Bug Summary

File:tools/polly/lib/External/isl/isl_tab.c
Warning:line 580, column 7
Assigned value is garbage or undefined

Annotated Source Code

/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c

1/*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2013 Ecole Normale Superieure
4 * Copyright 2014 INRIA Rocquencourt
5 * Copyright 2016 Sven Verdoolaege
6 *
7 * Use of this software is governed by the MIT license
8 *
9 * Written by Sven Verdoolaege, K.U.Leuven, Departement
10 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
11 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
12 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
13 * B.P. 105 - 78153 Le Chesnay, France
14 */
15
16#include <isl_ctx_private.h>
17#include <isl_mat_private.h>
18#include <isl_vec_private.h>
19#include "isl_map_private.h"
20#include "isl_tab.h"
21#include <isl_seq.h>
22#include <isl_config.h>
23
24#include <bset_to_bmap.c>
25#include <bset_from_bmap.c>
26
27/*
28 * The implementation of tableaus in this file was inspired by Section 8
29 * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem
30 * prover for program checking".
31 */
32
33struct isl_tab *isl_tab_alloc(struct isl_ctx *ctx,
34 unsigned n_row, unsigned n_var, unsigned M)
35{
36 int i;
37 struct isl_tab *tab;
38 unsigned off = 2 + M;
39
40 tab = isl_calloc_type(ctx, struct isl_tab)((struct isl_tab *)isl_calloc_or_die(ctx, 1, sizeof(struct isl_tab
)))
;
41 if (!tab)
42 return NULL((void*)0);
43 tab->mat = isl_mat_alloc(ctx, n_row, off + n_var);
44 if (!tab->mat)
45 goto error;
46 tab->var = isl_alloc_array(ctx, struct isl_tab_var, n_var)((struct isl_tab_var *)isl_malloc_or_die(ctx, (n_var)*sizeof(
struct isl_tab_var)))
;
47 if (n_var && !tab->var)
48 goto error;
49 tab->con = isl_alloc_array(ctx, struct isl_tab_var, n_row)((struct isl_tab_var *)isl_malloc_or_die(ctx, (n_row)*sizeof(
struct isl_tab_var)))
;
50 if (n_row && !tab->con)
51 goto error;
52 tab->col_var = isl_alloc_array(ctx, int, n_var)((int *)isl_malloc_or_die(ctx, (n_var)*sizeof(int)));
53 if (n_var && !tab->col_var)
54 goto error;
55 tab->row_var = isl_alloc_array(ctx, int, n_row)((int *)isl_malloc_or_die(ctx, (n_row)*sizeof(int)));
56 if (n_row && !tab->row_var)
57 goto error;
58 for (i = 0; i < n_var; ++i) {
59 tab->var[i].index = i;
60 tab->var[i].is_row = 0;
61 tab->var[i].is_nonneg = 0;
62 tab->var[i].is_zero = 0;
63 tab->var[i].is_redundant = 0;
64 tab->var[i].frozen = 0;
65 tab->var[i].negated = 0;
66 tab->col_var[i] = i;
67 }
68 tab->n_row = 0;
69 tab->n_con = 0;
70 tab->n_eq = 0;
71 tab->max_con = n_row;
72 tab->n_col = n_var;
73 tab->n_var = n_var;
74 tab->max_var = n_var;
75 tab->n_param = 0;
76 tab->n_div = 0;
77 tab->n_dead = 0;
78 tab->n_redundant = 0;
79 tab->strict_redundant = 0;
80 tab->need_undo = 0;
81 tab->rational = 0;
82 tab->empty = 0;
83 tab->in_undo = 0;
84 tab->M = M;
85 tab->cone = 0;
86 tab->bottom.type = isl_tab_undo_bottom;
87 tab->bottom.next = NULL((void*)0);
88 tab->top = &tab->bottom;
89
90 tab->n_zero = 0;
91 tab->n_unbounded = 0;
92 tab->basis = NULL((void*)0);
93
94 return tab;
95error:
96 isl_tab_free(tab);
97 return NULL((void*)0);
98}
99
100isl_ctx *isl_tab_get_ctx(struct isl_tab *tab)
101{
102 return tab ? isl_mat_get_ctx(tab->mat) : NULL((void*)0);
103}
