Bug Summary

File:llvm/lib/Target/X86/X86PartialReduction.cpp
Warning:line 238, column 26
Division by zero

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name X86PartialReduction.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-12/lib/clang/12.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/build-llvm/lib/Target/X86 -I /build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Target/X86 -I /build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/build-llvm/include -I /build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-12/lib/clang/12.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/build-llvm/lib/Target/X86 -fdebug-prefix-map=/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b=. -ferror-limit 19 -fvisibility hidden -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-09-17-195756-12974-1 -x c++ /build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Target/X86/X86PartialReduction.cpp

/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Target/X86/X86PartialReduction.cpp

1//===-- X86PartialReduction.cpp -------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass looks for add instructions used by a horizontal reduction to see
10// if we might be able to use pmaddwd or psadbw. Some cases of this require
11// cross basic block knowledge and can't be done in SelectionDAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "llvm/Analysis/ValueTracking.h"
17#include "llvm/CodeGen/TargetPassConfig.h"
18#include "llvm/IR/Constants.h"
19#include "llvm/IR/Instructions.h"
20#include "llvm/IR/IntrinsicsX86.h"
21#include "llvm/IR/IRBuilder.h"
22#include "llvm/IR/Operator.h"
23#include "llvm/Pass.h"
24#include "X86TargetMachine.h"
25
26using namespace llvm;
27
28#define DEBUG_TYPE"x86-partial-reduction" "x86-partial-reduction"
29
30namespace {
31
32class X86PartialReduction : public FunctionPass {
33 const DataLayout *DL;
34 const X86Subtarget *ST;
35
36public:
37 static char ID; // Pass identification, replacement for typeid.
38
39 X86PartialReduction() : FunctionPass(ID) { }
40
41 bool runOnFunction(Function &Fn) override;
42
43 void getAnalysisUsage(AnalysisUsage &AU) const override {
44 AU.setPreservesCFG();
45 }
46
47 StringRef getPassName() const override {
48 return "X86 Partial Reduction";
49 }
50
51private:
52 bool tryMAddReplacement(Instruction *Op);
53 bool trySADReplacement(Instruction *Op);
54};
55}
56
57FunctionPass *llvm::createX86PartialReductionPass() {
58 return new X86PartialReduction();
59}
60
61char X86PartialReduction::ID = 0;
62
63INITIALIZE_PASS(X86PartialReduction, DEBUG_TYPE,static void *initializeX86PartialReductionPassOnce(PassRegistry
&Registry) { PassInfo *PI = new PassInfo( "X86 Partial Reduction"
, "x86-partial-reduction", &X86PartialReduction::ID, PassInfo
::NormalCtor_t(callDefaultCtor<X86PartialReduction>), false
, false); Registry.registerPass(*PI, true); return PI; } static
llvm::once_flag InitializeX86PartialReductionPassFlag; void llvm
::initializeX86PartialReductionPass(PassRegistry &Registry
) { llvm::call_once(InitializeX86PartialReductionPassFlag, initializeX86PartialReductionPassOnce
, std::ref(Registry)); }
64 "X86 Partial Reduction", false, false)static void *initializeX86PartialReductionPassOnce(PassRegistry
&Registry) { PassInfo *PI = new PassInfo( "X86 Partial Reduction"
, "x86-partial-reduction", &X86PartialReduction::ID, PassInfo
::NormalCtor_t(callDefaultCtor<X86PartialReduction>), false
, false); Registry.registerPass(*PI, true); return PI; } static
llvm::once_flag InitializeX86PartialReductionPassFlag; void llvm
::initializeX86PartialReductionPass(PassRegistry &Registry
) { llvm::call_once(InitializeX86PartialReductionPassFlag, initializeX86PartialReductionPassOnce
, std::ref(Registry)); }
65
66bool X86PartialReduction::tryMAddReplacement(Instruction *Op) {
67 if (!ST->hasSSE2())
68 return false;
69
70 // Need at least 8 elements.
71 if (cast<FixedVectorType>(Op->getType())->getNumElements() < 8)
72 return false;
73
74 // Element type should be i32.
75 if (!cast<VectorType>(Op->getType())->getElementType()->isIntegerTy(32))
76 return false;
77
78 auto *Mul = dyn_cast<BinaryOperator>(Op);
79 if (!Mul || Mul->getOpcode() != Instruction::Mul)
80 return false;
81
82 Value *LHS = Mul->getOperand(0);
83 Value *RHS = Mul->getOperand(1);
84
85 // LHS and RHS should be only used once or if they are the same then only
86 // used twice. Only check this when SSE4.1 is enabled and we have zext/sext
87 // instructions, otherwise we use punpck to emulate zero extend in stages. The
88 // trunc/ we need to do likely won't introduce new instructions in that case.
89 if (ST->hasSSE41()) {
90 if (LHS == RHS) {
91 if (!isa<Constant>(LHS) && !LHS->hasNUses(2))
92 return false;
93 } else {
94 if (!isa<Constant>(LHS) && !LHS->hasOneUse())
95 return false;
96 if (!isa<Constant>(RHS) && !RHS->hasOneUse())
97 return false;
98 }
99 }
100
101 auto CanShrinkOp = [&](Value *Op) {
102 auto IsFreeTruncation = [&](Value *Op) {
103 if (auto *Cast = dyn_cast<CastInst>(Op)) {
104 if (Cast->getParent() == Mul->getParent() &&
105 (Cast->getOpcode() == Instruction::SExt ||
106 Cast->getOpcode() == Instruction::ZExt) &&
107 Cast->getOperand(0)->getType()->getScalarSizeInBits() <= 16)
108 return true;
109 }
110
111 return isa<Constant>(Op);
112 };
113
114 // If the operation can be freely truncated and has enough sign bits we
115 // can shrink.
116 if (IsFreeTruncation(Op) &&
117 ComputeNumSignBits(Op, *DL, 0, nullptr, Mul) > 16)
118 return true;
119
120 // SelectionDAG has limited support for truncating through an add or sub if
121 // the inputs are freely truncatable.
122 if (auto *BO = dyn_cast<BinaryOperator>(Op)) {
123 if (BO->getParent() == Mul->getParent() &&
124 IsFreeTruncation(BO->getOperand(0)) &&
125 IsFreeTruncation(BO->getOperand(1)) &&
126 ComputeNumSignBits(Op, *DL, 0, nullptr, Mul) > 16)
127 return true;
128 }
129
130 return false;
131 };
132
133 // Both Ops need to be shrinkable.
134 if (!CanShrinkOp(LHS) && !CanShrinkOp(RHS))
135 return false;
136
137 IRBuilder<> Builder(Mul);
138
139 auto *MulTy = cast<FixedVectorType>(Op->getType());
140 unsigned NumElts = MulTy->getNumElements();
141
142 // Extract even elements and odd elements and add them together. This will
143 // be pattern matched by SelectionDAG to pmaddwd. This instruction will be
144 // half the original width.
145 SmallVector<int, 16> EvenMask(NumElts / 2);
146 SmallVector<int, 16> OddMask(NumElts / 2);
147 for (int i = 0, e = NumElts / 2; i != e; ++i) {
148 EvenMask[i] = i * 2;
149 OddMask[i] = i * 2 + 1;
150 }
151 // Creating a new mul so the replaceAllUsesWith below doesn't replace the
152 // uses in the shuffles we're creating.
153 Value *NewMul = Builder.CreateMul(Mul->getOperand(0), Mul->getOperand(1));
154 Value *EvenElts = Builder.CreateShuffleVector(NewMul, NewMul, EvenMask);
155 Value *OddElts = Builder.CreateShuffleVector(NewMul, NewMul, OddMask);
156 Value *MAdd = Builder.CreateAdd(EvenElts, OddElts);
157
158 // Concatenate zeroes to extend back to the original type.
159 SmallVector<int, 32> ConcatMask(NumElts);
160 std::iota(ConcatMask.begin(), ConcatMask.end(), 0);
161 Value *Zero = Constant::getNullValue(MAdd->getType());
162 Value *Concat = Builder.CreateShuffleVector(MAdd, Zero, ConcatMask);
163
164 Mul->replaceAllUsesWith(Concat);
165 Mul->eraseFromParent();
166
167 return true;
168}
169
170bool X86PartialReduction::trySADReplacement(Instruction *Op) {
171 if (!ST->hasSSE2())
12
Calling 'X86Subtarget::hasSSE2'
14
Returning from 'X86Subtarget::hasSSE2'
15
Taking false branch
172 return false;
173
174 // TODO: There's nothing special about i32, any integer type above i16 should
175 // work just as well.
176 if (!cast<VectorType>(Op->getType())->getElementType()->isIntegerTy(32))
16
The object is a 'VectorType'
17
Assuming the condition is false
18
Taking false branch
177 return false;
178
179 // Operand should be a select.
180 auto *SI = dyn_cast<SelectInst>(Op);
19
Assuming 'Op' is a 'SelectInst'
181 if (!SI
19.1
'SI' is non-null
19.1
'SI' is non-null
19.1
'SI' is non-null
)
20
Taking false branch
182 return false;
183
184 // Select needs to implement absolute value.
185 Value *LHS, *RHS;
186 auto SPR = matchSelectPattern(SI, LHS, RHS);
187 if (SPR.Flavor != SPF_ABS)
21
Assuming field 'Flavor' is equal to SPF_ABS
22
Taking false branch
188 return false;
189
190 // Need a subtract of two values.
191 auto *Sub = dyn_cast<BinaryOperator>(LHS);
23
Assuming 'LHS' is a 'BinaryOperator'
192 if (!Sub
23.1
'Sub' is non-null
23.1
'Sub' is non-null
23.1
'Sub' is non-null
|| Sub->getOpcode() != Instruction::Sub)
24
Assuming the condition is false
25
Taking false branch
193 return false;
194
195 // Look for zero extend from i8.
196 auto getZeroExtendedVal = [](Value *Op) -> Value * {
197 if (auto *ZExt = dyn_cast<ZExtInst>(Op))
27
Assuming 'ZExt' is non-null
28
Taking true branch
40
Assuming 'ZExt' is non-null
41
Taking true branch
198 if (cast<VectorType>(ZExt->getOperand(0)->getType())
29
The object is a 'VectorType'
30
Assuming the condition is true
31
Taking true branch
42
The object is a 'VectorType'
43
Assuming the condition is true
44
Taking true branch
199 ->getElementType()
200 ->isIntegerTy(8))
201 return ZExt->getOperand(0);
32
Calling 'UnaryInstruction::getOperand'
36
Returning from 'UnaryInstruction::getOperand'
37
Returning pointer, which participates in a condition later
45
Calling 'UnaryInstruction::getOperand'
49
Returning from 'UnaryInstruction::getOperand'
50
Returning pointer, which participates in a condition later
202
203 return nullptr;
204 };
205
206 // Both operands of the subtract should be extends from vXi8.
207 Value *Op0 = getZeroExtendedVal(Sub->getOperand(0));
26
Calling 'operator()'
38
Returning from 'operator()'
208 Value *Op1 = getZeroExtendedVal(Sub->getOperand(1));
39
Calling 'operator()'
51
Returning from 'operator()'
209 if (!Op0
51.1
'Op0' is non-null
51.1
'Op0' is non-null
51.1
'Op0' is non-null
|| !Op1
51.2
'Op1' is non-null
51.2
'Op1' is non-null
51.2
'Op1' is non-null
)
52
Taking false branch
210 return false;
211
212 IRBuilder<> Builder(SI);
213
214 auto *OpTy = cast<FixedVectorType>(Op->getType());
53
The object is a 'FixedVectorType'
215 unsigned NumElts = OpTy->getNumElements();
54
'NumElts' initialized here
216
217 unsigned IntrinsicNumElts;
218 Intrinsic::ID IID;
219 if (ST->hasBWI() && NumElts >= 64) {
55
Assuming the condition is false
220 IID = Intrinsic::x86_avx512_psad_bw_512;
221 IntrinsicNumElts = 64;
222 } else if (ST->hasAVX2() && NumElts >= 32) {
223 IID = Intrinsic::x86_avx2_psad_bw;
224 IntrinsicNumElts = 32;
225 } else {
226 IID = Intrinsic::x86_sse2_psad_bw;
227 IntrinsicNumElts = 16;
228 }
229
230 Function *PSADBWFn = Intrinsic::getDeclaration(SI->getModule(), IID);
231
232 if (NumElts < 16) {
56
Assuming 'NumElts' is < 16
57
Taking true branch
233 // Pad input with zeroes.
234 SmallVector<int, 32> ConcatMask(16);
235 for (unsigned i = 0; i != NumElts; ++i)
58
Assuming 'i' is equal to 'NumElts'
59
Loop condition is false. Execution continues on line 237
236 ConcatMask[i] = i;
237 for (unsigned i = NumElts; i != 16; ++i)
60
Loop condition is true. Entering loop body
238 ConcatMask[i] = (i % NumElts) + NumElts;
61
Division by zero
239
240 Value *Zero = Constant::getNullValue(Op0->getType());
241 Op0 = Builder.CreateShuffleVector(Op0, Zero, ConcatMask);
242 Op1 = Builder.CreateShuffleVector(Op1, Zero, ConcatMask);
243 NumElts = 16;
244 }
245
246 // Intrinsics produce vXi64 and need to be casted to vXi32.
247 auto *I32Ty =
248 FixedVectorType::get(Builder.getInt32Ty(), IntrinsicNumElts / 4);
249
250 assert(NumElts % IntrinsicNumElts == 0 && "Unexpected number of elements!")((NumElts % IntrinsicNumElts == 0 && "Unexpected number of elements!"
) ? static_cast<void> (0) : __assert_fail ("NumElts % IntrinsicNumElts == 0 && \"Unexpected number of elements!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Target/X86/X86PartialReduction.cpp"
, 250, __PRETTY_FUNCTION__))
;
251 unsigned NumSplits = NumElts / IntrinsicNumElts;
252
253 // First collect the pieces we need.
254 SmallVector<Value *, 4> Ops(NumSplits);
255 for (unsigned i = 0; i != NumSplits; ++i) {
256 SmallVector<int, 64> ExtractMask(IntrinsicNumElts);
257 std::iota(ExtractMask.begin(), ExtractMask.end(), i * IntrinsicNumElts);
258 Value *ExtractOp0 = Builder.CreateShuffleVector(Op0, Op0, ExtractMask);
259 Value *ExtractOp1 = Builder.CreateShuffleVector(Op1, Op0, ExtractMask);
260 Ops[i] = Builder.CreateCall(PSADBWFn, {ExtractOp0, ExtractOp1});
261 Ops[i] = Builder.CreateBitCast(Ops[i], I32Ty);
262 }
263
264 assert(isPowerOf2_32(NumSplits) && "Expected power of 2 splits")((isPowerOf2_32(NumSplits) && "Expected power of 2 splits"
) ? static_cast<void> (0) : __assert_fail ("isPowerOf2_32(NumSplits) && \"Expected power of 2 splits\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Target/X86/X86PartialReduction.cpp"
, 264, __PRETTY_FUNCTION__))
;
265 unsigned Stages = Log2_32(NumSplits);
266 for (unsigned s = Stages; s > 0; --s) {
267 unsigned NumConcatElts =
268 cast<FixedVectorType>(Ops[0]->getType())->getNumElements() * 2;
269 for (unsigned i = 0; i != 1U << (s - 1); ++i) {
270 SmallVector<int, 64> ConcatMask(NumConcatElts);
271 std::iota(ConcatMask.begin(), ConcatMask.end(), 0);
272 Ops[i] = Builder.CreateShuffleVector(Ops[i*2], Ops[i*2+1], ConcatMask);
273 }
274 }
275
276 // At this point the final value should be in Ops[0]. Now we need to adjust
277 // it to the final original type.
278 NumElts = cast<FixedVectorType>(OpTy)->getNumElements();
279 if (NumElts == 2) {
280 // Extract down to 2 elements.
281 Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ArrayRef<int>{0, 1});
282 } else if (NumElts >= 8) {
283 SmallVector<int, 32> ConcatMask(NumElts);
284 unsigned SubElts =
285 cast<FixedVectorType>(Ops[0]->getType())->getNumElements();
286 for (unsigned i = 0; i != SubElts; ++i)
287 ConcatMask[i] = i;
288 for (unsigned i = SubElts; i != NumElts; ++i)
289 ConcatMask[i] = (i % SubElts) + SubElts;
290
291 Value *Zero = Constant::getNullValue(Ops[0]->getType());
292 Ops[0] = Builder.CreateShuffleVector(Ops[0], Zero, ConcatMask);
293 }
294
295 SI->replaceAllUsesWith(Ops[0]);
296 SI->eraseFromParent();
297
298 return true;
299}
300
301// Walk backwards from the ExtractElementInst and determine if it is the end of
302// a horizontal reduction. Return the input to the reduction if we find one.
303static Value *matchAddReduction(const ExtractElementInst &EE) {
304 // Make sure we're extracting index 0.
305 auto *Index = dyn_cast<ConstantInt>(EE.getIndexOperand());
306 if (!Index || !Index->isNullValue())
307 return nullptr;
308
309 const auto *BO = dyn_cast<BinaryOperator>(EE.getVectorOperand());
310 if (!BO || BO->getOpcode() != Instruction::Add || !BO->hasOneUse())
311 return nullptr;
312
313 unsigned NumElems = cast<FixedVectorType>(BO->getType())->getNumElements();
314 // Ensure the reduction size is a power of 2.
315 if (!isPowerOf2_32(NumElems))
316 return nullptr;
317
318 const Value *Op = BO;
319 unsigned Stages = Log2_32(NumElems);
320 for (unsigned i = 0; i != Stages; ++i) {
321 const auto *BO = dyn_cast<BinaryOperator>(Op);
322 if (!BO || BO->getOpcode() != Instruction::Add)
323 return nullptr;
324
325 // If this isn't the first add, then it should only have 2 users, the
326 // shuffle and another add which we checked in the previous iteration.
327 if (i != 0 && !BO->hasNUses(2))
328 return nullptr;
329
330 Value *LHS = BO->getOperand(0);
331 Value *RHS = BO->getOperand(1);
332
333 auto *Shuffle = dyn_cast<ShuffleVectorInst>(LHS);
334 if (Shuffle) {
335 Op = RHS;
336 } else {
337 Shuffle = dyn_cast<ShuffleVectorInst>(RHS);
338 Op = LHS;
339 }
340
341 // The first operand of the shuffle should be the same as the other operand
342 // of the bin op.
343 if (!Shuffle || Shuffle->getOperand(0) != Op)
344 return nullptr;
345
346 // Verify the shuffle has the expected (at this stage of the pyramid) mask.
347 unsigned MaskEnd = 1 << i;
348 for (unsigned Index = 0; Index < MaskEnd; ++Index)
349 if (Shuffle->getMaskValue(Index) != (int)(MaskEnd + Index))
350 return nullptr;
351 }
352
353 return const_cast<Value *>(Op);
354}
355
356// See if this BO is reachable from this Phi by walking forward through single
357// use BinaryOperators with the same opcode. If we get back then we know we've
358// found a loop and it is safe to step through this Add to find more leaves.
359static bool isReachableFromPHI(PHINode *Phi, BinaryOperator *BO) {
360 // The PHI itself should only have one use.
361 if (!Phi->hasOneUse())
362 return false;
363
364 Instruction *U = cast<Instruction>(*Phi->user_begin());
365 if (U == BO)
366 return true;
367
368 while (U->hasOneUse() && U->getOpcode() == BO->getOpcode())
369 U = cast<Instruction>(*U->user_begin());
370
371 return U == BO;
372}
373
374// Collect all the leaves of the tree of adds that feeds into the horizontal
375// reduction. Root is the Value that is used by the horizontal reduction.
376// We look through single use phis, single use adds, or adds that are used by
377// a phi that forms a loop with the add.
378static void collectLeaves(Value *Root, SmallVectorImpl<Instruction *> &Leaves) {
379 SmallPtrSet<Value *, 8> Visited;
380 SmallVector<Value *, 8> Worklist;
381 Worklist.push_back(Root);
382
383 while (!Worklist.empty()) {
384 Value *V = Worklist.pop_back_val();
385 if (!Visited.insert(V).second)
386 continue;
387
388 if (auto *PN = dyn_cast<PHINode>(V)) {
389 // PHI node should have single use unless it is the root node, then it
390 // has 2 uses.
391 if (!PN->hasNUses(PN == Root ? 2 : 1))
392 break;
393
394 // Push incoming values to the worklist.
395 for (Value *InV : PN->incoming_values())
396 Worklist.push_back(InV);
397
398 continue;
399 }
400
401 if (auto *BO = dyn_cast<BinaryOperator>(V)) {
402 if (BO->getOpcode() == Instruction::Add) {
403 // Simple case. Single use, just push its operands to the worklist.
404 if (BO->hasNUses(BO == Root ? 2 : 1)) {
405 for (Value *Op : BO->operands())
406 Worklist.push_back(Op);
407 continue;
408 }
409
410 // If there is additional use, make sure it is an unvisited phi that
411 // gets us back to this node.
