Bug Summary

File:lib/Target/X86/X86CallFrameOptimization.cpp
Location:line 311, column 12
Description:Value stored to 'StackPtr' during its initialization is never read

Annotated Source Code

1//===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a pass that optimizes call sequences on x86.
11// Currently, it converts movs of function parameters onto the stack into
12// pushes. This is beneficial for two main reasons:
13// 1) The push instruction encoding is much smaller than an esp-relative mov
14// 2) It is possible to push memory arguments directly. So, if the
15// the transformation is preformed pre-reg-alloc, it can help relieve
16// register pressure.
17//
18//===----------------------------------------------------------------------===//
19
20#include <algorithm>
21
22#include "X86.h"
23#include "X86InstrInfo.h"
24#include "X86Subtarget.h"
25#include "X86MachineFunctionInfo.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/CodeGen/MachineFunctionPass.h"
28#include "llvm/CodeGen/MachineInstrBuilder.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/Passes.h"
31#include "llvm/IR/Function.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Target/TargetInstrInfo.h"
35
36using namespace llvm;
37
38#define DEBUG_TYPE"x86-cf-opt" "x86-cf-opt"
39
40static cl::opt<bool>
41 NoX86CFOpt("no-x86-call-frame-opt",
42 cl::desc("Avoid optimizing x86 call frames for size"),
43 cl::init(false), cl::Hidden);
44
45namespace {
46class X86CallFrameOptimization : public MachineFunctionPass {
47public:
48 X86CallFrameOptimization() : MachineFunctionPass(ID) {}
49
50 bool runOnMachineFunction(MachineFunction &MF) override;
51
52private:
53 // Information we know about a particular call site
54 struct CallContext {
55 CallContext()
56 : Call(nullptr), SPCopy(nullptr), ExpectedDist(0),
57 MovVector(4, nullptr), NoStackParams(false), UsePush(false){};
58
59 // Actuall call instruction
60 MachineInstr *Call;
61
62 // A copy of the stack pointer
63 MachineInstr *SPCopy;
64
65 // The total displacement of all passed parameters
66 int64_t ExpectedDist;
67
68 // The sequence of movs used to pass the parameters
69 SmallVector<MachineInstr *, 4> MovVector;
70
71 // True if this call site has no stack parameters
72 bool NoStackParams;
73
74 // True of this callsite can use push instructions
75 bool UsePush;
76 };
77
78 typedef DenseMap<MachineInstr *, CallContext> ContextMap;
79
80 bool isLegal(MachineFunction &MF);
81
82 bool isProfitable(MachineFunction &MF, ContextMap &CallSeqMap);
83
84 void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB,
85 MachineBasicBlock::iterator I, CallContext &Context);
86
87 bool adjustCallSequence(MachineFunction &MF, MachineBasicBlock::iterator I,
88 const CallContext &Context);
89
90 MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
91 unsigned Reg);
92
93 enum InstClassification { Convert, Skip, Exit };
94
95 InstClassification classifyInstruction(MachineBasicBlock &MBB,
96 MachineBasicBlock::iterator MI,
97 const X86RegisterInfo &RegInfo,
98 DenseSet<unsigned int> &UsedRegs);
99
100 const char *getPassName() const override { return "X86 Optimize Call Frame"; }
101
102 const TargetInstrInfo *TII;
103 const TargetFrameLowering *TFL;
104 const MachineRegisterInfo *MRI;
105 static char ID;
106};
107
108char X86CallFrameOptimization::ID = 0;
109}
110
111FunctionPass *llvm::createX86CallFrameOptimization() {
112 return new X86CallFrameOptimization();
113}
114
115// This checks whether the transformation is legal.
116// Also returns false in cases where it's potentially legal, but
117// we don't even want to try.
118bool X86CallFrameOptimization::isLegal(MachineFunction &MF) {
119 if (NoX86CFOpt.getValue())
120 return false;
121
122 // We currently only support call sequences where *all* parameters.
123 // are passed on the stack.
124 // No point in running this in 64-bit mode, since some arguments are
125 // passed in-register in all common calling conventions, so the pattern
126 // we're looking for will never match.
127 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
128 if (STI.is64Bit())
129 return false;
130
131 // You would expect straight-line code between call-frame setup and
132 // call-frame destroy. You would be wrong. There are circumstances (e.g.
