedLPad,
1219 const LandingPadInst *OriginalLPad,
1220 FrameVarInfoMap &FrameVarInfo) {
1221 // Get the nested block and erase the unreachable instruction that was
1222 // temporarily inserted as its terminator.
1223 LLVMContext &Context = ParentFn->getContext();
1224 BasicBlock *OutlinedBB = OutlinedLPad->getParent();
1225 // If the nested landing pad was outlined before the landing pad that enclosed
1226 // it, it will already be in outlined form. In that case, we just need to see
1227 // if the returns and the enclosing branch instruction need to be updated.
1228 IndirectBrInst *Branch =
1229 dyn_cast<IndirectBrInst>(OutlinedBB->getTerminator());
1230 if (!Branch) {
1231 // If the landing pad wasn't in outlined form, it should be a stub with
1232 // an unreachable terminator.
1233 assert(isa<UnreachableInst>(OutlinedBB->getTerminator()))((isa<UnreachableInst>(OutlinedBB->getTerminator()))
? static_cast<void> (0) : __assert_fail ("isa<UnreachableInst>(OutlinedBB->getTerminator())"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 1233, __PRETTY_FUNCTION__))
;
1234 OutlinedBB->getTerminator()->eraseFromParent();
1235 // That should leave OutlinedLPad as the last instruction in its block.
1236 assert(&OutlinedBB->back() == OutlinedLPad)((&OutlinedBB->back() == OutlinedLPad) ? static_cast<
void> (0) : __assert_fail ("&OutlinedBB->back() == OutlinedLPad"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 1236, __PRETTY_FUNCTION__))
;
1237 }
1238
1239 // The original landing pad will have already had its action intrinsic
1240 // built by the outlining loop. We need to clone that into the outlined
1241 // location. It may also be necessary to add references to the exception
1242 // variables to the outlined handler in which this landing pad is nested
1243 // and remap return instructions in the nested handlers that should return
1244 // to an address in the outlined handler.
1245 Function *OutlinedHandlerFn = OutlinedBB->getParent();
1246 BasicBlock::const_iterator II = OriginalLPad;
1247 ++II;
1248 // The instruction after the landing pad should now be a call to eh.actions.
1249 const Instruction *Recover = II;
1250 const IntrinsicInst *EHActions = cast<IntrinsicInst>(Recover);
1251
1252 // Remap the return target in the nested handler.
1253 SmallVector<BlockAddress *, 4> ActionTargets;
1254 SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList;
1255 parseEHActions(EHActions, ActionList);
1256 for (const auto &Action : ActionList) {
1257 auto *Catch = dyn_cast<CatchHandler>(Action.get());
1258 if (!Catch)
1259 continue;
1260 // The dyn_cast to function here selects C++ catch handlers and skips
1261 // SEH catch handlers.
1262 auto *Handler = dyn_cast<Function>(Catch->getHandlerBlockOrFunc());
1263 if (!Handler)
1264 continue;
1265 // Visit all the return instructions, looking for places that return
1266 // to a location within OutlinedHandlerFn.
1267 for (BasicBlock &NestedHandlerBB : *Handler) {
1268 auto *Ret = dyn_cast<ReturnInst>(NestedHandlerBB.getTerminator());
1269 if (!Ret)
1270 continue;
1271
1272 // Handler functions must always return a block address.
1273 BlockAddress *BA = cast<BlockAddress>(Ret->getReturnValue());
1274 // The original target will have been in the main parent function,
1275 // but if it is the address of a block that has been outlined, it
1276 // should be a block that was outlined into OutlinedHandlerFn.
1277 assert(BA->getFunction() == ParentFn)((BA->getFunction() == ParentFn) ? static_cast<void>
(0) : __assert_fail ("BA->getFunction() == ParentFn", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 1277, __PRETTY_FUNCTION__))
;
1278
1279 // Ignore targets that aren't part of an outlined handler function.
1280 if (!LPadTargetBlocks.count(BA->getBasicBlock()))
1281 continue;
1282
1283 // If the return value is the address ofF a block that we
1284 // previously outlined into the parent handler function, replace
1285 // the return instruction and add the mapped target to the list
1286 // of possible return addresses.
1287 BasicBlock *MappedBB = LPadTargetBlocks[BA->getBasicBlock()];
1288 assert(MappedBB->getParent() == OutlinedHandlerFn)((MappedBB->getParent() == OutlinedHandlerFn) ? static_cast
<void> (0) : __assert_fail ("MappedBB->getParent() == OutlinedHandlerFn"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 1288, __PRETTY_FUNCTION__))
;
1289 BlockAddress *NewBA = BlockAddress::get(OutlinedHandlerFn, MappedBB);
1290 Ret->eraseFromParent();
1291 ReturnInst::Create(Context, NewBA, &NestedHandlerBB);
1292 ActionTargets.push_back(NewBA);
1293 }
1294 }
1295 ActionList.clear();
1296
1297 if (Branch) {
1298 // If the landing pad was already in outlined form, just update its targets.
1299 for (unsigned int I = Branch->getNumDestinations(); I > 0; --I)
1300 Branch->removeDestination(I);
1301 // Add the previously collected action targets.
1302 for (auto *Target : ActionTargets)
1303 Branch->addDestination(Target->getBasicBlock());
1304 } else {
1305 // If the landing pad was previously stubbed out, fill in its outlined form.
1306 IntrinsicInst *NewEHActions = cast<IntrinsicInst>(EHActions->clone());
1307 OutlinedBB->getInstList().push_back(NewEHActions);
1308
1309 // Insert an indirect branch into the outlined landing pad BB.
1310 IndirectBrInst *IBr = IndirectBrInst::Create(NewEHActions, 0, OutlinedBB);
1311 // Add the previously collected action targets.
1312 for (auto *Target : ActionTargets)
1313 IBr->addDestination(Target->getBasicBlock());
1314 }
1315}
1316
1317// This function examines a block to determine whether the block ends with a
1318// conditional branch to a catch handler based on a selector comparison.
1319// This function is used both by the WinEHPrepare::findSelectorComparison() and
1320// WinEHCleanupDirector::handleTypeIdFor().
1321static bool isSelectorDispatch(BasicBlock *BB, BasicBlock *&CatchHandler,
1322 Constant *&Selector, BasicBlock *&NextBB) {
1323 ICmpInst::Predicate Pred;
1324 BasicBlock *TBB, *FBB;
1325 Value *LHS, *RHS;
1326
1327 if (!match(BB->getTerminator(),
1328 m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TBB, FBB)))
1329 return false;
1330
1331 if (!match(LHS,
1332 m_Intrinsic<Intrinsic::eh_typeid_for>(m_Constant(Selector))) &&
1333 !match(RHS, m_Intrinsic<Intrinsic::eh_typeid_for>(m_Constant(Selector))))
1334 return false;
1335
1336 if (Pred == CmpInst::ICMP_EQ) {
1337 CatchHandler = TBB;
1338 NextBB = FBB;
1339 return true;
1340 }
1341
1342 if (Pred == CmpInst::ICMP_NE) {
1343 CatchHandler = FBB;
1344 NextBB = TBB;
1345 return true;
1346 }
1347
1348 return false;
1349}
1350
1351static bool isCatchBlock(BasicBlock *BB) {
1352 for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end();
1353 II != IE; ++II) {
1354 if (match(cast<Value>(II), m_Intrinsic<Intrinsic::eh_begincatch>()))
1355 return true;
1356 }
1357 return false;
1358}
1359
1360static BasicBlock *createStubLandingPad(Function *Handler) {
1361 // FIXME: Finish this!
1362 LLVMContext &Context = Handler->getContext();
1363 BasicBlock *StubBB = BasicBlock::Create(Context, "stub");
1364 Handler->getBasicBlockList().push_back(StubBB);
1365 IRBuilder<> Builder(StubBB);
1366 LandingPadInst *LPad = Builder.CreateLandingPad(
1367 llvm::StructType::get(Type::getInt8PtrTy(Context),
1368 Type::getInt32Ty(Context), nullptr),
1369 0);
1370 // Insert a call to llvm.eh.actions so that we don't try to outline this lpad.
1371 Function *ActionIntrin =
1372 Intrinsic::getDeclaration(Handler->getParent(), Intrinsic::eh_actions);
1373 Builder.CreateCall(ActionIntrin, {}, "recover");
1374 LPad->setCleanup(true);
1375 Builder.CreateUnreachable();
1376 return StubBB;
1377}
1378
1379// Cycles through the blocks in an outlined handler function looking for an
1380// invoke instruction and inserts an invoke of llvm.donothing with an empty
1381// landing pad if none is found. The code that generates the .xdata tables for
1382// the handler needs at least one landing pad to identify the parent function's
1383// personality.
1384void WinEHPrepare::addStubInvokeToHandlerIfNeeded(Function *Handler) {
1385 ReturnInst *Ret = nullptr;
1386 UnreachableInst *Unreached = nullptr;
1387 for (BasicBlock &BB : *Handler) {
1388 TerminatorInst *Terminator = BB.getTerminator();
1389 // If we find an invoke, there is nothing to be done.
1390 auto *II = dyn_cast<InvokeInst>(Terminator);
1391 if (II)
1392 return;
1393 // If we've already recorded a return instruction, keep looking for invokes.
1394 if (!Ret)
1395 Ret = dyn_cast<ReturnInst>(Terminator);
1396 // If we haven't recorded an unreachable instruction, try this terminator.
1397 if (!Unreached)
1398 Unreached = dyn_cast<UnreachableInst>(Terminator);
1399 }
1400
1401 // If we got this far, the handler contains no invokes. We should have seen
1402 // at least one return or unreachable instruction. We'll insert an invoke of
1403 // llvm.donothing ahead of that instruction.
1404 assert(Ret || Unreached)((Ret || Unreached) ? static_cast<void> (0) : __assert_fail
("Ret || Unreached", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 1404, __PRETTY_FUNCTION__))
;
1405 TerminatorInst *Term;
1406 if (Ret)
1407 Term = Ret;
1408 else
1409 Term = Unreached;
1410 BasicBlock *OldRetBB = Term->getParent();
1411 BasicBlock *NewRetBB = SplitBlock(OldRetBB, Term, DT);
1412 // SplitBlock adds an unconditional branch instruction at the end of the
1413 // parent block. We want to replace that with an invoke call, so we can
1414 // erase it now.
1415 OldRetBB->getTerminator()->eraseFromParent();
1416 BasicBlock *StubLandingPad = createStubLandingPad(Handler);
1417 Function *F =
1418 Intrinsic::getDeclaration(Handler->getParent(), Intrinsic::donothing);
1419 InvokeInst::Create(F, NewRetBB, StubLandingPad, None, "", OldRetBB);
1420}
1421
1422// FIXME: Consider sinking this into lib/Target/X86 somehow. TargetLowering
1423// usually doesn't build LLVM IR, so that's probably the wrong place.
1424Function *WinEHPrepare::createHandlerFunc(Function *ParentFn, Type *RetTy,
1425 const Twine &Name, Module *M,
1426 Value *&ParentFP) {
1427 // x64 uses a two-argument prototype where the parent FP is the second
1428 // argument. x86 uses no arguments, just the incoming EBP value.
1429 LLVMContext &Context = M->getContext();
1430 Type *Int8PtrType = Type::getInt8PtrTy(Context);
1431 FunctionType *FnType;
1432 if (TheTriple.getArch() == Triple::x86_64) {
1433 Type *ArgTys[2] = {Int8PtrType, Int8PtrType};
1434 FnType = FunctionType::get(RetTy, ArgTys, false);
1435 } else {
1436 FnType = FunctionType::get(RetTy, None, false);
1437 }
1438
1439 Function *Handler =
1440 Function::Create(FnType, GlobalVariable::InternalLinkage, Name, M);
1441 BasicBlock *Entry = BasicBlock::Create(Context, "entry");
1442 Handler->getBasicBlockList().push_front(Entry);
1443 if (TheTriple.getArch() == Triple::x86_64) {
1444 ParentFP = &(Handler->getArgumentList().back());
1445 } else {
1446 assert(M)((M) ? static_cast<void> (0) : __assert_fail ("M", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 1446, __PRETTY_FUNCTION__))
;
1447 Function *FrameAddressFn =
1448 Intrinsic::getDeclaration(M, Intrinsic::frameaddress);
1449 Function *RecoverFPFn =
1450 Intrinsic::getDeclaration(M, Intrinsic::x86_seh_recoverfp);
1451 IRBuilder<> Builder(&Handler->getEntryBlock());
1452 Value *EBP =
1453 Builder.CreateCall(FrameAddressFn, {Builder.getInt32(1)}, "ebp");
1454 Value *ParentI8Fn = Builder.CreateBitCast(ParentFn, Int8PtrType);
1455 ParentFP = Builder.CreateCall(RecoverFPFn, {ParentI8Fn, EBP});
1456 }
1457 return Handler;
1458}
1459
1460bool WinEHPrepare::outlineHandler(ActionHandler *Action, Function *SrcFn,
1461 LandingPadInst *LPad, BasicBlock *StartBB,
1462 FrameVarInfoMap &VarInfo) {
1463 Module *M = SrcFn->getParent();
1464 LLVMContext &Context = M->getContext();
1465 Type *Int8PtrType = Type::getInt8PtrTy(Context);
1466
1467 // Create a new function to receive the handler contents.
1468 Value *ParentFP;
1469 Function *Handler;
1470 if (Action->getType() == Catch) {
1471 Handler = createHandlerFunc(SrcFn, Int8PtrType, SrcFn->getName() + ".catch", M,
1472 ParentFP);
1473 } else {
1474 Handler = createHandlerFunc(SrcFn, Type::getVoidTy(Context),
1475 SrcFn->getName() + ".cleanup", M, ParentFP);
1476 }
1477 Handler->setPersonalityFn(SrcFn->getPersonalityFn());
1478 HandlerToParentFP[Handler] = ParentFP;
1479 Handler->addFnAttr("wineh-parent", SrcFn->getName());
1480 BasicBlock *Entry = &Handler->getEntryBlock();
1481
1482 // Generate a standard prolog to setup the frame recovery structure.
1483 IRBuilder<> Builder(Context);
1484 Builder.SetInsertPoint(Entry);
1485 Builder.SetCurrentDebugLocation(LPad->getDebugLoc());
1486
1487 std::unique_ptr<WinEHCloningDirectorBase> Director;
1488
1489 ValueToValueMapTy VMap;
1490
1491 LandingPadMap &LPadMap = LPadMaps[LPad];
1492 if (!LPadMap.isInitialized())
1493 LPadMap.mapLandingPad(LPad);
1494 if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
1495 Constant *Sel = CatchAction->getSelector();
1496 Director.reset(new WinEHCatchDirector(Handler, ParentFP, Sel, VarInfo,
1497 LPadMap, NestedLPtoOriginalLP, DT,
1498 EHBlocks));
1499 LPadMap.remapEHValues(VMap, UndefValue::get(Int8PtrType),
1500 ConstantInt::get(Type::getInt32Ty(Context), 1));
1501 } else {
1502 Director.reset(
1503 new WinEHCleanupDirector(Handler, ParentFP, VarInfo, LPadMap));
1504 LPadMap.remapEHValues(VMap, UndefValue::get(Int8PtrType),
1505 UndefValue::get(Type::getInt32Ty(Context)));
1506 }
1507
1508 SmallVector<ReturnInst *, 8> Returns;
1509 ClonedCodeInfo OutlinedFunctionInfo;
1510
1511 // If the start block contains PHI nodes, we need to map them.
1512 BasicBlock::iterator II = StartBB->begin();
1513 while (auto *PN = dyn_cast<PHINode>(II)) {
1514 bool Mapped = false;
1515 // Look for PHI values that we have already mapped (such as the selector).
1516 for (Value *Val : PN->incoming_values()) {
1517 if (VMap.count(Val)) {
1518 VMap[PN] = VMap[Val];
1519 Mapped = true;
1520 }
1521 }
1522 // If we didn't find a match for this value, map it as an undef.
1523 if (!Mapped) {
1524 VMap[PN] = UndefValue::get(PN->getType());
1525 }
1526 ++II;
1527 }
1528
1529 // The landing pad value may be used by PHI nodes. It will ultimately be
1530 // eliminated, but we need it in the map for intermediate handling.
1531 VMap[LPad] = UndefValue::get(LPad->getType());
1532
1533 // Skip over PHIs and, if applicable, landingpad instructions.
1534 II = StartBB->getFirstInsertionPt();
1535
1536 CloneAndPruneIntoFromInst(Handler, SrcFn, II, VMap,
1537 /*ModuleLevelChanges=*/false, Returns, "",
1538 &OutlinedFunctionInfo, Director.get());
1539
1540 // Move all the instructions in the cloned "entry" block into our entry block.