412 if (BO->hasNUses(BO == Root ? 3 : 2)) {
413 PHINode *PN = nullptr;
414 for (auto *U : Root->users())
415 if (auto *P = dyn_cast<PHINode>(U))
416 if (!Visited.count(P))
417 PN = P;
418
419 // If we didn't find a 2-input PHI then this isn't a case we can
420 // handle.
421 if (!PN || PN->getNumIncomingValues() != 2)
422 continue;
423
424 // Walk forward from this phi to see if it reaches back to this add.
425 if (!isReachableFromPHI(PN, BO))
426 continue;
427
428 // The phi forms a loop with this Add, push its operands.
429 for (Value *Op : BO->operands())
430 Worklist.push_back(Op);
431 }
432 }
433 }
434
435 // Not an add or phi, make it a leaf.
436 if (auto *I = dyn_cast<Instruction>(V)) {
437 if (!V->hasNUses(I == Root ? 2 : 1))
438 continue;
439
440 // Add this as a leaf.
441 Leaves.push_back(I);
442 }
443 }
444}
445
446bool X86PartialReduction::runOnFunction(Function &F) {
447 if (skipFunction(F))
1
Assuming the condition is false
2
Taking false branch
448 return false;
449
450 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
451 if (!TPC)
3
Assuming 'TPC' is non-null
4
Taking false branch
452 return false;
453
454 auto &TM = TPC->getTM<X86TargetMachine>();
455 ST = TM.getSubtargetImpl(F);
456
457 DL = &F.getParent()->getDataLayout();
458
459 bool MadeChange = false;
460 for (auto &BB : F) {
461 for (auto &I : BB) {
462 auto *EE = dyn_cast<ExtractElementInst>(&I);
5
Assuming the object is a 'ExtractElementInst'
463 if (!EE
5.1
'EE' is non-null
5.1
'EE' is non-null
5.1
'EE' is non-null
)
6
Taking false branch
464 continue;
465
466 // First find a reduction tree.
467 // FIXME: Do we need to handle other opcodes than Add?
468 Value *Root = matchAddReduction(*EE);
469 if (!Root
6.1
'Root' is non-null
6.1
'Root' is non-null
6.1
'Root' is non-null
)
7
Taking false branch
470 continue;
471
472 SmallVector<Instruction *, 8> Leaves;
473 collectLeaves(Root, Leaves);
474
475 for (Instruction *I : Leaves) {
8
Assuming '__begin3' is not equal to '__end3'
476 if (tryMAddReplacement(I)) {
9
Taking false branch
477 MadeChange = true;
478 continue;
479 }
480
481 // Don't do SAD matching on the root node. SelectionDAG already
482 // has support for that and currently generates better code.
483 if (I != Root && trySADReplacement(I))
10
Assuming 'I' is not equal to 'Root'
11
Calling 'X86PartialReduction::trySADReplacement'
484 MadeChange = true;
485 }
486 }
487 }
488
489 return MadeChange;
490}

/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Target/X86/X86Subtarget.h

1//===-- X86Subtarget.h - Define Subtarget for the X86 ----------*- C++ -*--===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file declares the X86 specific subclass of TargetSubtargetInfo.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_LIB_TARGET_X86_X86SUBTARGET_H
14#define LLVM_LIB_TARGET_X86_X86SUBTARGET_H
15
16#include "X86FrameLowering.h"
17#include "X86ISelLowering.h"
18#include "X86InstrInfo.h"
19#include "X86SelectionDAGInfo.h"
20#include "llvm/ADT/Triple.h"
21#include "llvm/CodeGen/TargetSubtargetInfo.h"
22#include "llvm/IR/CallingConv.h"
23#include <climits>
24#include <memory>
25
26#define GET_SUBTARGETINFO_HEADER
27#include "X86GenSubtargetInfo.inc"
28
29namespace llvm {
30
31class CallLowering;
32class GlobalValue;
33class InstructionSelector;
34class LegalizerInfo;
35class RegisterBankInfo;
36class StringRef;
37class TargetMachine;
38
39/// The X86 backend supports a number of different styles of PIC.
40///
41namespace PICStyles {
42
43enum class Style {
44 StubPIC, // Used on i386-darwin in pic mode.
45 GOT, // Used on 32 bit elf on when in pic mode.
46 RIPRel, // Used on X86-64 when in pic mode.
47 None // Set when not in pic mode.
48};
49
50} // end namespace PICStyles
51
52class X86Subtarget final : public X86GenSubtargetInfo {
53 // NOTE: Do not add anything new to this list. Coarse, CPU name based flags
54 // are not a good idea. We should be migrating away from these.
55 enum X86ProcFamilyEnum {
56 Others,
57 IntelAtom,
58 IntelSLM
59 };
60
61 enum X86SSEEnum {
62 NoSSE, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, AVX, AVX2, AVX512F
63 };
64
65 enum X863DNowEnum {
66 NoThreeDNow, MMX, ThreeDNow, ThreeDNowA
67 };
68
69 /// X86 processor family: Intel Atom, and others
70 X86ProcFamilyEnum X86ProcFamily = Others;
71
72 /// Which PIC style to use
73 PICStyles::Style PICStyle;
74
75 const TargetMachine &TM;
76
77 /// SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, or none supported.
78 X86SSEEnum X86SSELevel = NoSSE;
79
80 /// MMX, 3DNow, 3DNow Athlon, or none supported.
81 X863DNowEnum X863DNowLevel = NoThreeDNow;
82
83 /// True if the processor supports X87 instructions.
84 bool HasX87 = false;
85
86 /// True if the processor supports CMPXCHG8B.
87 bool HasCmpxchg8b = false;
88
89 /// True if this processor has NOPL instruction
90 /// (generally pentium pro+).
91 bool HasNOPL = false;
92
93 /// True if this processor has conditional move instructions
94 /// (generally pentium pro+).
95 bool HasCMov = false;
96
97 /// True if the processor supports X86-64 instructions.
98 bool HasX86_64 = false;
99
100 /// True if the processor supports POPCNT.
101 bool HasPOPCNT = false;
102
103 /// True if the processor supports SSE4A instructions.
104 bool HasSSE4A = false;
105
106 /// Target has AES instructions
107 bool HasAES = false;
108 bool HasVAES = false;
109
110 /// Target has FXSAVE/FXRESTOR instructions
111 bool HasFXSR = false;
112
113 /// Target has XSAVE instructions
114 bool HasXSAVE = false;
115
116 /// Target has XSAVEOPT instructions
117 bool HasXSAVEOPT = false;
118
119 /// Target has XSAVEC instructions
120 bool HasXSAVEC = false;
121
122 /// Target has XSAVES instructions
123 bool HasXSAVES = false;
124
125 /// Target has carry-less multiplication
126 bool HasPCLMUL = false;
127 bool HasVPCLMULQDQ = false;
128
129 /// Target has Galois Field Arithmetic instructions
130 bool HasGFNI = false;
131
132 /// Target has 3-operand fused multiply-add
133 bool HasFMA = false;
134
135 /// Target has 4-operand fused multiply-add
136 bool HasFMA4 = false;
137
138 /// Target has XOP instructions
139 bool HasXOP = false;
140
141 /// Target has TBM instructions.
142 bool HasTBM = false;
143
144 /// Target has LWP instructions
145 bool HasLWP = false;
146
147 /// True if the processor has the MOVBE instruction.
148 bool HasMOVBE = false;
149
150 /// True if the processor has the RDRAND instruction.
151 bool HasRDRAND = false;
152
153 /// Processor has 16-bit floating point conversion instructions.
154 bool HasF16C = false;
155
156 /// Processor has FS/GS base insturctions.
157 bool HasFSGSBase = false;
158
159 /// Processor has LZCNT instruction.
160 bool HasLZCNT = false;
161
162 /// Processor has BMI1 instructions.
163 bool HasBMI = false;
164
165 /// Processor has BMI2 instructions.
166 bool HasBMI2 = false;
167
168 /// Processor has VBMI instructions.
169 bool HasVBMI = false;
170
171 /// Processor has VBMI2 instructions.
172 bool HasVBMI2 = false;
173
174 /// Processor has Integer Fused Multiply Add
175 bool HasIFMA = false;
176
177 /// Processor has RTM instructions.
178 bool HasRTM = false;
179
180 /// Processor has ADX instructions.
181 bool HasADX = false;
182
183 /// Processor has SHA instructions.
184 bool HasSHA = false;
185
186 /// Processor has PRFCHW instructions.
187 bool HasPRFCHW = false;
188
189 /// Processor has RDSEED instructions.
190 bool HasRDSEED = false;
191
192 /// Processor has LAHF/SAHF instructions in 64-bit mode.
193 bool HasLAHFSAHF64 = false;
194
195 /// Processor has MONITORX/MWAITX instructions.
196 bool HasMWAITX = false;
197
198 /// Processor has Cache Line Zero instruction
199 bool HasCLZERO = false;
200
201 /// Processor has Cache Line Demote instruction
202 bool HasCLDEMOTE = false;
203
204 /// Processor has MOVDIRI instruction (direct store integer).
205 bool HasMOVDIRI = false;
206
207 /// Processor has MOVDIR64B instruction (direct store 64 bytes).
208 bool HasMOVDIR64B = false;
209
210 /// Processor has ptwrite instruction.
211 bool HasPTWRITE = false;
212
213 /// Processor has Prefetch with intent to Write instruction
214 bool HasPREFETCHWT1 = false;
215
216 /// True if SHLD instructions are slow.
217 bool IsSHLDSlow = false;
218
219 /// True if the PMULLD instruction is slow compared to PMULLW/PMULHW and
220 // PMULUDQ.
221 bool IsPMULLDSlow = false;
222
223 /// True if the PMADDWD instruction is slow compared to PMULLD.
224 bool IsPMADDWDSlow = false;
225
226 /// True if unaligned memory accesses of 16-bytes are slow.
227 bool IsUAMem16Slow = false;
228
229 /// True if unaligned memory accesses of 32-bytes are slow.
230 bool IsUAMem32Slow = false;
231
232 /// True if SSE operations can have unaligned memory operands.
233 /// This may require setting a configuration bit in the processor.
234 bool HasSSEUnalignedMem = false;
235
236 /// True if this processor has the CMPXCHG16B instruction;
237 /// this is true for most x86-64 chips, but not the first AMD chips.
238 bool HasCmpxchg16b = false;
239
240 /// True if the LEA instruction should be used for adjusting
241 /// the stack pointer. This is an optimization for Intel Atom processors.
242 bool UseLeaForSP = false;
243
244 /// True if POPCNT instruction has a false dependency on the destination register.
245 bool HasPOPCNTFalseDeps = false;
246
247 /// True if LZCNT/TZCNT instructions have a false dependency on the destination register.
248 bool HasLZCNTFalseDeps = false;
249
250 /// True if its preferable to combine to a single shuffle using a variable
251 /// mask over multiple fixed shuffles.
252 bool HasFastVariableShuffle = false;
253
254 /// True if vzeroupper instructions should be inserted after code that uses
255 /// ymm or zmm registers.
256 bool InsertVZEROUPPER = false;
257
258 /// True if there is no performance penalty for writing NOPs with up to
259 /// 7 bytes.
260 bool HasFast7ByteNOP = false;
261
262 /// True if there is no performance penalty for writing NOPs with up to
263 /// 11 bytes.
264 bool HasFast11ByteNOP = false;
265
266 /// True if there is no performance penalty for writing NOPs with up to
267 /// 15 bytes.
268 bool HasFast15ByteNOP = false;
269
270 /// True if gather is reasonably fast. This is true for Skylake client and
271 /// all AVX-512 CPUs.
272 bool HasFastGather = false;
273
274 /// True if hardware SQRTSS instruction is at least as fast (latency) as
275 /// RSQRTSS followed by a Newton-Raphson iteration.
276 bool HasFastScalarFSQRT = false;
277
278 /// True if hardware SQRTPS/VSQRTPS instructions are at least as fast
279 /// (throughput) as RSQRTPS/VRSQRTPS followed by a Newton-Raphson iteration.
280 bool HasFastVectorFSQRT = false;
281
282 /// True if 8-bit divisions are significantly faster than
283 /// 32-bit divisions and should be used when possible.
284 bool HasSlowDivide32 = false;
285
286 /// True if 32-bit divides are significantly faster than
287 /// 64-bit divisions and should be used when possible.
288 bool HasSlowDivide64 = false;
289
290 /// True if LZCNT instruction is fast.
291 bool HasFastLZCNT = false;
292
293 /// True if SHLD based rotate is fast.
294 bool HasFastSHLDRotate = false;
295
296 /// True if the processor supports macrofusion.
297 bool HasMacroFusion = false;
298
299 /// True if the processor supports branch fusion.
300 bool HasBranchFusion = false;
301
302 /// True if the processor has enhanced REP MOVSB/STOSB.
303 bool HasERMSB = false;
304
305 /// True if the processor has fast short REP MOV.
306 bool HasFSRM = false;
307
308 /// True if the short functions should be padded to prevent
309 /// a stall when returning too early.
310 bool PadShortFunctions = false;
311
312 /// True if two memory operand instructions should use a temporary register
313 /// instead.
314 bool SlowTwoMemOps = false;
315
316 /// True if the LEA instruction inputs have to be ready at address generation
317 /// (AG) time.
318 bool LEAUsesAG = false;
319
320 /// True if the LEA instruction with certain arguments is slow
321 bool SlowLEA = false;
322
323 /// True if the LEA instruction has all three source operands: base, index,
324 /// and offset or if the LEA instruction uses base and index registers where
325 /// the base is EBP, RBP,or R13
326 bool Slow3OpsLEA = false;
327
328 /// True if INC and DEC instructions are slow when writing to flags
329 bool SlowIncDec = false;
330
331 /// Processor has AVX-512 PreFetch Instructions
332 bool HasPFI = false;
333
334 /// Processor has AVX-512 Exponential and Reciprocal Instructions
335 bool HasERI = false;
336
337 /// Processor has AVX-512 Conflict Detection Instructions
338 bool HasCDI = false;
339
340 /// Processor has AVX-512 population count Instructions
341 bool HasVPOPCNTDQ = false;
342
343 /// Processor has AVX-512 Doubleword and Quadword instructions
344 bool HasDQI = false;
345
346 /// Processor has AVX-512 Byte and Word instructions
347 bool HasBWI = false;
348
349 /// Processor has AVX-512 Vector Length eXtenstions
350 bool HasVLX = false;
351
352 /// Processor has PKU extenstions
353 bool HasPKU = false;
354
355 /// Processor has AVX-512 Vector Neural Network Instructions
356 bool HasVNNI = false;
357
358 /// Processor has AVX-512 bfloat16 floating-point extensions
359 bool HasBF16 = false;
360
361 /// Processor supports ENQCMD instructions
362 bool HasENQCMD = false;
363
364 /// Processor has AVX-512 Bit Algorithms instructions
365 bool HasBITALG = false;
366
367 /// Processor has AVX-512 vp2intersect instructions
368 bool HasVP2INTERSECT = false;
369
370 /// Processor supports CET SHSTK - Control-Flow Enforcement Technology
371 /// using Shadow Stack
372 bool HasSHSTK = false;
373
374 /// Processor supports Invalidate Process-Context Identifier
375 bool HasINVPCID = false;
376
377 /// Processor has Software Guard Extensions
378 bool HasSGX = false;
379
380 /// Processor supports Flush Cache Line instruction
381 bool HasCLFLUSHOPT = false;
382
383 /// Processor supports Cache Line Write Back instruction
384 bool HasCLWB = false;
385
386 /// Processor supports Write Back No Invalidate instruction
387 bool HasWBNOINVD = false;
388
389 /// Processor support RDPID instruction
390 bool HasRDPID = false;
391
392 /// Processor supports WaitPKG instructions
393 bool HasWAITPKG = false;
394
395 /// Processor supports PCONFIG instruction
396 bool HasPCONFIG = false;
397
398 /// Processor supports SERIALIZE instruction
399 bool HasSERIALIZE = false;
400
401 /// Processor supports TSXLDTRK instruction
402 bool HasTSXLDTRK = false;
403
404 /// Processor has AMX support
405 bool HasAMXTILE = false;
406 bool HasAMXBF16 = false;
407 bool HasAMXINT8 = false;
408
409 /// Processor has a single uop BEXTR implementation.
410 bool HasFastBEXTR = false;
411
412 /// Try harder to combine to horizontal vector ops if they are fast.
413 bool HasFastHorizontalOps = false;
414
415 /// Prefer a left/right scalar logical shifts pair over a shift+and pair.
416 bool HasFastScalarShiftMasks = false;
417
418 /// Prefer a left/right vector logical shifts pair over a shift+and pair.
419 bool HasFastVectorShiftMasks = false;
420
421 /// Use a retpoline thunk rather than indirect calls to block speculative
422 /// execution.
423 bool UseRetpolineIndirectCalls = false;
424
425 /// Use a retpoline thunk or remove any indirect branch to block speculative
426 /// execution.
427 bool UseRetpolineIndirectBranches = false;
428
429 /// Deprecated flag, query `UseRetpolineIndirectCalls` and
430 /// `UseRetpolineIndirectBranches` instead.
431 bool DeprecatedUseRetpoline = false;
432
433 /// When using a retpoline thunk, call an externally provided thunk rather
434 /// than emitting one inside the compiler.
435 bool UseRetpolineExternalThunk = false;
436
437 /// Prevent generation of indirect call/branch instructions from memory,
438 /// and force all indirect call/branch instructions from a register to be
439 /// preceded by an LFENCE. Also decompose RET instructions into a
440 /// POP+LFENCE+JMP sequence.
441 bool UseLVIControlFlowIntegrity = false;
442
443 /// Enable Speculative Execution Side Effect Suppression
444 bool UseSpeculativeExecutionSideEffectSuppression = false;
445
446 /// Insert LFENCE instructions to prevent data speculatively injected into
447 /// loads from being used maliciously.
448 bool UseLVILoadHardening = false;
449
450 /// Use software floating point for code generation.
451 bool UseSoftFloat = false;
452
453 /// Use alias analysis during code generation.
454 bool UseAA = false;
455
456 /// The minimum alignment known to hold of the stack frame on
457 /// entry to the function and which must be maintained by every function.
458 Align stackAlignment = Align(4);
459
460 /// Max. memset / memcpy size that is turned into rep/movs, rep/stos ops.
461 ///
462 // FIXME: this is a known good value for Yonah. How about others?
463 unsigned MaxInlineSizeThreshold = 128;
464
465 /// Indicates target prefers 128 bit instructions.
466 bool Prefer128Bit = false;
467
468 /// Indicates target prefers 256 bit instructions.
469 bool Prefer256Bit = false;
470
471 /// Indicates target prefers AVX512 mask registers.
472 bool PreferMaskRegisters = false;
473
474 /// Use Goldmont specific floating point div/sqrt costs.
475 bool UseGLMDivSqrtCosts = false;
476
477 /// What processor and OS we're targeting.
478 Triple TargetTriple;
479
480 /// GlobalISel related APIs.
481 std::unique_ptr<CallLowering> CallLoweringInfo;
482 std::unique_ptr<LegalizerInfo> Legalizer;
483 std::unique_ptr<RegisterBankInfo> RegBankInfo;
484 std::unique_ptr<InstructionSelector> InstSelector;
485
486private:
487 /// Override the stack alignment.
488 MaybeAlign StackAlignOverride;
489
490 /// Preferred vector width from function attribute.
491 unsigned PreferVectorWidthOverride;
492
493 /// Resolved preferred vector width from function attribute and subtarget
494 /// features.
495 unsigned PreferVectorWidth = UINT32_MAX(4294967295U);
496
497 /// Required vector width from function attribute.
498 unsigned RequiredVectorWidth;
499
500 /// True if compiling for 64-bit, false for 16-bit or 32-bit.
501 bool In64BitMode = false;
502
503 /// True if compiling for 32-bit, false for 16-bit or 64-bit.
504 bool In32BitMode = false;
505
506 /// True if compiling for 16-bit, false for 32-bit or 64-bit.
507 bool In16BitMode = false;
508
509 X86SelectionDAGInfo TSInfo;
510 // Ordering here is important. X86InstrInfo initializes X86RegisterInfo which
511 // X86TargetLowering needs.
512 X86InstrInfo InstrInfo;
513 X86TargetLowering TLInfo;
514 X86FrameLowering FrameLowering;
515
516public:
517 /// This constructor initializes the data members to match that
518 /// of the specified triple.
519 ///
520 X86Subtarget(const Triple &TT, StringRef CPU, StringRef TuneCPU, StringRef FS,
521 const X86TargetMachine &TM, MaybeAlign StackAlignOverride,
522 unsigned PreferVectorWidthOverride,
523 unsigned RequiredVectorWidth);
524
525 const X86TargetLowering *getTargetLowering() const override {
526 return &TLInfo;
527 }
528
529 const X86InstrInfo *getInstrInfo() const override { return &InstrInfo; }
530
531 const X86FrameLowering *getFrameLowering() const override {
532 return &FrameLowering;
533 }
534
535 const X86SelectionDAGInfo *getSelectionDAGInfo() const override {
536 return &TSInfo;
537 }
538
539 const X86RegisterInfo *getRegisterInfo() const override {
540 return &getInstrInfo()->getRegisterInfo();
541 }
542
543 /// Returns the minimum alignment known to hold of the
544 /// stack frame on entry to the function and which must be maintained by every
545 /// function for this subtarget.