133 // CMOV_GR8 expansion of a select that feeds a function call!) where we can
134 // end up with the setup and the destroy in different basic blocks.
135 // This is bad, and breaks SP adjustment.
136 // So, check that all of the frames in the function are closed inside
137 // the same block, and, for good measure, that there are no nested frames.
138 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
139 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
140 for (MachineBasicBlock &BB : MF) {
141 bool InsideFrameSequence = false;
142 for (MachineInstr &MI : BB) {
143 if (MI.getOpcode() == FrameSetupOpcode) {
144 if (InsideFrameSequence)
145 return false;
146 InsideFrameSequence = true;
147 } else if (MI.getOpcode() == FrameDestroyOpcode) {
148 if (!InsideFrameSequence)
149 return false;
150 InsideFrameSequence = false;
151 }
152 }
153
154 if (InsideFrameSequence)
155 return false;
156 }
157
158 return true;
159}
160
161// Check whether this trasnformation is profitable for a particular
162// function - in terms of code size.
163bool X86CallFrameOptimization::isProfitable(MachineFunction &MF,
164 ContextMap &CallSeqMap) {
165 // This transformation is always a win when we do not expect to have
166 // a reserved call frame. Under other circumstances, it may be either
167 // a win or a loss, and requires a heuristic.
168 bool CannotReserveFrame = MF.getFrameInfo()->hasVarSizedObjects();
169 if (CannotReserveFrame)
170 return true;
171
172 // Don't do this when not optimizing for size.
173 bool OptForSize =
174 MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize) ||
175 MF.getFunction()->hasFnAttribute(Attribute::MinSize);
176
177 if (!OptForSize)
178 return false;
179
180 unsigned StackAlign = TFL->getStackAlignment();
181
182 int64_t Advantage = 0;
183 for (auto CC : CallSeqMap) {
184 // Call sites where no parameters are passed on the stack
185 // do not affect the cost, since there needs to be no
186 // stack adjustment.
187 if (CC.second.NoStackParams)
188 continue;
189
190 if (!CC.second.UsePush) {
191 // If we don't use pushes for a particular call site,
192 // we pay for not having a reserved call frame with an
193 // additional sub/add esp pair. The cost is ~3 bytes per instruction,
194 // depending on the size of the constant.
195 // TODO: Callee-pop functions should have a smaller penalty, because
196 // an add is needed even with a reserved call frame.
197 Advantage -= 6;
198 } else {
199 // We can use pushes. First, account for the fixed costs.
200 // We'll need a add after the call.
201 Advantage -= 3;
202 // If we have to realign the stack, we'll also need and sub before
203 if (CC.second.ExpectedDist % StackAlign)
204 Advantage -= 3;
205 // Now, for each push, we save ~3 bytes. For small constants, we actually,
206 // save more (up to 5 bytes), but 3 should be a good approximation.
207 Advantage += (CC.second.ExpectedDist / 4) * 3;
208 }
209 }
210
211 return (Advantage >= 0);
212}
213
214bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
215 TII = MF.getSubtarget().getInstrInfo();
216 TFL = MF.getSubtarget().getFrameLowering();
217 MRI = &MF.getRegInfo();
218
219 if (!isLegal(MF))
220 return false;
221
222 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
223
224 bool Changed = false;
225
226 ContextMap CallSeqMap;
227
228 for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
229 for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I)
230 if (I->getOpcode() == FrameSetupOpcode) {
231 CallContext &Context = CallSeqMap[I];
232 collectCallInfo(MF, *BB, I, Context);
233 }
234
235 if (!isProfitable(MF, CallSeqMap))
236 return false;
237
238 for (auto CC : CallSeqMap)
239 if (CC.second.UsePush)
240 Changed |= adjustCallSequence(MF, CC.first, CC.second);
241
242 return Changed;
243}
244
245X86CallFrameOptimization::InstClassification
246X86CallFrameOptimization::classifyInstruction(
247 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
248 const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) {
249 if (MI == MBB.end())
250 return Exit;
251
252 // The instructions we actually care about are movs onto the stack
253 int Opcode = MI->getOpcode();
254 if (Opcode == X86::MOV32mi || Opcode == X86::MOV32mr)
255 return Convert;
256
257 // Not all calling conventions have only stack MOVs between the stack
258 // adjust and the call.