1541 // Depending on how the parent function was laid out, the block that will
1542 // correspond to the outlined entry block may not be the first block in the
1543 // list. We can recognize it, however, as the cloned block which has no
1544 // predecessors. Any other block wouldn't have been cloned if it didn't
1545 // have a predecessor which was also cloned.
1546 Function::iterator ClonedIt = std::next(Function::iterator(Entry));
1547 while (!pred_empty(ClonedIt))
1548 ++ClonedIt;
1549 BasicBlock *ClonedEntryBB = ClonedIt;
1550 assert(ClonedEntryBB)((ClonedEntryBB) ? static_cast<void> (0) : __assert_fail
("ClonedEntryBB", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 1550, __PRETTY_FUNCTION__))
;
1551 Entry->getInstList().splice(Entry->end(), ClonedEntryBB->getInstList());
1552 ClonedEntryBB->eraseFromParent();
1553
1554 // Make sure we can identify the handler's personality later.
1555 addStubInvokeToHandlerIfNeeded(Handler);
1556
1557 if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
1558 WinEHCatchDirector *CatchDirector =
1559 reinterpret_cast<WinEHCatchDirector *>(Director.get());
1560 CatchAction->setExceptionVar(CatchDirector->getExceptionVar());
1561 CatchAction->setReturnTargets(CatchDirector->getReturnTargets());
1562
1563 // Look for blocks that are not part of the landing pad that we just
1564 // outlined but terminate with a call to llvm.eh.endcatch and a
1565 // branch to a block that is in the handler we just outlined.
1566 // These blocks will be part of a nested landing pad that intends to
1567 // return to an address in this handler. This case is best handled
1568 // after both landing pads have been outlined, so for now we'll just
1569 // save the association of the blocks in LPadTargetBlocks. The
1570 // return instructions which are created from these branches will be
1571 // replaced after all landing pads have been outlined.
1572 for (const auto MapEntry : VMap) {
1573 // VMap maps all values and blocks that were just cloned, but dead
1574 // blocks which were pruned will map to nullptr.
1575 if (!isa<BasicBlock>(MapEntry.first) || MapEntry.second == nullptr)
1576 continue;
1577 const BasicBlock *MappedBB = cast<BasicBlock>(MapEntry.first);
1578 for (auto *Pred : predecessors(const_cast<BasicBlock *>(MappedBB))) {
1579 auto *Branch = dyn_cast<BranchInst>(Pred->getTerminator());
1580 if (!Branch || !Branch->isUnconditional() || Pred->size() <= 1)
1581 continue;
1582 BasicBlock::iterator II = const_cast<BranchInst *>(Branch);
1583 --II;
1584 if (match(cast<Value>(II), m_Intrinsic<Intrinsic::eh_endcatch>())) {
1585 // This would indicate that a nested landing pad wants to return
1586 // to a block that is outlined into two different handlers.
1587 assert(!LPadTargetBlocks.count(MappedBB))((!LPadTargetBlocks.count(MappedBB)) ? static_cast<void>
(0) : __assert_fail ("!LPadTargetBlocks.count(MappedBB)", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 1587, __PRETTY_FUNCTION__))
;
1588 LPadTargetBlocks[MappedBB] = cast<BasicBlock>(MapEntry.second);
1589 }
1590 }
1591 }
1592 } // End if (CatchAction)
1593
1594 Action->setHandlerBlockOrFunc(Handler);
1595
1596 return true;
1597}
1598
1599/// This BB must end in a selector dispatch. All we need to do is pass the
1600/// handler block to llvm.eh.actions and list it as a possible indirectbr
1601/// target.
1602void WinEHPrepare::processSEHCatchHandler(CatchHandler *CatchAction,
1603 BasicBlock *StartBB) {
1604 BasicBlock *HandlerBB;
1605 BasicBlock *NextBB;
1606 Constant *Selector;
1607 bool Res = isSelectorDispatch(StartBB, HandlerBB, Selector, NextBB);
1608 if (Res) {
1609 // If this was EH dispatch, this must be a conditional branch to the handler
1610 // block.
1611 // FIXME: Handle instructions in the dispatch block. Currently we drop them,
1612 // leading to crashes if some optimization hoists stuff here.
1613 assert(CatchAction->getSelector() && HandlerBB &&((CatchAction->getSelector() && HandlerBB &&
"expected catch EH dispatch") ? static_cast<void> (0) :
__assert_fail ("CatchAction->getSelector() && HandlerBB && \"expected catch EH dispatch\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 1614, __PRETTY_FUNCTION__))
1614 "expected catch EH dispatch")((CatchAction->getSelector() && HandlerBB &&
"expected catch EH dispatch") ? static_cast<void> (0) :
__assert_fail ("CatchAction->getSelector() && HandlerBB && \"expected catch EH dispatch\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 1614, __PRETTY_FUNCTION__))
;
1615 } else {
1616 // This must be a catch-all. Split the block after the landingpad.
1617 assert(CatchAction->getSelector()->isNullValue() && "expected catch-all")((CatchAction->getSelector()->isNullValue() && "expected catch-all"
) ? static_cast<void> (0) : __assert_fail ("CatchAction->getSelector()->isNullValue() && \"expected catch-all\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 1617, __PRETTY_FUNCTION__))
;
1618 HandlerBB = SplitBlock(StartBB, StartBB->getFirstInsertionPt(), DT);
1619 }
1620 IRBuilder<> Builder(HandlerBB->getFirstInsertionPt());
1621 Function *EHCodeFn = Intrinsic::getDeclaration(
1622 StartBB->getParent()->getParent(), Intrinsic::eh_exceptioncode_old);
1623 Value *Code = Builder.CreateCall(EHCodeFn, {}, "sehcode");
1624 Code = Builder.CreateIntToPtr(Code, SEHExceptionCodeSlot->getAllocatedType());
1625 Builder.CreateStore(Code, SEHExceptionCodeSlot);
1626 CatchAction->setHandlerBlockOrFunc(BlockAddress::get(HandlerBB));
1627 TinyPtrVector<BasicBlock *> Targets(HandlerBB);
1628 CatchAction->setReturnTargets(Targets);
1629}
1630
1631void LandingPadMap::mapLandingPad(const LandingPadInst *LPad) {
1632 // Each instance of this class should only ever be used to map a single
1633 // landing pad.
1634 assert(OriginLPad == nullptr || OriginLPad == LPad)((OriginLPad == nullptr || OriginLPad == LPad) ? static_cast<
void> (0) : __assert_fail ("OriginLPad == nullptr || OriginLPad == LPad"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 1634, __PRETTY_FUNCTION__))
;
1635
1636 // If the landing pad has already been mapped, there's nothing more to do.
1637 if (OriginLPad == LPad)
1638 return;
1639
1640 OriginLPad = LPad;
1641
1642 // The landingpad instruction returns an aggregate value. Typically, its
1643 // value will be passed to a pair of extract value instructions and the
1644 // results of those extracts will have been promoted to reg values before
1645 // this routine is called.
1646 for (auto *U : LPad->users()) {
1647 const ExtractValueInst *Extract = dyn_cast<ExtractValueInst>(U);
1648 if (!Extract)
1649 continue;
1650 assert(Extract->getNumIndices() == 1 &&((Extract->getNumIndices() == 1 && "Unexpected operation: extracting both landing pad values"
) ? static_cast<void> (0) : __assert_fail ("Extract->getNumIndices() == 1 && \"Unexpected operation: extracting both landing pad values\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 1651, __PRETTY_FUNCTION__))
1651 "Unexpected operation: extracting both landing pad values")((Extract->getNumIndices() == 1 && "Unexpected operation: extracting both landing pad values"
) ? static_cast<void> (0) : __assert_fail ("Extract->getNumIndices() == 1 && \"Unexpected operation: extracting both landing pad values\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 1651, __PRETTY_FUNCTION__))
;
1652 unsigned int Idx = *(Extract->idx_begin());
1653 assert((Idx == 0 || Idx == 1) &&(((Idx == 0 || Idx == 1) && "Unexpected operation: extracting an unknown landing pad element"
) ? static_cast<void> (0) : __assert_fail ("(Idx == 0 || Idx == 1) && \"Unexpected operation: extracting an unknown landing pad element\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 1654, __PRETTY_FUNCTION__))
1654 "Unexpected operation: extracting an unknown landing pad element")(((Idx == 0 || Idx == 1) && "Unexpected operation: extracting an unknown landing pad element"
) ? static_cast<void> (0) : __assert_fail ("(Idx == 0 || Idx == 1) && \"Unexpected operation: extracting an unknown landing pad element\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 1654, __PRETTY_FUNCTION__))
;
1655 if (Idx == 0) {
1656 ExtractedEHPtrs.push_back(Extract);
1657 } else if (Idx == 1) {
1658 ExtractedSelectors.push_back(Extract);
1659 }
1660 }
1661}
1662
1663bool LandingPadMap::isOriginLandingPadBlock(const BasicBlock *BB) const {
1664 return BB->getLandingPadInst() == OriginLPad;
1665}
1666
1667bool LandingPadMap::isLandingPadSpecificInst(const Instruction *Inst) const {
1668 if (Inst == OriginLPad)
1669 return true;
1670 for (auto *Extract : ExtractedEHPtrs) {
1671 if (Inst == Extract)
1672 return true;
1673 }
1674 for (auto *Extract : ExtractedSelectors) {
1675 if (Inst == Extract)
1676 return true;
1677 }
1678 return false;
1679}
1680
1681void LandingPadMap::remapEHValues(ValueToValueMapTy &VMap, Value *EHPtrValue,
1682 Value *SelectorValue) const {
1683 // Remap all landing pad extract instructions to the specified values.
1684 for (auto *Extract : ExtractedEHPtrs)
1685 VMap[Extract] = EHPtrValue;
1686 for (auto *Extract : ExtractedSelectors)
1687 VMap[Extract] = SelectorValue;
1688}
1689
1690static bool isLocalAddressCall(const Value *V) {
1691 return match(const_cast<Value *>(V), m_Intrinsic<Intrinsic::localaddress>());
1692}
1693
1694CloningDirector::CloningAction WinEHCloningDirectorBase::handleInstruction(
1695 ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
1696 // If this is one of the boilerplate landing pad instructions, skip it.
1697 // The instruction will have already been remapped in VMap.
1698 if (LPadMap.isLandingPadSpecificInst(Inst))
1699 return CloningDirector::SkipInstruction;
1700
1701 // Nested landing pads that have not already been outlined will be cloned as
1702 // stubs, with just the landingpad instruction and an unreachable instruction.
1703 // When all landingpads have been outlined, we'll replace this with the
1704 // llvm.eh.actions call and indirect branch created when the landing pad was
1705 // outlined.
1706 if (auto *LPad = dyn_cast<LandingPadInst>(Inst)) {
1707 return handleLandingPad(VMap, LPad, NewBB);
1708 }
1709
1710 // Nested landing pads that have already been outlined will be cloned in their
1711 // outlined form, but we need to intercept the ibr instruction to filter out
1712 // targets that do not return to the handler we are outlining.
1713 if (auto *IBr = dyn_cast<IndirectBrInst>(Inst)) {
1714 return handleIndirectBr(VMap, IBr, NewBB);
1715 }
1716
1717 if (auto *Invoke = dyn_cast<InvokeInst>(Inst))
1718 return handleInvoke(VMap, Invoke, NewBB);
1719
1720 if (auto *Resume = dyn_cast<ResumeInst>(Inst))
1721 return handleResume(VMap, Resume, NewBB);
1722
1723 if (auto *Cmp = dyn_cast<CmpInst>(Inst))
1724 return handleCompare(VMap, Cmp, NewBB);
1725
1726 if (match(Inst, m_Intrinsic<Intrinsic::eh_begincatch>()))
1727 return handleBeginCatch(VMap, Inst, NewBB);
1728 if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>()))
1729 return handleEndCatch(VMap, Inst, NewBB);
1730 if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>()))
1731 return handleTypeIdFor(VMap, Inst, NewBB);
1732
1733 // When outlining llvm.localaddress(), remap that to the second argument,
1734 // which is the FP of the parent.
1735 if (isLocalAddressCall(Inst)) {
1736 VMap[Inst] = ParentFP;
1737 return CloningDirector::SkipInstruction;
1738 }
1739
1740 // Continue with the default cloning behavior.
1741 return CloningDirector::CloneInstruction;
1742}
1743
1744CloningDirector::CloningAction WinEHCatchDirector::handleLandingPad(
1745 ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) {
1746 // If the instruction after the landing pad is a call to llvm.eh.actions
1747 // the landing pad has already been outlined. In this case, we should
1748 // clone it because it may return to a block in the handler we are
1749 // outlining now that would otherwise be unreachable. The landing pads
1750 // are sorted before outlining begins to enable this case to work
1751 // properly.
1752 const Instruction *NextI = LPad->getNextNode();
1753 if (match(NextI, m_Intrinsic<Intrinsic::eh_actions>()))
1754 return CloningDirector::CloneInstruction;
1755
1756 // If the landing pad hasn't been outlined yet, the landing pad we are
1757 // outlining now does not dominate it and so it cannot return to a block
1758 // in this handler. In that case, we can just insert a stub landing
1759 // pad now and patch it up later.
1760 Instruction *NewInst = LPad->clone();
1761 if (LPad->hasName())
1762 NewInst->setName(LPad->getName());
1763 // Save this correlation for later processing.
1764 NestedLPtoOriginalLP[cast<LandingPadInst>(NewInst)] = LPad;
1765 VMap[LPad] = NewInst;
1766 BasicBlock::InstListType &InstList = NewBB->getInstList();
1767 InstList.push_back(NewInst);
1768 InstList.push_back(new UnreachableInst(NewBB->getContext()));
1769 return CloningDirector::StopCloningBB;
1770}
1771
1772CloningDirector::CloningAction WinEHCatchDirector::handleBeginCatch(
1773 ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
1774 // The argument to the call is some form of the first element of the
1775 // landingpad aggregate value, but that doesn't matter. It isn't used
1776 // here.
1777 // The second argument is an outparameter where the exception object will be
1778 // stored. Typically the exception object is a scalar, but it can be an
1779 // aggregate when catching by value.
1780 // FIXME: Leave something behind to indicate where the exception object lives
1781 // for this handler. Should it be part of llvm.eh.actions?
1782 assert(ExceptionObjectVar == nullptr && "Multiple calls to "((ExceptionObjectVar == nullptr && "Multiple calls to "
"llvm.eh.begincatch found while " "outlining catch handler."
) ? static_cast<void> (0) : __assert_fail ("ExceptionObjectVar == nullptr && \"Multiple calls to \" \"llvm.eh.begincatch found while \" \"outlining catch handler.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 1784, __PRETTY_FUNCTION__))
1783 "llvm.eh.begincatch found while "((ExceptionObjectVar == nullptr && "Multiple calls to "
"llvm.eh.begincatch found while " "outlining catch handler."
) ? static_cast<void> (0) : __assert_fail ("ExceptionObjectVar == nullptr && \"Multiple calls to \" \"llvm.eh.begincatch found while \" \"outlining catch handler.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 1784, __PRETTY_FUNCTION__))
1784 "outlining catch handler.")((ExceptionObjectVar == nullptr && "Multiple calls to "
"llvm.eh.begincatch found while " "outlining catch handler."
) ? static_cast<void> (0) : __assert_fail ("ExceptionObjectVar == nullptr && \"Multiple calls to \" \"llvm.eh.begincatch found while \" \"outlining catch handler.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 1784, __PRETTY_FUNCTION__))
;
1785 ExceptionObjectVar = Inst->getOperand(1)->stripPointerCasts();
1786 if (isa<ConstantPointerNull>(ExceptionObjectVar))
1787 return CloningDirector::SkipInstruction;
1788 assert(cast<AllocaInst>(ExceptionObjectVar)->isStaticAlloca() &&((cast<AllocaInst>(ExceptionObjectVar)->isStaticAlloca
() && "catch parameter is not static alloca") ? static_cast
<void> (0) : __assert_fail ("cast<AllocaInst>(ExceptionObjectVar)->isStaticAlloca() && \"catch parameter is not static alloca\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 1789, __PRETTY_FUNCTION__))
1789 "catch parameter is not static alloca")((cast<AllocaInst>(ExceptionObjectVar)->isStaticAlloca
() && "catch parameter is not static alloca") ? static_cast
<void> (0) : __assert_fail ("cast<AllocaInst>(ExceptionObjectVar)->isStaticAlloca() && \"catch parameter is not static alloca\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 1789, __PRETTY_FUNCTION__))
;
1790 Materializer.escapeCatchObject(ExceptionObjectVar);
1791 return CloningDirector::SkipInstruction;
1792}
1793
1794CloningDirector::CloningAction
1795WinEHCatchDirector::handleEndCatch(ValueToValueMapTy &VMap,
1796 const Instruction *Inst, BasicBlock *NewBB) {
1797 auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst);
1798 // It might be interesting to track whether or not we are inside a catch
1799 // function, but that might make the algorithm more brittle than it needs
1800 // to be.