546 Align getStackAlignment() const { return stackAlignment; }
547
548 /// Returns the maximum memset / memcpy size
549 /// that still makes it profitable to inline the call.
550 unsigned getMaxInlineSizeThreshold() const { return MaxInlineSizeThreshold; }
551
552 /// ParseSubtargetFeatures - Parses features string setting specified
553 /// subtarget options. Definition of function is auto generated by tblgen.
554 void ParseSubtargetFeatures(StringRef CPU, StringRef TuneCPU, StringRef FS);
555
556 /// Methods used by Global ISel
557 const CallLowering *getCallLowering() const override;
558 InstructionSelector *getInstructionSelector() const override;
559 const LegalizerInfo *getLegalizerInfo() const override;
560 const RegisterBankInfo *getRegBankInfo() const override;
561
562private:
563 /// Initialize the full set of dependencies so we can use an initializer
564 /// list for X86Subtarget.
565 X86Subtarget &initializeSubtargetDependencies(StringRef CPU,
566 StringRef TuneCPU,
567 StringRef FS);
568 void initSubtargetFeatures(StringRef CPU, StringRef TuneCPU, StringRef FS);
569
570public:
571 /// Is this x86_64? (disregarding specific ABI / programming model)
572 bool is64Bit() const {
573 return In64BitMode;
574 }
575
576 bool is32Bit() const {
577 return In32BitMode;
578 }
579
580 bool is16Bit() const {
581 return In16BitMode;
582 }
583
584 /// Is this x86_64 with the ILP32 programming model (x32 ABI)?
585 bool isTarget64BitILP32() const {
586 return In64BitMode && (TargetTriple.getEnvironment() == Triple::GNUX32 ||
587 TargetTriple.isOSNaCl());
588 }
589
590 /// Is this x86_64 with the LP64 programming model (standard AMD64, no x32)?
591 bool isTarget64BitLP64() const {
592 return In64BitMode && (TargetTriple.getEnvironment() != Triple::GNUX32 &&
593 !TargetTriple.isOSNaCl());
594 }
595
596 PICStyles::Style getPICStyle() const { return PICStyle; }
597 void setPICStyle(PICStyles::Style Style) { PICStyle = Style; }
598
599 bool hasX87() const { return HasX87; }
600 bool hasCmpxchg8b() const { return HasCmpxchg8b; }
601 bool hasNOPL() const { return HasNOPL; }
602 // SSE codegen depends on cmovs, and all SSE1+ processors support them.
603 // All 64-bit processors support cmov.
604 bool hasCMov() const { return HasCMov || X86SSELevel >= SSE1 || is64Bit(); }
605 bool hasSSE1() const { return X86SSELevel >= SSE1; }
606 bool hasSSE2() const { return X86SSELevel
12.1
Field 'X86SSELevel' is >= SSE2
12.1
Field 'X86SSELevel' is >= SSE2
12.1
Field 'X86SSELevel' is >= SSE2
>= SSE2
; }
13
Returning the value 1, which participates in a condition later
607 bool hasSSE3() const { return X86SSELevel >= SSE3; }
608 bool hasSSSE3() const { return X86SSELevel >= SSSE3; }
609 bool hasSSE41() const { return X86SSELevel >= SSE41; }
610 bool hasSSE42() const { return X86SSELevel >= SSE42; }
611 bool hasAVX() const { return X86SSELevel >= AVX; }
612 bool hasAVX2() const { return X86SSELevel >= AVX2; }
613 bool hasAVX512() const { return X86SSELevel >= AVX512F; }
614 bool hasInt256() const { return hasAVX2(); }
615 bool hasSSE4A() const { return HasSSE4A; }
616 bool hasMMX() const { return X863DNowLevel >= MMX; }
617 bool has3DNow() const { return X863DNowLevel >= ThreeDNow; }
618 bool has3DNowA() const { return X863DNowLevel >= ThreeDNowA; }
619 bool hasPOPCNT() const { return HasPOPCNT; }
620 bool hasAES() const { return HasAES; }
621 bool hasVAES() const { return HasVAES; }
622 bool hasFXSR() const { return HasFXSR; }
623 bool hasXSAVE() const { return HasXSAVE; }
624 bool hasXSAVEOPT() const { return HasXSAVEOPT; }
625 bool hasXSAVEC() const { return HasXSAVEC; }
626 bool hasXSAVES() const { return HasXSAVES; }
627 bool hasPCLMUL() const { return HasPCLMUL; }
628 bool hasVPCLMULQDQ() const { return HasVPCLMULQDQ; }
629 bool hasGFNI() const { return HasGFNI; }
630 // Prefer FMA4 to FMA - its better for commutation/memory folding and
631 // has equal or better performance on all supported targets.
632 bool hasFMA() const { return HasFMA; }
633 bool hasFMA4() const { return HasFMA4; }
634 bool hasAnyFMA() const { return hasFMA() || hasFMA4(); }
635 bool hasXOP() const { return HasXOP; }
636 bool hasTBM() const { return HasTBM; }
637 bool hasLWP() const { return HasLWP; }
638 bool hasMOVBE() const { return HasMOVBE; }
639 bool hasRDRAND() const { return HasRDRAND; }
640 bool hasF16C() const { return HasF16C; }
641 bool hasFSGSBase() const { return HasFSGSBase; }
642 bool hasLZCNT() const { return HasLZCNT; }
643 bool hasBMI() const { return HasBMI; }
644 bool hasBMI2() const { return HasBMI2; }
645 bool hasVBMI() const { return HasVBMI; }
646 bool hasVBMI2() const { return HasVBMI2; }
647 bool hasIFMA() const { return HasIFMA; }
648 bool hasRTM() const { return HasRTM; }
649 bool hasADX() const { return HasADX; }
650 bool hasSHA() const { return HasSHA; }
651 bool hasPRFCHW() const { return HasPRFCHW; }
652 bool hasPREFETCHWT1() const { return HasPREFETCHWT1; }
653 bool hasPrefetchW() const {
654 // The PREFETCHW instruction was added with 3DNow but later CPUs gave it
655 // its own CPUID bit as part of deprecating 3DNow. Intel eventually added
656 // it and KNL has another that prefetches to L2 cache. We assume the
657 // L1 version exists if the L2 version does.
658 return has3DNow() || hasPRFCHW() || hasPREFETCHWT1();
659 }
660 bool hasSSEPrefetch() const {
661 // We implicitly enable these when we have a write prefix supporting cache
662 // level OR if we have prfchw, but don't already have a read prefetch from
663 // 3dnow.
664 return hasSSE1() || (hasPRFCHW() && !has3DNow()) || hasPREFETCHWT1();
665 }
666 bool hasRDSEED() const { return HasRDSEED; }
667 bool hasLAHFSAHF() const { return HasLAHFSAHF64 || !is64Bit(); }
668 bool hasMWAITX() const { return HasMWAITX; }
669 bool hasCLZERO() const { return HasCLZERO; }
670 bool hasCLDEMOTE() const { return HasCLDEMOTE; }
671 bool hasMOVDIRI() const { return HasMOVDIRI; }
672 bool hasMOVDIR64B() const { return HasMOVDIR64B; }
673 bool hasPTWRITE() const { return HasPTWRITE; }
674 bool isSHLDSlow() const { return IsSHLDSlow; }
675 bool isPMULLDSlow() const { return IsPMULLDSlow; }
676 bool isPMADDWDSlow() const { return IsPMADDWDSlow; }
677 bool isUnalignedMem16Slow() const { return IsUAMem16Slow; }
678 bool isUnalignedMem32Slow() const { return IsUAMem32Slow; }
679 bool hasSSEUnalignedMem() const { return HasSSEUnalignedMem; }
680 bool hasCmpxchg16b() const { return HasCmpxchg16b && is64Bit(); }
681 bool useLeaForSP() const { return UseLeaForSP; }
682 bool hasPOPCNTFalseDeps() const { return HasPOPCNTFalseDeps; }
683 bool hasLZCNTFalseDeps() const { return HasLZCNTFalseDeps; }
684 bool hasFastVariableShuffle() const {
685 return HasFastVariableShuffle;
686 }
687 bool insertVZEROUPPER() const { return InsertVZEROUPPER; }
688 bool hasFastGather() const { return HasFastGather; }
689 bool hasFastScalarFSQRT() const { return HasFastScalarFSQRT; }
690 bool hasFastVectorFSQRT() const { return HasFastVectorFSQRT; }
691 bool hasFastLZCNT() const { return HasFastLZCNT; }
692 bool hasFastSHLDRotate() const { return HasFastSHLDRotate; }
693 bool hasFastBEXTR() const { return HasFastBEXTR; }
694 bool hasFastHorizontalOps() const { return HasFastHorizontalOps; }
695 bool hasFastScalarShiftMasks() const { return HasFastScalarShiftMasks; }
696 bool hasFastVectorShiftMasks() const { return HasFastVectorShiftMasks; }
697 bool hasMacroFusion() const { return HasMacroFusion; }
698 bool hasBranchFusion() const { return HasBranchFusion; }
699 bool hasERMSB() const { return HasERMSB; }
700 bool hasFSRM() const { return HasFSRM; }
701 bool hasSlowDivide32() const { return HasSlowDivide32; }
702 bool hasSlowDivide64() const { return HasSlowDivide64; }
703 bool padShortFunctions() const { return PadShortFunctions; }
704 bool slowTwoMemOps() const { return SlowTwoMemOps; }
705 bool LEAusesAG() const { return LEAUsesAG; }
706 bool slowLEA() const { return SlowLEA; }
707 bool slow3OpsLEA() const { return Slow3OpsLEA; }
708 bool slowIncDec() const { return SlowIncDec; }
709 bool hasCDI() const { return HasCDI; }
710 bool hasVPOPCNTDQ() const { return HasVPOPCNTDQ; }
711 bool hasPFI() const { return HasPFI; }
712 bool hasERI() const { return HasERI; }
713 bool hasDQI() const { return HasDQI; }
714 bool hasBWI() const { return HasBWI; }
715 bool hasVLX() const { return HasVLX; }
716 bool hasPKU() const { return HasPKU; }
717 bool hasVNNI() const { return HasVNNI; }
718 bool hasBF16() const { return HasBF16; }
719 bool hasVP2INTERSECT() const { return HasVP2INTERSECT; }
720 bool hasBITALG() const { return HasBITALG; }
721 bool hasSHSTK() const { return HasSHSTK; }
722 bool hasCLFLUSHOPT() const { return HasCLFLUSHOPT; }
723 bool hasCLWB() const { return HasCLWB; }
724 bool hasWBNOINVD() const { return HasWBNOINVD; }
725 bool hasRDPID() const { return HasRDPID; }
726 bool hasWAITPKG() const { return HasWAITPKG; }
727 bool hasPCONFIG() const { return HasPCONFIG; }
728 bool hasSGX() const { return HasSGX; }
729 bool hasINVPCID() const { return HasINVPCID; }
730 bool hasENQCMD() const { return HasENQCMD; }
731 bool hasSERIALIZE() const { return HasSERIALIZE; }
732 bool hasTSXLDTRK() const { return HasTSXLDTRK; }
733 bool useRetpolineIndirectCalls() const { return UseRetpolineIndirectCalls; }
734 bool useRetpolineIndirectBranches() const {
735 return UseRetpolineIndirectBranches;
736 }
737 bool hasAMXTILE() const { return HasAMXTILE; }
738 bool hasAMXBF16() const { return HasAMXBF16; }
739 bool hasAMXINT8() const { return HasAMXINT8; }
740 bool useRetpolineExternalThunk() const { return UseRetpolineExternalThunk; }
741
742 // These are generic getters that OR together all of the thunk types
743 // supported by the subtarget. Therefore useIndirectThunk*() will return true
744 // if any respective thunk feature is enabled.
745 bool useIndirectThunkCalls() const {
746 return useRetpolineIndirectCalls() || useLVIControlFlowIntegrity();
747 }
748 bool useIndirectThunkBranches() const {
749 return useRetpolineIndirectBranches() || useLVIControlFlowIntegrity();
750 }
751
752 bool preferMaskRegisters() const { return PreferMaskRegisters; }
753 bool useGLMDivSqrtCosts() const { return UseGLMDivSqrtCosts; }
754 bool useLVIControlFlowIntegrity() const { return UseLVIControlFlowIntegrity; }
755 bool useLVILoadHardening() const { return UseLVILoadHardening; }
756 bool useSpeculativeExecutionSideEffectSuppression() const {
757 return UseSpeculativeExecutionSideEffectSuppression;
758 }
759
760 unsigned getPreferVectorWidth() const { return PreferVectorWidth; }
761 unsigned getRequiredVectorWidth() const { return RequiredVectorWidth; }
762
763 // Helper functions to determine when we should allow widening to 512-bit
764 // during codegen.
765 // TODO: Currently we're always allowing widening on CPUs without VLX,
766 // because for many cases we don't have a better option.
767 bool canExtendTo512DQ() const {
768 return hasAVX512() && (!hasVLX() || getPreferVectorWidth() >= 512);
769 }
770 bool canExtendTo512BW() const {
771 return hasBWI() && canExtendTo512DQ();
772 }
773
774 // If there are no 512-bit vectors and we prefer not to use 512-bit registers,
775 // disable them in the legalizer.
776 bool useAVX512Regs() const {
777 return hasAVX512() && (canExtendTo512DQ() || RequiredVectorWidth > 256);
778 }
779
780 bool useBWIRegs() const {
781 return hasBWI() && useAVX512Regs();
782 }
783
784 bool isXRaySupported() const override { return is64Bit(); }
785
786 /// TODO: to be removed later and replaced with suitable properties
787 bool isAtom() const { return X86ProcFamily == IntelAtom; }
788 bool isSLM() const { return X86ProcFamily == IntelSLM; }
789 bool useSoftFloat() const { return UseSoftFloat; }
790 bool useAA() const override { return UseAA; }
791
792 /// Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
793 /// no-sse2). There isn't any reason to disable it if the target processor
794 /// supports it.
795 bool hasMFence() const { return hasSSE2() || is64Bit(); }
796
797 const Triple &getTargetTriple() const { return TargetTriple; }
798
799 bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }
800 bool isTargetFreeBSD() const { return TargetTriple.isOSFreeBSD(); }
801 bool isTargetDragonFly() const { return TargetTriple.isOSDragonFly(); }
802 bool isTargetSolaris() const { return TargetTriple.isOSSolaris(); }
803 bool isTargetPS4() const { return TargetTriple.isPS4CPU(); }
804
805 bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
806 bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); }
807 bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); }
808
809 bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
810 bool isTargetKFreeBSD() const { return TargetTriple.isOSKFreeBSD(); }
811 bool isTargetGlibc() const { return TargetTriple.isOSGlibc(); }
812 bool isTargetAndroid() const { return TargetTriple.isAndroid(); }
813 bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); }
814 bool isTargetNaCl32() const { return isTargetNaCl() && !is64Bit(); }
815 bool isTargetNaCl64() const { return isTargetNaCl() && is64Bit(); }
816 bool isTargetMCU() const { return TargetTriple.isOSIAMCU(); }
817 bool isTargetFuchsia() const { return TargetTriple.isOSFuchsia(); }
818
819 bool isTargetWindowsMSVC() const {
820 return TargetTriple.isWindowsMSVCEnvironment();
821 }
822
823 bool isTargetWindowsCoreCLR() const {
824 return TargetTriple.isWindowsCoreCLREnvironment();
825 }
826
827 bool isTargetWindowsCygwin() const {
828 return TargetTriple.isWindowsCygwinEnvironment();
829 }
830
831 bool isTargetWindowsGNU() const {
832 return TargetTriple.isWindowsGNUEnvironment();
833 }
834
835 bool isTargetWindowsItanium() const {
836 return TargetTriple.isWindowsItaniumEnvironment();
837 }
838
839 bool isTargetCygMing() const { return TargetTriple.isOSCygMing(); }
840
841 bool isOSWindows() const { return TargetTriple.isOSWindows(); }
842
843 bool isTargetWin64() const { return In64BitMode && isOSWindows(); }
844
845 bool isTargetWin32() const { return !In64BitMode && isOSWindows(); }
846
847 bool isPICStyleGOT() const { return PICStyle == PICStyles::Style::GOT; }
848 bool isPICStyleRIPRel() const { return PICStyle == PICStyles::Style::RIPRel; }
849
850 bool isPICStyleStubPIC() const {
851 return PICStyle == PICStyles::Style::StubPIC;
852 }
853
854 bool isPositionIndependent() const;
855
856 bool isCallingConvWin64(CallingConv::ID CC) const {
857 switch (CC) {
858 // On Win64, all these conventions just use the default convention.
859 case CallingConv::C:
860 case CallingConv::Fast:
861 case CallingConv::Tail:
862 case CallingConv::Swift:
863 case CallingConv::X86_FastCall:
864 case CallingConv::X86_StdCall:
865 case CallingConv::X86_ThisCall:
866 case CallingConv::X86_VectorCall:
867 case CallingConv::Intel_OCL_BI:
868 return isTargetWin64();
869 // This convention allows using the Win64 convention on other targets.
870 case CallingConv::Win64:
871 return true;
872 // This convention allows using the SysV convention on Windows targets.
873 case CallingConv::X86_64_SysV:
874 return false;
875 // Otherwise, who knows what this is.
876 default:
877 return false;
878 }
879 }
880
881 /// Classify a global variable reference for the current subtarget according
882 /// to how we should reference it in a non-pcrel context.
883 unsigned char classifyLocalReference(const GlobalValue *GV) const;
884
885 unsigned char classifyGlobalReference(const GlobalValue *GV,
886 const Module &M) const;
887 unsigned char classifyGlobalReference(const GlobalValue *GV) const;
888
889 /// Classify a global function reference for the current subtarget.
890 unsigned char classifyGlobalFunctionReference(const GlobalValue *GV,
891 const Module &M) const;
892 unsigned char classifyGlobalFunctionReference(const GlobalValue *GV) const;
893
894 /// Classify a blockaddress reference for the current subtarget according to
895 /// how we should reference it in a non-pcrel context.
896 unsigned char classifyBlockAddressReference() const;
897
898 /// Return true if the subtarget allows calls to immediate address.
899 bool isLegalToCallImmediateAddr() const;
900
901 /// If we are using indirect thunks, we need to expand indirectbr to avoid it
902 /// lowering to an actual indirect jump.
903 bool enableIndirectBrExpand() const override {
904 return useIndirectThunkBranches();
905 }
906
907 /// Enable the MachineScheduler pass for all X86 subtargets.
908 bool enableMachineScheduler() const override { return true; }
909
910 bool enableEarlyIfConversion() const override;
911
912 void getPostRAMutations(std::vector<std::unique_ptr<ScheduleDAGMutation>>
913 &Mutations) const override;
914
915 AntiDepBreakMode getAntiDepBreakMode() const override {
916 return TargetSubtargetInfo::ANTIDEP_CRITICAL;
917 }
918
919 bool enableAdvancedRASplitCost() const override { return true; }
920};
921
922} // end namespace llvm
923
924#endif // LLVM_LIB_TARGET_X86_X86SUBTARGET_H

/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h

1//===- llvm/InstrTypes.h - Important Instruction subclasses -----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines various meta classes of instructions that exist in the VM
10// representation. Specific concrete subclasses of these may be found in the
11// i*.h files...
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRTYPES_H
16#define LLVM_IR_INSTRTYPES_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/None.h"
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/StringMap.h"
23#include "llvm/ADT/StringRef.h"
24#include "llvm/ADT/Twine.h"
25#include "llvm/ADT/iterator_range.h"
26#include "llvm/IR/Attributes.h"
27#include "llvm/IR/CallingConv.h"
28#include "llvm/IR/Constants.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/Instruction.h"
32#include "llvm/IR/LLVMContext.h"
33#include "llvm/IR/OperandTraits.h"
34#include "llvm/IR/Type.h"
35#include "llvm/IR/User.h"
36#include "llvm/IR/Value.h"
37#include "llvm/Support/Casting.h"
38#include "llvm/Support/ErrorHandling.h"
39#include <algorithm>
40#include <cassert>
41#include <cstddef>
42#include <cstdint>
43#include <iterator>
44#include <string>
45#include <vector>
46
47namespace llvm {
48
49namespace Intrinsic {
50typedef unsigned ID;
51}
52
53//===----------------------------------------------------------------------===//
54// UnaryInstruction Class
55//===----------------------------------------------------------------------===//
56
57class UnaryInstruction : public Instruction {
58protected:
59 UnaryInstruction(Type *Ty, unsigned iType, Value *V,
60 Instruction *IB = nullptr)
61 : Instruction(Ty, iType, &Op<0>(), 1, IB) {
62 Op<0>() = V;
63 }
64 UnaryInstruction(Type *Ty, unsigned iType, Value *V, BasicBlock *IAE)
65 : Instruction(Ty, iType, &Op<0>(), 1, IAE) {
66 Op<0>() = V;
67 }
68
69public:
70 // allocate space for exactly one operand
71 void *operator new(size_t s) {
72 return User::operator new(s, 1);
73 }
74
75 /// Transparently provide more efficient getOperand methods.