104
105int isl_tab_extend_cons(struct isl_tab *tab, unsigned n_new)
106{
107 unsigned off;
108
109 if (!tab)
110 return -1;
111
112 off = 2 + tab->M;
113
114 if (tab->max_con < tab->n_con + n_new) {
115 struct isl_tab_var *con;
116
117 con = isl_realloc_array(tab->mat->ctx, tab->con,((struct isl_tab_var *)isl_realloc_or_die(tab->mat->ctx
, tab->con, (tab->max_con + n_new)*sizeof(struct isl_tab_var
)))
118 struct isl_tab_var, tab->max_con + n_new)((struct isl_tab_var *)isl_realloc_or_die(tab->mat->ctx
, tab->con, (tab->max_con + n_new)*sizeof(struct isl_tab_var
)))
;
119 if (!con)
120 return -1;
121 tab->con = con;
122 tab->max_con += n_new;
123 }
124 if (tab->mat->n_row < tab->n_row + n_new) {
125 int *row_var;
126
127 tab->mat = isl_mat_extend(tab->mat,
128 tab->n_row + n_new, off + tab->n_col);
129 if (!tab->mat)
130 return -1;
131 row_var = isl_realloc_array(tab->mat->ctx, tab->row_var,((int *)isl_realloc_or_die(tab->mat->ctx, tab->row_var
, (tab->mat->n_row)*sizeof(int)))
132 int, tab->mat->n_row)((int *)isl_realloc_or_die(tab->mat->ctx, tab->row_var
, (tab->mat->n_row)*sizeof(int)))
;
133 if (!row_var)
134 return -1;
135 tab->row_var = row_var;
136 if (tab->row_sign) {
137 enum isl_tab_row_sign *s;
138 s = isl_realloc_array(tab->mat->ctx, tab->row_sign,((enum isl_tab_row_sign *)isl_realloc_or_die(tab->mat->
ctx, tab->row_sign, (tab->mat->n_row)*sizeof(enum isl_tab_row_sign
)))
139 enum isl_tab_row_sign, tab->mat->n_row)((enum isl_tab_row_sign *)isl_realloc_or_die(tab->mat->
ctx, tab->row_sign, (tab->mat->n_row)*sizeof(enum isl_tab_row_sign
)))
;
140 if (!s)
141 return -1;
142 tab->row_sign = s;
143 }
144 }
145 return 0;
146}
147
148/* Make room for at least n_new extra variables.
149 * Return -1 if anything went wrong.
150 */
151int isl_tab_extend_vars(struct isl_tab *tab, unsigned n_new)
152{
153 struct isl_tab_var *var;
154 unsigned off = 2 + tab->M;
155
156 if (tab->max_var < tab->n_var + n_new) {
157 var = isl_realloc_array(tab->mat->ctx, tab->var,((struct isl_tab_var *)isl_realloc_or_die(tab->mat->ctx
, tab->var, (tab->n_var + n_new)*sizeof(struct isl_tab_var
)))
158 struct isl_tab_var, tab->n_var + n_new)((struct isl_tab_var *)isl_realloc_or_die(tab->mat->ctx
, tab->var, (tab->n_var + n_new)*sizeof(struct isl_tab_var
)))
;
159 if (!var)
160 return -1;
161 tab->var = var;
162 tab->max_var = tab->n_var + n_new;
163 }
164
165 if (tab->mat->n_col < off + tab->n_col + n_new) {
166 int *p;
167
168 tab->mat = isl_mat_extend(tab->mat,
169 tab->mat->n_row, off + tab->n_col + n_new);
170 if (!tab->mat)
171 return -1;
172 p = isl_realloc_array(tab->mat->ctx, tab->col_var,((int *)isl_realloc_or_die(tab->mat->ctx, tab->col_var
, (tab->n_col + n_new)*sizeof(int)))
173 int, tab->n_col + n_new)((int *)isl_realloc_or_die(tab->mat->ctx, tab->col_var
, (tab->n_col + n_new)*sizeof(int)))
;
174 if (!p)
175 return -1;
176 tab->col_var = p;
177 }
178
179 return 0;
180}
181
182static void free_undo_record(struct isl_tab_undo *undo)
183{
184 switch (undo->type) {
185 case isl_tab_undo_saved_basis:
186 free(undo->u.col_var);
187 break;
188 default:;
189 }
190 free(undo);
191}
192
193static void free_undo(struct isl_tab *tab)
194{
195 struct isl_tab_undo *undo, *next;
196
197 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