1801
1802 // The end catch call can occur in one of two places: either in a
1803 // landingpad block that is part of the catch handlers exception mechanism,
1804 // or at the end of the catch block. However, a catch-all handler may call
1805 // end catch from the original landing pad. If the call occurs in a nested
1806 // landing pad block, we must skip it and continue so that the landing pad
1807 // gets cloned.
1808 auto *ParentBB = IntrinCall->getParent();
1809 if (ParentBB->isLandingPad() && !LPadMap.isOriginLandingPadBlock(ParentBB))
1810 return CloningDirector::SkipInstruction;
1811
1812 // If an end catch occurs anywhere else we want to terminate the handler
1813 // with a return to the code that follows the endcatch call. If the
1814 // next instruction is not an unconditional branch, we need to split the
1815 // block to provide a clear target for the return instruction.
1816 BasicBlock *ContinueBB;
1817 auto Next = std::next(BasicBlock::const_iterator(IntrinCall));
1818 const BranchInst *Branch = dyn_cast<BranchInst>(Next);
1819 if (!Branch || !Branch->isUnconditional()) {
1820 // We're interrupting the cloning process at this location, so the
1821 // const_cast we're doing here will not cause a problem.
1822 ContinueBB = SplitBlock(const_cast<BasicBlock *>(ParentBB),
1823 const_cast<Instruction *>(cast<Instruction>(Next)));
1824 } else {
1825 ContinueBB = Branch->getSuccessor(0);
1826 }
1827
1828 ReturnInst::Create(NewBB->getContext(), BlockAddress::get(ContinueBB), NewBB);
1829 ReturnTargets.push_back(ContinueBB);
1830
1831 // We just added a terminator to the cloned block.
1832 // Tell the caller to stop processing the current basic block so that
1833 // the branch instruction will be skipped.
1834 return CloningDirector::StopCloningBB;
1835}
1836
1837CloningDirector::CloningAction WinEHCatchDirector::handleTypeIdFor(
1838 ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
1839 auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst);
1840 Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts();
1841 // This causes a replacement that will collapse the landing pad CFG based
1842 // on the filter function we intend to match.
1843 if (Selector == CurrentSelector)
1844 VMap[Inst] = ConstantInt::get(SelectorIDType, 1);
1845 else
1846 VMap[Inst] = ConstantInt::get(SelectorIDType, 0);
1847 // Tell the caller not to clone this instruction.
1848 return CloningDirector::SkipInstruction;
1849}
1850
1851CloningDirector::CloningAction WinEHCatchDirector::handleIndirectBr(
1852 ValueToValueMapTy &VMap,
1853 const IndirectBrInst *IBr,
1854 BasicBlock *NewBB) {
1855 // If this indirect branch is not part of a landing pad block, just clone it.
1856 const BasicBlock *ParentBB = IBr->getParent();
1857 if (!ParentBB->isLandingPad())
1858 return CloningDirector::CloneInstruction;
1859
1860 // If it is part of a landing pad, we want to filter out target blocks
1861 // that are not part of the handler we are outlining.
1862 const LandingPadInst *LPad = ParentBB->getLandingPadInst();
1863
1864 // Save this correlation for later processing.
1865 NestedLPtoOriginalLP[cast<LandingPadInst>(VMap[LPad])] = LPad;
1866
1867 // We should only get here for landing pads that have already been outlined.
1868 assert(match(LPad->getNextNode(), m_Intrinsic<Intrinsic::eh_actions>()))((match(LPad->getNextNode(), m_Intrinsic<Intrinsic::eh_actions
>())) ? static_cast<void> (0) : __assert_fail ("match(LPad->getNextNode(), m_Intrinsic<Intrinsic::eh_actions>())"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 1868, __PRETTY_FUNCTION__))
;
1869
1870 // Copy the indirectbr, but only include targets that were previously
1871 // identified as EH blocks and are dominated by the nested landing pad.
1872 SetVector<const BasicBlock *> ReturnTargets;
1873 for (int I = 0, E = IBr->getNumDestinations(); I < E; ++I) {
1874 auto *TargetBB = IBr->getDestination(I);
1875 if (EHBlocks.count(const_cast<BasicBlock*>(TargetBB)) &&
1876 DT->dominates(ParentBB, TargetBB)) {
1877 DEBUG(dbgs() << " Adding destination " << TargetBB->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Adding destination " <<
TargetBB->getName() << "\n"; } } while (0)
;
1878 ReturnTargets.insert(TargetBB);
1879 }
1880 }
1881 IndirectBrInst *NewBranch =
1882 IndirectBrInst::Create(const_cast<Value *>(IBr->getAddress()),
1883 ReturnTargets.size(), NewBB);
1884 for (auto *Target : ReturnTargets)
1885 NewBranch->addDestination(const_cast<BasicBlock*>(Target));
1886
1887 // The operands and targets of the branch instruction are remapped later
1888 // because it is a terminator. Tell the cloning code to clone the
1889 // blocks we just added to the target list.
1890 return CloningDirector::CloneSuccessors;
1891}
1892
1893CloningDirector::CloningAction
1894WinEHCatchDirector::handleInvoke(ValueToValueMapTy &VMap,
1895 const InvokeInst *Invoke, BasicBlock *NewBB) {
1896 return CloningDirector::CloneInstruction;
1897}
1898
1899CloningDirector::CloningAction
1900WinEHCatchDirector::handleResume(ValueToValueMapTy &VMap,
1901 const ResumeInst *Resume, BasicBlock *NewBB) {
1902 // Resume instructions shouldn't be reachable from catch handlers.
1903 // We still need to handle it, but it will be pruned.
1904 BasicBlock::InstListType &InstList = NewBB->getInstList();
1905 InstList.push_back(new UnreachableInst(NewBB->getContext()));
1906 return CloningDirector::StopCloningBB;
1907}
1908
1909CloningDirector::CloningAction
1910WinEHCatchDirector::handleCompare(ValueToValueMapTy &VMap,
1911 const CmpInst *Compare, BasicBlock *NewBB) {
1912 const IntrinsicInst *IntrinCall = nullptr;
1913 if (match(Compare->getOperand(0), m_Intrinsic<Intrinsic::eh_typeid_for>())) {
1914 IntrinCall = dyn_cast<IntrinsicInst>(Compare->getOperand(0));
1915 } else if (match(Compare->getOperand(1),
1916 m_Intrinsic<Intrinsic::eh_typeid_for>())) {
1917 IntrinCall = dyn_cast<IntrinsicInst>(Compare->getOperand(1));
1918 }
1919 if (IntrinCall) {
1920 Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts();
1921 // This causes a replacement that will collapse the landing pad CFG based
1922 // on the filter function we intend to match.
1923 if (Selector == CurrentSelector->stripPointerCasts()) {
1924 VMap[Compare] = ConstantInt::get(SelectorIDType, 1);
1925 } else {
1926 VMap[Compare] = ConstantInt::get(SelectorIDType, 0);
1927 }
1928 return CloningDirector::SkipInstruction;
1929 }
1930 return CloningDirector::CloneInstruction;
1931}
1932
1933CloningDirector::CloningAction WinEHCleanupDirector::handleLandingPad(
1934 ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) {
1935 // The MS runtime will terminate the process if an exception occurs in a
1936 // cleanup handler, so we shouldn't encounter landing pads in the actual
1937 // cleanup code, but they may appear in catch blocks. Depending on where
1938 // we started cloning we may see one, but it will get dropped during dead
1939 // block pruning.
1940 Instruction *NewInst = new UnreachableInst(NewBB->getContext());
1941 VMap[LPad] = NewInst;
1942 BasicBlock::InstListType &InstList = NewBB->getInstList();
1943 InstList.push_back(NewInst);
1944 return CloningDirector::StopCloningBB;
1945}
1946
1947CloningDirector::CloningAction WinEHCleanupDirector::handleBeginCatch(
1948 ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
1949 // Cleanup code may flow into catch blocks or the catch block may be part
1950 // of a branch that will be optimized away. We'll insert a return
1951 // instruction now, but it may be pruned before the cloning process is
1952 // complete.
1953 ReturnInst::Create(NewBB->getContext(), nullptr, NewBB);
1954 return CloningDirector::StopCloningBB;
1955}
1956
1957CloningDirector::CloningAction WinEHCleanupDirector::handleEndCatch(
1958 ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
1959 // Cleanup handlers nested within catch handlers may begin with a call to
1960 // eh.endcatch. We can just ignore that instruction.
1961 return CloningDirector::SkipInstruction;
1962}
1963
1964CloningDirector::CloningAction WinEHCleanupDirector::handleTypeIdFor(
1965 ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
1966 // If we encounter a selector comparison while cloning a cleanup handler,
1967 // we want to stop cloning immediately. Anything after the dispatch
1968 // will be outlined into a different handler.
1969 BasicBlock *CatchHandler;
1970 Constant *Selector;
1971 BasicBlock *NextBB;
1972 if (isSelectorDispatch(const_cast<BasicBlock *>(Inst->getParent()),
1973 CatchHandler, Selector, NextBB)) {
1974 ReturnInst::Create(NewBB->getContext(), nullptr, NewBB);
1975 return CloningDirector::StopCloningBB;
1976 }
1977 // If eg.typeid.for is called for any other reason, it can be ignored.
1978 VMap[Inst] = ConstantInt::get(SelectorIDType, 0);
1979 return CloningDirector::SkipInstruction;
1980}
1981
1982CloningDirector::CloningAction WinEHCleanupDirector::handleIndirectBr(
1983 ValueToValueMapTy &VMap,
1984 const IndirectBrInst *IBr,
1985 BasicBlock *NewBB) {
1986 // No special handling is required for cleanup cloning.
1987 return CloningDirector::CloneInstruction;
1988}
1989
1990CloningDirector::CloningAction WinEHCleanupDirector::handleInvoke(
1991 ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) {
1992 // All invokes in cleanup handlers can be replaced with calls.
1993 SmallVector<Value *, 16> CallArgs(Invoke->op_begin(), Invoke->op_end() - 3);
1994 // Insert a normal call instruction...
1995 CallInst *NewCall =
1996 CallInst::Create(const_cast<Value *>(Invoke->getCalledValue()), CallArgs,
1997 Invoke->getName(), NewBB);
1998 NewCall->setCallingConv(Invoke->getCallingConv());
1999 NewCall->setAttributes(Invoke->getAttributes());
2000 NewCall->setDebugLoc(Invoke->getDebugLoc());
2001 VMap[Invoke] = NewCall;
2002
2003 // Remap the operands.
2004 llvm::RemapInstruction(NewCall, VMap, RF_None, nullptr, &Materializer);
2005
2006 // Insert an unconditional branch to the normal destination.
2007 BranchInst::Create(Invoke->getNormalDest(), NewBB);
2008
2009 // The unwind destination won't be cloned into the new function, so
2010 // we don't need to clean up its phi nodes.
2011
2012 // We just added a terminator to the cloned block.
2013 // Tell the caller to stop processing the current basic block.
2014 return CloningDirector::CloneSuccessors;
2015}
2016
2017CloningDirector::CloningAction WinEHCleanupDirector::handleResume(
2018 ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) {
2019 ReturnInst::Create(NewBB->getContext(), nullptr, NewBB);
2020
2021 // We just added a terminator to the cloned block.
2022 // Tell the caller to stop processing the current basic block so that
2023 // the branch instruction will be skipped.
2024 return CloningDirector::StopCloningBB;
2025}
2026
2027CloningDirector::CloningAction
2028WinEHCleanupDirector::handleCompare(ValueToValueMapTy &VMap,
2029 const CmpInst *Compare, BasicBlock *NewBB) {
2030 if (match(Compare->getOperand(0), m_Intrinsic<Intrinsic::eh_typeid_for>()) ||
2031 match(Compare->getOperand(1), m_Intrinsic<Intrinsic::eh_typeid_for>())) {
2032 VMap[Compare] = ConstantInt::get(SelectorIDType, 1);
2033 return CloningDirector::SkipInstruction;
2034 }
2035 return CloningDirector::CloneInstruction;
2036}
2037
2038WinEHFrameVariableMaterializer::WinEHFrameVariableMaterializer(
2039 Function *OutlinedFn, Value *ParentFP, FrameVarInfoMap &FrameVarInfo)
2040 : FrameVarInfo(FrameVarInfo), Builder(OutlinedFn->getContext()) {
2041 BasicBlock *EntryBB = &OutlinedFn->getEntryBlock();
2042
2043 // New allocas should be inserted in the entry block, but after the parent FP
2044 // is established if it is an instruction.
2045 Instruction *InsertPoint = EntryBB->getFirstInsertionPt();
2046 if (auto *FPInst = dyn_cast<Instruction>(ParentFP))
2047 InsertPoint = FPInst->getNextNode();
2048 Builder.SetInsertPoint(EntryBB, InsertPoint);
2049}
2050
2051Value *WinEHFrameVariableMaterializer::materializeValueFor(Value *V) {
2052 // If we're asked to materialize a static alloca, we temporarily create an
2053 // alloca in the outlined function and add this to the FrameVarInfo map. When
2054 // all the outlining is complete, we'll replace these temporary allocas with
2055 // calls to llvm.localrecover.
2056 if (auto *AV = dyn_cast<AllocaInst>(V)) {
2057 assert(AV->isStaticAlloca() &&((AV->isStaticAlloca() && "cannot materialize un-demoted dynamic alloca"
) ? static_cast<void> (0) : __assert_fail ("AV->isStaticAlloca() && \"cannot materialize un-demoted dynamic alloca\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 2058, __PRETTY_FUNCTION__))
2058 "cannot materialize un-demoted dynamic alloca")((AV->isStaticAlloca() && "cannot materialize un-demoted dynamic alloca"
) ? static_cast<void> (0) : __assert_fail ("AV->isStaticAlloca() && \"cannot materialize un-demoted dynamic alloca\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 2058, __PRETTY_FUNCTION__))
;
2059 AllocaInst *NewAlloca = dyn_cast<AllocaInst>(AV->clone());
2060 Builder.Insert(NewAlloca, AV->getName());
2061 FrameVarInfo[AV].push_back(NewAlloca);
2062 return NewAlloca;
2063 }
2064
2065 if (isa<Instruction>(V) || isa<Argument>(V)) {
2066 Function *Parent = isa<Instruction>(V)
2067 ? cast<Instruction>(V)->getParent()->getParent()
2068 : cast<Argument>(V)->getParent();
2069 errs()
2070 << "Failed to demote instruction used in exception handler of function "
2071 << GlobalValue::getRealLinkageName(Parent->getName()) << ":\n";
2072 errs() << " " << *V << '\n';
2073 report_fatal_error("WinEHPrepare failed to demote instruction");
2074 }
2075
2076 // Don't materialize other values.
2077 return nullptr;
2078}
2079
2080void WinEHFrameVariableMaterializer::escapeCatchObject(Value *V) {
2081 // Catch parameter objects have to live in the parent frame. When we see a use
2082 // of a catch parameter, add a sentinel to the multimap to indicate that it's
2083 // used from another handler. This will prevent us from trying to sink the
2084 // alloca into the handler and ensure that the catch parameter is present in
2085 // the call to llvm.localescape.
2086 FrameVarInfo[V].push_back(getCatchObjectSentinel());
2087}
2088
2089// This function maps the catch and cleanup handlers that are reachable from the
2090// specified landing pad. The landing pad sequence will have this basic shape:
2091//
2092// <cleanup handler>
2093// <selector comparison>
2094// <catch handler>
2095// <cleanup handler>
2096// <selector comparison>
2097// <catch handler>
2098// <cleanup handler>
2099// ...
2100//
2101// Any of the cleanup slots may be absent. The cleanup slots may be occupied by
2102// any arbitrary control flow, but all paths through the cleanup code must
2103// eventually reach the next selector comparison and no path can skip to a
2104// different selector comparisons, though some paths may terminate abnormally.
2105// Therefore, we will use a depth first search from the start of any given
2106// cleanup block and stop searching when we find the next selector comparison.
2107//
2108// If the landingpad instruction does not have a catch clause, we will assume
2109// that any instructions other than selector comparisons and catch handlers can
2110// be ignored. In practice, these will only be the boilerplate instructions.
2111//
2112// The catch handlers may also have any control structure, but we are only
2113// interested in the start of the catch handlers, so we don't need to actually
2114// follow the flow of the catch handlers. The start of the catch handlers can
2115// be located from the compare instructions, but they can be skipped in the
2116// flow by following the contrary branch.