76 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
77
78 // Methods for support type inquiry through isa, cast, and dyn_cast:
79 static bool classof(const Instruction *I) {
80 return I->isUnaryOp() ||
81 I->getOpcode() == Instruction::Alloca ||
82 I->getOpcode() == Instruction::Load ||
83 I->getOpcode() == Instruction::VAArg ||
84 I->getOpcode() == Instruction::ExtractValue ||
85 (I->getOpcode() >= CastOpsBegin && I->getOpcode() < CastOpsEnd);
86 }
87 static bool classof(const Value *V) {
88 return isa<Instruction>(V) && classof(cast<Instruction>(V));
89 }
90};
91
92template <>
93struct OperandTraits<UnaryInstruction> :
94 public FixedNumOperandTraits<UnaryInstruction, 1> {
95};
96
97DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryInstruction, Value)UnaryInstruction::op_iterator UnaryInstruction::op_begin() { return
OperandTraits<UnaryInstruction>::op_begin(this); } UnaryInstruction
::const_op_iterator UnaryInstruction::op_begin() const { return
OperandTraits<UnaryInstruction>::op_begin(const_cast<
UnaryInstruction*>(this)); } UnaryInstruction::op_iterator
UnaryInstruction::op_end() { return OperandTraits<UnaryInstruction
>::op_end(this); } UnaryInstruction::const_op_iterator UnaryInstruction
::op_end() const { return OperandTraits<UnaryInstruction>
::op_end(const_cast<UnaryInstruction*>(this)); } Value *
UnaryInstruction::getOperand(unsigned i_nocapture) const { ((
i_nocapture < OperandTraits<UnaryInstruction>::operands
(this) && "getOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<UnaryInstruction>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 97, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<UnaryInstruction>::op_begin(const_cast<
UnaryInstruction*>(this))[i_nocapture].get()); } void UnaryInstruction
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<UnaryInstruction>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<UnaryInstruction>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 97, __PRETTY_FUNCTION__)); OperandTraits<UnaryInstruction
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
UnaryInstruction::getNumOperands() const { return OperandTraits
<UnaryInstruction>::operands(this); } template <int Idx_nocapture
> Use &UnaryInstruction::Op() { return this->OpFrom
<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &UnaryInstruction::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
33
'?' condition is true
34
The object is a 'Value'
35
Returning pointer, which participates in a condition later
46
'?' condition is true
47
The object is a 'Value'
48
Returning pointer, which participates in a condition later
98
99//===----------------------------------------------------------------------===//
100// UnaryOperator Class
101//===----------------------------------------------------------------------===//
102
103class UnaryOperator : public UnaryInstruction {
104 void AssertOK();
105
106protected:
107 UnaryOperator(UnaryOps iType, Value *S, Type *Ty,
108 const Twine &Name, Instruction *InsertBefore);
109 UnaryOperator(UnaryOps iType, Value *S, Type *Ty,
110 const Twine &Name, BasicBlock *InsertAtEnd);
111
112 // Note: Instruction needs to be a friend here to call cloneImpl.
113 friend class Instruction;
114
115 UnaryOperator *cloneImpl() const;
116
117public:
118
119 /// Construct a unary instruction, given the opcode and an operand.
120 /// Optionally (if InstBefore is specified) insert the instruction
121 /// into a BasicBlock right before the specified instruction. The specified
122 /// Instruction is allowed to be a dereferenced end iterator.
123 ///
124 static UnaryOperator *Create(UnaryOps Op, Value *S,
125 const Twine &Name = Twine(),
126 Instruction *InsertBefore = nullptr);
127
128 /// Construct a unary instruction, given the opcode and an operand.
129 /// Also automatically insert this instruction to the end of the
130 /// BasicBlock specified.
131 ///
132 static UnaryOperator *Create(UnaryOps Op, Value *S,
133 const Twine &Name,
134 BasicBlock *InsertAtEnd);
135
136 /// These methods just forward to Create, and are useful when you
137 /// statically know what type of instruction you're going to create. These
138 /// helpers just save some typing.
139#define HANDLE_UNARY_INST(N, OPC, CLASS) \
140 static UnaryOperator *Create##OPC(Value *V, const Twine &Name = "") {\
141 return Create(Instruction::OPC, V, Name);\
142 }
143#include "llvm/IR/Instruction.def"
144#define HANDLE_UNARY_INST(N, OPC, CLASS) \
145 static UnaryOperator *Create##OPC(Value *V, const Twine &Name, \
146 BasicBlock *BB) {\
147 return Create(Instruction::OPC, V, Name, BB);\
148 }
149#include "llvm/IR/Instruction.def"
150#define HANDLE_UNARY_INST(N, OPC, CLASS) \
151 static UnaryOperator *Create##OPC(Value *V, const Twine &Name, \
152 Instruction *I) {\
153 return Create(Instruction::OPC, V, Name, I);\
154 }
155#include "llvm/IR/Instruction.def"
156
157 static UnaryOperator *
158 CreateWithCopiedFlags(UnaryOps Opc, Value *V, Instruction *CopyO,
159 const Twine &Name = "",
160 Instruction *InsertBefore = nullptr) {
161 UnaryOperator *UO = Create(Opc, V, Name, InsertBefore);
162 UO->copyIRFlags(CopyO);
163 return UO;
164 }
165
166 static UnaryOperator *CreateFNegFMF(Value *Op, Instruction *FMFSource,
167 const Twine &Name = "",
168 Instruction *InsertBefore = nullptr) {
169 return CreateWithCopiedFlags(Instruction::FNeg, Op, FMFSource, Name,
170 InsertBefore);
171 }
172
173 UnaryOps getOpcode() const {
174 return static_cast<UnaryOps>(Instruction::getOpcode());
175 }
176
177 // Methods for support type inquiry through isa, cast, and dyn_cast:
178 static bool classof(const Instruction *I) {
179 return I->isUnaryOp();
180 }
181 static bool classof(const Value *V) {
182 return isa<Instruction>(V) && classof(cast<Instruction>(V));
183 }
184};
185
186//===----------------------------------------------------------------------===//
187// BinaryOperator Class
188//===----------------------------------------------------------------------===//
189
190class BinaryOperator : public Instruction {
191 void AssertOK();
192
193protected:
194 BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
195 const Twine &Name, Instruction *InsertBefore);
196 BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
197 const Twine &Name, BasicBlock *InsertAtEnd);
198
199 // Note: Instruction needs to be a friend here to call cloneImpl.
200 friend class Instruction;
201
202 BinaryOperator *cloneImpl() const;
203
204public:
205 // allocate space for exactly two operands
206 void *operator new(size_t s) {
207 return User::operator new(s, 2);
208 }
209
210 /// Transparently provide more efficient getOperand methods.
211 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
212
213 /// Construct a binary instruction, given the opcode and the two
214 /// operands. Optionally (if InstBefore is specified) insert the instruction
215 /// into a BasicBlock right before the specified instruction. The specified
216 /// Instruction is allowed to be a dereferenced end iterator.
217 ///
218 static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
219 const Twine &Name = Twine(),
220 Instruction *InsertBefore = nullptr);
221
222 /// Construct a binary instruction, given the opcode and the two
223 /// operands. Also automatically insert this instruction to the end of the
224 /// BasicBlock specified.
225 ///
226 static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
227 const Twine &Name, BasicBlock *InsertAtEnd);
228
229 /// These methods just forward to Create, and are useful when you
230 /// statically know what type of instruction you're going to create. These
231 /// helpers just save some typing.
232#define HANDLE_BINARY_INST(N, OPC, CLASS) \
233 static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
234 const Twine &Name = "") {\
235 return Create(Instruction::OPC, V1, V2, Name);\
236 }
237#include "llvm/IR/Instruction.def"
238#define HANDLE_BINARY_INST(N, OPC, CLASS) \
239 static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
240 const Twine &Name, BasicBlock *BB) {\
241 return Create(Instruction::OPC, V1, V2, Name, BB);\
242 }
243#include "llvm/IR/Instruction.def"
244#define HANDLE_BINARY_INST(N, OPC, CLASS) \
245 static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
246 const Twine &Name, Instruction *I) {\
247 return Create(Instruction::OPC, V1, V2, Name, I);\
248 }
249#include "llvm/IR/Instruction.def"
250
251 static BinaryOperator *CreateWithCopiedFlags(BinaryOps Opc,
252 Value *V1, Value *V2,
253 Instruction *CopyO,
254 const Twine &Name = "") {
255 BinaryOperator *BO = Create(Opc, V1, V2, Name);
256 BO->copyIRFlags(CopyO);
257 return BO;
258 }
259
260 static BinaryOperator *CreateFAddFMF(Value *V1, Value *V2,
261 Instruction *FMFSource,
262 const Twine &Name = "") {
263 return CreateWithCopiedFlags(Instruction::FAdd, V1, V2, FMFSource, Name);
264 }
265 static BinaryOperator *CreateFSubFMF(Value *V1, Value *V2,
266 Instruction *FMFSource,
267 const Twine &Name = "") {
268 return CreateWithCopiedFlags(Instruction::FSub, V1, V2, FMFSource, Name);
269 }
270 static BinaryOperator *CreateFMulFMF(Value *V1, Value *V2,
271 Instruction *FMFSource,
272 const Twine &Name = "") {
273 return CreateWithCopiedFlags(Instruction::FMul, V1, V2, FMFSource, Name);
274 }
275 static BinaryOperator *CreateFDivFMF(Value *V1, Value *V2,
276 Instruction *FMFSource,
277 const Twine &Name = "") {
278 return CreateWithCopiedFlags(Instruction::FDiv, V1, V2, FMFSource, Name);
279 }
280 static BinaryOperator *CreateFRemFMF(Value *V1, Value *V2,
281 Instruction *FMFSource,
282 const Twine &Name = "") {
283 return CreateWithCopiedFlags(Instruction::FRem, V1, V2, FMFSource, Name);
284 }
285
286 static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
287 const Twine &Name = "") {
288 BinaryOperator *BO = Create(Opc, V1, V2, Name);
289 BO->setHasNoSignedWrap(true);
290 return BO;
291 }
292 static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
293 const Twine &Name, BasicBlock *BB) {
294 BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
295 BO->setHasNoSignedWrap(true);
296 return BO;
297 }
298 static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
299 const Twine &Name, Instruction *I) {
300 BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
301 BO->setHasNoSignedWrap(true);
302 return BO;
303 }
304
305 static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
306 const Twine &Name = "") {
307 BinaryOperator *BO = Create(Opc, V1, V2, Name);
308 BO->setHasNoUnsignedWrap(true);
309 return BO;
310 }
311 static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
312 const Twine &Name, BasicBlock *BB) {
313 BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
314 BO->setHasNoUnsignedWrap(true);
315 return BO;
316 }
317 static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
318 const Twine &Name, Instruction *I) {
319 BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
320 BO->setHasNoUnsignedWrap(true);
321 return BO;
322 }
323
324 static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
325 const Twine &Name = "") {
326 BinaryOperator *BO = Create(Opc, V1, V2, Name);
327 BO->setIsExact(true);
328 return BO;
329 }
330 static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
331 const Twine &Name, BasicBlock *BB) {
332 BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
333 BO->setIsExact(true);
334 return BO;
335 }
336 static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
337 const Twine &Name, Instruction *I) {
338 BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
339 BO->setIsExact(true);
340 return BO;
341 }
342
343#define DEFINE_HELPERS(OPC, NUWNSWEXACT) \
344 static BinaryOperator *Create##NUWNSWEXACT##OPC(Value *V1, Value *V2, \
345 const Twine &Name = "") { \
346 return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name); \
347 } \
348 static BinaryOperator *Create##NUWNSWEXACT##OPC( \
349 Value *V1, Value *V2, const Twine &Name, BasicBlock *BB) { \
350 return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name, BB); \
351 } \
352 static BinaryOperator *Create##NUWNSWEXACT##OPC( \
353 Value *V1, Value *V2, const Twine &Name, Instruction *I) { \
354 return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name, I); \
355 }
356
357 DEFINE_HELPERS(Add, NSW) // CreateNSWAdd
358 DEFINE_HELPERS(Add, NUW) // CreateNUWAdd
359 DEFINE_HELPERS(Sub, NSW) // CreateNSWSub
360 DEFINE_HELPERS(Sub, NUW) // CreateNUWSub
361 DEFINE_HELPERS(Mul, NSW) // CreateNSWMul
362 DEFINE_HELPERS(Mul, NUW) // CreateNUWMul
363 DEFINE_HELPERS(Shl, NSW) // CreateNSWShl
364 DEFINE_HELPERS(Shl, NUW) // CreateNUWShl
365
366 DEFINE_HELPERS(SDiv, Exact) // CreateExactSDiv
367 DEFINE_HELPERS(UDiv, Exact) // CreateExactUDiv
368 DEFINE_HELPERS(AShr, Exact) // CreateExactAShr
369 DEFINE_HELPERS(LShr, Exact) // CreateExactLShr
370
371#undef DEFINE_HELPERS
372
373 /// Helper functions to construct and inspect unary operations (NEG and NOT)
374 /// via binary operators SUB and XOR:
375 ///
376 /// Create the NEG and NOT instructions out of SUB and XOR instructions.
377 ///
378 static BinaryOperator *CreateNeg(Value *Op, const Twine &Name = "",
379 Instruction *InsertBefore = nullptr);
380 static BinaryOperator *CreateNeg(Value *Op, const Twine &Name,
381 BasicBlock *InsertAtEnd);
382 static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name = "",
383 Instruction *InsertBefore = nullptr);
384 static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name,
385 BasicBlock *InsertAtEnd);
386 static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name = "",
387 Instruction *InsertBefore = nullptr);
388 static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name,
389 BasicBlock *InsertAtEnd);
390 static BinaryOperator *CreateNot(Value *Op, const Twine &Name = "",
391 Instruction *InsertBefore = nullptr);
392 static BinaryOperator *CreateNot(Value *Op, const Twine &Name,
393 BasicBlock *InsertAtEnd);
394
395 BinaryOps getOpcode() const {
396 return static_cast<BinaryOps>(Instruction::getOpcode());
397 }
398
399 /// Exchange the two operands to this instruction.
400 /// This instruction is safe to use on any binary instruction and
401 /// does not modify the semantics of the instruction. If the instruction
402 /// cannot be reversed (ie, it's a Div), then return true.
403 ///
404 bool swapOperands();
405
406 // Methods for support type inquiry through isa, cast, and dyn_cast:
407 static bool classof(const Instruction *I) {
408 return I->isBinaryOp();
409 }
410 static bool classof(const Value *V) {
411 return isa<Instruction>(V) && classof(cast<Instruction>(V));
412 }
413};
414
415template <>
416struct OperandTraits<BinaryOperator> :
417 public FixedNumOperandTraits<BinaryOperator, 2> {
418};
419
420DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryOperator, Value)BinaryOperator::op_iterator BinaryOperator::op_begin() { return
OperandTraits<BinaryOperator>::op_begin(this); } BinaryOperator
::const_op_iterator BinaryOperator::op_begin() const { return
OperandTraits<BinaryOperator>::op_begin(const_cast<
BinaryOperator*>(this)); } BinaryOperator::op_iterator BinaryOperator
::op_end() { return OperandTraits<BinaryOperator>::op_end
(this); } BinaryOperator::const_op_iterator BinaryOperator::op_end
() const { return OperandTraits<BinaryOperator>::op_end
(const_cast<BinaryOperator*>(this)); } Value *BinaryOperator
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<BinaryOperator>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<BinaryOperator>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 420, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<BinaryOperator>::op_begin(const_cast<
BinaryOperator*>(this))[i_nocapture].get()); } void BinaryOperator
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<BinaryOperator>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<BinaryOperator>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 420, __PRETTY_FUNCTION__)); OperandTraits<BinaryOperator
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
BinaryOperator::getNumOperands() const { return OperandTraits
<BinaryOperator>::operands(this); } template <int Idx_nocapture
> Use &BinaryOperator::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &BinaryOperator::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
421
422//===----------------------------------------------------------------------===//
423// CastInst Class
424//===----------------------------------------------------------------------===//
425
426/// This is the base class for all instructions that perform data
427/// casts. It is simply provided so that instruction category testing
428/// can be performed with code like:
429///
430/// if (isa<CastInst>(Instr)) { ... }
431/// Base class of casting instructions.
432class CastInst : public UnaryInstruction {
433protected:
434 /// Constructor with insert-before-instruction semantics for subclasses
435 CastInst(Type *Ty, unsigned iType, Value *S,
436 const Twine &NameStr = "", Instruction *InsertBefore = nullptr)
437 : UnaryInstruction(Ty, iType, S, InsertBefore) {
438 setName(NameStr);
439 }
440 /// Constructor with insert-at-end-of-block semantics for subclasses
441 CastInst(Type *Ty, unsigned iType, Value *S,
442 const Twine &NameStr, BasicBlock *InsertAtEnd)
443 : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
444 setName(NameStr);
445 }
446
447public:
448 /// Provides a way to construct any of the CastInst subclasses using an
449 /// opcode instead of the subclass's constructor. The opcode must be in the
450 /// CastOps category (Instruction::isCast(opcode) returns true). This
451 /// constructor has insert-before-instruction semantics to automatically
452 /// insert the new CastInst before InsertBefore (if it is non-null).
453 /// Construct any of the CastInst subclasses
454 static CastInst *Create(
455 Instruction::CastOps, ///< The opcode of the cast instruction
456 Value *S, ///< The value to be casted (operand 0)
457 Type *Ty, ///< The type to which cast should be made
458 const Twine &Name = "", ///< Name for the instruction
459 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
460 );
461 /// Provides a way to construct any of the CastInst subclasses using an
462 /// opcode instead of the subclass's constructor. The opcode must be in the
463 /// CastOps category. This constructor has insert-at-end-of-block semantics
464 /// to automatically insert the new CastInst at the end of InsertAtEnd (if
465 /// its non-null).
466 /// Construct any of the CastInst subclasses
467 static CastInst *Create(
468 Instruction::CastOps, ///< The opcode for the cast instruction
469 Value *S, ///< The value to be casted (operand 0)
470 Type *Ty, ///< The type to which operand is casted
471 const Twine &Name, ///< The name for the instruction
472 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
473 );
474
475 /// Create a ZExt or BitCast cast instruction
476 static CastInst *CreateZExtOrBitCast(
477 Value *S, ///< The value to be casted (operand 0)
478 Type *Ty, ///< The type to which cast should be made
479 const Twine &Name = "", ///< Name for the instruction
480 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
481 );
482
483 /// Create a ZExt or BitCast cast instruction
484 static CastInst *CreateZExtOrBitCast(
485 Value *S, ///< The value to be casted (operand 0)
486 Type *Ty, ///< The type to which operand is casted
487 const Twine &Name, ///< The name for the instruction
488 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
489 );
490
491 /// Create a SExt or BitCast cast instruction
492 static CastInst *CreateSExtOrBitCast(
493 Value *S, ///< The value to be casted (operand 0)
494 Type *Ty, ///< The type to which cast should be made
495 const Twine &Name = "", ///< Name for the instruction
496 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
497 );
498
499 /// Create a SExt or BitCast cast instruction
500 static CastInst *CreateSExtOrBitCast(
501 Value *S, ///< The value to be casted (operand 0)
502 Type *Ty, ///< The type to which operand is casted
503 const Twine &Name, ///< The name for the instruction
504 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
505 );
506
507 /// Create a BitCast AddrSpaceCast, or a PtrToInt cast instruction.
508 static CastInst *CreatePointerCast(
509 Value *S, ///< The pointer value to be casted (operand 0)
510 Type *Ty, ///< The type to which operand is casted
511 const Twine &Name, ///< The name for the instruction
512 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
513 );
514
515 /// Create a BitCast, AddrSpaceCast or a PtrToInt cast instruction.
516 static CastInst *CreatePointerCast(
517 Value *S, ///< The pointer value to be casted (operand 0)
518 Type *Ty, ///< The type to which cast should be made
519 const Twine &Name = "", ///< Name for the instruction
520 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
521 );
522
523 /// Create a BitCast or an AddrSpaceCast cast instruction.
524 static CastInst *CreatePointerBitCastOrAddrSpaceCast(
525 Value *S, ///< The pointer value to be casted (operand 0)
526 Type *Ty, ///< The type to which operand is casted
527 const Twine &Name, ///< The name for the instruction
528 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
529 );
530
531 /// Create a BitCast or an AddrSpaceCast cast instruction.