198 next = undo->next;
199 free_undo_record(undo);
200 }
201 tab->top = undo;
202}
203
204void isl_tab_free(struct isl_tab *tab)
205{
206 if (!tab)
207 return;
208 free_undo(tab);
209 isl_mat_free(tab->mat);
210 isl_vec_free(tab->dual);
211 isl_basic_map_free(tab->bmap);
212 free(tab->var);
213 free(tab->con);
214 free(tab->row_var);
215 free(tab->col_var);
216 free(tab->row_sign);
217 isl_mat_free(tab->samples);
218 free(tab->sample_index);
219 isl_mat_free(tab->basis);
220 free(tab);
221}
222
223struct isl_tab *isl_tab_dup(struct isl_tab *tab)
224{
225 int i;
226 struct isl_tab *dup;
227 unsigned off;
228
229 if (!tab)
230 return NULL((void*)0);
231
232 off = 2 + tab->M;
233 dup = isl_calloc_type(tab->mat->ctx, struct isl_tab)((struct isl_tab *)isl_calloc_or_die(tab->mat->ctx, 1, sizeof
(struct isl_tab)))
;
234 if (!dup)
235 return NULL((void*)0);
236 dup->mat = isl_mat_dup(tab->mat);
237 if (!dup->mat)
238 goto error;
239 dup->var = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_var)((struct isl_tab_var *)isl_malloc_or_die(tab->mat->ctx,
(tab->max_var)*sizeof(struct isl_tab_var)))
;
240 if (tab->max_var && !dup->var)
241 goto error;
242 for (i = 0; i < tab->n_var; ++i)
243 dup->var[i] = tab->var[i];
244 dup->con = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_con)((struct isl_tab_var *)isl_malloc_or_die(tab->mat->ctx,
(tab->max_con)*sizeof(struct isl_tab_var)))
;
245 if (tab->max_con && !dup->con)
246 goto error;
247 for (i = 0; i < tab->n_con; ++i)
248 dup->con[i] = tab->con[i];
249 dup->col_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_col - off)((int *)isl_malloc_or_die(tab->mat->ctx, (tab->mat->
n_col - off)*sizeof(int)))
;
250 if ((tab->mat->n_col - off) && !dup->col_var)
251 goto error;
252 for (i = 0; i < tab->n_col; ++i)
253 dup->col_var[i] = tab->col_var[i];
254 dup->row_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_row)((int *)isl_malloc_or_die(tab->mat->ctx, (tab->mat->
n_row)*sizeof(int)))
;
255 if (tab->mat->n_row && !dup->row_var)
256 goto error;
257 for (i = 0; i < tab->n_row; ++i)
258 dup->row_var[i] = tab->row_var[i];
259 if (tab->row_sign) {
260 dup->row_sign = isl_alloc_array(tab->mat->ctx, enum isl_tab_row_sign,((enum isl_tab_row_sign *)isl_malloc_or_die(tab->mat->ctx
, (tab->mat->n_row)*sizeof(enum isl_tab_row_sign)))
261 tab->mat->n_row)((enum isl_tab_row_sign *)isl_malloc_or_die(tab->mat->ctx
, (tab->mat->n_row)*sizeof(enum isl_tab_row_sign)))
;
262 if (tab->mat->n_row && !dup->row_sign)
263 goto error;
264 for (i = 0; i < tab->n_row; ++i)
265 dup->row_sign[i] = tab->row_sign[i];
266 }
267 if (tab->samples) {
268 dup->samples = isl_mat_dup(tab->samples);
269 if (!dup->samples)
270 goto error;
271 dup->sample_index = isl_alloc_array(tab->mat->ctx, int,((int *)isl_malloc_or_die(tab->mat->ctx, (tab->samples
->n_row)*sizeof(int)))
272 tab->samples->n_row)((int *)isl_malloc_or_die(tab->mat->ctx, (tab->samples
->n_row)*sizeof(int)))
;
273 if (tab->samples->n_row && !dup->sample_index)
274 goto error;
275 dup->n_sample = tab->n_sample;
276 dup->n_outside = tab->n_outside;
277 }
278 dup->n_row = tab->n_row;
279 dup->n_con = tab->n_con;
280 dup->n_eq = tab->n_eq;
281 dup->max_con = tab->max_con;
282 dup->n_col = tab->n_col;
283 dup->n_var = tab->n_var;
284 dup->max_var = tab->max_var;