2117void WinEHPrepare::mapLandingPadBlocks(LandingPadInst *LPad,
2118 LandingPadActions &Actions) {
2119 unsigned int NumClauses = LPad->getNumClauses();
2120 unsigned int HandlersFound = 0;
2121 BasicBlock *BB = LPad->getParent();
2122
2123 DEBUG(dbgs() << "Mapping landing pad: " << BB->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Mapping landing pad: " <<
BB->getName() << "\n"; } } while (0)
;
2124
2125 if (NumClauses == 0) {
2126 findCleanupHandlers(Actions, BB, nullptr);
2127 return;
2128 }
2129
2130 VisitedBlockSet VisitedBlocks;
2131
2132 while (HandlersFound != NumClauses) {
2133 BasicBlock *NextBB = nullptr;
2134
2135 // Skip over filter clauses.
2136 if (LPad->isFilter(HandlersFound)) {
2137 ++HandlersFound;
2138 continue;
2139 }
2140
2141 // See if the clause we're looking for is a catch-all.
2142 // If so, the catch begins immediately.
2143 Constant *ExpectedSelector =
2144 LPad->getClause(HandlersFound)->stripPointerCasts();
2145 if (isa<ConstantPointerNull>(ExpectedSelector)) {
2146 // The catch all must occur last.
2147 assert(HandlersFound == NumClauses - 1)((HandlersFound == NumClauses - 1) ? static_cast<void> (
0) : __assert_fail ("HandlersFound == NumClauses - 1", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 2147, __PRETTY_FUNCTION__))
;
2148
2149 // There can be additional selector dispatches in the call chain that we
2150 // need to ignore.
2151 BasicBlock *CatchBlock = nullptr;
2152 Constant *Selector;
2153 while (BB && isSelectorDispatch(BB, CatchBlock, Selector, NextBB)) {
2154 DEBUG(dbgs() << " Found extra catch dispatch in block "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Found extra catch dispatch in block "
<< CatchBlock->getName() << "\n"; } } while (
0)
2155 << CatchBlock->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Found extra catch dispatch in block "
<< CatchBlock->getName() << "\n"; } } while (
0)
;
2156 BB = NextBB;
2157 }
2158
2159 // Add the catch handler to the action list.
2160 CatchHandler *Action = nullptr;
2161 if (CatchHandlerMap.count(BB) && CatchHandlerMap[BB] != nullptr) {
2162 // If the CatchHandlerMap already has an entry for this BB, re-use it.
2163 Action = CatchHandlerMap[BB];
2164 assert(Action->getSelector() == ExpectedSelector)((Action->getSelector() == ExpectedSelector) ? static_cast
<void> (0) : __assert_fail ("Action->getSelector() == ExpectedSelector"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 2164, __PRETTY_FUNCTION__))
;
2165 } else {
2166 // We don't expect a selector dispatch, but there may be a call to
2167 // llvm.eh.begincatch, which separates catch handling code from
2168 // cleanup code in the same control flow. This call looks for the
2169 // begincatch intrinsic.
2170 Action = findCatchHandler(BB, NextBB, VisitedBlocks);
2171 if (Action) {
2172 // For C++ EH, check if there is any interesting cleanup code before
2173 // we begin the catch. This is important because cleanups cannot
2174 // rethrow exceptions but code called from catches can. For SEH, it
2175 // isn't important if some finally code before a catch-all is executed
2176 // out of line or after recovering from the exception.
2177 if (Personality == EHPersonality::MSVC_CXX)
2178 findCleanupHandlers(Actions, BB, BB);
2179 } else {
2180 // If an action was not found, it means that the control flows
2181 // directly into the catch-all handler and there is no cleanup code.
2182 // That's an expected situation and we must create a catch action.
2183 // Since this is a catch-all handler, the selector won't actually
2184 // appear in the code anywhere. ExpectedSelector here is the constant
2185 // null ptr that we got from the landing pad instruction.
2186 Action = new CatchHandler(BB, ExpectedSelector, nullptr);
2187 CatchHandlerMap[BB] = Action;
2188 }
2189 }
2190 Actions.insertCatchHandler(Action);
2191 DEBUG(dbgs() << " Catch all handler at block " << BB->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Catch all handler at block "
<< BB->getName() << "\n"; } } while (0)
;
2192 ++HandlersFound;
2193
2194 // Once we reach a catch-all, don't expect to hit a resume instruction.
2195 BB = nullptr;
2196 break;
2197 }
2198
2199 CatchHandler *CatchAction = findCatchHandler(BB, NextBB, VisitedBlocks);
2200 assert(CatchAction)((CatchAction) ? static_cast<void> (0) : __assert_fail (
"CatchAction", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 2200, __PRETTY_FUNCTION__))
;
2201
2202 // See if there is any interesting code executed before the dispatch.
2203 findCleanupHandlers(Actions, BB, CatchAction->getStartBlock());
2204
2205 // When the source program contains multiple nested try blocks the catch
2206 // handlers can get strung together in such a way that we can encounter
2207 // a dispatch for a selector that we've already had a handler for.
2208 if (CatchAction->getSelector()->stripPointerCasts() == ExpectedSelector) {
2209 ++HandlersFound;
2210
2211 // Add the catch handler to the action list.
2212 DEBUG(dbgs() << " Found catch dispatch in block "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Found catch dispatch in block "
<< CatchAction->getStartBlock()->getName() <<
"\n"; } } while (0)
2213 << CatchAction->getStartBlock()->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Found catch dispatch in block "
<< CatchAction->getStartBlock()->getName() <<
"\n"; } } while (0)
;
2214 Actions.insertCatchHandler(CatchAction);
2215 } else {
2216 // Under some circumstances optimized IR will flow unconditionally into a
2217 // handler block without checking the selector. This can only happen if
2218 // the landing pad has a catch-all handler and the handler for the
2219 // preceding catch clause is identical to the catch-call handler
2220 // (typically an empty catch). In this case, the handler must be shared
2221 // by all remaining clauses.
2222 if (isa<ConstantPointerNull>(
2223 CatchAction->getSelector()->stripPointerCasts())) {
2224 DEBUG(dbgs() << " Applying early catch-all handler in block "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Applying early catch-all handler in block "
<< CatchAction->getStartBlock()->getName() <<
" to all remaining clauses.\n"; } } while (0)
2225 << CatchAction->getStartBlock()->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Applying early catch-all handler in block "
<< CatchAction->getStartBlock()->getName() <<
" to all remaining clauses.\n"; } } while (0)
2226 << " to all remaining clauses.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Applying early catch-all handler in block "
<< CatchAction->getStartBlock()->getName() <<
" to all remaining clauses.\n"; } } while (0)
;
2227 Actions.insertCatchHandler(CatchAction);
2228 return;
2229 }
2230
2231 DEBUG(dbgs() << " Found extra catch dispatch in block "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Found extra catch dispatch in block "
<< CatchAction->getStartBlock()->getName() <<
"\n"; } } while (0)
2232 << CatchAction->getStartBlock()->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Found extra catch dispatch in block "
<< CatchAction->getStartBlock()->getName() <<
"\n"; } } while (0)
;
2233 }
2234
2235 // Move on to the block after the catch handler.
2236 BB = NextBB;
2237 }
2238
2239 // If we didn't wind up in a catch-all, see if there is any interesting code
2240 // executed before the resume.
2241 findCleanupHandlers(Actions, BB, BB);
2242
2243 // It's possible that some optimization moved code into a landingpad that
2244 // wasn't
2245 // previously being used for cleanup. If that happens, we need to execute
2246 // that
2247 // extra code from a cleanup handler.
2248 if (Actions.includesCleanup() && !LPad->isCleanup())
2249 LPad->setCleanup(true);
2250}
2251
2252// This function searches starting with the input block for the next
2253// block that terminates with a branch whose condition is based on a selector
2254// comparison. This may be the input block. See the mapLandingPadBlocks
2255// comments for a discussion of control flow assumptions.
2256//
2257CatchHandler *WinEHPrepare::findCatchHandler(BasicBlock *BB,
2258 BasicBlock *&NextBB,
2259 VisitedBlockSet &VisitedBlocks) {
2260 // See if we've already found a catch handler use it.
2261 // Call count() first to avoid creating a null entry for blocks
2262 // we haven't seen before.
2263 if (CatchHandlerMap.count(BB) && CatchHandlerMap[BB] != nullptr) {
2264 CatchHandler *Action = cast<CatchHandler>(CatchHandlerMap[BB]);
2265 NextBB = Action->getNextBB();
2266 return Action;
2267 }
2268
2269 // VisitedBlocks applies only to the current search. We still
2270 // need to consider blocks that we've visited while mapping other
2271 // landing pads.
2272 VisitedBlocks.insert(BB);
2273
2274 BasicBlock *CatchBlock = nullptr;
2275 Constant *Selector = nullptr;
2276
2277 // If this is the first time we've visited this block from any landing pad
2278 // look to see if it is a selector dispatch block.
2279 if (!CatchHandlerMap.count(BB)) {
2280 if (isSelectorDispatch(BB, CatchBlock, Selector, NextBB)) {
2281 CatchHandler *Action = new CatchHandler(BB, Selector, NextBB);
2282 CatchHandlerMap[BB] = Action;
2283 return Action;
2284 }
2285 // If we encounter a block containing an llvm.eh.begincatch before we
2286 // find a selector dispatch block, the handler is assumed to be
2287 // reached unconditionally. This happens for catch-all blocks, but
2288 // it can also happen for other catch handlers that have been combined
2289 // with the catch-all handler during optimization.
2290 if (isCatchBlock(BB)) {
2291 PointerType *Int8PtrTy = Type::getInt8PtrTy(BB->getContext());
2292 Constant *NullSelector = ConstantPointerNull::get(Int8PtrTy);
2293 CatchHandler *Action = new CatchHandler(BB, NullSelector, nullptr);
2294 CatchHandlerMap[BB] = Action;
2295 return Action;
2296 }
2297 }
2298
2299 // Visit each successor, looking for the dispatch.
2300 // FIXME: We expect to find the dispatch quickly, so this will probably
2301 // work better as a breadth first search.
2302 for (BasicBlock *Succ : successors(BB)) {
2303 if (VisitedBlocks.count(Succ))
2304 continue;
2305
2306 CatchHandler *Action = findCatchHandler(Succ, NextBB, VisitedBlocks);
2307 if (Action)
2308 return Action;
2309 }
2310 return nullptr;
2311}
2312
2313// These are helper functions to combine repeated code from findCleanupHandlers.
2314static void createCleanupHandler(LandingPadActions &Actions,
2315 CleanupHandlerMapTy &CleanupHandlerMap,
2316 BasicBlock *BB) {
2317 CleanupHandler *Action = new CleanupHandler(BB);
2318 CleanupHandlerMap[BB] = Action;
2319 Actions.insertCleanupHandler(Action);
2320 DEBUG(dbgs() << " Found cleanup code in block "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Found cleanup code in block "
<< Action->getStartBlock()->getName() << "\n"
; } } while (0)
2321 << Action->getStartBlock()->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Found cleanup code in block "
<< Action->getStartBlock()->getName() << "\n"
; } } while (0)
;
2322}
2323
2324static CallSite matchOutlinedFinallyCall(BasicBlock *BB,
2325 Instruction *MaybeCall) {
2326 // Look for finally blocks that Clang has already outlined for us.
2327 // %fp = call i8* @llvm.localaddress()
2328 // call void @"fin$parent"(iN 1, i8* %fp)
2329 if (isLocalAddressCall(MaybeCall) && MaybeCall != BB->getTerminator())
2330 MaybeCall = MaybeCall->getNextNode();
2331 CallSite FinallyCall(MaybeCall);
2332 if (!FinallyCall || FinallyCall.arg_size() != 2)
2333 return CallSite();
2334 if (!match(FinallyCall.getArgument(0), m_SpecificInt(1)))
2335 return CallSite();
2336 if (!isLocalAddressCall(FinallyCall.getArgument(1)))
2337 return CallSite();
2338 return FinallyCall;
2339}
2340
2341static BasicBlock *followSingleUnconditionalBranches(BasicBlock *BB) {
2342 // Skip single ubr blocks.
2343 while (BB->getFirstNonPHIOrDbg() == BB->getTerminator()) {
2344 auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
2345 if (Br && Br->isUnconditional())
2346 BB = Br->getSuccessor(0);
2347 else
2348 return BB;
2349 }
2350 return BB;
2351}
2352
2353// This function searches starting with the input block for the next block that
2354// contains code that is not part of a catch handler and would not be eliminated
2355// during handler outlining.
2356//
2357void WinEHPrepare::findCleanupHandlers(LandingPadActions &Actions,
2358 BasicBlock *StartBB, BasicBlock *EndBB) {
2359 // Here we will skip over the following:
2360 //
2361 // landing pad prolog:
2362 //
2363 // Unconditional branches
2364 //
2365 // Selector dispatch
2366 //
2367 // Resume pattern
2368 //
2369 // Anything else marks the start of an interesting block
2370
2371 BasicBlock *BB = StartBB;
2372 // Anything other than an unconditional branch will kick us out of this loop
2373 // one way or another.
2374 while (BB) {
2375 BB = followSingleUnconditionalBranches(BB);
2376 // If we've already scanned this block, don't scan it again. If it is
2377 // a cleanup block, there will be an action in the CleanupHandlerMap.
2378 // If we've scanned it and it is not a cleanup block, there will be a
2379 // nullptr in the CleanupHandlerMap. If we have not scanned it, there will
2380 // be no entry in the CleanupHandlerMap. We must call count() first to
2381 // avoid creating a null entry for blocks we haven't scanned.
2382 if (CleanupHandlerMap.count(BB)) {
2383 if (auto *Action = CleanupHandlerMap[BB]) {
2384 Actions.insertCleanupHandler(Action);
2385 DEBUG(dbgs() << " Found cleanup code in block "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Found cleanup code in block "
<< Action->getStartBlock()->getName() << "\n"
; } } while (0)
2386 << Action->getStartBlock()->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Found cleanup code in block "
<< Action->getStartBlock()->getName() << "\n"
; } } while (0)
;
2387 // FIXME: This cleanup might chain into another, and we need to discover
2388 // that.
2389 return;
2390 } else {
2391 // Here we handle the case where the cleanup handler map contains a
2392 // value for this block but the value is a nullptr. This means that
2393 // we have previously analyzed the block and determined that it did
2394 // not contain any cleanup code. Based on the earlier analysis, we
2395 // know the block must end in either an unconditional branch, a
2396 // resume or a conditional branch that is predicated on a comparison
2397 // with a selector. Either the resume or the selector dispatch
2398 // would terminate the search for cleanup code, so the unconditional
2399 // branch is the only case for which we might need to continue
2400 // searching.
2401 BasicBlock *SuccBB = followSingleUnconditionalBranches(BB);
2402 if (SuccBB == BB || SuccBB == EndBB)
2403 return;
2404 BB = SuccBB;
2405 continue;
2406 }
2407 }
2408
2409 // Create an entry in the cleanup handler map for this block. Initially
2410 // we create an entry that says this isn't a cleanup block. If we find
2411 // cleanup code, the caller will replace this entry.
2412 CleanupHandlerMap[BB] = nullptr;
2413
2414 TerminatorInst *Terminator = BB->getTerminator();
2415
2416 // Landing pad blocks have extra instructions we need to accept.
2417 LandingPadMap *LPadMap = nullptr;
2418 if (BB->isLandingPad()) {
2419 LandingPadInst *LPad = BB->getLandingPadInst();
2420 LPadMap = &LPadMaps[LPad];
2421 if (!LPadMap->isInitialized())
2422 LPadMap->mapLandingPad(LPad);
2423 }
2424
2425 // Look for the bare resume pattern:
2426 // %lpad.val1 = insertvalue { i8*, i32 } undef, i8* %exn, 0
2427 // %lpad.val2 = insertvalue { i8*, i32 } %lpad.val1, i32 %sel, 1
2428 // resume { i8*, i32 } %lpad.val2
2429 if (auto *Resume = dyn_cast<ResumeInst>(Terminator)) {
2430 InsertValueInst *Insert1 = nullptr;
2431 InsertValueInst *Insert2 = nullptr;
2432 Value *ResumeVal = Resume->getOperand(0);
2433 // If the resume value isn't a phi or landingpad value, it should be a
2434 // series of insertions. Identify them so we can avoid them when scanning
2435 // for cleanups.