532 static CastInst *CreatePointerBitCastOrAddrSpaceCast(
533 Value *S, ///< The pointer value to be casted (operand 0)
534 Type *Ty, ///< The type to which cast should be made
535 const Twine &Name = "", ///< Name for the instruction
536 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
537 );
538
539 /// Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
540 ///
541 /// If the value is a pointer type and the destination an integer type,
542 /// creates a PtrToInt cast. If the value is an integer type and the
543 /// destination a pointer type, creates an IntToPtr cast. Otherwise, creates
544 /// a bitcast.
545 static CastInst *CreateBitOrPointerCast(
546 Value *S, ///< The pointer value to be casted (operand 0)
547 Type *Ty, ///< The type to which cast should be made
548 const Twine &Name = "", ///< Name for the instruction
549 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
550 );
551
552 /// Create a ZExt, BitCast, or Trunc for int -> int casts.
553 static CastInst *CreateIntegerCast(
554 Value *S, ///< The pointer value to be casted (operand 0)
555 Type *Ty, ///< The type to which cast should be made
556 bool isSigned, ///< Whether to regard S as signed or not
557 const Twine &Name = "", ///< Name for the instruction
558 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
559 );
560
561 /// Create a ZExt, BitCast, or Trunc for int -> int casts.
562 static CastInst *CreateIntegerCast(
563 Value *S, ///< The integer value to be casted (operand 0)
564 Type *Ty, ///< The integer type to which operand is casted
565 bool isSigned, ///< Whether to regard S as signed or not
566 const Twine &Name, ///< The name for the instruction
567 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
568 );
569
570 /// Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
571 static CastInst *CreateFPCast(
572 Value *S, ///< The floating point value to be casted
573 Type *Ty, ///< The floating point type to cast to
574 const Twine &Name = "", ///< Name for the instruction
575 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
576 );
577
578 /// Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
579 static CastInst *CreateFPCast(
580 Value *S, ///< The floating point value to be casted
581 Type *Ty, ///< The floating point type to cast to
582 const Twine &Name, ///< The name for the instruction
583 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
584 );
585
586 /// Create a Trunc or BitCast cast instruction
587 static CastInst *CreateTruncOrBitCast(
588 Value *S, ///< The value to be casted (operand 0)
589 Type *Ty, ///< The type to which cast should be made
590 const Twine &Name = "", ///< Name for the instruction
591 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
592 );
593
594 /// Create a Trunc or BitCast cast instruction
595 static CastInst *CreateTruncOrBitCast(
596 Value *S, ///< The value to be casted (operand 0)
597 Type *Ty, ///< The type to which operand is casted
598 const Twine &Name, ///< The name for the instruction
599 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
600 );
601
602 /// Check whether it is valid to call getCastOpcode for these types.
603 static bool isCastable(
604 Type *SrcTy, ///< The Type from which the value should be cast.
605 Type *DestTy ///< The Type to which the value should be cast.
606 );
607
608 /// Check whether a bitcast between these types is valid
609 static bool isBitCastable(
610 Type *SrcTy, ///< The Type from which the value should be cast.
611 Type *DestTy ///< The Type to which the value should be cast.
612 );
613
614 /// Check whether a bitcast, inttoptr, or ptrtoint cast between these
615 /// types is valid and a no-op.
616 ///
617 /// This ensures that any pointer<->integer cast has enough bits in the
618 /// integer and any other cast is a bitcast.
619 static bool isBitOrNoopPointerCastable(
620 Type *SrcTy, ///< The Type from which the value should be cast.
621 Type *DestTy, ///< The Type to which the value should be cast.
622 const DataLayout &DL);
623
624 /// Returns the opcode necessary to cast Val into Ty using usual casting
625 /// rules.
626 /// Infer the opcode for cast operand and type
627 static Instruction::CastOps getCastOpcode(
628 const Value *Val, ///< The value to cast
629 bool SrcIsSigned, ///< Whether to treat the source as signed
630 Type *Ty, ///< The Type to which the value should be casted
631 bool DstIsSigned ///< Whether to treate the dest. as signed
632 );
633
634 /// There are several places where we need to know if a cast instruction
635 /// only deals with integer source and destination types. To simplify that
636 /// logic, this method is provided.
637 /// @returns true iff the cast has only integral typed operand and dest type.
638 /// Determine if this is an integer-only cast.
639 bool isIntegerCast() const;
640
641 /// A lossless cast is one that does not alter the basic value. It implies
642 /// a no-op cast but is more stringent, preventing things like int->float,
643 /// long->double, or int->ptr.
644 /// @returns true iff the cast is lossless.
645 /// Determine if this is a lossless cast.
646 bool isLosslessCast() const;
647
648 /// A no-op cast is one that can be effected without changing any bits.
649 /// It implies that the source and destination types are the same size. The
650 /// DataLayout argument is to determine the pointer size when examining casts
651 /// involving Integer and Pointer types. They are no-op casts if the integer
652 /// is the same size as the pointer. However, pointer size varies with
653 /// platform.
654 /// Determine if the described cast is a no-op cast.
655 static bool isNoopCast(
656 Instruction::CastOps Opcode, ///< Opcode of cast
657 Type *SrcTy, ///< SrcTy of cast
658 Type *DstTy, ///< DstTy of cast
659 const DataLayout &DL ///< DataLayout to get the Int Ptr type from.
660 );
661
662 /// Determine if this cast is a no-op cast.
663 ///
664 /// \param DL is the DataLayout to determine pointer size.
665 bool isNoopCast(const DataLayout &DL) const;
666
667 /// Determine how a pair of casts can be eliminated, if they can be at all.
668 /// This is a helper function for both CastInst and ConstantExpr.
669 /// @returns 0 if the CastInst pair can't be eliminated, otherwise
670 /// returns Instruction::CastOps value for a cast that can replace
671 /// the pair, casting SrcTy to DstTy.
672 /// Determine if a cast pair is eliminable
673 static unsigned isEliminableCastPair(
674 Instruction::CastOps firstOpcode, ///< Opcode of first cast
675 Instruction::CastOps secondOpcode, ///< Opcode of second cast
676 Type *SrcTy, ///< SrcTy of 1st cast
677 Type *MidTy, ///< DstTy of 1st cast & SrcTy of 2nd cast
678 Type *DstTy, ///< DstTy of 2nd cast
679 Type *SrcIntPtrTy, ///< Integer type corresponding to Ptr SrcTy, or null
680 Type *MidIntPtrTy, ///< Integer type corresponding to Ptr MidTy, or null
681 Type *DstIntPtrTy ///< Integer type corresponding to Ptr DstTy, or null
682 );
683
684 /// Return the opcode of this CastInst
685 Instruction::CastOps getOpcode() const {
686 return Instruction::CastOps(Instruction::getOpcode());
687 }
688
689 /// Return the source type, as a convenience
690 Type* getSrcTy() const { return getOperand(0)->getType(); }
691 /// Return the destination type, as a convenience
692 Type* getDestTy() const { return getType(); }
693
694 /// This method can be used to determine if a cast from S to DstTy using
695 /// Opcode op is valid or not.
696 /// @returns true iff the proposed cast is valid.
697 /// Determine if a cast is valid without creating one.
698 static bool castIsValid(Instruction::CastOps op, Value *S, Type *DstTy);
699
700 /// Methods for support type inquiry through isa, cast, and dyn_cast:
701 static bool classof(const Instruction *I) {
702 return I->isCast();
703 }
704 static bool classof(const Value *V) {
705 return isa<Instruction>(V) && classof(cast<Instruction>(V));
706 }
707};
708
709//===----------------------------------------------------------------------===//
710// CmpInst Class
711//===----------------------------------------------------------------------===//
712
713/// This class is the base class for the comparison instructions.
714/// Abstract base class of comparison instructions.
715class CmpInst : public Instruction {
716public:
717 /// This enumeration lists the possible predicates for CmpInst subclasses.
718 /// Values in the range 0-31 are reserved for FCmpInst, while values in the
719 /// range 32-64 are reserved for ICmpInst. This is necessary to ensure the
720 /// predicate values are not overlapping between the classes.
721 ///
722 /// Some passes (e.g. InstCombine) depend on the bit-wise characteristics of
723 /// FCMP_* values. Changing the bit patterns requires a potential change to
724 /// those passes.
725 enum Predicate : unsigned {
726 // Opcode U L G E Intuitive operation
727 FCMP_FALSE = 0, ///< 0 0 0 0 Always false (always folded)
728 FCMP_OEQ = 1, ///< 0 0 0 1 True if ordered and equal
729 FCMP_OGT = 2, ///< 0 0 1 0 True if ordered and greater than
730 FCMP_OGE = 3, ///< 0 0 1 1 True if ordered and greater than or equal
731 FCMP_OLT = 4, ///< 0 1 0 0 True if ordered and less than
732 FCMP_OLE = 5, ///< 0 1 0 1 True if ordered and less than or equal
733 FCMP_ONE = 6, ///< 0 1 1 0 True if ordered and operands are unequal
734 FCMP_ORD = 7, ///< 0 1 1 1 True if ordered (no nans)
735 FCMP_UNO = 8, ///< 1 0 0 0 True if unordered: isnan(X) | isnan(Y)
736 FCMP_UEQ = 9, ///< 1 0 0 1 True if unordered or equal
737 FCMP_UGT = 10, ///< 1 0 1 0 True if unordered or greater than
738 FCMP_UGE = 11, ///< 1 0 1 1 True if unordered, greater than, or equal
739 FCMP_ULT = 12, ///< 1 1 0 0 True if unordered or less than
740 FCMP_ULE = 13, ///< 1 1 0 1 True if unordered, less than, or equal
741 FCMP_UNE = 14, ///< 1 1 1 0 True if unordered or not equal
742 FCMP_TRUE = 15, ///< 1 1 1 1 Always true (always folded)
743 FIRST_FCMP_PREDICATE = FCMP_FALSE,
744 LAST_FCMP_PREDICATE = FCMP_TRUE,
745 BAD_FCMP_PREDICATE = FCMP_TRUE + 1,
746 ICMP_EQ = 32, ///< equal
747 ICMP_NE = 33, ///< not equal
748 ICMP_UGT = 34, ///< unsigned greater than
749 ICMP_UGE = 35, ///< unsigned greater or equal
750 ICMP_ULT = 36, ///< unsigned less than
751 ICMP_ULE = 37, ///< unsigned less or equal
752 ICMP_SGT = 38, ///< signed greater than
753 ICMP_SGE = 39, ///< signed greater or equal
754 ICMP_SLT = 40, ///< signed less than
755 ICMP_SLE = 41, ///< signed less or equal
756 FIRST_ICMP_PREDICATE = ICMP_EQ,
757 LAST_ICMP_PREDICATE = ICMP_SLE,
758 BAD_ICMP_PREDICATE = ICMP_SLE + 1
759 };
760 using PredicateField =
761 Bitfield::Element<Predicate, 0, 6, LAST_ICMP_PREDICATE>;
762
763protected:
764 CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred,
765 Value *LHS, Value *RHS, const Twine &Name = "",
766 Instruction *InsertBefore = nullptr,
767 Instruction *FlagsSource = nullptr);
768
769 CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred,
770 Value *LHS, Value *RHS, const Twine &Name,
771 BasicBlock *InsertAtEnd);
772
773public:
774 // allocate space for exactly two operands
775 void *operator new(size_t s) {
776 return User::operator new(s, 2);
777 }
778
779 /// Construct a compare instruction, given the opcode, the predicate and
780 /// the two operands. Optionally (if InstBefore is specified) insert the
781 /// instruction into a BasicBlock right before the specified instruction.
782 /// The specified Instruction is allowed to be a dereferenced end iterator.
783 /// Create a CmpInst
784 static CmpInst *Create(OtherOps Op,
785 Predicate predicate, Value *S1,
786 Value *S2, const Twine &Name = "",
787 Instruction *InsertBefore = nullptr);
788
789 /// Construct a compare instruction, given the opcode, the predicate and the
790 /// two operands. Also automatically insert this instruction to the end of
791 /// the BasicBlock specified.
792 /// Create a CmpInst
793 static CmpInst *Create(OtherOps Op, Predicate predicate, Value *S1,
794 Value *S2, const Twine &Name, BasicBlock *InsertAtEnd);
795
796 /// Get the opcode casted to the right type
797 OtherOps getOpcode() const {
798 return static_cast<OtherOps>(Instruction::getOpcode());
799 }
800
801 /// Return the predicate for this instruction.
802 Predicate getPredicate() const { return getSubclassData<PredicateField>(); }
803
804 /// Set the predicate for this instruction to the specified value.
805 void setPredicate(Predicate P) { setSubclassData<PredicateField>(P); }
806
807 static bool isFPPredicate(Predicate P) {
808 assert(FIRST_FCMP_PREDICATE == 0 &&((FIRST_FCMP_PREDICATE == 0 && "FIRST_FCMP_PREDICATE is required to be 0"
) ? static_cast<void> (0) : __assert_fail ("FIRST_FCMP_PREDICATE == 0 && \"FIRST_FCMP_PREDICATE is required to be 0\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 809, __PRETTY_FUNCTION__))
809 "FIRST_FCMP_PREDICATE is required to be 0")((FIRST_FCMP_PREDICATE == 0 && "FIRST_FCMP_PREDICATE is required to be 0"
) ? static_cast<void> (0) : __assert_fail ("FIRST_FCMP_PREDICATE == 0 && \"FIRST_FCMP_PREDICATE is required to be 0\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 809, __PRETTY_FUNCTION__))
;
810 return P <= LAST_FCMP_PREDICATE;
811 }
812
813 static bool isIntPredicate(Predicate P) {
814 return P >= FIRST_ICMP_PREDICATE && P <= LAST_ICMP_PREDICATE;
815 }
816
817 static StringRef getPredicateName(Predicate P);
818
819 bool isFPPredicate() const { return isFPPredicate(getPredicate()); }
820 bool isIntPredicate() const { return isIntPredicate(getPredicate()); }
821
822 /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
823 /// OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
824 /// @returns the inverse predicate for the instruction's current predicate.
825 /// Return the inverse of the instruction's predicate.
826 Predicate getInversePredicate() const {
827 return getInversePredicate(getPredicate());
828 }
829
830 /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
831 /// OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
832 /// @returns the inverse predicate for predicate provided in \p pred.
833 /// Return the inverse of a given predicate
834 static Predicate getInversePredicate(Predicate pred);
835
836 /// For example, EQ->EQ, SLE->SGE, ULT->UGT,
837 /// OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
838 /// @returns the predicate that would be the result of exchanging the two
839 /// operands of the CmpInst instruction without changing the result
840 /// produced.
841 /// Return the predicate as if the operands were swapped
842 Predicate getSwappedPredicate() const {
843 return getSwappedPredicate(getPredicate());
844 }
845
846 /// This is a static version that you can use without an instruction
847 /// available.
848 /// Return the predicate as if the operands were swapped.
849 static Predicate getSwappedPredicate(Predicate pred);
850
851 /// For predicate of kind "is X or equal to 0" returns the predicate "is X".
852 /// For predicate of kind "is X" returns the predicate "is X or equal to 0".
853 /// does not support other kind of predicates.
854 /// @returns the predicate that does not contains is equal to zero if
855 /// it had and vice versa.
856 /// Return the flipped strictness of predicate
857 Predicate getFlippedStrictnessPredicate() const {
858 return getFlippedStrictnessPredicate(getPredicate());
859 }
860
861 /// This is a static version that you can use without an instruction
862 /// available.
863 /// Return the flipped strictness of predicate
864 static Predicate getFlippedStrictnessPredicate(Predicate pred);
865
866 /// For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
867 /// Returns the non-strict version of strict comparisons.
868 Predicate getNonStrictPredicate() const {
869 return getNonStrictPredicate(getPredicate());
870 }
871
872 /// This is a static version that you can use without an instruction
873 /// available.
874 /// @returns the non-strict version of comparison provided in \p pred.
875 /// If \p pred is not a strict comparison predicate, returns \p pred.
876 /// Returns the non-strict version of strict comparisons.
877 static Predicate getNonStrictPredicate(Predicate pred);
878
879 /// Provide more efficient getOperand methods.
880 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
881
882 /// This is just a convenience that dispatches to the subclasses.
883 /// Swap the operands and adjust predicate accordingly to retain
884 /// the same comparison.
885 void swapOperands();
886
887 /// This is just a convenience that dispatches to the subclasses.
888 /// Determine if this CmpInst is commutative.
889 bool isCommutative() const;
890
891 /// This is just a convenience that dispatches to the subclasses.
892 /// Determine if this is an equals/not equals predicate.
893 bool isEquality() const;
894
895 /// @returns true if the comparison is signed, false otherwise.
896 /// Determine if this instruction is using a signed comparison.
897 bool isSigned() const {
898 return isSigned(getPredicate());
899 }
900
901 /// @returns true if the comparison is unsigned, false otherwise.
902 /// Determine if this instruction is using an unsigned comparison.
903 bool isUnsigned() const {
904 return isUnsigned(getPredicate());
905 }
906
907 /// For example, ULT->SLT, ULE->SLE, UGT->SGT, UGE->SGE, SLT->Failed assert
908 /// @returns the signed version of the unsigned predicate pred.
909 /// return the signed version of a predicate
910 static Predicate getSignedPredicate(Predicate pred);
911
912 /// For example, ULT->SLT, ULE->SLE, UGT->SGT, UGE->SGE, SLT->Failed assert
913 /// @returns the signed version of the predicate for this instruction (which
914 /// has to be an unsigned predicate).
915 /// return the signed version of a predicate
916 Predicate getSignedPredicate() {
917 return getSignedPredicate(getPredicate());
918 }
919
920 /// This is just a convenience.
921 /// Determine if this is true when both operands are the same.
922 bool isTrueWhenEqual() const {
923 return isTrueWhenEqual(getPredicate());
924 }
925
926 /// This is just a convenience.
927 /// Determine if this is false when both operands are the same.
928 bool isFalseWhenEqual() const {
929 return isFalseWhenEqual(getPredicate());
930 }
931
932 /// @returns true if the predicate is unsigned, false otherwise.
933 /// Determine if the predicate is an unsigned operation.
934 static bool isUnsigned(Predicate predicate);
935
936 /// @returns true if the predicate is signed, false otherwise.
937 /// Determine if the predicate is an signed operation.
938 static bool isSigned(Predicate predicate);
939
940 /// Determine if the predicate is an ordered operation.
941 static bool isOrdered(Predicate predicate);
942
943 /// Determine if the predicate is an unordered operation.
944 static bool isUnordered(Predicate predicate);
945
946 /// Determine if the predicate is true when comparing a value with itself.
947 static bool isTrueWhenEqual(Predicate predicate);
948
949 /// Determine if the predicate is false when comparing a value with itself.
950 static bool isFalseWhenEqual(Predicate predicate);
951
952 /// Determine if Pred1 implies Pred2 is true when two compares have matching
953 /// operands.
954 static bool isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2);
955
956 /// Determine if Pred1 implies Pred2 is false when two compares have matching
957 /// operands.
958 static bool isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2);
959
960 /// Methods for support type inquiry through isa, cast, and dyn_cast:
961 static bool classof(const Instruction *I) {
962 return I->getOpcode() == Instruction::ICmp ||
963 I->getOpcode() == Instruction::FCmp;
964 }
965 static bool classof(const Value *V) {
966 return isa<Instruction>(V) && classof(cast<Instruction>(V));
967 }
968
969 /// Create a result type for fcmp/icmp
970 static Type* makeCmpResultType(Type* opnd_type) {
971 if (VectorType* vt = dyn_cast<VectorType>(opnd_type)) {
972 return VectorType::get(Type::getInt1Ty(opnd_type->getContext()),
973 vt->getElementCount());
974 }
975 return Type::getInt1Ty(opnd_type->getContext());
976 }
977
978private:
979 // Shadow Value::setValueSubclassData with a private forwarding method so that
980 // subclasses cannot accidentally use it.
981 void setValueSubclassData(unsigned short D) {
982 Value::setValueSubclassData(D);
983 }
984};
985
986// FIXME: these are redundant if CmpInst < BinaryOperator
987template <>
988struct OperandTraits<CmpInst> : public FixedNumOperandTraits<CmpInst, 2> {
989};
990
991DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CmpInst, Value)CmpInst::op_iterator CmpInst::op_begin() { return OperandTraits
<CmpInst>::op_begin(this); } CmpInst::const_op_iterator
CmpInst::op_begin() const { return OperandTraits<CmpInst>
::op_begin(const_cast<CmpInst*>(this)); } CmpInst::op_iterator
CmpInst::op_end() { return OperandTraits<CmpInst>::op_end
(this); } CmpInst::const_op_iterator CmpInst::op_end() const {
return OperandTraits<CmpInst>::op_end(const_cast<CmpInst
*>(this)); } Value *CmpInst::getOperand(unsigned i_nocapture
) const { ((i_nocapture < OperandTraits<CmpInst>::operands
(this) && "getOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CmpInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 991, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<CmpInst>::op_begin(const_cast<CmpInst
*>(this))[i_nocapture].get()); } void CmpInst::setOperand(
unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<CmpInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CmpInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 991, __PRETTY_FUNCTION__)); OperandTraits<CmpInst>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned CmpInst::getNumOperands
() const { return OperandTraits<CmpInst>::operands(this
); } template <int Idx_nocapture> Use &CmpInst::Op(
) { return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &CmpInst::Op() const
{ return this->OpFrom<Idx_nocapture>(this); }
992
993/// A lightweight accessor for an operand bundle meant to be passed
994/// around by value.