285 dup->n_param = tab->n_param;
286 dup->n_div = tab->n_div;
287 dup->n_dead = tab->n_dead;
288 dup->n_redundant = tab->n_redundant;
289 dup->rational = tab->rational;
290 dup->empty = tab->empty;
291 dup->strict_redundant = 0;
292 dup->need_undo = 0;
293 dup->in_undo = 0;
294 dup->M = tab->M;
295 tab->cone = tab->cone;
296 dup->bottom.type = isl_tab_undo_bottom;
297 dup->bottom.next = NULL((void*)0);
298 dup->top = &dup->bottom;
299
300 dup->n_zero = tab->n_zero;
301 dup->n_unbounded = tab->n_unbounded;
302 dup->basis = isl_mat_dup(tab->basis);
303
304 return dup;
305error:
306 isl_tab_free(dup);
307 return NULL((void*)0);
308}
309
310/* Construct the coefficient matrix of the product tableau
311 * of two tableaus.
312 * mat{1,2} is the coefficient matrix of tableau {1,2}
313 * row{1,2} is the number of rows in tableau {1,2}
314 * col{1,2} is the number of columns in tableau {1,2}
315 * off is the offset to the coefficient column (skipping the
316 * denominator, the constant term and the big parameter if any)
317 * r{1,2} is the number of redundant rows in tableau {1,2}
318 * d{1,2} is the number of dead columns in tableau {1,2}
319 *
320 * The order of the rows and columns in the result is as explained
321 * in isl_tab_product.
322 */
323static struct isl_mat *tab_mat_product(struct isl_mat *mat1,
324 struct isl_mat *mat2, unsigned row1, unsigned row2,
325 unsigned col1, unsigned col2,
326 unsigned off, unsigned r1, unsigned r2, unsigned d1, unsigned d2)
327{
328 int i;
329 struct isl_mat *prod;
330 unsigned n;
331
332 prod = isl_mat_alloc(mat1->ctx, mat1->n_row + mat2->n_row,
333 off + col1 + col2);
334 if (!prod)
335 return NULL((void*)0);
336
337 n = 0;
338 for (i = 0; i < r1; ++i) {
339 isl_seq_cpy(prod->row[n + i], mat1->row[i], off + d1);
340 isl_seq_clr(prod->row[n + i] + off + d1, d2);
341 isl_seq_cpy(prod->row[n + i] + off + d1 + d2,
342 mat1->row[i] + off + d1, col1 - d1);
343 isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2);
344 }
345
346 n += r1;
347 for (i = 0; i < r2; ++i) {
348 isl_seq_cpy(prod->row[n + i], mat2->row[i], off);
349 isl_seq_clr(prod->row[n + i] + off, d1);
350 isl_seq_cpy(prod->row[n + i] + off + d1,
351 mat2->row[i] + off, d2);
352 isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1);
353 isl_seq_cpy(prod->row[n + i] + off + col1 + d1,
354 mat2->row[i] + off + d2, col2 - d2);
355 }
356
357 n += r2;
358 for (i = 0; i < row1 - r1; ++i) {
359 isl_seq_cpy(prod->row[n + i], mat1->row[r1 + i], off + d1);
360 isl_seq_clr(prod->row[n + i] + off + d1, d2);
361 isl_seq_cpy(prod->row[n + i] + off + d1 + d2,
362 mat1->row[r1 + i] + off + d1, col1 - d1);
363 isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2);
364 }
365
366 n += row1 - r1;
367 for (i = 0; i < row2 - r2; ++i) {
368 isl_seq_cpy(prod->row[n + i], mat2->row[r2 + i], off);
369 isl_seq_clr(prod->row[n + i] + off, d1);
370 isl_seq_cpy(prod->row[n + i] + off + d1,
371 mat2->row[r2 + i] + off, d2);
372 isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1);
373 isl_seq_cpy(prod->row[n + i] + off + col1 + d1,
374 mat2->row[r2 + i] + off + d2, col2 - d2);
375 }
376
377 return prod;
378}
379
380/* Update the row or column index of a variable that corresponds
381 * to a variable in the first input tableau.