2436 if (!isa<PHINode>(ResumeVal) && !isa<LandingPadInst>(ResumeVal)) {
2437 Insert2 = dyn_cast<InsertValueInst>(ResumeVal);
2438 if (!Insert2)
2439 return createCleanupHandler(Actions, CleanupHandlerMap, BB);
2440 Insert1 = dyn_cast<InsertValueInst>(Insert2->getAggregateOperand());
2441 if (!Insert1)
2442 return createCleanupHandler(Actions, CleanupHandlerMap, BB);
2443 }
2444 for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end();
2445 II != IE; ++II) {
2446 Instruction *Inst = II;
2447 if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
2448 continue;
2449 if (Inst == Insert1 || Inst == Insert2 || Inst == Resume)
2450 continue;
2451 if (!Inst->hasOneUse() ||
2452 (Inst->user_back() != Insert1 && Inst->user_back() != Insert2)) {
2453 return createCleanupHandler(Actions, CleanupHandlerMap, BB);
2454 }
2455 }
2456 return;
2457 }
2458
2459 BranchInst *Branch = dyn_cast<BranchInst>(Terminator);
2460 if (Branch && Branch->isConditional()) {
2461 // Look for the selector dispatch.
2462 // %2 = call i32 @llvm.eh.typeid.for(i8* bitcast (i8** @_ZTIf to i8*))
2463 // %matches = icmp eq i32 %sel, %2
2464 // br i1 %matches, label %catch14, label %eh.resume
2465 CmpInst *Compare = dyn_cast<CmpInst>(Branch->getCondition());
2466 if (!Compare || !Compare->isEquality())
2467 return createCleanupHandler(Actions, CleanupHandlerMap, BB);
2468 for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end();
2469 II != IE; ++II) {
2470 Instruction *Inst = II;
2471 if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
2472 continue;
2473 if (Inst == Compare || Inst == Branch)
2474 continue;
2475 if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>()))
2476 continue;
2477 return createCleanupHandler(Actions, CleanupHandlerMap, BB);
2478 }
2479 // The selector dispatch block should always terminate our search.
2480 assert(BB == EndBB)((BB == EndBB) ? static_cast<void> (0) : __assert_fail (
"BB == EndBB", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 2480, __PRETTY_FUNCTION__))
;
2481 return;
2482 }
2483
2484 if (isAsynchronousEHPersonality(Personality)) {
2485 // If this is a landingpad block, split the block at the first non-landing
2486 // pad instruction.
2487 Instruction *MaybeCall = BB->getFirstNonPHIOrDbg();
2488 if (LPadMap) {
2489 while (MaybeCall != BB->getTerminator() &&
2490 LPadMap->isLandingPadSpecificInst(MaybeCall))
2491 MaybeCall = MaybeCall->getNextNode();
2492 }
2493
2494 // Look for outlined finally calls on x64, since those happen to match the
2495 // prototype provided by the runtime.
2496 if (TheTriple.getArch() == Triple::x86_64) {
2497 if (CallSite FinallyCall = matchOutlinedFinallyCall(BB, MaybeCall)) {
2498 Function *Fin = FinallyCall.getCalledFunction();
2499 assert(Fin && "outlined finally call should be direct")((Fin && "outlined finally call should be direct") ? static_cast
<void> (0) : __assert_fail ("Fin && \"outlined finally call should be direct\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 2499, __PRETTY_FUNCTION__))
;
2500 auto *Action = new CleanupHandler(BB);
2501 Action->setHandlerBlockOrFunc(Fin);
2502 Actions.insertCleanupHandler(Action);
2503 CleanupHandlerMap[BB] = Action;
2504 DEBUG(dbgs() << " Found frontend-outlined finally call to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Found frontend-outlined finally call to "
<< Fin->getName() << " in block " << Action
->getStartBlock()->getName() << "\n"; } } while (
0)
2505 << Fin->getName() << " in block "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Found frontend-outlined finally call to "
<< Fin->getName() << " in block " << Action
->getStartBlock()->getName() << "\n"; } } while (
0)
2506 << Action->getStartBlock()->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << " Found frontend-outlined finally call to "
<< Fin->getName() << " in block " << Action
->getStartBlock()->getName() << "\n"; } } while (
0)
;
2507
2508 // Split the block if there were more interesting instructions and
2509 // look for finally calls in the normal successor block.
2510 BasicBlock *SuccBB = BB;
Value stored to 'SuccBB' during its initialization is never read
2511 if (FinallyCall.getInstruction() != BB->getTerminator() &&
2512 FinallyCall.getInstruction()->getNextNode() !=
2513 BB->getTerminator()) {
2514 SuccBB =
2515 SplitBlock(BB, FinallyCall.getInstruction()->getNextNode(), DT);
2516 } else {
2517 if (FinallyCall.isInvoke()) {
2518 SuccBB = cast<InvokeInst>(FinallyCall.getInstruction())
2519 ->getNormalDest();
2520 } else {
2521 SuccBB = BB->getUniqueSuccessor();
2522 assert(SuccBB &&((SuccBB && "splitOutlinedFinallyCalls didn't insert a branch"
) ? static_cast<void> (0) : __assert_fail ("SuccBB && \"splitOutlinedFinallyCalls didn't insert a branch\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 2523, __PRETTY_FUNCTION__))
2523 "splitOutlinedFinallyCalls didn't insert a branch")((SuccBB && "splitOutlinedFinallyCalls didn't insert a branch"
) ? static_cast<void> (0) : __assert_fail ("SuccBB && \"splitOutlinedFinallyCalls didn't insert a branch\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 2523, __PRETTY_FUNCTION__))
;
2524 }
2525 }
2526 BB = SuccBB;
2527 if (BB == EndBB)
2528 return;
2529 continue;
2530 }
2531 }
2532 }
2533
2534 // Anything else is either a catch block or interesting cleanup code.
2535 for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end();
2536 II != IE; ++II) {
2537 Instruction *Inst = II;
2538 if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
2539 continue;
2540 // Unconditional branches fall through to this loop.
2541 if (Inst == Branch)
2542 continue;
2543 // If this is a catch block, there is no cleanup code to be found.
2544 if (match(Inst, m_Intrinsic<Intrinsic::eh_begincatch>()))
2545 return;
2546 // If this a nested landing pad, it may contain an endcatch call.
2547 if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>()))
2548 return;
2549 // Anything else makes this interesting cleanup code.
2550 return createCleanupHandler(Actions, CleanupHandlerMap, BB);
2551 }
2552
2553 // Only unconditional branches in empty blocks should get this far.
2554 assert(Branch && Branch->isUnconditional())((Branch && Branch->isUnconditional()) ? static_cast
<void> (0) : __assert_fail ("Branch && Branch->isUnconditional()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 2554, __PRETTY_FUNCTION__))
;
2555 if (BB == EndBB)
2556 return;
2557 BB = Branch->getSuccessor(0);
2558 }
2559}
2560
2561// This is a public function, declared in WinEHFuncInfo.h and is also
2562// referenced by WinEHNumbering in FunctionLoweringInfo.cpp.
2563void llvm::parseEHActions(
2564 const IntrinsicInst *II,
2565 SmallVectorImpl<std::unique_ptr<ActionHandler>> &Actions) {
2566 assert(II->getIntrinsicID() == Intrinsic::eh_actions &&((II->getIntrinsicID() == Intrinsic::eh_actions &&
"attempted to parse non eh.actions intrinsic") ? static_cast
<void> (0) : __assert_fail ("II->getIntrinsicID() == Intrinsic::eh_actions && \"attempted to parse non eh.actions intrinsic\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 2567, __PRETTY_FUNCTION__))
2567 "attempted to parse non eh.actions intrinsic")((II->getIntrinsicID() == Intrinsic::eh_actions &&
"attempted to parse non eh.actions intrinsic") ? static_cast
<void> (0) : __assert_fail ("II->getIntrinsicID() == Intrinsic::eh_actions && \"attempted to parse non eh.actions intrinsic\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 2567, __PRETTY_FUNCTION__))
;
2568 for (unsigned I = 0, E = II->getNumArgOperands(); I != E;) {
2569 uint64_t ActionKind =
2570 cast<ConstantInt>(II->getArgOperand(I))->getZExtValue();
2571 if (ActionKind == /*catch=*/1) {
2572 auto *Selector = cast<Constant>(II->getArgOperand(I + 1));
2573 ConstantInt *EHObjIndex = cast<ConstantInt>(II->getArgOperand(I + 2));
2574 int64_t EHObjIndexVal = EHObjIndex->getSExtValue();
2575 Constant *Handler = cast<Constant>(II->getArgOperand(I + 3));
2576 I += 4;
2577 auto CH = make_unique<CatchHandler>(/*BB=*/nullptr, Selector,
2578 /*NextBB=*/nullptr);
2579 CH->setHandlerBlockOrFunc(Handler);
2580 CH->setExceptionVarIndex(EHObjIndexVal);
2581 Actions.push_back(std::move(CH));
2582 } else if (ActionKind == 0) {
2583 Constant *Handler = cast<Constant>(II->getArgOperand(I + 1));
2584 I += 2;
2585 auto CH = make_unique<CleanupHandler>(/*BB=*/nullptr);
2586 CH->setHandlerBlockOrFunc(Handler);
2587 Actions.push_back(std::move(CH));
2588 } else {
2589 llvm_unreachable("Expected either a catch or cleanup handler!")::llvm::llvm_unreachable_internal("Expected either a catch or cleanup handler!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 2589)
;
2590 }
2591 }
2592 std::reverse(Actions.begin(), Actions.end());
2593}
2594
2595static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState,
2596 const Value *V) {
2597 WinEHUnwindMapEntry UME;
2598 UME.ToState = ToState;
2599 UME.Cleanup = V;
2600 FuncInfo.UnwindMap.push_back(UME);
2601 return FuncInfo.getLastStateNumber();
2602}
2603
2604static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow,
2605 int TryHigh, int CatchHigh,
2606 ArrayRef<const CatchPadInst *> Handlers) {
2607 WinEHTryBlockMapEntry TBME;
2608 TBME.TryLow = TryLow;
2609 TBME.TryHigh = TryHigh;
2610 TBME.CatchHigh = CatchHigh;
2611 assert(TBME.TryLow <= TBME.TryHigh)((TBME.TryLow <= TBME.TryHigh) ? static_cast<void> (
0) : __assert_fail ("TBME.TryLow <= TBME.TryHigh", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 2611, __PRETTY_FUNCTION__))
;
2612 for (const CatchPadInst *CPI : Handlers) {
2613 WinEHHandlerType HT;
2614 Constant *TypeInfo = cast<Constant>(CPI->getArgOperand(0));
2615 if (TypeInfo->isNullValue())
2616 HT.TypeDescriptor = nullptr;
2617 else
2618 HT.TypeDescriptor = cast<GlobalVariable>(TypeInfo->stripPointerCasts());
2619 HT.Adjectives = cast<ConstantInt>(CPI->getArgOperand(1))->getZExtValue();
2620 HT.Handler = CPI->getParent();
2621 HT.CatchObjRecoverIdx = -2;
2622 if (isa<ConstantPointerNull>(CPI->getArgOperand(2)))
2623 HT.CatchObj.Alloca = nullptr;
2624 else
2625 HT.CatchObj.Alloca = cast<AllocaInst>(CPI->getArgOperand(2));
2626 TBME.HandlerArray.push_back(HT);
2627 }
2628 FuncInfo.TryBlockMap.push_back(TBME);
2629}
2630
2631static const CatchPadInst *getSingleCatchPadPredecessor(const BasicBlock *BB) {
2632 for (const BasicBlock *PredBlock : predecessors(BB))
2633 if (auto *CPI = dyn_cast<CatchPadInst>(PredBlock->getFirstNonPHI()))
2634 return CPI;
2635 return nullptr;
2636}
2637
2638/// Find all the catchpads that feed directly into the catchendpad. Frontends
2639/// using this personality should ensure that each catchendpad and catchpad has
2640/// one or zero catchpad predecessors.
2641///
2642/// The following C++ generates the IR after it:
2643/// try {
2644/// } catch (A) {
2645/// } catch (B) {
2646/// }
2647///
2648/// IR:
2649/// %catchpad.A
2650/// catchpad [i8* A typeinfo]
2651/// to label %catch.A unwind label %catchpad.B
2652/// %catchpad.B
2653/// catchpad [i8* B typeinfo]
2654/// to label %catch.B unwind label %endcatches
2655/// %endcatches
2656/// catchendblock unwind to caller
2657static void
2658findCatchPadsForCatchEndPad(const BasicBlock *CatchEndBB,
2659 SmallVectorImpl<const CatchPadInst *> &Handlers) {
2660 const CatchPadInst *CPI = getSingleCatchPadPredecessor(CatchEndBB);
2661 while (CPI) {
2662 Handlers.push_back(CPI);
2663 CPI = getSingleCatchPadPredecessor(CPI->getParent());
2664 }
2665 // We've pushed these back into reverse source order. Reverse them to get
2666 // the list back into source order.
2667 std::reverse(Handlers.begin(), Handlers.end());
2668}
2669
2670// Given BB which ends in an unwind edge, return the EHPad that this BB belongs
2671// to. If the unwind edge came from an invoke, return null.
2672static const BasicBlock *getEHPadFromPredecessor(const BasicBlock *BB) {
2673 const TerminatorInst *TI = BB->getTerminator();
2674 if (isa<InvokeInst>(TI))
2675 return nullptr;
2676 if (TI->isEHPad())
2677 return BB;
2678 return cast<CleanupReturnInst>(TI)->getCleanupPad()->getParent();
2679}
2680
2681static void calculateExplicitCXXStateNumbers(WinEHFuncInfo &FuncInfo,
2682 const BasicBlock &BB,
2683 int ParentState) {
2684 assert(BB.isEHPad())((BB.isEHPad()) ? static_cast<void> (0) : __assert_fail
("BB.isEHPad()", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 2684, __PRETTY_FUNCTION__))
;
2685 const Instruction *FirstNonPHI = BB.getFirstNonPHI();
2686 // All catchpad instructions will be handled when we process their
2687 // respective catchendpad instruction.
2688 if (isa<CatchPadInst>(FirstNonPHI))
2689 return;
2690
2691 if (isa<CatchEndPadInst>(FirstNonPHI)) {
2692 SmallVector<const CatchPadInst *, 2> Handlers;
2693 findCatchPadsForCatchEndPad(&BB, Handlers);
2694 const BasicBlock *FirstTryPad = Handlers.front()->getParent();
2695 int TryLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
2696 FuncInfo.EHPadStateMap[Handlers.front()] = TryLow;
2697 for (const BasicBlock *PredBlock : predecessors(FirstTryPad))
2698 if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
2699 calculateExplicitCXXStateNumbers(FuncInfo, *PredBlock, TryLow);
2700 int CatchLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
2701
2702 // catchpads are separate funclets in C++ EH due to the way rethrow works.
2703 // In SEH, they aren't, so no invokes will unwind to the catchendpad.
2704 FuncInfo.EHPadStateMap[FirstNonPHI] = CatchLow;
2705 int TryHigh = CatchLow - 1;
2706 for (const BasicBlock *PredBlock : predecessors(&BB))
2707 if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
2708 calculateExplicitCXXStateNumbers(FuncInfo, *PredBlock, CatchLow);
2709 int CatchHigh = FuncInfo.getLastStateNumber();
2710 addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers);
2711 DEBUG(dbgs() << "TryLow[" << FirstTryPad->getName() << "]: " << TryLowdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "TryLow[" << FirstTryPad
->getName() << "]: " << TryLow << '\n'; }
} while (0)
2712 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "TryLow[" << FirstTryPad
->getName() << "]: " << TryLow << '\n'; }
} while (0)
;
2713 DEBUG(dbgs() << "TryHigh[" << FirstTryPad->getName() << "]: " << TryHighdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "TryHigh[" << FirstTryPad
->getName() << "]: " << TryHigh << '\n';
} } while (0)
2714 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "TryHigh[" << FirstTryPad
->getName() << "]: " << TryHigh << '\n';
} } while (0)
;
2715 DEBUG(dbgs() << "CatchHigh[" << FirstTryPad->getName() << "]: " << CatchHighdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "CatchHigh[" << FirstTryPad
->getName() << "]: " << CatchHigh << '\n'
; } } while (0)
2716 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "CatchHigh[" << FirstTryPad
->getName() << "]: " << CatchHigh << '\n'
; } } while (0)
;
2717 } else if (isa<CleanupPadInst>(FirstNonPHI)) {
2718 // A cleanup can have multiple exits; don't re-process after the first.
2719 if (FuncInfo.EHPadStateMap.count(FirstNonPHI))
2720 return;
2721 int CleanupState = addUnwindMapEntry(FuncInfo, ParentState, &BB);
2722 FuncInfo.EHPadStateMap[FirstNonPHI] = CleanupState;
2723 DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state #" <<
CleanupState << " to BB " << BB.getName() <<
'\n'; } } while (0)
2724 << BB.getName() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state #" <<
CleanupState << " to BB " << BB.getName() <<
'\n'; } } while (0)
;
2725 for (const BasicBlock *PredBlock : predecessors(&BB))
2726 if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
2727 calculateExplicitCXXStateNumbers(FuncInfo, *PredBlock, CleanupState);
2728 } else if (auto *CEPI = dyn_cast<CleanupEndPadInst>(FirstNonPHI)) {
2729 // Propagate ParentState to the cleanuppad in case it doesn't have
2730 // any cleanuprets.