259
260 // We want to tolerate other instructions, to cover more cases.
261 // In particular:
262 // a) PCrel calls, where we expect an additional COPY of the basereg.
263 // b) Passing frame-index addresses.
264 // c) Calling conventions that have inreg parameters. These generate
265 // both copies and movs into registers.
266 // To avoid creating lots of special cases, allow any instruction
267 // that does not write into memory, does not def or use the stack
268 // pointer, and does not def any register that was used by a preceding
269 // push.
270 // (Reading from memory is allowed, even if referenced through a
271 // frame index, since these will get adjusted properly in PEI)
272
273 // The reason for the last condition is that the pushes can't replace
274 // the movs in place, because the order must be reversed.
275 // So if we have a MOV32mr that uses EDX, then an instruction that defs
276 // EDX, and then the call, after the transformation the push will use
277 // the modified version of EDX, and not the original one.
278 // Since we are still in SSA form at this point, we only need to
279 // make sure we don't clobber any *physical* registers that were
280 // used by an earlier mov that will become a push.
281
282 if (MI->isCall() || MI->mayStore())
283 return Exit;
284
285 for (const MachineOperand &MO : MI->operands()) {
286 if (!MO.isReg())
287 continue;
288 unsigned int Reg = MO.getReg();
289 if (!RegInfo.isPhysicalRegister(Reg))
290 continue;
291 if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister()))
292 return Exit;
293 if (MO.isDef()) {
294 for (unsigned int U : UsedRegs)
295 if (RegInfo.regsOverlap(Reg, U))
296 return Exit;
297 }
298 }
299
300 return Skip;
301}
302
303void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF,
304 MachineBasicBlock &MBB,
305 MachineBasicBlock::iterator I,
306 CallContext &Context) {
307 // Check that this particular call sequence is amenable to the
308 // transformation.
309 const X86RegisterInfo &RegInfo = *static_cast<const X86RegisterInfo *>(
310 MF.getSubtarget().getRegisterInfo());
311 unsigned StackPtr = RegInfo.getStackRegister();
Value stored to 'StackPtr' during its initialization is never read
312 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
313
314 // We expect to enter this at the beginning of a call sequence
315 assert(I->getOpcode() == TII->getCallFrameSetupOpcode())((I->getOpcode() == TII->getCallFrameSetupOpcode()) ? static_cast
<void> (0) : __assert_fail ("I->getOpcode() == TII->getCallFrameSetupOpcode()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/Target/X86/X86CallFrameOptimization.cpp"
, 315, __PRETTY_FUNCTION__))
;
316 MachineBasicBlock::iterator FrameSetup = I++;
317
318 // How much do we adjust the stack? This puts an upper bound on
319 // the number of parameters actually passed on it.
320 unsigned int MaxAdjust = FrameSetup->getOperand(0).getImm() / 4;
321
322 // A zero adjustment means no stack parameters
323 if (!MaxAdjust) {
324 Context.NoStackParams = true;
325 return;
326 }
327
328 // For globals in PIC mode, we can have some LEAs here.
329 // Ignore them, they don't bother us.
330 // TODO: Extend this to something that covers more cases.
331 while (I->getOpcode() == X86::LEA32r)
332 ++I;
333
334 // We expect a copy instruction here.
335 // TODO: The copy instruction is a lowering artifact.
336 // We should also support a copy-less version, where the stack
337 // pointer is used directly.
338 if (!I->isCopy() || !I->getOperand(0).isReg())
339 return;
340 Context.SPCopy = I++;
341 StackPtr = Context.SPCopy->getOperand(0).getReg();
342
343 // Scan the call setup sequence for the pattern we're looking for.
344 // We only handle a simple case - a sequence of MOV32mi or MOV32mr
345 // instructions, that push a sequence of 32-bit values onto the stack, with
346 // no gaps between them.
347 if (MaxAdjust > 4)
348 Context.MovVector.resize(MaxAdjust, nullptr);
349
350 InstClassification Classification;
351 DenseSet<unsigned int> UsedRegs;
352
353 while ((Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs)) !=
354 Exit) {
355 if (Classification == Skip) {
356 ++I;
357 continue;
358 }
359
360 // We know the instruction is a MOV32mi/MOV32mr.