382 */
383static void update_index1(struct isl_tab_var *var,
384 unsigned r1, unsigned r2, unsigned d1, unsigned d2)
385{
386 if (var->index == -1)
387 return;
388 if (var->is_row && var->index >= r1)
389 var->index += r2;
390 if (!var->is_row && var->index >= d1)
391 var->index += d2;
392}
393
394/* Update the row or column index of a variable that corresponds
395 * to a variable in the second input tableau.
396 */
397static void update_index2(struct isl_tab_var *var,
398 unsigned row1, unsigned col1,
399 unsigned r1, unsigned r2, unsigned d1, unsigned d2)
400{
401 if (var->index == -1)
402 return;
403 if (var->is_row) {
404 if (var->index < r2)
405 var->index += r1;
406 else
407 var->index += row1;
408 } else {
409 if (var->index < d2)
410 var->index += d1;
411 else
412 var->index += col1;
413 }
414}
415
416/* Create a tableau that represents the Cartesian product of the sets
417 * represented by tableaus tab1 and tab2.
418 * The order of the rows in the product is
419 * - redundant rows of tab1
420 * - redundant rows of tab2
421 * - non-redundant rows of tab1
422 * - non-redundant rows of tab2
423 * The order of the columns is
424 * - denominator
425 * - constant term
426 * - coefficient of big parameter, if any
427 * - dead columns of tab1
428 * - dead columns of tab2
429 * - live columns of tab1
430 * - live columns of tab2
431 * The order of the variables and the constraints is a concatenation
432 * of order in the two input tableaus.
433 */
434struct isl_tab *isl_tab_product(struct isl_tab *tab1, struct isl_tab *tab2)
435{
436 int i;
437 struct isl_tab *prod;
438 unsigned off;
439 unsigned r1, r2, d1, d2;
440
441 if (!tab1 || !tab2)
442 return NULL((void*)0);
443
444 isl_assert(tab1->mat->ctx, tab1->M == tab2->M, return NULL)do { if (tab1->M == tab2->M) break; do { isl_handle_error
(tab1->mat->ctx, isl_error_unknown, "Assertion \"" "tab1->M == tab2->M"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 444); return ((void*)0); } while (0); } while (0)
;
445 isl_assert(tab1->mat->ctx, tab1->rational == tab2->rational, return NULL)do { if (tab1->rational == tab2->rational) break; do { isl_handle_error
(tab1->mat->ctx, isl_error_unknown, "Assertion \"" "tab1->rational == tab2->rational"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 445); return ((void*)0); } while (0); } while (0)
;
446 isl_assert(tab1->mat->ctx, tab1->cone == tab2->cone, return NULL)do { if (tab1->cone == tab2->cone) break; do { isl_handle_error
(tab1->mat->ctx, isl_error_unknown, "Assertion \"" "tab1->cone == tab2->cone"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 446); return ((void*)0); } while (0); } while (0)
;
447 isl_assert(tab1->mat->ctx, !tab1->row_sign, return NULL)do { if (!tab1->row_sign) break; do { isl_handle_error(tab1
->mat->ctx, isl_error_unknown, "Assertion \"" "!tab1->row_sign"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 447); return ((void*)0); } while (0); } while (0)
;
448 isl_assert(tab1->mat->ctx, !tab2->row_sign, return NULL)do { if (!tab2->row_sign) break; do { isl_handle_error(tab1
->mat->ctx, isl_error_unknown, "Assertion \"" "!tab2->row_sign"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 448); return ((void*)0); } while (0); } while (0)
;
449 isl_assert(tab1->mat->ctx, tab1->n_param == 0, return NULL)do { if (tab1->n_param == 0) break; do { isl_handle_error(