2731 BasicBlock *CleanupBlock = CEPI->getCleanupPad()->getParent();
2732 calculateExplicitCXXStateNumbers(FuncInfo, *CleanupBlock, ParentState);
2733 // Anything unwinding through CleanupEndPadInst is in ParentState.
2734 for (const BasicBlock *PredBlock : predecessors(&BB))
2735 if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
2736 calculateExplicitCXXStateNumbers(FuncInfo, *PredBlock, ParentState);
2737 } else if (isa<TerminatePadInst>(FirstNonPHI)) {
2738 report_fatal_error("Not yet implemented!");
2739 } else {
2740 llvm_unreachable("unexpected EH Pad!")::llvm::llvm_unreachable_internal("unexpected EH Pad!", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 2740)
;
2741 }
2742}
2743
2744static int addSEHExcept(WinEHFuncInfo &FuncInfo, int ParentState,
2745 const Function *Filter, const BasicBlock *Handler) {
2746 SEHUnwindMapEntry Entry;
2747 Entry.ToState = ParentState;
2748 Entry.IsFinally = false;
2749 Entry.Filter = Filter;
2750 Entry.Handler = Handler;
2751 FuncInfo.SEHUnwindMap.push_back(Entry);
2752 return FuncInfo.SEHUnwindMap.size() - 1;
2753}
2754
2755static int addSEHFinally(WinEHFuncInfo &FuncInfo, int ParentState,
2756 const BasicBlock *Handler) {
2757 SEHUnwindMapEntry Entry;
2758 Entry.ToState = ParentState;
2759 Entry.IsFinally = true;
2760 Entry.Filter = nullptr;
2761 Entry.Handler = Handler;
2762 FuncInfo.SEHUnwindMap.push_back(Entry);
2763 return FuncInfo.SEHUnwindMap.size() - 1;
2764}
2765
2766static void calculateExplicitSEHStateNumbers(WinEHFuncInfo &FuncInfo,
2767 const BasicBlock &BB,
2768 int ParentState) {
2769 assert(BB.isEHPad())((BB.isEHPad()) ? static_cast<void> (0) : __assert_fail
("BB.isEHPad()", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 2769, __PRETTY_FUNCTION__))
;
2770 const Instruction *FirstNonPHI = BB.getFirstNonPHI();
2771 // All catchpad instructions will be handled when we process their
2772 // respective catchendpad instruction.
2773 if (isa<CatchPadInst>(FirstNonPHI))
2774 return;
2775
2776 if (isa<CatchEndPadInst>(FirstNonPHI)) {
2777 // Extract the filter function and the __except basic block and create a
2778 // state for them.
2779 SmallVector<const CatchPadInst *, 1> Handlers;
2780 findCatchPadsForCatchEndPad(&BB, Handlers);
2781 assert(Handlers.size() == 1 &&((Handlers.size() == 1 && "SEH doesn't have multiple handlers per __try"
) ? static_cast<void> (0) : __assert_fail ("Handlers.size() == 1 && \"SEH doesn't have multiple handlers per __try\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 2782, __PRETTY_FUNCTION__))
2782 "SEH doesn't have multiple handlers per __try")((Handlers.size() == 1 && "SEH doesn't have multiple handlers per __try"
) ? static_cast<void> (0) : __assert_fail ("Handlers.size() == 1 && \"SEH doesn't have multiple handlers per __try\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 2782, __PRETTY_FUNCTION__))
;
2783 const CatchPadInst *CPI = Handlers.front();
2784 const BasicBlock *CatchPadBB = CPI->getParent();
2785 const Constant *FilterOrNull =
2786 cast<Constant>(CPI->getArgOperand(0)->stripPointerCasts());
2787 const Function *Filter = dyn_cast<Function>(FilterOrNull);
2788 assert((Filter || FilterOrNull->isNullValue()) &&(((Filter || FilterOrNull->isNullValue()) && "unexpected filter value"
) ? static_cast<void> (0) : __assert_fail ("(Filter || FilterOrNull->isNullValue()) && \"unexpected filter value\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 2789, __PRETTY_FUNCTION__))
2789 "unexpected filter value")(((Filter || FilterOrNull->isNullValue()) && "unexpected filter value"
) ? static_cast<void> (0) : __assert_fail ("(Filter || FilterOrNull->isNullValue()) && \"unexpected filter value\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 2789, __PRETTY_FUNCTION__))
;
2790 int TryState = addSEHExcept(FuncInfo, ParentState, Filter, CatchPadBB);
2791
2792 // Everything in the __try block uses TryState as its parent state.
2793 FuncInfo.EHPadStateMap[CPI] = TryState;
2794 DEBUG(dbgs() << "Assigning state #" << TryState << " to BB "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state #" <<
TryState << " to BB " << CatchPadBB->getName(
) << '\n'; } } while (0)
2795 << CatchPadBB->getName() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state #" <<
TryState << " to BB " << CatchPadBB->getName(
) << '\n'; } } while (0)
;
2796 for (const BasicBlock *PredBlock : predecessors(CatchPadBB))
2797 if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
2798 calculateExplicitSEHStateNumbers(FuncInfo, *PredBlock, TryState);
2799
2800 // Everything in the __except block unwinds to ParentState, just like code
2801 // outside the __try.
2802 FuncInfo.EHPadStateMap[FirstNonPHI] = ParentState;
2803 DEBUG(dbgs() << "Assigning state #" << ParentState << " to BB "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state #" <<
ParentState << " to BB " << BB.getName() <<
'\n'; } } while (0)
2804 << BB.getName() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state #" <<
ParentState << " to BB " << BB.getName() <<
'\n'; } } while (0)
;
2805 for (const BasicBlock *PredBlock : predecessors(&BB))
2806 if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
2807 calculateExplicitSEHStateNumbers(FuncInfo, *PredBlock, ParentState);
2808 } else if (isa<CleanupPadInst>(FirstNonPHI)) {
2809 // A cleanup can have multiple exits; don't re-process after the first.
2810 if (FuncInfo.EHPadStateMap.count(FirstNonPHI))
2811 return;
2812 int CleanupState = addSEHFinally(FuncInfo, ParentState, &BB);
2813 FuncInfo.EHPadStateMap[FirstNonPHI] = CleanupState;
2814 DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state #" <<
CleanupState << " to BB " << BB.getName() <<
'\n'; } } while (0)
2815 << BB.getName() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state #" <<
CleanupState << " to BB " << BB.getName() <<
'\n'; } } while (0)
;
2816 for (const BasicBlock *PredBlock : predecessors(&BB))
2817 if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
2818 calculateExplicitSEHStateNumbers(FuncInfo, *PredBlock, CleanupState);
2819 } else if (auto *CEPI = dyn_cast<CleanupEndPadInst>(FirstNonPHI)) {
2820 // Propagate ParentState to the cleanuppad in case it doesn't have
2821 // any cleanuprets.
2822 BasicBlock *CleanupBlock = CEPI->getCleanupPad()->getParent();
2823 calculateExplicitSEHStateNumbers(FuncInfo, *CleanupBlock, ParentState);
2824 // Anything unwinding through CleanupEndPadInst is in ParentState.
2825 FuncInfo.EHPadStateMap[FirstNonPHI] = ParentState;
2826 DEBUG(dbgs() << "Assigning state #" << ParentState << " to BB "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state #" <<
ParentState << " to BB " << BB.getName() <<
'\n'; } } while (0)
2827 << BB.getName() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("winehprepare")) { dbgs() << "Assigning state #" <<
ParentState << " to BB " << BB.getName() <<
'\n'; } } while (0)
;
2828 for (const BasicBlock *PredBlock : predecessors(&BB))
2829 if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
2830 calculateExplicitSEHStateNumbers(FuncInfo, *PredBlock, ParentState);
2831 } else if (isa<TerminatePadInst>(FirstNonPHI)) {
2832 report_fatal_error("Not yet implemented!");
2833 } else {
2834 llvm_unreachable("unexpected EH Pad!")::llvm::llvm_unreachable_internal("unexpected EH Pad!", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 2834)
;
2835 }
2836}
2837
2838/// Check if the EH Pad unwinds to caller. Cleanups are a little bit of a
2839/// special case because we have to look at the cleanupret instruction that uses
2840/// the cleanuppad.
2841static bool doesEHPadUnwindToCaller(const Instruction *EHPad) {
2842 auto *CPI = dyn_cast<CleanupPadInst>(EHPad);
2843 if (!CPI)
2844 return EHPad->mayThrow();
2845
2846 // This cleanup does not return or unwind, so we say it unwinds to caller.
2847 if (CPI->use_empty())
2848 return true;
2849
2850 const Instruction *User = CPI->user_back();
2851 if (auto *CRI = dyn_cast<CleanupReturnInst>(User))
2852 return CRI->unwindsToCaller();
2853 return cast<CleanupEndPadInst>(User)->unwindsToCaller();
2854}
2855
2856void llvm::calculateSEHStateNumbers(const Function *Fn,
2857 WinEHFuncInfo &FuncInfo) {
2858 // Don't compute state numbers twice.
2859 if (!FuncInfo.SEHUnwindMap.empty())
2860 return;
2861
2862 for (const BasicBlock &BB : *Fn) {
2863 if (!BB.isEHPad() || !doesEHPadUnwindToCaller(BB.getFirstNonPHI()))
2864 continue;
2865 calculateExplicitSEHStateNumbers(FuncInfo, BB, -1);
2866 }
2867}
2868
2869void llvm::calculateWinCXXEHStateNumbers(const Function *Fn,
2870 WinEHFuncInfo &FuncInfo) {
2871 // Return if it's already been done.
2872 if (!FuncInfo.EHPadStateMap.empty())
2873 return;
2874
2875 for (const BasicBlock &BB : *Fn) {
2876 if (!BB.isEHPad())
2877 continue;
2878 if (BB.isLandingPad())
2879 report_fatal_error("MSVC C++ EH cannot use landingpads");
2880 const Instruction *FirstNonPHI = BB.getFirstNonPHI();
2881 if (!doesEHPadUnwindToCaller(FirstNonPHI))
2882 continue;
2883 calculateExplicitCXXStateNumbers(FuncInfo, BB, -1);
2884 }
2885}
2886
2887static int addClrEHHandler(WinEHFuncInfo &FuncInfo, int ParentState,
2888 ClrHandlerType HandlerType, uint32_t TypeToken,
2889 const BasicBlock *Handler) {
2890 ClrEHUnwindMapEntry Entry;
2891 Entry.Parent = ParentState;
2892 Entry.Handler = Handler;
2893 Entry.HandlerType = HandlerType;
2894 Entry.TypeToken = TypeToken;
2895 FuncInfo.ClrEHUnwindMap.push_back(Entry);
2896 return FuncInfo.ClrEHUnwindMap.size() - 1;
2897}
2898
2899void llvm::calculateClrEHStateNumbers(const Function *Fn,
2900 WinEHFuncInfo &FuncInfo) {
2901 // Return if it's already been done.
2902 if (!FuncInfo.EHPadStateMap.empty())
2903 return;
2904
2905 SmallVector<std::pair<const Instruction *, int>, 8> Worklist;
2906
2907 // Each pad needs to be able to refer to its parent, so scan the function
2908 // looking for top-level handlers and seed the worklist with them.
2909 for (const BasicBlock &BB : *Fn) {
2910 if (!BB.isEHPad())
2911 continue;
2912 if (BB.isLandingPad())
2913 report_fatal_error("CoreCLR EH cannot use landingpads");
2914 const Instruction *FirstNonPHI = BB.getFirstNonPHI();
2915 if (!doesEHPadUnwindToCaller(FirstNonPHI))
2916 continue;
2917 // queue this with sentinel parent state -1 to mean unwind to caller.
2918 Worklist.emplace_back(FirstNonPHI, -1);
2919 }
2920
2921 while (!Worklist.empty()) {
2922 const Instruction *Pad;
2923 int ParentState;
2924 std::tie(Pad, ParentState) = Worklist.pop_back_val();
2925
2926 int PredState;
2927 if (const CleanupEndPadInst *EndPad = dyn_cast<CleanupEndPadInst>(Pad)) {
2928 FuncInfo.EHPadStateMap[EndPad] = ParentState;
2929 // Queue the cleanuppad, in case it doesn't have a cleanupret.
2930 Worklist.emplace_back(EndPad->getCleanupPad(), ParentState);
2931 // Preds of the endpad should get the parent state.
2932 PredState = ParentState;
2933 } else if (const CleanupPadInst *Cleanup = dyn_cast<CleanupPadInst>(Pad)) {
2934 // A cleanup can have multiple exits; don't re-process after the first.
2935 if (FuncInfo.EHPadStateMap.count(Pad))
2936 continue;
2937 // CoreCLR personality uses arity to distinguish faults from finallies.
2938 const BasicBlock *PadBlock = Cleanup->getParent();
2939 ClrHandlerType HandlerType =
2940 (Cleanup->getNumOperands() ? ClrHandlerType::Fault
2941 : ClrHandlerType::Finally);
2942 int NewState =
2943 addClrEHHandler(FuncInfo, ParentState, HandlerType, 0, PadBlock);
2944 FuncInfo.EHPadStateMap[Cleanup] = NewState;
2945 // Propagate the new state to all preds of the cleanup
2946 PredState = NewState;
2947 } else if (const CatchEndPadInst *EndPad = dyn_cast<CatchEndPadInst>(Pad)) {
2948 FuncInfo.EHPadStateMap[EndPad] = ParentState;
2949 // Preds of the endpad should get the parent state.
2950 PredState = ParentState;
2951 } else if (const CatchPadInst *Catch = dyn_cast<CatchPadInst>(Pad)) {
2952 const BasicBlock *PadBlock = Catch->getParent();
2953 uint32_t TypeToken = static_cast<uint32_t>(
2954 cast<ConstantInt>(Catch->getArgOperand(0))->getZExtValue());
2955 int NewState = addClrEHHandler(FuncInfo, ParentState,
2956 ClrHandlerType::Catch, TypeToken, PadBlock);
2957 FuncInfo.EHPadStateMap[Catch] = NewState;
2958 // Preds of the catch get its state
2959 PredState = NewState;
2960 } else {
2961 llvm_unreachable("Unexpected EH pad")::llvm::llvm_unreachable_internal("Unexpected EH pad", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 2961)
;
2962 }
2963
2964 // Queue all predecessors with the given state
2965 for (const BasicBlock *Pred : predecessors(Pad->getParent())) {
2966 if ((Pred = getEHPadFromPredecessor(Pred)))
2967 Worklist.emplace_back(Pred->getFirstNonPHI(), PredState);
2968 }
2969 }
2970}
2971
2972void WinEHPrepare::replaceTerminatePadWithCleanup(Function &F) {
2973 if (Personality != EHPersonality::MSVC_CXX)
2974 return;
2975 for (BasicBlock &BB : F) {
2976 Instruction *First = BB.getFirstNonPHI();
2977 auto *TPI = dyn_cast<TerminatePadInst>(First);
2978 if (!TPI)
2979 continue;
2980
2981 if (TPI->getNumArgOperands() != 1)
2982 report_fatal_error(
2983 "Expected a unary terminatepad for MSVC C++ personalities!");
2984
2985 auto *TerminateFn = dyn_cast<Function>(TPI->getArgOperand(0));
2986 if (!TerminateFn)
2987 report_fatal_error("Function operand expected in terminatepad for MSVC "
2988 "C++ personalities!");
2989
2990 // Insert the cleanuppad instruction.
2991 auto *CPI = CleanupPadInst::Create(
2992 BB.getContext(), {}, Twine("terminatepad.for.", BB.getName()), &BB);
2993
2994 // Insert the call to the terminate instruction.
2995 auto *CallTerminate = CallInst::Create(TerminateFn, {}, &BB);
2996 CallTerminate->setDoesNotThrow();
2997 CallTerminate->setDoesNotReturn();
2998 CallTerminate->setCallingConv(TerminateFn->getCallingConv());
2999
3000 // Insert a new terminator for the cleanuppad using the same successor as
3001 // the terminatepad.
3002 CleanupReturnInst::Create(CPI, TPI->getUnwindDest(), &BB);
3003
3004 // Let's remove the terminatepad now that we've inserted the new
3005 // instructions.
3006 TPI->eraseFromParent();
3007 }
3008}
3009
3010static void
3011colorFunclets(Function &F, SmallVectorImpl<BasicBlock *> &EntryBlocks,
3012 std::map<BasicBlock *, std::set<BasicBlock *>> &BlockColors,
3013 std::map<BasicBlock *, std::set<BasicBlock *>> &FuncletBlocks,
3014 std::map<BasicBlock *, std::set<BasicBlock *>> &FuncletChildren) {
3015 SmallVector<std::pair<BasicBlock *, BasicBlock *>, 16> Worklist;
3016 BasicBlock *EntryBlock = &F.getEntryBlock();
3017
3018 // Build up the color map, which maps each block to its set of 'colors'.