995struct OperandBundleUse {
996 ArrayRef<Use> Inputs;
997
998 OperandBundleUse() = default;
999 explicit OperandBundleUse(StringMapEntry<uint32_t> *Tag, ArrayRef<Use> Inputs)
1000 : Inputs(Inputs), Tag(Tag) {}
1001
1002 /// Return true if the operand at index \p Idx in this operand bundle
1003 /// has the attribute A.
1004 bool operandHasAttr(unsigned Idx, Attribute::AttrKind A) const {
1005 if (isDeoptOperandBundle())
1006 if (A == Attribute::ReadOnly || A == Attribute::NoCapture)
1007 return Inputs[Idx]->getType()->isPointerTy();
1008
1009 // Conservative answer: no operands have any attributes.
1010 return false;
1011 }
1012
1013 /// Return the tag of this operand bundle as a string.
1014 StringRef getTagName() const {
1015 return Tag->getKey();
1016 }
1017
1018 /// Return the tag of this operand bundle as an integer.
1019 ///
1020 /// Operand bundle tags are interned by LLVMContextImpl::getOrInsertBundleTag,
1021 /// and this function returns the unique integer getOrInsertBundleTag
1022 /// associated the tag of this operand bundle to.
1023 uint32_t getTagID() const {
1024 return Tag->getValue();
1025 }
1026
1027 /// Return true if this is a "deopt" operand bundle.
1028 bool isDeoptOperandBundle() const {
1029 return getTagID() == LLVMContext::OB_deopt;
1030 }
1031
1032 /// Return true if this is a "funclet" operand bundle.
1033 bool isFuncletOperandBundle() const {
1034 return getTagID() == LLVMContext::OB_funclet;
1035 }
1036
1037 /// Return true if this is a "cfguardtarget" operand bundle.
1038 bool isCFGuardTargetOperandBundle() const {
1039 return getTagID() == LLVMContext::OB_cfguardtarget;
1040 }
1041
1042private:
1043 /// Pointer to an entry in LLVMContextImpl::getOrInsertBundleTag.
1044 StringMapEntry<uint32_t> *Tag;
1045};
1046
1047/// A container for an operand bundle being viewed as a set of values
1048/// rather than a set of uses.
1049///
1050/// Unlike OperandBundleUse, OperandBundleDefT owns the memory it carries, and
1051/// so it is possible to create and pass around "self-contained" instances of
1052/// OperandBundleDef and ConstOperandBundleDef.
1053template <typename InputTy> class OperandBundleDefT {
1054 std::string Tag;
1055 std::vector<InputTy> Inputs;
1056
1057public:
1058 explicit OperandBundleDefT(std::string Tag, std::vector<InputTy> Inputs)
1059 : Tag(std::move(Tag)), Inputs(std::move(Inputs)) {}
1060 explicit OperandBundleDefT(std::string Tag, ArrayRef<InputTy> Inputs)
1061 : Tag(std::move(Tag)), Inputs(Inputs) {}
1062
1063 explicit OperandBundleDefT(const OperandBundleUse &OBU) {
1064 Tag = std::string(OBU.getTagName());
1065 Inputs.insert(Inputs.end(), OBU.Inputs.begin(), OBU.Inputs.end());
1066 }
1067
1068 ArrayRef<InputTy> inputs() const { return Inputs; }
1069
1070 using input_iterator = typename std::vector<InputTy>::const_iterator;
1071
1072 size_t input_size() const { return Inputs.size(); }
1073 input_iterator input_begin() const { return Inputs.begin(); }
1074 input_iterator input_end() const { return Inputs.end(); }
1075
1076 StringRef getTag() const { return Tag; }
1077};
1078
1079using OperandBundleDef = OperandBundleDefT<Value *>;
1080using ConstOperandBundleDef = OperandBundleDefT<const Value *>;
1081
1082//===----------------------------------------------------------------------===//
1083// CallBase Class
1084//===----------------------------------------------------------------------===//
1085
1086/// Base class for all callable instructions (InvokeInst and CallInst)
1087/// Holds everything related to calling a function.
1088///
1089/// All call-like instructions are required to use a common operand layout:
1090/// - Zero or more arguments to the call,
1091/// - Zero or more operand bundles with zero or more operand inputs each
1092/// bundle,
1093/// - Zero or more subclass controlled operands
1094/// - The called function.
1095///
1096/// This allows this base class to easily access the called function and the
1097/// start of the arguments without knowing how many other operands a particular
1098/// subclass requires. Note that accessing the end of the argument list isn't
1099/// as cheap as most other operations on the base class.
1100class CallBase : public Instruction {
1101protected:
1102 // The first two bits are reserved by CallInst for fast retrieval,
1103 using CallInstReservedField = Bitfield::Element<unsigned, 0, 2>;
1104 using CallingConvField =
1105 Bitfield::Element<CallingConv::ID, CallInstReservedField::NextBit, 10,
1106 CallingConv::MaxID>;
1107 static_assert(
1108 Bitfield::areContiguous<CallInstReservedField, CallingConvField>(),
1109 "Bitfields must be contiguous");
1110
1111 /// The last operand is the called operand.
1112 static constexpr int CalledOperandOpEndIdx = -1;
1113
1114 AttributeList Attrs; ///< parameter attributes for callable
1115 FunctionType *FTy;
1116
1117 template <class... ArgsTy>
1118 CallBase(AttributeList const &A, FunctionType *FT, ArgsTy &&... Args)
1119 : Instruction(std::forward<ArgsTy>(Args)...), Attrs(A), FTy(FT) {}
1120
1121 using Instruction::Instruction;
1122
1123 bool hasDescriptor() const { return Value::HasDescriptor; }
1124
1125 unsigned getNumSubclassExtraOperands() const {
1126 switch (getOpcode()) {
1127 case Instruction::Call:
1128 return 0;
1129 case Instruction::Invoke:
1130 return 2;
1131 case Instruction::CallBr:
1132 return getNumSubclassExtraOperandsDynamic();
1133 }
1134 llvm_unreachable("Invalid opcode!")::llvm::llvm_unreachable_internal("Invalid opcode!", "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1134)
;
1135 }
1136
1137 /// Get the number of extra operands for instructions that don't have a fixed
1138 /// number of extra operands.
1139 unsigned getNumSubclassExtraOperandsDynamic() const;
1140
1141public:
1142 using Instruction::getContext;
1143
1144 /// Create a clone of \p CB with a different set of operand bundles and
1145 /// insert it before \p InsertPt.
1146 ///
1147 /// The returned call instruction is identical \p CB in every way except that
1148 /// the operand bundles for the new instruction are set to the operand bundles
1149 /// in \p Bundles.
1150 static CallBase *Create(CallBase *CB, ArrayRef<OperandBundleDef> Bundles,
1151 Instruction *InsertPt = nullptr);
1152
1153 static bool classof(const Instruction *I) {
1154 return I->getOpcode() == Instruction::Call ||
1155 I->getOpcode() == Instruction::Invoke ||
1156 I->getOpcode() == Instruction::CallBr;
1157 }
1158 static bool classof(const Value *V) {
1159 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1160 }
1161
1162 FunctionType *getFunctionType() const { return FTy; }
1163
1164 void mutateFunctionType(FunctionType *FTy) {
1165 Value::mutateType(FTy->getReturnType());
1166 this->FTy = FTy;
1167 }
1168
1169 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1170
1171 /// data_operands_begin/data_operands_end - Return iterators iterating over
1172 /// the call / invoke argument list and bundle operands. For invokes, this is
1173 /// the set of instruction operands except the invoke target and the two
1174 /// successor blocks; and for calls this is the set of instruction operands
1175 /// except the call target.
1176 User::op_iterator data_operands_begin() { return op_begin(); }
1177 User::const_op_iterator data_operands_begin() const {
1178 return const_cast<CallBase *>(this)->data_operands_begin();
1179 }
1180 User::op_iterator data_operands_end() {
1181 // Walk from the end of the operands over the called operand and any
1182 // subclass operands.
1183 return op_end() - getNumSubclassExtraOperands() - 1;
1184 }
1185 User::const_op_iterator data_operands_end() const {
1186 return const_cast<CallBase *>(this)->data_operands_end();
1187 }
1188 iterator_range<User::op_iterator> data_ops() {
1189 return make_range(data_operands_begin(), data_operands_end());
1190 }
1191 iterator_range<User::const_op_iterator> data_ops() const {
1192 return make_range(data_operands_begin(), data_operands_end());
1193 }
1194 bool data_operands_empty() const {
1195 return data_operands_end() == data_operands_begin();
1196 }
1197 unsigned data_operands_size() const {
1198 return std::distance(data_operands_begin(), data_operands_end());
1199 }
1200
1201 bool isDataOperand(const Use *U) const {
1202 assert(this == U->getUser() &&((this == U->getUser() && "Only valid to query with a use of this instruction!"
) ? static_cast<void> (0) : __assert_fail ("this == U->getUser() && \"Only valid to query with a use of this instruction!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1203, __PRETTY_FUNCTION__))
1203 "Only valid to query with a use of this instruction!")((this == U->getUser() && "Only valid to query with a use of this instruction!"
) ? static_cast<void> (0) : __assert_fail ("this == U->getUser() && \"Only valid to query with a use of this instruction!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1203, __PRETTY_FUNCTION__))
;
1204 return data_operands_begin() <= U && U < data_operands_end();
1205 }
1206 bool isDataOperand(Value::const_user_iterator UI) const {
1207 return isDataOperand(&UI.getUse());
1208 }
1209
1210 /// Given a value use iterator, return the data operand corresponding to it.
1211 /// Iterator must actually correspond to a data operand.
1212 unsigned getDataOperandNo(Value::const_user_iterator UI) const {
1213 return getDataOperandNo(&UI.getUse());
1214 }
1215
1216 /// Given a use for a data operand, get the data operand number that
1217 /// corresponds to it.
1218 unsigned getDataOperandNo(const Use *U) const {
1219 assert(isDataOperand(U) && "Data operand # out of range!")((isDataOperand(U) && "Data operand # out of range!")
? static_cast<void> (0) : __assert_fail ("isDataOperand(U) && \"Data operand # out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1219, __PRETTY_FUNCTION__))
;
1220 return U - data_operands_begin();
1221 }
1222
1223 /// Return the iterator pointing to the beginning of the argument list.
1224 User::op_iterator arg_begin() { return op_begin(); }
1225 User::const_op_iterator arg_begin() const {
1226 return const_cast<CallBase *>(this)->arg_begin();
1227 }
1228
1229 /// Return the iterator pointing to the end of the argument list.
1230 User::op_iterator arg_end() {
1231 // From the end of the data operands, walk backwards past the bundle
1232 // operands.
1233 return data_operands_end() - getNumTotalBundleOperands();
1234 }
1235 User::const_op_iterator arg_end() const {
1236 return const_cast<CallBase *>(this)->arg_end();
1237 }
1238
1239 /// Iteration adapter for range-for loops.
1240 iterator_range<User::op_iterator> args() {
1241 return make_range(arg_begin(), arg_end());
1242 }
1243 iterator_range<User::const_op_iterator> args() const {
1244 return make_range(arg_begin(), arg_end());
1245 }
1246 bool arg_empty() const { return arg_end() == arg_begin(); }
1247 unsigned arg_size() const { return arg_end() - arg_begin(); }
1248
1249 // Legacy API names that duplicate the above and will be removed once users
1250 // are migrated.
1251 iterator_range<User::op_iterator> arg_operands() {
1252 return make_range(arg_begin(), arg_end());
1253 }
1254 iterator_range<User::const_op_iterator> arg_operands() const {
1255 return make_range(arg_begin(), arg_end());
1256 }
1257 unsigned getNumArgOperands() const { return arg_size(); }
1258
1259 Value *getArgOperand(unsigned i) const {
1260 assert(i < getNumArgOperands() && "Out of bounds!")((i < getNumArgOperands() && "Out of bounds!") ? static_cast
<void> (0) : __assert_fail ("i < getNumArgOperands() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1260, __PRETTY_FUNCTION__))
;
1261 return getOperand(i);
1262 }
1263
1264 void setArgOperand(unsigned i, Value *v) {
1265 assert(i < getNumArgOperands() && "Out of bounds!")((i < getNumArgOperands() && "Out of bounds!") ? static_cast
<void> (0) : __assert_fail ("i < getNumArgOperands() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1265, __PRETTY_FUNCTION__))
;
1266 setOperand(i, v);
1267 }
1268
1269 /// Wrappers for getting the \c Use of a call argument.
1270 const Use &getArgOperandUse(unsigned i) const {
1271 assert(i < getNumArgOperands() && "Out of bounds!")((i < getNumArgOperands() && "Out of bounds!") ? static_cast
<void> (0) : __assert_fail ("i < getNumArgOperands() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1271, __PRETTY_FUNCTION__))
;
1272 return User::getOperandUse(i);
1273 }
1274 Use &getArgOperandUse(unsigned i) {
1275 assert(i < getNumArgOperands() && "Out of bounds!")((i < getNumArgOperands() && "Out of bounds!") ? static_cast
<void> (0) : __assert_fail ("i < getNumArgOperands() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1275, __PRETTY_FUNCTION__))
;
1276 return User::getOperandUse(i);
1277 }
1278
1279 bool isArgOperand(const Use *U) const {
1280 assert(this == U->getUser() &&((this == U->getUser() && "Only valid to query with a use of this instruction!"
) ? static_cast<void> (0) : __assert_fail ("this == U->getUser() && \"Only valid to query with a use of this instruction!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1281, __PRETTY_FUNCTION__))
1281 "Only valid to query with a use of this instruction!")((this == U->getUser() && "Only valid to query with a use of this instruction!"
) ? static_cast<void> (0) : __assert_fail ("this == U->getUser() && \"Only valid to query with a use of this instruction!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1281, __PRETTY_FUNCTION__))
;
1282 return arg_begin() <= U && U < arg_end();
1283 }
1284 bool isArgOperand(Value::const_user_iterator UI) const {
1285 return isArgOperand(&UI.getUse());
1286 }
1287
1288 /// Given a use for a arg operand, get the arg operand number that
1289 /// corresponds to it.
1290 unsigned getArgOperandNo(const Use *U) const {
1291 assert(isArgOperand(U) && "Arg operand # out of range!")((isArgOperand(U) && "Arg operand # out of range!") ?
static_cast<void> (0) : __assert_fail ("isArgOperand(U) && \"Arg operand # out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1291, __PRETTY_FUNCTION__))
;
1292 return U - arg_begin();
1293 }
1294
1295 /// Given a value use iterator, return the arg operand number corresponding to
1296 /// it. Iterator must actually correspond to a data operand.
1297 unsigned getArgOperandNo(Value::const_user_iterator UI) const {
1298 return getArgOperandNo(&UI.getUse());
1299 }
1300
1301 /// Returns true if this CallSite passes the given Value* as an argument to
1302 /// the called function.
1303 bool hasArgument(const Value *V) const {
1304 return llvm::any_of(args(), [V](const Value *Arg) { return Arg == V; });
1305 }
1306
1307 Value *getCalledOperand() const { return Op<CalledOperandOpEndIdx>(); }
1308
1309 const Use &getCalledOperandUse() const { return Op<CalledOperandOpEndIdx>(); }
1310 Use &getCalledOperandUse() { return Op<CalledOperandOpEndIdx>(); }
1311
1312 /// Returns the function called, or null if this is an
1313 /// indirect function invocation.
1314 Function *getCalledFunction() const {
1315 return dyn_cast_or_null<Function>(getCalledOperand());
1316 }
1317
1318 /// Return true if the callsite is an indirect call.
1319 bool isIndirectCall() const;
1320
1321 /// Determine whether the passed iterator points to the callee operand's Use.
1322 bool isCallee(Value::const_user_iterator UI) const {
1323 return isCallee(&UI.getUse());
1324 }
1325
1326 /// Determine whether this Use is the callee operand's Use.
1327 bool isCallee(const Use *U) const { return &getCalledOperandUse() == U; }
1328
1329 /// Helper to get the caller (the parent function).
1330 Function *getCaller();
1331 const Function *getCaller() const {
1332 return const_cast<CallBase *>(this)->getCaller();
1333 }
1334
1335 /// Tests if this call site must be tail call optimized. Only a CallInst can
1336 /// be tail call optimized.
1337 bool isMustTailCall() const;
1338
1339 /// Tests if this call site is marked as a tail call.
1340 bool isTailCall() const;
1341
1342 /// Returns the intrinsic ID of the intrinsic called or
1343 /// Intrinsic::not_intrinsic if the called function is not an intrinsic, or if
1344 /// this is an indirect call.
1345 Intrinsic::ID getIntrinsicID() const;
1346
1347 void setCalledOperand(Value *V) { Op<CalledOperandOpEndIdx>() = V; }
1348
1349 /// Sets the function called, including updating the function type.
1350 void setCalledFunction(Function *Fn) {
1351 setCalledFunction(Fn->getFunctionType(), Fn);
1352 }
1353
1354 /// Sets the function called, including updating the function type.
1355 void setCalledFunction(FunctionCallee Fn) {
1356 setCalledFunction(Fn.getFunctionType(), Fn.getCallee());
1357 }
1358
1359 /// Sets the function called, including updating to the specified function
1360 /// type.
1361 void setCalledFunction(FunctionType *FTy, Value *Fn) {
1362 this->FTy = FTy;
1363 assert(FTy == cast<FunctionType>(((FTy == cast<FunctionType>( cast<PointerType>(Fn
->getType())->getElementType())) ? static_cast<void>
(0) : __assert_fail ("FTy == cast<FunctionType>( cast<PointerType>(Fn->getType())->getElementType())"
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1364, __PRETTY_FUNCTION__))
1364 cast<PointerType>(Fn->getType())->getElementType()))((FTy == cast<FunctionType>( cast<PointerType>(Fn
->getType())->getElementType())) ? static_cast<void>
(0) : __assert_fail ("FTy == cast<FunctionType>( cast<PointerType>(Fn->getType())->getElementType())"
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1364, __PRETTY_FUNCTION__))
;
1365 // This function doesn't mutate the return type, only the function
1366 // type. Seems broken, but I'm just gonna stick an assert in for now.
1367 assert(getType() == FTy->getReturnType())((getType() == FTy->getReturnType()) ? static_cast<void
> (0) : __assert_fail ("getType() == FTy->getReturnType()"
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1367, __PRETTY_FUNCTION__))
;
1368 setCalledOperand(Fn);
1369 }
1370
1371 CallingConv::ID getCallingConv() const {
1372 return getSubclassData<CallingConvField>();
1373 }
1374
1375 void setCallingConv(CallingConv::ID CC) {
1376 setSubclassData<CallingConvField>(CC);
1377 }
1378
1379 /// Check if this call is an inline asm statement.
1380 bool isInlineAsm() const { return isa<InlineAsm>(getCalledOperand()); }
1381
1382 /// \name Attribute API
1383 ///
1384 /// These methods access and modify attributes on this call (including
1385 /// looking through to the attributes on the called function when necessary).
1386 ///@{
1387
1388 /// Return the parameter attributes for this call.
1389 ///
1390 AttributeList getAttributes() const { return Attrs; }
1391
1392 /// Set the parameter attributes for this call.
1393 ///
1394 void setAttributes(AttributeList A) { Attrs = A; }
1395
1396 /// Determine whether this call has the given attribute. If it does not
1397 /// then determine if the called function has the attribute, but only if
1398 /// the attribute is allowed for the call.
1399 bool hasFnAttr(Attribute::AttrKind Kind) const {
1400 assert(Kind != Attribute::NoBuiltin &&((Kind != Attribute::NoBuiltin && "Use CallBase::isNoBuiltin() to check for Attribute::NoBuiltin"
) ? static_cast<void> (0) : __assert_fail ("Kind != Attribute::NoBuiltin && \"Use CallBase::isNoBuiltin() to check for Attribute::NoBuiltin\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1401, __PRETTY_FUNCTION__))
1401 "Use CallBase::isNoBuiltin() to check for Attribute::NoBuiltin")((Kind != Attribute::NoBuiltin && "Use CallBase::isNoBuiltin() to check for Attribute::NoBuiltin"
) ? static_cast<void> (0) : __assert_fail ("Kind != Attribute::NoBuiltin && \"Use CallBase::isNoBuiltin() to check for Attribute::NoBuiltin\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1401, __PRETTY_FUNCTION__))
;
1402 return hasFnAttrImpl(Kind);
1403 }
1404
1405 /// Determine whether this call has the given attribute. If it does not
1406 /// then determine if the called function has the attribute, but only if
1407 /// the attribute is allowed for the call.