tab1->mat->ctx, isl_error_unknown, "Assertion \"" "tab1->n_param == 0"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 449); return ((void*)0); } while (0); } while (0)
;
450 isl_assert(tab1->mat->ctx, tab2->n_param == 0, return NULL)do { if (tab2->n_param == 0) break; do { isl_handle_error(
tab1->mat->ctx, isl_error_unknown, "Assertion \"" "tab2->n_param == 0"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 450); return ((void*)0); } while (0); } while (0)
;
451 isl_assert(tab1->mat->ctx, tab1->n_div == 0, return NULL)do { if (tab1->n_div == 0) break; do { isl_handle_error(tab1
->mat->ctx, isl_error_unknown, "Assertion \"" "tab1->n_div == 0"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 451); return ((void*)0); } while (0); } while (0)
;
452 isl_assert(tab1->mat->ctx, tab2->n_div == 0, return NULL)do { if (tab2->n_div == 0) break; do { isl_handle_error(tab1
->mat->ctx, isl_error_unknown, "Assertion \"" "tab2->n_div == 0"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 452); return ((void*)0); } while (0); } while (0)
;
453
454 off = 2 + tab1->M;
455 r1 = tab1->n_redundant;
456 r2 = tab2->n_redundant;
457 d1 = tab1->n_dead;
458 d2 = tab2->n_dead;
459 prod = isl_calloc_type(tab1->mat->ctx, struct isl_tab)((struct isl_tab *)isl_calloc_or_die(tab1->mat->ctx, 1,
sizeof(struct isl_tab)))
;
460 if (!prod)
461 return NULL((void*)0);
462 prod->mat = tab_mat_product(tab1->mat, tab2->mat,
463 tab1->n_row, tab2->n_row,
464 tab1->n_col, tab2->n_col, off, r1, r2, d1, d2);
465 if (!prod->mat)
466 goto error;
467 prod->var = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var,((struct isl_tab_var *)isl_malloc_or_die(tab1->mat->ctx
, (tab1->max_var + tab2->max_var)*sizeof(struct isl_tab_var
)))
468 tab1->max_var + tab2->max_var)((struct isl_tab_var *)isl_malloc_or_die(tab1->mat->ctx
, (tab1->max_var + tab2->max_var)*sizeof(struct isl_tab_var
)))
;
469 if ((tab1->max_var + tab2->max_var) && !prod->var)
470 goto error;
471 for (i = 0; i < tab1->n_var; ++i) {
472 prod->var[i] = tab1->var[i];
473 update_index1(&prod->var[i], r1, r2, d1, d2);
474 }
475 for (i = 0; i < tab2->n_var; ++i) {
476 prod->var[tab1->n_var + i] = tab2->var[i];
477 update_index2(&prod->var[tab1->n_var + i],
478 tab1->n_row, tab1->n_col,
479 r1, r2, d1, d2);
480 }
481 prod->con = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var,((struct isl_tab_var *)isl_malloc_or_die(tab1->mat->ctx
, (tab1->max_con + tab2->max_con)*sizeof(struct isl_tab_var
)))
482 tab1->max_con + tab2->max_con)((struct isl_tab_var *)isl_malloc_or_die(tab1->mat->ctx
, (tab1->max_con + tab2->max_con)*sizeof(struct isl_tab_var
)))
;
483 if ((tab1->max_con + tab2->max_con) && !prod->con)
484 goto error;
485 for (i = 0; i < tab1->n_con; ++i) {
486 prod->con[i] = tab1->con[i];
487 update_index1(&prod->con[i], r1, r2, d1, d2);
488 }
489 for (i = 0; i < tab2->n_con; ++i) {
490 prod->con[tab1->n_con + i] = tab2->con[i];
491 update_index2(&prod->con[tab1->n_con + i],
492 tab1->n_row, tab1->n_col,
493 r1, r2, d1, d2);
494 }
495 prod->col_var = isl_alloc_array(tab1->mat->ctx, int,((int *)isl_malloc_or_die(tab1->mat->ctx, (tab1->n_col
+ tab2->n_col)*sizeof(int)))
496 tab1->n_col + tab2->n_col)((int *)isl_malloc_or_die(tab1->mat->ctx, (tab1->n_col