3019 // For any block B, the "colors" of B are the set of funclets F (possibly
3020 // including a root "funclet" representing the main function), such that
3021 // F will need to directly contain B or a copy of B (where the term "directly
3022 // contain" is used to distinguish from being "transitively contained" in
3023 // a nested funclet).
3024 // Use a CFG walk driven by a worklist of (block, color) pairs. The "color"
3025 // sets attached during this processing to a block which is the entry of some
3026 // funclet F is actually the set of F's parents -- i.e. the union of colors
3027 // of all predecessors of F's entry. For all other blocks, the color sets
3028 // are as defined above. A post-pass fixes up the block color map to reflect
3029 // the same sense of "color" for funclet entries as for other blocks.
3030
3031 Worklist.push_back({EntryBlock, EntryBlock});
3032
3033 while (!Worklist.empty()) {
3034 BasicBlock *Visiting;
3035 BasicBlock *Color;
3036 std::tie(Visiting, Color) = Worklist.pop_back_val();
3037 Instruction *VisitingHead = Visiting->getFirstNonPHI();
3038 if (VisitingHead->isEHPad() && !isa<CatchEndPadInst>(VisitingHead) &&
3039 !isa<CleanupEndPadInst>(VisitingHead)) {
3040 // Mark this as a funclet head as a member of itself.
3041 FuncletBlocks[Visiting].insert(Visiting);
3042 // Queue exits with the parent color.
3043 for (User *U : VisitingHead->users()) {
3044 if (auto *Exit = dyn_cast<TerminatorInst>(U)) {
3045 for (BasicBlock *Succ : successors(Exit->getParent()))
3046 if (BlockColors[Succ].insert(Color).second)
3047 Worklist.push_back({Succ, Color});
3048 }
3049 }
3050 // Handle CatchPad specially since its successors need different colors.
3051 if (CatchPadInst *CatchPad = dyn_cast<CatchPadInst>(VisitingHead)) {
3052 // Visit the normal successor with the color of the new EH pad, and
3053 // visit the unwind successor with the color of the parent.
3054 BasicBlock *NormalSucc = CatchPad->getNormalDest();
3055 if (BlockColors[NormalSucc].insert(Visiting).second) {
3056 Worklist.push_back({NormalSucc, Visiting});
3057 }
3058 BasicBlock *UnwindSucc = CatchPad->getUnwindDest();
3059 if (BlockColors[UnwindSucc].insert(Color).second) {
3060 Worklist.push_back({UnwindSucc, Color});
3061 }
3062 continue;
3063 }
3064 // Switch color to the current node, except for terminate pads which
3065 // have no bodies and only unwind successors and so need their successors
3066 // visited with the color of the parent.
3067 if (!isa<TerminatePadInst>(VisitingHead))
3068 Color = Visiting;
3069 } else {
3070 // Note that this is a member of the given color.
3071 FuncletBlocks[Color].insert(Visiting);
3072 }
3073
3074 TerminatorInst *Terminator = Visiting->getTerminator();
3075 if (isa<CleanupReturnInst>(Terminator) ||
3076 isa<CatchReturnInst>(Terminator) ||
3077 isa<CleanupEndPadInst>(Terminator)) {
3078 // These blocks' successors have already been queued with the parent
3079 // color.
3080 continue;
3081 }
3082 for (BasicBlock *Succ : successors(Visiting)) {
3083 if (isa<CatchEndPadInst>(Succ->getFirstNonPHI())) {
3084 // The catchendpad needs to be visited with the parent's color, not
3085 // the current color. This will happen in the code above that visits
3086 // any catchpad unwind successor with the parent color, so we can
3087 // safely skip this successor here.
3088 continue;
3089 }
3090 if (BlockColors[Succ].insert(Color).second) {
3091 Worklist.push_back({Succ, Color});
3092 }
3093 }
3094 }
3095
3096 // The processing above actually accumulated the parent set for this
3097 // funclet into the color set for its entry; use the parent set to
3098 // populate the children map, and reset the color set to include just
3099 // the funclet itself (no instruction can target a funclet entry except on
3100 // that transitions to the child funclet).
3101 for (BasicBlock *FuncletEntry : EntryBlocks) {
3102 std::set<BasicBlock *> &ColorMapItem = BlockColors[FuncletEntry];
3103 for (BasicBlock *Parent : ColorMapItem)
3104 FuncletChildren[Parent].insert(FuncletEntry);
3105 ColorMapItem.clear();
3106 ColorMapItem.insert(FuncletEntry);
3107 }
3108}
3109
3110void WinEHPrepare::colorFunclets(Function &F,
3111 SmallVectorImpl<BasicBlock *> &EntryBlocks) {
3112 ::colorFunclets(F, EntryBlocks, BlockColors, FuncletBlocks, FuncletChildren);
3113}
3114
3115void llvm::calculateCatchReturnSuccessorColors(const Function *Fn,
3116 WinEHFuncInfo &FuncInfo) {
3117 SmallVector<LandingPadInst *, 4> LPads;
3118 SmallVector<ResumeInst *, 4> Resumes;
3119 SmallVector<BasicBlock *, 4> EntryBlocks;
3120 // colorFunclets needs the set of EntryBlocks, get them using
3121 // findExceptionalConstructs.
3122 bool ForExplicitEH = findExceptionalConstructs(const_cast<Function &>(*Fn),
3123 LPads, Resumes, EntryBlocks);
3124 if (!ForExplicitEH)
3125 return;
3126
3127 std::map<BasicBlock *, std::set<BasicBlock *>> BlockColors;
3128 std::map<BasicBlock *, std::set<BasicBlock *>> FuncletBlocks;
3129 std::map<BasicBlock *, std::set<BasicBlock *>> FuncletChildren;
3130 // Figure out which basic blocks belong to which funclets.
3131 colorFunclets(const_cast<Function &>(*Fn), EntryBlocks, BlockColors,
3132 FuncletBlocks, FuncletChildren);
3133
3134 // We need to find the catchret successors. To do this, we must first find
3135 // all the catchpad funclets.
3136 for (auto &Funclet : FuncletBlocks) {
3137 // Figure out what kind of funclet we are looking at; We only care about
3138 // catchpads.
3139 BasicBlock *FuncletPadBB = Funclet.first;
3140 Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI();
3141 auto *CatchPad = dyn_cast<CatchPadInst>(FirstNonPHI);
3142 if (!CatchPad)
3143 continue;
3144
3145 // The users of a catchpad are always catchrets.
3146 for (User *Exit : CatchPad->users()) {
3147 auto *CatchReturn = dyn_cast<CatchReturnInst>(Exit);
3148 if (!CatchReturn)
3149 continue;
3150 BasicBlock *CatchRetSuccessor = CatchReturn->getSuccessor();
3151 std::set<BasicBlock *> &SuccessorColors = BlockColors[CatchRetSuccessor];
3152 assert(SuccessorColors.size() == 1 && "Expected BB to be monochrome!")((SuccessorColors.size() == 1 && "Expected BB to be monochrome!"
) ? static_cast<void> (0) : __assert_fail ("SuccessorColors.size() == 1 && \"Expected BB to be monochrome!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 3152, __PRETTY_FUNCTION__))
;
3153 BasicBlock *Color = *SuccessorColors.begin();
3154 if (auto *CPI = dyn_cast<CatchPadInst>(Color->getFirstNonPHI()))
3155 Color = CPI->getNormalDest();
3156 // Record the catchret successor's funclet membership.
3157 FuncInfo.CatchRetSuccessorColorMap[CatchReturn] = Color;
3158 }
3159 }
3160}
3161
3162void WinEHPrepare::demotePHIsOnFunclets(Function &F) {
3163 // Strip PHI nodes off of EH pads.
3164 SmallVector<PHINode *, 16> PHINodes;
3165 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
3166 BasicBlock *BB = FI++;
3167 if (!BB->isEHPad())
3168 continue;
3169 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
3170 Instruction *I = BI++;
3171 auto *PN = dyn_cast<PHINode>(I);
3172 // Stop at the first non-PHI.
3173 if (!PN)
3174 break;
3175
3176 AllocaInst *SpillSlot = insertPHILoads(PN, F);
3177 if (SpillSlot)
3178 insertPHIStores(PN, SpillSlot);
3179
3180 PHINodes.push_back(PN);
3181 }
3182 }
3183
3184 for (auto *PN : PHINodes) {
3185 // There may be lingering uses on other EH PHIs being removed
3186 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
3187 PN->eraseFromParent();
3188 }
3189}
3190
3191void WinEHPrepare::demoteUsesBetweenFunclets(Function &F) {
3192 // Turn all inter-funclet uses of a Value into loads and stores.
3193 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
3194 BasicBlock *BB = FI++;
3195 std::set<BasicBlock *> &ColorsForBB = BlockColors[BB];
3196 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
3197 Instruction *I = BI++;
3198 // Funclets are permitted to use static allocas.
3199 if (auto *AI = dyn_cast<AllocaInst>(I))
3200 if (AI->isStaticAlloca())
3201 continue;
3202
3203 demoteNonlocalUses(I, ColorsForBB, F);
3204 }
3205 }
3206}
3207
3208void WinEHPrepare::demoteArgumentUses(Function &F) {
3209 // Also demote function parameters used in funclets.
3210 std::set<BasicBlock *> &ColorsForEntry = BlockColors[&F.getEntryBlock()];
3211 for (Argument &Arg : F.args())
3212 demoteNonlocalUses(&Arg, ColorsForEntry, F);
3213}
3214
3215void WinEHPrepare::cloneCommonBlocks(
3216 Function &F, SmallVectorImpl<BasicBlock *> &EntryBlocks) {
3217 // We need to clone all blocks which belong to multiple funclets. Values are
3218 // remapped throughout the funclet to propogate both the new instructions
3219 // *and* the new basic blocks themselves.
3220 for (BasicBlock *FuncletPadBB : EntryBlocks) {
3221 std::set<BasicBlock *> &BlocksInFunclet = FuncletBlocks[FuncletPadBB];
3222
3223 std::map<BasicBlock *, BasicBlock *> Orig2Clone;
3224 ValueToValueMapTy VMap;
3225 for (BasicBlock *BB : BlocksInFunclet) {
3226 std::set<BasicBlock *> &ColorsForBB = BlockColors[BB];
3227 // We don't need to do anything if the block is monochromatic.
3228 size_t NumColorsForBB = ColorsForBB.size();
3229 if (NumColorsForBB == 1)
3230 continue;
3231
3232 // Create a new basic block and copy instructions into it!
3233 BasicBlock *CBB =
3234 CloneBasicBlock(BB, VMap, Twine(".for.", FuncletPadBB->getName()));
3235 // Insert the clone immediately after the original to ensure determinism
3236 // and to keep the same relative ordering of any funclet's blocks.
3237 CBB->insertInto(&F, BB->getNextNode());
3238
3239 // Add basic block mapping.
3240 VMap[BB] = CBB;
3241
3242 // Record delta operations that we need to perform to our color mappings.
3243 Orig2Clone[BB] = CBB;
3244 }
3245
3246 // If nothing was cloned, we're done cloning in this funclet.
3247 if (Orig2Clone.empty())
3248 continue;
3249
3250 // Update our color mappings to reflect that one block has lost a color and
3251 // another has gained a color.
3252 for (auto &BBMapping : Orig2Clone) {
3253 BasicBlock *OldBlock = BBMapping.first;
3254 BasicBlock *NewBlock = BBMapping.second;
3255
3256 BlocksInFunclet.insert(NewBlock);
3257 BlockColors[NewBlock].insert(FuncletPadBB);
3258
3259 BlocksInFunclet.erase(OldBlock);
3260 BlockColors[OldBlock].erase(FuncletPadBB);
3261 }
3262
3263 // Loop over all of the instructions in this funclet, fixing up operand
3264 // references as we go. This uses VMap to do all the hard work.
3265 for (BasicBlock *BB : BlocksInFunclet)
3266 // Loop over all instructions, fixing each one as we find it...
3267 for (Instruction &I : *BB)
3268 RemapInstruction(&I, VMap,
3269 RF_IgnoreMissingEntries | RF_NoModuleLevelChanges);
3270
3271 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to
3272 // the PHI nodes for NewBB now.
3273 for (auto &BBMapping : Orig2Clone) {
3274 BasicBlock *OldBlock = BBMapping.first;
3275 BasicBlock *NewBlock = BBMapping.second;
3276 for (BasicBlock *SuccBB : successors(NewBlock)) {
3277 for (Instruction &SuccI : *SuccBB) {
3278 auto *SuccPN = dyn_cast<PHINode>(&SuccI);
3279 if (!SuccPN)
3280 break;
3281
3282 // Ok, we have a PHI node. Figure out what the incoming value was for
3283 // the OldBlock.
3284 int OldBlockIdx = SuccPN->getBasicBlockIndex(OldBlock);
3285 if (OldBlockIdx == -1)
3286 break;
3287 Value *IV = SuccPN->getIncomingValue(OldBlockIdx);
3288
3289 // Remap the value if necessary.
3290 if (auto *Inst = dyn_cast<Instruction>(IV)) {
3291 ValueToValueMapTy::iterator I = VMap.find(Inst);
3292 if (I != VMap.end())
3293 IV = I->second;
3294 }
3295
3296 SuccPN->addIncoming(IV, NewBlock);
3297 }
3298 }
3299 }
3300
3301 for (ValueToValueMapTy::value_type VT : VMap) {
3302 // If there were values defined in BB that are used outside the funclet,
3303 // then we now have to update all uses of the value to use either the
3304 // original value, the cloned value, or some PHI derived value. This can
3305 // require arbitrary PHI insertion, of which we are prepared to do, clean
3306 // these up now.
3307 SmallVector<Use *, 16> UsesToRename;
3308
3309 auto *OldI = dyn_cast<Instruction>(const_cast<Value *>(VT.first));
3310 if (!OldI)
3311 continue;
3312 auto *NewI = cast<Instruction>(VT.second);
3313 // Scan all uses of this instruction to see if it is used outside of its
3314 // funclet, and if so, record them in UsesToRename.
3315 for (Use &U : OldI->uses()) {
3316 Instruction *UserI = cast<Instruction>(U.getUser());
3317 BasicBlock *UserBB = UserI->getParent();
3318 std::set<BasicBlock *> &ColorsForUserBB = BlockColors[UserBB];
3319 assert(!ColorsForUserBB.empty())((!ColorsForUserBB.empty()) ? static_cast<void> (0) : __assert_fail
("!ColorsForUserBB.empty()", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 3319, __PRETTY_FUNCTION__))
;
3320 if (ColorsForUserBB.size() > 1 ||
3321 *ColorsForUserBB.begin() != FuncletPadBB)
3322 UsesToRename.push_back(&U);
3323 }
3324
3325 // If there are no uses outside the block, we're done with this
3326 // instruction.
3327 if (UsesToRename.empty())
3328 continue;
3329
3330 // We found a use of OldI outside of the funclet. Rename all uses of OldI
3331 // that are outside its funclet to be uses of the appropriate PHI node
3332 // etc.
3333 SSAUpdater SSAUpdate;
3334 SSAUpdate.Initialize(OldI->getType(), OldI->getName());
3335 SSAUpdate.AddAvailableValue(OldI->getParent(), OldI);
3336 SSAUpdate.AddAvailableValue(NewI->getParent(), NewI);
3337
3338 while (!UsesToRename.empty())
3339 SSAUpdate.RewriteUseAfterInsertions(*UsesToRename.pop_back_val());
3340 }
3341 }
3342}
3343
3344void WinEHPrepare::removeImplausibleTerminators(Function &F) {
3345 // Remove implausible terminators and replace them with UnreachableInst.
3346 for (auto &Funclet : FuncletBlocks) {
3347 BasicBlock *FuncletPadBB = Funclet.first;
3348 std::set<BasicBlock *> &BlocksInFunclet = Funclet.second;
3349 Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI();
3350 auto *CatchPad = dyn_cast<CatchPadInst>(FirstNonPHI);
3351 auto *CleanupPad = dyn_cast<CleanupPadInst>(FirstNonPHI);
3352
3353 for (BasicBlock *BB : BlocksInFunclet) {
3354 TerminatorInst *TI = BB->getTerminator();
3355 // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst.
3356 bool IsUnreachableRet = isa<ReturnInst>(TI) && (CatchPad || CleanupPad);
3357 // The token consumed by a CatchReturnInst must match the funclet token.