1408 bool hasFnAttr(StringRef Kind) const { return hasFnAttrImpl(Kind); }
1409
1410 /// adds the attribute to the list of attributes.
1411 void addAttribute(unsigned i, Attribute::AttrKind Kind) {
1412 AttributeList PAL = getAttributes();
1413 PAL = PAL.addAttribute(getContext(), i, Kind);
1414 setAttributes(PAL);
1415 }
1416
1417 /// adds the attribute to the list of attributes.
1418 void addAttribute(unsigned i, Attribute Attr) {
1419 AttributeList PAL = getAttributes();
1420 PAL = PAL.addAttribute(getContext(), i, Attr);
1421 setAttributes(PAL);
1422 }
1423
1424 /// Adds the attribute to the indicated argument
1425 void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
1426 assert(ArgNo < getNumArgOperands() && "Out of bounds")((ArgNo < getNumArgOperands() && "Out of bounds") ?
static_cast<void> (0) : __assert_fail ("ArgNo < getNumArgOperands() && \"Out of bounds\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1426, __PRETTY_FUNCTION__))
;
1427 AttributeList PAL = getAttributes();
1428 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
1429 setAttributes(PAL);
1430 }
1431
1432 /// Adds the attribute to the indicated argument
1433 void addParamAttr(unsigned ArgNo, Attribute Attr) {
1434 assert(ArgNo < getNumArgOperands() && "Out of bounds")((ArgNo < getNumArgOperands() && "Out of bounds") ?
static_cast<void> (0) : __assert_fail ("ArgNo < getNumArgOperands() && \"Out of bounds\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1434, __PRETTY_FUNCTION__))
;
1435 AttributeList PAL = getAttributes();
1436 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
1437 setAttributes(PAL);
1438 }
1439
1440 /// removes the attribute from the list of attributes.
1441 void removeAttribute(unsigned i, Attribute::AttrKind Kind) {
1442 AttributeList PAL = getAttributes();
1443 PAL = PAL.removeAttribute(getContext(), i, Kind);
1444 setAttributes(PAL);
1445 }
1446
1447 /// removes the attribute from the list of attributes.
1448 void removeAttribute(unsigned i, StringRef Kind) {
1449 AttributeList PAL = getAttributes();
1450 PAL = PAL.removeAttribute(getContext(), i, Kind);
1451 setAttributes(PAL);
1452 }
1453
1454 void removeAttributes(unsigned i, const AttrBuilder &Attrs) {
1455 AttributeList PAL = getAttributes();
1456 PAL = PAL.removeAttributes(getContext(), i, Attrs);
1457 setAttributes(PAL);
1458 }
1459
1460 /// Removes the attribute from the given argument
1461 void removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
1462 assert(ArgNo < getNumArgOperands() && "Out of bounds")((ArgNo < getNumArgOperands() && "Out of bounds") ?
static_cast<void> (0) : __assert_fail ("ArgNo < getNumArgOperands() && \"Out of bounds\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1462, __PRETTY_FUNCTION__))
;
1463 AttributeList PAL = getAttributes();
1464 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
1465 setAttributes(PAL);
1466 }
1467
1468 /// Removes the attribute from the given argument
1469 void removeParamAttr(unsigned ArgNo, StringRef Kind) {
1470 assert(ArgNo < getNumArgOperands() && "Out of bounds")((ArgNo < getNumArgOperands() && "Out of bounds") ?
static_cast<void> (0) : __assert_fail ("ArgNo < getNumArgOperands() && \"Out of bounds\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1470, __PRETTY_FUNCTION__))
;
1471 AttributeList PAL = getAttributes();
1472 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
1473 setAttributes(PAL);
1474 }
1475
1476 /// adds the dereferenceable attribute to the list of attributes.
1477 void addDereferenceableAttr(unsigned i, uint64_t Bytes) {
1478 AttributeList PAL = getAttributes();
1479 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
1480 setAttributes(PAL);
1481 }
1482
1483 /// adds the dereferenceable_or_null attribute to the list of
1484 /// attributes.
1485 void addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
1486 AttributeList PAL = getAttributes();
1487 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
1488 setAttributes(PAL);
1489 }
1490
1491 /// Determine whether the return value has the given attribute.
1492 bool hasRetAttr(Attribute::AttrKind Kind) const;
1493
1494 /// Determine whether the argument or parameter has the given attribute.
1495 bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const;
1496
1497 /// Get the attribute of a given kind at a position.
1498 Attribute getAttribute(unsigned i, Attribute::AttrKind Kind) const {
1499 return getAttributes().getAttribute(i, Kind);
1500 }
1501
1502 /// Get the attribute of a given kind at a position.
1503 Attribute getAttribute(unsigned i, StringRef Kind) const {
1504 return getAttributes().getAttribute(i, Kind);
1505 }
1506
1507 /// Get the attribute of a given kind from a given arg
1508 Attribute getParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
1509 assert(ArgNo < getNumArgOperands() && "Out of bounds")((ArgNo < getNumArgOperands() && "Out of bounds") ?
static_cast<void> (0) : __assert_fail ("ArgNo < getNumArgOperands() && \"Out of bounds\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1509, __PRETTY_FUNCTION__))
;
1510 return getAttributes().getParamAttr(ArgNo, Kind);
1511 }
1512
1513 /// Get the attribute of a given kind from a given arg
1514 Attribute getParamAttr(unsigned ArgNo, StringRef Kind) const {
1515 assert(ArgNo < getNumArgOperands() && "Out of bounds")((ArgNo < getNumArgOperands() && "Out of bounds") ?
static_cast<void> (0) : __assert_fail ("ArgNo < getNumArgOperands() && \"Out of bounds\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1515, __PRETTY_FUNCTION__))
;
1516 return getAttributes().getParamAttr(ArgNo, Kind);
1517 }
1518
1519 /// Return true if the data operand at index \p i has the attribute \p
1520 /// A.
1521 ///
1522 /// Data operands include call arguments and values used in operand bundles,
1523 /// but does not include the callee operand. This routine dispatches to the
1524 /// underlying AttributeList or the OperandBundleUser as appropriate.
1525 ///
1526 /// The index \p i is interpreted as
1527 ///
1528 /// \p i == Attribute::ReturnIndex -> the return value
1529 /// \p i in [1, arg_size + 1) -> argument number (\p i - 1)
1530 /// \p i in [arg_size + 1, data_operand_size + 1) -> bundle operand at index
1531 /// (\p i - 1) in the operand list.
1532 bool dataOperandHasImpliedAttr(unsigned i, Attribute::AttrKind Kind) const {
1533 // Note that we have to add one because `i` isn't zero-indexed.
1534 assert(i < (getNumArgOperands() + getNumTotalBundleOperands() + 1) &&((i < (getNumArgOperands() + getNumTotalBundleOperands() +
1) && "Data operand index out of bounds!") ? static_cast
<void> (0) : __assert_fail ("i < (getNumArgOperands() + getNumTotalBundleOperands() + 1) && \"Data operand index out of bounds!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1535, __PRETTY_FUNCTION__))
1535 "Data operand index out of bounds!")((i < (getNumArgOperands() + getNumTotalBundleOperands() +
1) && "Data operand index out of bounds!") ? static_cast
<void> (0) : __assert_fail ("i < (getNumArgOperands() + getNumTotalBundleOperands() + 1) && \"Data operand index out of bounds!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1535, __PRETTY_FUNCTION__))
;
1536
1537 // The attribute A can either be directly specified, if the operand in
1538 // question is a call argument; or be indirectly implied by the kind of its
1539 // containing operand bundle, if the operand is a bundle operand.
1540
1541 if (i == AttributeList::ReturnIndex)
1542 return hasRetAttr(Kind);
1543
1544 // FIXME: Avoid these i - 1 calculations and update the API to use
1545 // zero-based indices.
1546 if (i < (getNumArgOperands() + 1))
1547 return paramHasAttr(i - 1, Kind);
1548
1549 assert(hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) &&((hasOperandBundles() && i >= (getBundleOperandsStartIndex
() + 1) && "Must be either a call argument or an operand bundle!"
) ? static_cast<void> (0) : __assert_fail ("hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) && \"Must be either a call argument or an operand bundle!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1550, __PRETTY_FUNCTION__))
1550 "Must be either a call argument or an operand bundle!")((hasOperandBundles() && i >= (getBundleOperandsStartIndex
() + 1) && "Must be either a call argument or an operand bundle!"
) ? static_cast<void> (0) : __assert_fail ("hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) && \"Must be either a call argument or an operand bundle!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1550, __PRETTY_FUNCTION__))
;
1551 return bundleOperandHasAttr(i - 1, Kind);
1552 }
1553
1554 /// Determine whether this data operand is not captured.
1555 // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to
1556 // better indicate that this may return a conservative answer.
1557 bool doesNotCapture(unsigned OpNo) const {
1558 return dataOperandHasImpliedAttr(OpNo + 1, Attribute::NoCapture);
1559 }
1560
1561 /// Determine whether this argument is passed by value.
1562 bool isByValArgument(unsigned ArgNo) const {
1563 return paramHasAttr(ArgNo, Attribute::ByVal);
1564 }
1565
1566 /// Determine whether this argument is passed in an alloca.
1567 bool isInAllocaArgument(unsigned ArgNo) const {
1568 return paramHasAttr(ArgNo, Attribute::InAlloca);
1569 }
1570
1571 /// Determine whether this argument is passed by value, in an alloca, or is
1572 /// preallocated.
1573 bool isPassPointeeByValueArgument(unsigned ArgNo) const {
1574 return paramHasAttr(ArgNo, Attribute::ByVal) ||
1575 paramHasAttr(ArgNo, Attribute::InAlloca) ||
1576 paramHasAttr(ArgNo, Attribute::Preallocated);
1577 }
1578
1579 /// Determine if there are is an inalloca argument. Only the last argument can
1580 /// have the inalloca attribute.
1581 bool hasInAllocaArgument() const {
1582 return !arg_empty() && paramHasAttr(arg_size() - 1, Attribute::InAlloca);
1583 }
1584
1585 // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to
1586 // better indicate that this may return a conservative answer.
1587 bool doesNotAccessMemory(unsigned OpNo) const {
1588 return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
1589 }
1590
1591 // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to
1592 // better indicate that this may return a conservative answer.
1593 bool onlyReadsMemory(unsigned OpNo) const {
1594 return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadOnly) ||
1595 dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
1596 }
1597
1598 // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to
1599 // better indicate that this may return a conservative answer.
1600 bool doesNotReadMemory(unsigned OpNo) const {
1601 return dataOperandHasImpliedAttr(OpNo + 1, Attribute::WriteOnly) ||
1602 dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
1603 }
1604
1605 LLVM_ATTRIBUTE_DEPRECATED(unsigned getRetAlignment() const,unsigned getRetAlignment() const __attribute__((deprecated("Use getRetAlign() instead"
)))
1606 "Use getRetAlign() instead")unsigned getRetAlignment() const __attribute__((deprecated("Use getRetAlign() instead"
)))
{
1607 if (const auto MA = Attrs.getRetAlignment())
1608 return MA->value();
1609 return 0;
1610 }
1611
1612 /// Extract the alignment of the return value.
1613 MaybeAlign getRetAlign() const { return Attrs.getRetAlignment(); }
1614
1615 /// Extract the alignment for a call or parameter (0=unknown).
1616 LLVM_ATTRIBUTE_DEPRECATED(unsigned getParamAlignment(unsigned ArgNo) const,unsigned getParamAlignment(unsigned ArgNo) const __attribute__
((deprecated("Use getParamAlign() instead")))
1617 "Use getParamAlign() instead")unsigned getParamAlignment(unsigned ArgNo) const __attribute__
((deprecated("Use getParamAlign() instead")))
{
1618 if (const auto MA = Attrs.getParamAlignment(ArgNo))
1619 return MA->value();
1620 return 0;
1621 }
1622
1623 /// Extract the alignment for a call or parameter (0=unknown).
1624 MaybeAlign getParamAlign(unsigned ArgNo) const {
1625 return Attrs.getParamAlignment(ArgNo);
1626 }
1627
1628 /// Extract the byval type for a call or parameter.
1629 Type *getParamByValType(unsigned ArgNo) const {
1630 Type *Ty = Attrs.getParamByValType(ArgNo);
1631 return Ty ? Ty : getArgOperand(ArgNo)->getType()->getPointerElementType();
1632 }
1633
1634 /// Extract the preallocated type for a call or parameter.
1635 Type *getParamPreallocatedType(unsigned ArgNo) const {
1636 Type *Ty = Attrs.getParamPreallocatedType(ArgNo);
1637 return Ty ? Ty : getArgOperand(ArgNo)->getType()->getPointerElementType();
1638 }
1639
1640 /// Extract the number of dereferenceable bytes for a call or
1641 /// parameter (0=unknown).
1642 uint64_t getDereferenceableBytes(unsigned i) const {
1643 return Attrs.getDereferenceableBytes(i);
1644 }
1645
1646 /// Extract the number of dereferenceable_or_null bytes for a call or
1647 /// parameter (0=unknown).
1648 uint64_t getDereferenceableOrNullBytes(unsigned i) const {
1649 return Attrs.getDereferenceableOrNullBytes(i);
1650 }
1651
1652 /// Return true if the return value is known to be not null.
1653 /// This may be because it has the nonnull attribute, or because at least
1654 /// one byte is dereferenceable and the pointer is in addrspace(0).
1655 bool isReturnNonNull() const;
1656
1657 /// Determine if the return value is marked with NoAlias attribute.
1658 bool returnDoesNotAlias() const {
1659 return Attrs.hasAttribute(AttributeList::ReturnIndex, Attribute::NoAlias);
1660 }
1661
1662 /// If one of the arguments has the 'returned' attribute, returns its
1663 /// operand value. Otherwise, return nullptr.
1664 Value *getReturnedArgOperand() const;
1665
1666 /// Return true if the call should not be treated as a call to a
1667 /// builtin.
1668 bool isNoBuiltin() const {
1669 return hasFnAttrImpl(Attribute::NoBuiltin) &&
1670 !hasFnAttrImpl(Attribute::Builtin);
1671 }
1672
1673 /// Determine if the call requires strict floating point semantics.
1674 bool isStrictFP() const { return hasFnAttr(Attribute::StrictFP); }
1675
1676 /// Return true if the call should not be inlined.
1677 bool isNoInline() const { return hasFnAttr(Attribute::NoInline); }
1678 void setIsNoInline() {
1679 addAttribute(AttributeList::FunctionIndex, Attribute::NoInline);
1680 }
1681 /// Determine if the call does not access memory.
1682 bool doesNotAccessMemory() const { return hasFnAttr(Attribute::ReadNone); }
1683 void setDoesNotAccessMemory() {
1684 addAttribute(AttributeList::FunctionIndex, Attribute::ReadNone);
1685 }
1686
1687 /// Determine if the call does not access or only reads memory.
1688 bool onlyReadsMemory() const {
1689 return doesNotAccessMemory() || hasFnAttr(Attribute::ReadOnly);
1690 }
1691 void setOnlyReadsMemory() {
1692 addAttribute(AttributeList::FunctionIndex, Attribute::ReadOnly);
1693 }
1694
1695 /// Determine if the call does not access or only writes memory.
1696 bool doesNotReadMemory() const {
1697 return doesNotAccessMemory() || hasFnAttr(Attribute::WriteOnly);
1698 }
1699 void setDoesNotReadMemory() {
1700 addAttribute(AttributeList::FunctionIndex, Attribute::WriteOnly);
1701 }
1702
1703 /// Determine if the call can access memmory only using pointers based
1704 /// on its arguments.
1705 bool onlyAccessesArgMemory() const {
1706 return hasFnAttr(Attribute::ArgMemOnly);
1707 }
1708 void setOnlyAccessesArgMemory() {
1709 addAttribute(AttributeList::FunctionIndex, Attribute::ArgMemOnly);
1710 }
1711
1712 /// Determine if the function may only access memory that is
1713 /// inaccessible from the IR.
1714 bool onlyAccessesInaccessibleMemory() const {
1715 return hasFnAttr(Attribute::InaccessibleMemOnly);
1716 }
1717 void setOnlyAccessesInaccessibleMemory() {
1718 addAttribute(AttributeList::FunctionIndex, Attribute::InaccessibleMemOnly);
1719 }
1720
1721 /// Determine if the function may only access memory that is
1722 /// either inaccessible from the IR or pointed to by its arguments.
1723 bool onlyAccessesInaccessibleMemOrArgMem() const {
1724 return hasFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
1725 }
1726 void setOnlyAccessesInaccessibleMemOrArgMem() {
1727 addAttribute(AttributeList::FunctionIndex,
1728 Attribute::InaccessibleMemOrArgMemOnly);
1729 }
1730 /// Determine if the call cannot return.
1731 bool doesNotReturn() const { return hasFnAttr(Attribute::NoReturn); }
1732 void setDoesNotReturn() {
1733 addAttribute(AttributeList::FunctionIndex, Attribute::NoReturn);
1734 }
1735
1736 /// Determine if the call should not perform indirect branch tracking.
1737 bool doesNoCfCheck() const { return hasFnAttr(Attribute::NoCfCheck); }
1738
1739 /// Determine if the call cannot unwind.
1740 bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); }
1741 void setDoesNotThrow() {
1742 addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind);
1743 }
1744
1745 /// Determine if the invoke cannot be duplicated.
1746 bool cannotDuplicate() const { return hasFnAttr(Attribute::NoDuplicate); }
1747 void setCannotDuplicate() {
1748 addAttribute(AttributeList::FunctionIndex, Attribute::NoDuplicate);
1749 }
1750
1751 /// Determine if the call cannot be tail merged.
1752 bool cannotMerge() const { return hasFnAttr(Attribute::NoMerge); }
1753 void setCannotMerge() {
1754 addAttribute(AttributeList::FunctionIndex, Attribute::NoMerge);
1755 }
1756
1757 /// Determine if the invoke is convergent
1758 bool isConvergent() const { return hasFnAttr(Attribute::Convergent); }
1759 void setConvergent() {
1760 addAttribute(AttributeList::FunctionIndex, Attribute::Convergent);
1761 }
1762 void setNotConvergent() {
1763 removeAttribute(AttributeList::FunctionIndex, Attribute::Convergent);
1764 }
1765
1766 /// Determine if the call returns a structure through first
1767 /// pointer argument.
1768 bool hasStructRetAttr() const {
1769 if (getNumArgOperands() == 0)
1770 return false;
1771
1772 // Be friendly and also check the callee.
1773 return paramHasAttr(0, Attribute::StructRet);
1774 }
1775
1776 /// Determine if any call argument is an aggregate passed by value.
1777 bool hasByValArgument() const {
1778 return Attrs.hasAttrSomewhere(Attribute::ByVal);
1779 }
1780
1781 ///@{
1782 // End of attribute API.
1783
1784 /// \name Operand Bundle API
1785 ///
1786 /// This group of methods provides the API to access and manipulate operand
1787 /// bundles on this call.
1788 /// @{
1789
1790 /// Return the number of operand bundles associated with this User.
1791 unsigned getNumOperandBundles() const {
1792 return std::distance(bundle_op_info_begin(), bundle_op_info_end());
1793 }
1794
1795 /// Return true if this User has any operand bundles.
1796 bool hasOperandBundles() const { return getNumOperandBundles() != 0; }
1797
1798 /// Return the index of the first bundle operand in the Use array.
1799 unsigned getBundleOperandsStartIndex() const {
1800 assert(hasOperandBundles() && "Don't call otherwise!")((hasOperandBundles() && "Don't call otherwise!") ? static_cast
<void> (0) : __assert_fail ("hasOperandBundles() && \"Don't call otherwise!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1800, __PRETTY_FUNCTION__))
;
1801 return bundle_op_info_begin()->Begin;
1802 }
1803
1804 /// Return the index of the last bundle operand in the Use array.
1805 unsigned getBundleOperandsEndIndex() const {
1806 assert(hasOperandBundles() && "Don't call otherwise!")((hasOperandBundles() && "Don't call otherwise!") ? static_cast
<void> (0) : __assert_fail ("hasOperandBundles() && \"Don't call otherwise!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1806, __PRETTY_FUNCTION__))
;
1807 return bundle_op_info_end()[-1].End;
1808 }
1809
1810 /// Return true if the operand at index \p Idx is a bundle operand.
1811 bool isBundleOperand(unsigned Idx) const {
1812 return hasOperandBundles() && Idx >= getBundleOperandsStartIndex() &&
1813 Idx < getBundleOperandsEndIndex();
1814 }
1815
1816 /// Returns true if the use is a bundle operand.
1817 bool isBundleOperand(const Use *U) const {
1818 assert(this == U->getUser() &&((this == U->getUser() && "Only valid to query with a use of this instruction!"
) ? static_cast<void> (0) : __assert_fail ("this == U->getUser() && \"Only valid to query with a use of this instruction!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1819, __PRETTY_FUNCTION__))
1819 "Only valid to query with a use of this instruction!")((this == U->getUser() && "Only valid to query with a use of this instruction!"