361 // We only want movs of the form:
362 // movl imm/r32, k(%esp)
363 // If we run into something else, bail.
364 // Note that AddrBaseReg may, counter to its name, not be a register,
365 // but rather a frame index.
366 // TODO: Support the fi case. This should probably work now that we
367 // have the infrastructure to track the stack pointer within a call
368 // sequence.
369 if (!I->getOperand(X86::AddrBaseReg).isReg() ||
370 (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
371 !I->getOperand(X86::AddrScaleAmt).isImm() ||
372 (I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
373 (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
374 (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
375 !I->getOperand(X86::AddrDisp).isImm())
376 return;
377
378 int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
379 assert(StackDisp >= 0 &&((StackDisp >= 0 && "Negative stack displacement when passing parameters"
) ? static_cast<void> (0) : __assert_fail ("StackDisp >= 0 && \"Negative stack displacement when passing parameters\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/Target/X86/X86CallFrameOptimization.cpp"
, 380, __PRETTY_FUNCTION__))
380 "Negative stack displacement when passing parameters")((StackDisp >= 0 && "Negative stack displacement when passing parameters"
) ? static_cast<void> (0) : __assert_fail ("StackDisp >= 0 && \"Negative stack displacement when passing parameters\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/Target/X86/X86CallFrameOptimization.cpp"
, 380, __PRETTY_FUNCTION__))
;
381
382 // We really don't want to consider the unaligned case.
383 if (StackDisp % 4)
384 return;
385 StackDisp /= 4;
386
387 assert((size_t)StackDisp < Context.MovVector.size() &&(((size_t)StackDisp < Context.MovVector.size() && "Function call has more parameters than the stack is adjusted for."
) ? static_cast<void> (0) : __assert_fail ("(size_t)StackDisp < Context.MovVector.size() && \"Function call has more parameters than the stack is adjusted for.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/Target/X86/X86CallFrameOptimization.cpp"
, 388, __PRETTY_FUNCTION__))
388 "Function call has more parameters than the stack is adjusted for.")(((size_t)StackDisp < Context.MovVector.size() && "Function call has more parameters than the stack is adjusted for."
) ? static_cast<void> (0) : __assert_fail ("(size_t)StackDisp < Context.MovVector.size() && \"Function call has more parameters than the stack is adjusted for.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn240924/lib/Target/X86/X86CallFrameOptimization.cpp"
, 388, __PRETTY_FUNCTION__))
;
389
390 // If the same stack slot is being filled twice, something's fishy.
391 if (Context.MovVector[StackDisp] != nullptr)
392 return;
393 Context.MovVector[StackDisp] = I;
394
395 for (const MachineOperand &MO : I->uses()) {
396 if (!MO.isReg())
397 continue;
398 unsigned int Reg = MO.getReg();
399 if (RegInfo.isPhysicalRegister(Reg))
400 UsedRegs.insert(Reg);
401 }
402
403 ++I;
404 }
405
406 // We now expect the end of the sequence. If we stopped early,
407 // or reached the end of the block without finding a call, bail.
408 if (I == MBB.end() || !I->isCall())
409 return;
410
411 Context.Call = I;
412 if ((++I)->getOpcode() != FrameDestroyOpcode)
413 return;
414
415 // Now, go through the vector, and see that we don't have any gaps,
416 // but only a series of 32-bit MOVs.
417 auto MMI = Context.MovVector.begin(), MME = Context.MovVector.end();
418 for (; MMI != MME; ++MMI, Context.ExpectedDist += 4)
419 if (*MMI == nullptr)
420 break;
421
422 // If the call had no parameters, do nothing
423 if (MMI == Context.MovVector.begin())
424 return;
425
426 // We are either at the last parameter, or a gap.
427 // Make sure it's not a gap
428 for (; MMI != MME; ++MMI)
429 if (*MMI != nullptr)
430 return;
431
432 Context.UsePush = true;
433 return;
434}
435
436bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
437 MachineBasicBlock::iterator I,
438 const CallContext &Context) {
439 // Ok, we can in fact do the transformation for this call.
440 // Do not remove the FrameSetup instruction, but adjust the parameters.