3358 bool IsUnreachableCatchret = false;
3359 if (auto *CRI = dyn_cast<CatchReturnInst>(TI))
3360 IsUnreachableCatchret = CRI->getCatchPad() != CatchPad;
3361 // The token consumed by a CleanupReturnInst must match the funclet token.
3362 bool IsUnreachableCleanupret = false;
3363 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI))
3364 IsUnreachableCleanupret = CRI->getCleanupPad() != CleanupPad;
3365 // The token consumed by a CleanupEndPadInst must match the funclet token.
3366 bool IsUnreachableCleanupendpad = false;
3367 if (auto *CEPI = dyn_cast<CleanupEndPadInst>(TI))
3368 IsUnreachableCleanupendpad = CEPI->getCleanupPad() != CleanupPad;
3369 if (IsUnreachableRet || IsUnreachableCatchret ||
3370 IsUnreachableCleanupret || IsUnreachableCleanupendpad) {
3371 // Loop through all of our successors and make sure they know that one
3372 // of their predecessors is going away.
3373 for (BasicBlock *SuccBB : TI->successors())
3374 SuccBB->removePredecessor(BB);
3375
3376 if (IsUnreachableCleanupendpad) {
3377 // We can't simply replace a cleanupendpad with unreachable, because
3378 // its predecessor edges are EH edges and unreachable is not an EH
3379 // pad. Change all predecessors to the "unwind to caller" form.
3380 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
3381 PI != PE;) {
3382 BasicBlock *Pred = *PI++;
3383 removeUnwindEdge(Pred);
3384 }
3385 }
3386
3387 new UnreachableInst(BB->getContext(), TI);
3388 TI->eraseFromParent();
3389 }
3390 // FIXME: Check for invokes/cleanuprets/cleanupendpads which unwind to
3391 // implausible catchendpads (i.e. catchendpad not in immediate parent
3392 // funclet).
3393 }
3394 }
3395}
3396
3397void WinEHPrepare::cleanupPreparedFunclets(Function &F) {
3398 // Clean-up some of the mess we made by removing useles PHI nodes, trivial
3399 // branches, etc.
3400 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
3401 BasicBlock *BB = FI++;
3402 SimplifyInstructionsInBlock(BB);
3403 ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true);
3404 MergeBlockIntoPredecessor(BB);
3405 }
3406
3407 // We might have some unreachable blocks after cleaning up some impossible
3408 // control flow.
3409 removeUnreachableBlocks(F);
3410}
3411
3412void WinEHPrepare::verifyPreparedFunclets(Function &F) {
3413 // Recolor the CFG to verify that all is well.
3414 for (BasicBlock &BB : F) {
3415 size_t NumColors = BlockColors[&BB].size();
3416 assert(NumColors == 1 && "Expected monochromatic BB!")((NumColors == 1 && "Expected monochromatic BB!") ? static_cast
<void> (0) : __assert_fail ("NumColors == 1 && \"Expected monochromatic BB!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 3416, __PRETTY_FUNCTION__))
;
3417 if (NumColors == 0)
3418 report_fatal_error("Uncolored BB!");
3419 if (NumColors > 1)
3420 report_fatal_error("Multicolor BB!");
3421 if (!DisableDemotion) {
3422 bool EHPadHasPHI = BB.isEHPad() && isa<PHINode>(BB.begin());
3423 assert(!EHPadHasPHI && "EH Pad still has a PHI!")((!EHPadHasPHI && "EH Pad still has a PHI!") ? static_cast
<void> (0) : __assert_fail ("!EHPadHasPHI && \"EH Pad still has a PHI!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 3423, __PRETTY_FUNCTION__))
;
3424 if (EHPadHasPHI)
3425 report_fatal_error("EH Pad still has a PHI!");
3426 }
3427 }
3428}
3429
3430bool WinEHPrepare::prepareExplicitEH(
3431 Function &F, SmallVectorImpl<BasicBlock *> &EntryBlocks) {
3432 replaceTerminatePadWithCleanup(F);
3433
3434 // Determine which blocks are reachable from which funclet entries.
3435 colorFunclets(F, EntryBlocks);
3436
3437 if (!DisableDemotion) {
3438 demotePHIsOnFunclets(F);
3439
3440 demoteUsesBetweenFunclets(F);
3441
3442 demoteArgumentUses(F);
3443 }
3444
3445 cloneCommonBlocks(F, EntryBlocks);
3446
3447 if (!DisableCleanups) {
3448 removeImplausibleTerminators(F);
3449
3450 cleanupPreparedFunclets(F);
3451 }
3452
3453 verifyPreparedFunclets(F);
3454
3455 BlockColors.clear();
3456 FuncletBlocks.clear();
3457 FuncletChildren.clear();
3458
3459 return true;
3460}
3461
3462// TODO: Share loads when one use dominates another, or when a catchpad exit
3463// dominates uses (needs dominators).
3464AllocaInst *WinEHPrepare::insertPHILoads(PHINode *PN, Function &F) {
3465 BasicBlock *PHIBlock = PN->getParent();
3466 AllocaInst *SpillSlot = nullptr;
3467
3468 if (isa<CleanupPadInst>(PHIBlock->getFirstNonPHI())) {
3469 // Insert a load in place of the PHI and replace all uses.
3470 SpillSlot = new AllocaInst(PN->getType(), nullptr,
3471 Twine(PN->getName(), ".wineh.spillslot"),
3472 F.getEntryBlock().begin());
3473 Value *V = new LoadInst(SpillSlot, Twine(PN->getName(), ".wineh.reload"),
3474 PHIBlock->getFirstInsertionPt());
3475 PN->replaceAllUsesWith(V);
3476 return SpillSlot;
3477 }
3478
3479 DenseMap<BasicBlock *, Value *> Loads;
3480 for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
3481 UI != UE;) {
3482 Use &U = *UI++;
3483 auto *UsingInst = cast<Instruction>(U.getUser());
3484 BasicBlock *UsingBB = UsingInst->getParent();
3485 if (UsingBB->isEHPad()) {
3486 // Use is on an EH pad phi. Leave it alone; we'll insert loads and
3487 // stores for it separately.
3488 assert(isa<PHINode>(UsingInst))((isa<PHINode>(UsingInst)) ? static_cast<void> (0
) : __assert_fail ("isa<PHINode>(UsingInst)", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 3488, __PRETTY_FUNCTION__))
;
3489 continue;
3490 }
3491 replaceUseWithLoad(PN, U, SpillSlot, Loads, F);
3492 }
3493 return SpillSlot;
3494}
3495
3496// TODO: improve store placement. Inserting at def is probably good, but need
3497// to be careful not to introduce interfering stores (needs liveness analysis).
3498// TODO: identify related phi nodes that can share spill slots, and share them
3499// (also needs liveness).
3500void WinEHPrepare::insertPHIStores(PHINode *OriginalPHI,
3501 AllocaInst *SpillSlot) {
3502 // Use a worklist of (Block, Value) pairs -- the given Value needs to be
3503 // stored to the spill slot by the end of the given Block.
3504 SmallVector<std::pair<BasicBlock *, Value *>, 4> Worklist;
3505
3506 Worklist.push_back({OriginalPHI->getParent(), OriginalPHI});
3507
3508 while (!Worklist.empty()) {
3509 BasicBlock *EHBlock;
3510 Value *InVal;
3511 std::tie(EHBlock, InVal) = Worklist.pop_back_val();
3512
3513 PHINode *PN = dyn_cast<PHINode>(InVal);
3514 if (PN && PN->getParent() == EHBlock) {
3515 // The value is defined by another PHI we need to remove, with no room to
3516 // insert a store after the PHI, so each predecessor needs to store its
3517 // incoming value.
3518 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
3519 Value *PredVal = PN->getIncomingValue(i);
3520
3521 // Undef can safely be skipped.
3522 if (isa<UndefValue>(PredVal))
3523 continue;
3524
3525 insertPHIStore(PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist);
3526 }
3527 } else {
3528 // We need to store InVal, which dominates EHBlock, but can't put a store
3529 // in EHBlock, so need to put stores in each predecessor.
3530 for (BasicBlock *PredBlock : predecessors(EHBlock)) {
3531 insertPHIStore(PredBlock, InVal, SpillSlot, Worklist);
3532 }
3533 }
3534 }
3535}
3536
3537void WinEHPrepare::insertPHIStore(
3538 BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
3539 SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) {
3540
3541 if (PredBlock->isEHPad() &&
3542 !isa<CleanupPadInst>(PredBlock->getFirstNonPHI())) {
3543 // Pred is unsplittable, so we need to queue it on the worklist.
3544 Worklist.push_back({PredBlock, PredVal});
3545 return;
3546 }
3547
3548 // Otherwise, insert the store at the end of the basic block.
3549 new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator());
3550}
3551
3552// TODO: Share loads for same-funclet uses (requires dominators if funclets
3553// aren't properly nested).
3554void WinEHPrepare::demoteNonlocalUses(Value *V,
3555 std::set<BasicBlock *> &ColorsForBB,
3556 Function &F) {
3557 // Tokens can only be used non-locally due to control flow involving
3558 // unreachable edges. Don't try to demote the token usage, we'll simply
3559 // delete the cloned user later.
3560 if (isa<CatchPadInst>(V) || isa<CleanupPadInst>(V))
3561 return;
3562
3563 DenseMap<BasicBlock *, Value *> Loads;
3564 AllocaInst *SpillSlot = nullptr;
3565 for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;) {
3566 Use &U = *UI++;
3567 auto *UsingInst = cast<Instruction>(U.getUser());
3568 BasicBlock *UsingBB = UsingInst->getParent();
3569
3570 // Is the Use inside a block which is colored the same as the Def?
3571 // If so, we don't need to escape the Def because we will clone
3572 // ourselves our own private copy.
3573 std::set<BasicBlock *> &ColorsForUsingBB = BlockColors[UsingBB];
3574 if (ColorsForUsingBB == ColorsForBB)
3575 continue;
3576
3577 replaceUseWithLoad(V, U, SpillSlot, Loads, F);
3578 }
3579 if (SpillSlot) {
3580 // Insert stores of the computed value into the stack slot.
3581 // We have to be careful if I is an invoke instruction,
3582 // because we can't insert the store AFTER the terminator instruction.
3583 BasicBlock::iterator InsertPt;
3584 if (isa<Argument>(V)) {
3585 InsertPt = F.getEntryBlock().getTerminator();
3586 } else if (isa<TerminatorInst>(V)) {
3587 auto *II = cast<InvokeInst>(V);
3588 // We cannot demote invoke instructions to the stack if their normal
3589 // edge is critical. Therefore, split the critical edge and create a
3590 // basic block into which the store can be inserted.
3591 if (!II->getNormalDest()->getSinglePredecessor()) {
3592 unsigned SuccNum =
3593 GetSuccessorNumber(II->getParent(), II->getNormalDest());
3594 assert(isCriticalEdge(II, SuccNum) && "Expected a critical edge!")((isCriticalEdge(II, SuccNum) && "Expected a critical edge!"
) ? static_cast<void> (0) : __assert_fail ("isCriticalEdge(II, SuccNum) && \"Expected a critical edge!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 3594, __PRETTY_FUNCTION__))
;
3595 BasicBlock *NewBlock = SplitCriticalEdge(II, SuccNum);
3596 assert(NewBlock && "Unable to split critical edge.")((NewBlock && "Unable to split critical edge.") ? static_cast
<void> (0) : __assert_fail ("NewBlock && \"Unable to split critical edge.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 3596, __PRETTY_FUNCTION__))
;
3597 // Update the color mapping for the newly split edge.
3598 std::set<BasicBlock *> &ColorsForUsingBB = BlockColors[II->getParent()];
3599 BlockColors[NewBlock] = ColorsForUsingBB;
3600 for (BasicBlock *FuncletPad : ColorsForUsingBB)
3601 FuncletBlocks[FuncletPad].insert(NewBlock);
3602 }
3603 InsertPt = II->getNormalDest()->getFirstInsertionPt();
3604 } else {
3605 InsertPt = cast<Instruction>(V);
3606 ++InsertPt;
3607 // Don't insert before PHI nodes or EH pad instrs.
3608 for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
3609 ;
3610 }
3611 new StoreInst(V, SpillSlot, InsertPt);
3612 }
3613}
3614
3615void WinEHPrepare::replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
3616 DenseMap<BasicBlock *, Value *> &Loads,
3617 Function &F) {
3618 // Lazilly create the spill slot.
3619 if (!SpillSlot)
3620 SpillSlot = new AllocaInst(V->getType(), nullptr,
3621 Twine(V->getName(), ".wineh.spillslot"),
3622 F.getEntryBlock().begin());
3623
3624 auto *UsingInst = cast<Instruction>(U.getUser());
3625 if (auto *UsingPHI = dyn_cast<PHINode>(UsingInst)) {
3626 // If this is a PHI node, we can't insert a load of the value before
3627 // the use. Instead insert the load in the predecessor block
3628 // corresponding to the incoming value.
3629 //
3630 // Note that if there are multiple edges from a basic block to this
3631 // PHI node that we cannot have multiple loads. The problem is that
3632 // the resulting PHI node will have multiple values (from each load)
3633 // coming in from the same block, which is illegal SSA form.
3634 // For this reason, we keep track of and reuse loads we insert.
3635 BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U);
3636 if (auto *CatchRet =
3637 dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
3638 // Putting a load above a catchret and use on the phi would still leave
3639 // a cross-funclet def/use. We need to split the edge, change the
3640 // catchret to target the new block, and put the load there.
3641 BasicBlock *PHIBlock = UsingInst->getParent();
3642 BasicBlock *NewBlock = SplitEdge(IncomingBlock, PHIBlock);
3643 // SplitEdge gives us:
3644 // IncomingBlock:
3645 // ...
3646 // br label %NewBlock
3647 // NewBlock:
3648 // catchret label %PHIBlock
3649 // But we need:
3650 // IncomingBlock:
3651 // ...
3652 // catchret label %NewBlock
3653 // NewBlock:
3654 // br label %PHIBlock
3655 // So move the terminators to each others' blocks and swap their
3656 // successors.
3657 BranchInst *Goto = cast<BranchInst>(IncomingBlock->getTerminator());
3658 Goto->removeFromParent();
3659 CatchRet->removeFromParent();
3660 IncomingBlock->getInstList().push_back(CatchRet);
3661 NewBlock->getInstList().push_back(Goto);
3662 Goto->setSuccessor(0, PHIBlock);
3663 CatchRet->setSuccessor(NewBlock);
3664 // Update the color mapping for the newly split edge.
3665 std::set<BasicBlock *> &ColorsForPHIBlock = BlockColors[PHIBlock];
3666 BlockColors[NewBlock] = ColorsForPHIBlock;
3667 for (BasicBlock *FuncletPad : ColorsForPHIBlock)
3668 FuncletBlocks[FuncletPad].insert(NewBlock);
3669 // Treat the new block as incoming for load insertion.
3670 IncomingBlock = NewBlock;
3671 }
3672 Value *&Load = Loads[IncomingBlock];
3673 // Insert the load into the predecessor block
3674 if (!Load)
3675 Load = new LoadInst(SpillSlot, Twine(V->getName(), ".wineh.reload"),
3676 /*Volatile=*/false, IncomingBlock->getTerminator());
3677
3678 U.set(Load);
3679 } else {
3680 // Reload right before the old use.
3681 auto *Load = new LoadInst(SpillSlot, Twine(V->getName(), ".wineh.reload"),
3682 /*Volatile=*/false, UsingInst);
3683 U.set(Load);
3684 }
3685}
3686
3687void WinEHFuncInfo::addIPToStateRange(const BasicBlock *PadBB,
3688 MCSymbol *InvokeBegin,
3689 MCSymbol *InvokeEnd) {
3690 assert(PadBB->isEHPad() && EHPadStateMap.count(PadBB->getFirstNonPHI()) &&((PadBB->isEHPad() && EHPadStateMap.count(PadBB->
getFirstNonPHI()) && "should get EH pad BB with precomputed state"
) ? static_cast<void> (0) : __assert_fail ("PadBB->isEHPad() && EHPadStateMap.count(PadBB->getFirstNonPHI()) && \"should get EH pad BB with precomputed state\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 3691, __PRETTY_FUNCTION__))
3691 "should get EH pad BB with precomputed state")((PadBB->isEHPad() && EHPadStateMap.count(PadBB->
getFirstNonPHI()) && "should get EH pad BB with precomputed state"
) ? static_cast<void> (0) : __assert_fail ("PadBB->isEHPad() && EHPadStateMap.count(PadBB->getFirstNonPHI()) && \"should get EH pad BB with precomputed state\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn249890/lib/CodeGen/WinEHPrepare.cpp"
, 3691, __PRETTY_FUNCTION__))
;
3692 InvokeToStateMap[InvokeBegin] =
3693 std::make_pair(EHPadStateMap[PadBB->getFirstNonPHI()], InvokeEnd);
3694}