) ? static_cast<void> (0) : __assert_fail ("this == U->getUser() && \"Only valid to query with a use of this instruction!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1819, __PRETTY_FUNCTION__))
;
1820 return hasOperandBundles() && isBundleOperand(U - op_begin());
1821 }
1822 bool isBundleOperand(Value::const_user_iterator UI) const {
1823 return isBundleOperand(&UI.getUse());
1824 }
1825
1826 /// Return the total number operands (not operand bundles) used by
1827 /// every operand bundle in this OperandBundleUser.
1828 unsigned getNumTotalBundleOperands() const {
1829 if (!hasOperandBundles())
1830 return 0;
1831
1832 unsigned Begin = getBundleOperandsStartIndex();
1833 unsigned End = getBundleOperandsEndIndex();
1834
1835 assert(Begin <= End && "Should be!")((Begin <= End && "Should be!") ? static_cast<void
> (0) : __assert_fail ("Begin <= End && \"Should be!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1835, __PRETTY_FUNCTION__))
;
1836 return End - Begin;
1837 }
1838
1839 /// Return the operand bundle at a specific index.
1840 OperandBundleUse getOperandBundleAt(unsigned Index) const {
1841 assert(Index < getNumOperandBundles() && "Index out of bounds!")((Index < getNumOperandBundles() && "Index out of bounds!"
) ? static_cast<void> (0) : __assert_fail ("Index < getNumOperandBundles() && \"Index out of bounds!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1841, __PRETTY_FUNCTION__))
;
1842 return operandBundleFromBundleOpInfo(*(bundle_op_info_begin() + Index));
1843 }
1844
1845 /// Return the number of operand bundles with the tag Name attached to
1846 /// this instruction.
1847 unsigned countOperandBundlesOfType(StringRef Name) const {
1848 unsigned Count = 0;
1849 for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
1850 if (getOperandBundleAt(i).getTagName() == Name)
1851 Count++;
1852
1853 return Count;
1854 }
1855
1856 /// Return the number of operand bundles with the tag ID attached to
1857 /// this instruction.
1858 unsigned countOperandBundlesOfType(uint32_t ID) const {
1859 unsigned Count = 0;
1860 for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
1861 if (getOperandBundleAt(i).getTagID() == ID)
1862 Count++;
1863
1864 return Count;
1865 }
1866
1867 /// Return an operand bundle by name, if present.
1868 ///
1869 /// It is an error to call this for operand bundle types that may have
1870 /// multiple instances of them on the same instruction.
1871 Optional<OperandBundleUse> getOperandBundle(StringRef Name) const {
1872 assert(countOperandBundlesOfType(Name) < 2 && "Precondition violated!")((countOperandBundlesOfType(Name) < 2 && "Precondition violated!"
) ? static_cast<void> (0) : __assert_fail ("countOperandBundlesOfType(Name) < 2 && \"Precondition violated!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1872, __PRETTY_FUNCTION__))
;
1873
1874 for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) {
1875 OperandBundleUse U = getOperandBundleAt(i);
1876 if (U.getTagName() == Name)
1877 return U;
1878 }
1879
1880 return None;
1881 }
1882
1883 /// Return an operand bundle by tag ID, if present.
1884 ///
1885 /// It is an error to call this for operand bundle types that may have
1886 /// multiple instances of them on the same instruction.
1887 Optional<OperandBundleUse> getOperandBundle(uint32_t ID) const {
1888 assert(countOperandBundlesOfType(ID) < 2 && "Precondition violated!")((countOperandBundlesOfType(ID) < 2 && "Precondition violated!"
) ? static_cast<void> (0) : __assert_fail ("countOperandBundlesOfType(ID) < 2 && \"Precondition violated!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 1888, __PRETTY_FUNCTION__))
;
1889
1890 for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) {
1891 OperandBundleUse U = getOperandBundleAt(i);
1892 if (U.getTagID() == ID)
1893 return U;
1894 }
1895
1896 return None;
1897 }
1898
1899 /// Return the list of operand bundles attached to this instruction as
1900 /// a vector of OperandBundleDefs.
1901 ///
1902 /// This function copies the OperandBundeUse instances associated with this
1903 /// OperandBundleUser to a vector of OperandBundleDefs. Note:
1904 /// OperandBundeUses and OperandBundleDefs are non-trivially *different*
1905 /// representations of operand bundles (see documentation above).
1906 void getOperandBundlesAsDefs(SmallVectorImpl<OperandBundleDef> &Defs) const;
1907
1908 /// Return the operand bundle for the operand at index OpIdx.
1909 ///
1910 /// It is an error to call this with an OpIdx that does not correspond to an
1911 /// bundle operand.
1912 OperandBundleUse getOperandBundleForOperand(unsigned OpIdx) const {
1913 return operandBundleFromBundleOpInfo(getBundleOpInfoForOperand(OpIdx));
1914 }
1915
1916 /// Return true if this operand bundle user has operand bundles that
1917 /// may read from the heap.
1918 bool hasReadingOperandBundles() const {
1919 // Implementation note: this is a conservative implementation of operand
1920 // bundle semantics, where *any* operand bundle forces a callsite to be at
1921 // least readonly.
1922 return hasOperandBundles();
1923 }
1924
1925 /// Return true if this operand bundle user has operand bundles that
1926 /// may write to the heap.
1927 bool hasClobberingOperandBundles() const {
1928 for (auto &BOI : bundle_op_infos()) {
1929 if (BOI.Tag->second == LLVMContext::OB_deopt ||
1930 BOI.Tag->second == LLVMContext::OB_funclet)
1931 continue;
1932
1933 // This instruction has an operand bundle that is not known to us.
1934 // Assume the worst.
1935 return true;
1936 }
1937
1938 return false;
1939 }
1940
1941 /// Return true if the bundle operand at index \p OpIdx has the
1942 /// attribute \p A.
1943 bool bundleOperandHasAttr(unsigned OpIdx, Attribute::AttrKind A) const {
1944 auto &BOI = getBundleOpInfoForOperand(OpIdx);
1945 auto OBU = operandBundleFromBundleOpInfo(BOI);
1946 return OBU.operandHasAttr(OpIdx - BOI.Begin, A);
1947 }
1948
1949 /// Return true if \p Other has the same sequence of operand bundle
1950 /// tags with the same number of operands on each one of them as this
1951 /// OperandBundleUser.
1952 bool hasIdenticalOperandBundleSchema(const CallBase &Other) const {
1953 if (getNumOperandBundles() != Other.getNumOperandBundles())
1954 return false;
1955
1956 return std::equal(bundle_op_info_begin(), bundle_op_info_end(),
1957 Other.bundle_op_info_begin());
1958 }
1959
1960 /// Return true if this operand bundle user contains operand bundles
1961 /// with tags other than those specified in \p IDs.
1962 bool hasOperandBundlesOtherThan(ArrayRef<uint32_t> IDs) const {
1963 for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) {
1964 uint32_t ID = getOperandBundleAt(i).getTagID();
1965 if (!is_contained(IDs, ID))
1966 return true;
1967 }
1968 return false;
1969 }
1970
1971 /// Is the function attribute S disallowed by some operand bundle on
1972 /// this operand bundle user?
1973 bool isFnAttrDisallowedByOpBundle(StringRef S) const {
1974 // Operand bundles only possibly disallow readnone, readonly and argmemonly
1975 // attributes. All String attributes are fine.
1976 return false;
1977 }
1978
1979 /// Is the function attribute A disallowed by some operand bundle on
1980 /// this operand bundle user?
1981 bool isFnAttrDisallowedByOpBundle(Attribute::AttrKind A) const {
1982 switch (A) {
1983 default:
1984 return false;
1985
1986 case Attribute::InaccessibleMemOrArgMemOnly:
1987 return hasReadingOperandBundles();
1988
1989 case Attribute::InaccessibleMemOnly:
1990 return hasReadingOperandBundles();
1991
1992 case Attribute::ArgMemOnly:
1993 return hasReadingOperandBundles();
1994
1995 case Attribute::ReadNone:
1996 return hasReadingOperandBundles();
1997
1998 case Attribute::ReadOnly:
1999 return hasClobberingOperandBundles();
2000 }
2001
2002 llvm_unreachable("switch has a default case!")::llvm::llvm_unreachable_internal("switch has a default case!"
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 2002)
;
2003 }
2004
2005 /// Used to keep track of an operand bundle. See the main comment on
2006 /// OperandBundleUser above.
2007 struct BundleOpInfo {
2008 /// The operand bundle tag, interned by
2009 /// LLVMContextImpl::getOrInsertBundleTag.
2010 StringMapEntry<uint32_t> *Tag;
2011
2012 /// The index in the Use& vector where operands for this operand
2013 /// bundle starts.
2014 uint32_t Begin;
2015
2016 /// The index in the Use& vector where operands for this operand
2017 /// bundle ends.
2018 uint32_t End;
2019
2020 bool operator==(const BundleOpInfo &Other) const {
2021 return Tag == Other.Tag && Begin == Other.Begin && End == Other.End;
2022 }
2023 };
2024
2025 /// Simple helper function to map a BundleOpInfo to an
2026 /// OperandBundleUse.
2027 OperandBundleUse
2028 operandBundleFromBundleOpInfo(const BundleOpInfo &BOI) const {
2029 auto begin = op_begin();
2030 ArrayRef<Use> Inputs(begin + BOI.Begin, begin + BOI.End);
2031 return OperandBundleUse(BOI.Tag, Inputs);
2032 }
2033
2034 using bundle_op_iterator = BundleOpInfo *;
2035 using const_bundle_op_iterator = const BundleOpInfo *;
2036
2037 /// Return the start of the list of BundleOpInfo instances associated
2038 /// with this OperandBundleUser.
2039 ///
2040 /// OperandBundleUser uses the descriptor area co-allocated with the host User
2041 /// to store some meta information about which operands are "normal" operands,
2042 /// and which ones belong to some operand bundle.
2043 ///
2044 /// The layout of an operand bundle user is
2045 ///
2046 /// +-----------uint32_t End-------------------------------------+
2047 /// | |
2048 /// | +--------uint32_t Begin--------------------+ |
2049 /// | | | |
2050 /// ^ ^ v v
2051 /// |------|------|----|----|----|----|----|---------|----|---------|----|-----
2052 /// | BOI0 | BOI1 | .. | DU | U0 | U1 | .. | BOI0_U0 | .. | BOI1_U0 | .. | Un
2053 /// |------|------|----|----|----|----|----|---------|----|---------|----|-----
2054 /// v v ^ ^
2055 /// | | | |
2056 /// | +--------uint32_t Begin------------+ |
2057 /// | |
2058 /// +-----------uint32_t End-----------------------------+
2059 ///
2060 ///
2061 /// BOI0, BOI1 ... are descriptions of operand bundles in this User's use
2062 /// list. These descriptions are installed and managed by this class, and
2063 /// they're all instances of OperandBundleUser<T>::BundleOpInfo.
2064 ///
2065 /// DU is an additional descriptor installed by User's 'operator new' to keep
2066 /// track of the 'BOI0 ... BOIN' co-allocation. OperandBundleUser does not
2067 /// access or modify DU in any way, it's an implementation detail private to
2068 /// User.
2069 ///
2070 /// The regular Use& vector for the User starts at U0. The operand bundle
2071 /// uses are part of the Use& vector, just like normal uses. In the diagram
2072 /// above, the operand bundle uses start at BOI0_U0. Each instance of
2073 /// BundleOpInfo has information about a contiguous set of uses constituting
2074 /// an operand bundle, and the total set of operand bundle uses themselves
2075 /// form a contiguous set of uses (i.e. there are no gaps between uses
2076 /// corresponding to individual operand bundles).
2077 ///
2078 /// This class does not know the location of the set of operand bundle uses
2079 /// within the use list -- that is decided by the User using this class via
2080 /// the BeginIdx argument in populateBundleOperandInfos.
2081 ///
2082 /// Currently operand bundle users with hung-off operands are not supported.
2083 bundle_op_iterator bundle_op_info_begin() {
2084 if (!hasDescriptor())
2085 return nullptr;
2086
2087 uint8_t *BytesBegin = getDescriptor().begin();
2088 return reinterpret_cast<bundle_op_iterator>(BytesBegin);
2089 }
2090
2091 /// Return the start of the list of BundleOpInfo instances associated
2092 /// with this OperandBundleUser.
2093 const_bundle_op_iterator bundle_op_info_begin() const {
2094 auto *NonConstThis = const_cast<CallBase *>(this);
2095 return NonConstThis->bundle_op_info_begin();
2096 }
2097
2098 /// Return the end of the list of BundleOpInfo instances associated
2099 /// with this OperandBundleUser.
2100 bundle_op_iterator bundle_op_info_end() {
2101 if (!hasDescriptor())
2102 return nullptr;
2103
2104 uint8_t *BytesEnd = getDescriptor().end();
2105 return reinterpret_cast<bundle_op_iterator>(BytesEnd);
2106 }
2107
2108 /// Return the end of the list of BundleOpInfo instances associated
2109 /// with this OperandBundleUser.
2110 const_bundle_op_iterator bundle_op_info_end() const {
2111 auto *NonConstThis = const_cast<CallBase *>(this);
2112 return NonConstThis->bundle_op_info_end();
2113 }
2114
2115 /// Return the range [\p bundle_op_info_begin, \p bundle_op_info_end).
2116 iterator_range<bundle_op_iterator> bundle_op_infos() {
2117 return make_range(bundle_op_info_begin(), bundle_op_info_end());
2118 }
2119
2120 /// Return the range [\p bundle_op_info_begin, \p bundle_op_info_end).
2121 iterator_range<const_bundle_op_iterator> bundle_op_infos() const {
2122 return make_range(bundle_op_info_begin(), bundle_op_info_end());
2123 }
2124
2125 /// Populate the BundleOpInfo instances and the Use& vector from \p
2126 /// Bundles. Return the op_iterator pointing to the Use& one past the last
2127 /// last bundle operand use.
2128 ///
2129 /// Each \p OperandBundleDef instance is tracked by a OperandBundleInfo
2130 /// instance allocated in this User's descriptor.
2131 op_iterator populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
2132 const unsigned BeginIndex);
2133
2134public:
2135 /// Return the BundleOpInfo for the operand at index OpIdx.
2136 ///
2137 /// It is an error to call this with an OpIdx that does not correspond to an
2138 /// bundle operand.
2139 BundleOpInfo &getBundleOpInfoForOperand(unsigned OpIdx);
2140 const BundleOpInfo &getBundleOpInfoForOperand(unsigned OpIdx) const {
2141 return const_cast<CallBase *>(this)->getBundleOpInfoForOperand(OpIdx);
2142 }
2143
2144protected:
2145 /// Return the total number of values used in \p Bundles.
2146 static unsigned CountBundleInputs(ArrayRef<OperandBundleDef> Bundles) {
2147 unsigned Total = 0;
2148 for (auto &B : Bundles)
2149 Total += B.input_size();
2150 return Total;
2151 }
2152
2153 /// @}
2154 // End of operand bundle API.
2155
2156private:
2157 bool hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const;
2158 bool hasFnAttrOnCalledFunction(StringRef Kind) const;
2159
2160 template <typename AttrKind> bool hasFnAttrImpl(AttrKind Kind) const {
2161 if (Attrs.hasFnAttribute(Kind))
2162 return true;
2163
2164 // Operand bundles override attributes on the called function, but don't
2165 // override attributes directly present on the call instruction.
2166 if (isFnAttrDisallowedByOpBundle(Kind))
2167 return false;
2168
2169 return hasFnAttrOnCalledFunction(Kind);
2170 }
2171};
2172
2173template <>
2174struct OperandTraits<CallBase> : public VariadicOperandTraits<CallBase, 1> {};
2175
2176DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CallBase, Value)CallBase::op_iterator CallBase::op_begin() { return OperandTraits
<CallBase>::op_begin(this); } CallBase::const_op_iterator
CallBase::op_begin() const { return OperandTraits<CallBase
>::op_begin(const_cast<CallBase*>(this)); } CallBase
::op_iterator CallBase::op_end() { return OperandTraits<CallBase
>::op_end(this); } CallBase::const_op_iterator CallBase::op_end
() const { return OperandTraits<CallBase>::op_end(const_cast
<CallBase*>(this)); } Value *CallBase::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<CallBase
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CallBase>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 2176, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<CallBase>::op_begin(const_cast<CallBase
*>(this))[i_nocapture].get()); } void CallBase::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<CallBase>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CallBase>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 2176, __PRETTY_FUNCTION__)); OperandTraits<CallBase>::
op_begin(this)[i_nocapture] = Val_nocapture; } unsigned CallBase
::getNumOperands() const { return OperandTraits<CallBase>
::operands(this); } template <int Idx_nocapture> Use &
CallBase::Op() { return this->OpFrom<Idx_nocapture>(
this); } template <int Idx_nocapture> const Use &CallBase
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
2177
2178//===----------------------------------------------------------------------===//
2179// FuncletPadInst Class
2180//===----------------------------------------------------------------------===//
2181class FuncletPadInst : public Instruction {
2182private:
2183 FuncletPadInst(const FuncletPadInst &CPI);
2184
2185 explicit FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
2186 ArrayRef<Value *> Args, unsigned Values,
2187 const Twine &NameStr, Instruction *InsertBefore);
2188 explicit FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
2189 ArrayRef<Value *> Args, unsigned Values,
2190 const Twine &NameStr, BasicBlock *InsertAtEnd);
2191
2192 void init(Value *ParentPad, ArrayRef<Value *> Args, const Twine &NameStr);
2193
2194protected:
2195 // Note: Instruction needs to be a friend here to call cloneImpl.
2196 friend class Instruction;
2197 friend class CatchPadInst;
2198 friend class CleanupPadInst;
2199
2200 FuncletPadInst *cloneImpl() const;
2201
2202public:
2203 /// Provide fast operand accessors
2204 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2205
2206 /// getNumArgOperands - Return the number of funcletpad arguments.
2207 ///
2208 unsigned getNumArgOperands() const { return getNumOperands() - 1; }
2209
2210 /// Convenience accessors
2211
2212 /// Return the outer EH-pad this funclet is nested within.
2213 ///
2214 /// Note: This returns the associated CatchSwitchInst if this FuncletPadInst
2215 /// is a CatchPadInst.
2216 Value *getParentPad() const { return Op<-1>(); }
2217 void setParentPad(Value *ParentPad) {
2218 assert(ParentPad)((ParentPad) ? static_cast<void> (0) : __assert_fail ("ParentPad"
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 2218, __PRETTY_FUNCTION__))
;
2219 Op<-1>() = ParentPad;
2220 }
2221
2222 /// getArgOperand/setArgOperand - Return/set the i-th funcletpad argument.
2223 ///
2224 Value *getArgOperand(unsigned i) const { return getOperand(i); }
2225 void setArgOperand(unsigned i, Value *v) { setOperand(i, v); }
2226
2227 /// arg_operands - iteration adapter for range-for loops.
2228 op_range arg_operands() { return op_range(op_begin(), op_end() - 1); }
2229
2230 /// arg_operands - iteration adapter for range-for loops.
2231 const_op_range arg_operands() const {
2232 return const_op_range(op_begin(), op_end() - 1);
2233 }
2234
2235 // Methods for support type inquiry through isa, cast, and dyn_cast:
2236 static bool classof(const Instruction *I) { return I->isFuncletPad(); }
2237 static bool classof(const Value *V) {
2238 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2239 }
2240};
2241
2242template <>
2243struct OperandTraits<FuncletPadInst>
2244 : public VariadicOperandTraits<FuncletPadInst, /*MINARITY=*/1> {};
2245
2246DEFINE_TRANSPARENT_OPERAND_ACCESSORS(FuncletPadInst, Value)FuncletPadInst::op_iterator FuncletPadInst::op_begin() { return
OperandTraits<FuncletPadInst>::op_begin(this); } FuncletPadInst
::const_op_iterator FuncletPadInst::op_begin() const { return
OperandTraits<FuncletPadInst>::op_begin(const_cast<
FuncletPadInst*>(this)); } FuncletPadInst::op_iterator FuncletPadInst
::op_end() { return OperandTraits<FuncletPadInst>::op_end
(this); } FuncletPadInst::const_op_iterator FuncletPadInst::op_end
() const { return OperandTraits<FuncletPadInst>::op_end
(const_cast<FuncletPadInst*>(this)); } Value *FuncletPadInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<FuncletPadInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<FuncletPadInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 2246, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<FuncletPadInst>::op_begin(const_cast<
FuncletPadInst*>(this))[i_nocapture].get()); } void FuncletPadInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<FuncletPadInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<FuncletPadInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/InstrTypes.h"
, 2246, __PRETTY_FUNCTION__)); OperandTraits<FuncletPadInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
FuncletPadInst::getNumOperands() const { return OperandTraits
<FuncletPadInst>::operands(this); } template <int Idx_nocapture
> Use &FuncletPadInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &FuncletPadInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2247
2248} // end namespace llvm
2249
2250#endif // LLVM_IR_INSTRTYPES_H