441 // PEI will end up finalizing the handling of this.
442 MachineBasicBlock::iterator FrameSetup = I;
443 MachineBasicBlock &MBB = *(I->getParent());
444 FrameSetup->getOperand(1).setImm(Context.ExpectedDist);
445
446 DebugLoc DL = I->getDebugLoc();
447 // Now, iterate through the vector in reverse order, and replace the movs
448 // with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
449 // replace uses.
450 for (int Idx = (Context.ExpectedDist / 4) - 1; Idx >= 0; --Idx) {
451 MachineBasicBlock::iterator MOV = *Context.MovVector[Idx];
452 MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands);
453 if (MOV->getOpcode() == X86::MOV32mi) {
454 unsigned PushOpcode = X86::PUSHi32;
455 // If the operand is a small (8-bit) immediate, we can use a
456 // PUSH instruction with a shorter encoding.
457 // Note that isImm() may fail even though this is a MOVmi, because
458 // the operand can also be a symbol.
459 if (PushOp.isImm()) {
460 int64_t Val = PushOp.getImm();
461 if (isInt<8>(Val))
462 PushOpcode = X86::PUSH32i8;
463 }
464 BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)).addOperand(PushOp);
465 } else {
466 unsigned int Reg = PushOp.getReg();
467
468 // If PUSHrmm is not slow on this target, try to fold the source of the
469 // push into the instruction.
470 const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
471 bool SlowPUSHrmm = ST.isAtom() || ST.isSLM();
472
473 // Check that this is legal to fold. Right now, we're extremely
474 // conservative about that.
475 MachineInstr *DefMov = nullptr;
476 if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
477 MachineInstr *Push =
478 BuildMI(MBB, Context.Call, DL, TII->get(X86::PUSH32rmm));
479
480 unsigned NumOps = DefMov->getDesc().getNumOperands();
481 for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
482 Push->addOperand(DefMov->getOperand(i));
483
484 DefMov->eraseFromParent();
485 } else {
486 BuildMI(MBB, Context.Call, DL, TII->get(X86::PUSH32r))
487 .addReg(Reg)
488 .getInstr();
489 }
490 }
491
492 MBB.erase(MOV);
493 }
494
495 // The stack-pointer copy is no longer used in the call sequences.
496 // There should not be any other users, but we can't commit to that, so:
497 if (MRI->use_empty(Context.SPCopy->getOperand(0).getReg()))
498 Context.SPCopy->eraseFromParent();
499
500 // Once we've done this, we need to make sure PEI doesn't assume a reserved
501 // frame.
502 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
503 FuncInfo->setHasPushSequences(true);
504
505 return true;
506}
507
508MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
509 MachineBasicBlock::iterator FrameSetup, unsigned Reg) {
510 // Do an extremely restricted form of load folding.
511 // ISel will often create patterns like:
512 // movl 4(%edi), %eax
513 // movl 8(%edi), %ecx
514 // movl 12(%edi), %edx
515 // movl %edx, 8(%esp)
516 // movl %ecx, 4(%esp)
517 // movl %eax, (%esp)
518 // call
519 // Get rid of those with prejudice.
520 if (!TargetRegisterInfo::isVirtualRegister(Reg))
521 return nullptr;
522
523 // Make sure this is the only use of Reg.
524 if (!MRI->hasOneNonDBGUse(Reg))
525 return nullptr;
526
527 MachineBasicBlock::iterator DefMI = MRI->getVRegDef(Reg);
528
529 // Make sure the def is a MOV from memory.
530 // If the def is an another block, give up.
531 if (DefMI->getOpcode() != X86::MOV32rm ||
532 DefMI->getParent() != FrameSetup->getParent())
533 return nullptr;
534
535 // Now, make sure everything else up until the ADJCALLSTACK is a sequence
536 // of MOVs. To be less conservative would require duplicating a lot of the
537 // logic from PeepholeOptimizer.
538 // FIXME: A possibly better approach would be to teach the PeepholeOptimizer
539 // to be smarter about folding into pushes.
540 for (auto I = DefMI; I != FrameSetup; ++I)
541 if (I->getOpcode() != X86::MOV32rm)
542 return nullptr;
543
544 return DefMI;
545}