+ tab2->n_col)*sizeof(int)))
;
497 if ((tab1->n_col + tab2->n_col) && !prod->col_var)
498 goto error;
499 for (i = 0; i < tab1->n_col; ++i) {
500 int pos = i < d1 ? i : i + d2;
501 prod->col_var[pos] = tab1->col_var[i];
502 }
503 for (i = 0; i < tab2->n_col; ++i) {
504 int pos = i < d2 ? d1 + i : tab1->n_col + i;
505 int t = tab2->col_var[i];
506 if (t >= 0)
507 t += tab1->n_var;
508 else
509 t -= tab1->n_con;
510 prod->col_var[pos] = t;
511 }
512 prod->row_var = isl_alloc_array(tab1->mat->ctx, int,((int *)isl_malloc_or_die(tab1->mat->ctx, (tab1->mat
->n_row + tab2->mat->n_row)*sizeof(int)))
513 tab1->mat->n_row + tab2->mat->n_row)((int *)isl_malloc_or_die(tab1->mat->ctx, (tab1->mat
->n_row + tab2->mat->n_row)*sizeof(int)))
;
514 if ((tab1->mat->n_row + tab2->mat->n_row) && !prod->row_var)
515 goto error;
516 for (i = 0; i < tab1->n_row; ++i) {
517 int pos = i < r1 ? i : i + r2;
518 prod->row_var[pos] = tab1->row_var[i];
519 }
520 for (i = 0; i < tab2->n_row; ++i) {
521 int pos = i < r2 ? r1 + i : tab1->n_row + i;
522 int t = tab2->row_var[i];
523 if (t >= 0)
524 t += tab1->n_var;
525 else
526 t -= tab1->n_con;
527 prod->row_var[pos] = t;
528 }
529 prod->samples = NULL((void*)0);
530 prod->sample_index = NULL((void*)0);
531 prod->n_row = tab1->n_row + tab2->n_row;
532 prod->n_con = tab1->n_con + tab2->n_con;
533 prod->n_eq = 0;
534 prod->max_con = tab1->max_con + tab2->max_con;
535 prod->n_col = tab1->n_col + tab2->n_col;
536 prod->n_var = tab1->n_var + tab2->n_var;
537 prod->max_var = tab1->max_var + tab2->max_var;
538 prod->n_param = 0;
539 prod->n_div = 0;
540 prod->n_dead = tab1->n_dead + tab2->n_dead;
541 prod->n_redundant = tab1->n_redundant + tab2->n_redundant;
542 prod->rational = tab1->rational;
543 prod->empty = tab1->empty || tab2->empty;
544 prod->strict_redundant = tab1->strict_redundant || tab2->strict_redundant;
545 prod->need_undo = 0;
546 prod->in_undo = 0;
547 prod->M = tab1->M;
548 prod->cone = tab1->cone;
549 prod->bottom.type = isl_tab_undo_bottom;
550 prod->bottom.next = NULL((void*)0);
551 prod->top = &prod->bottom;
552
553 prod->n_zero = 0;
554 prod->n_unbounded = 0;
555 prod->basis = NULL((void*)0);
556
557 return prod;
558error:
559 isl_tab_free(prod);
560 return NULL((void*)0);
561}
562
563static struct isl_tab_var *var_from_index(struct isl_tab *tab, int i)
564{
565 if (i >= 0)
566 return &tab->var[i];
567 else
568 return &tab->con[~i];
569}
570
571struct isl_tab_var *isl_tab_var_from_row(struct isl_tab *tab, int i)
572{
573 return var_from_index(tab, tab->row_var[i]);
574}
575
576static struct isl_tab_var *var_from_col(struct isl_tab *tab, int i)
577{
578 return var_from_index(tab, tab->col_var[i]);
579}
580
581/* Check if there are any upper bounds on column variable "var",
582 * i.e., non-negative rows where var appears with a negative coefficient.
583 * Return 1 if there are no such bounds.
584 */
585static int max_is_manifestly_unbounded(struct isl_tab *tab,
586 struct isl_tab_var *var)
587{
588 int i;
589 unsigned off = 2 + tab->M;
590
591 if (var->is_row)
592 return 0;
593 for (i = tab->n_redundant; i < tab->n_row; ++i) {
594 if (!isl_int_is_neg(tab->mat->row[i][off + var->index])(isl_sioimath_sgn(*(tab->mat->row[i][off + var->index
])) < 0)
)
595 continue;
596 if (isl_tab_var_from_row(tab, i)->is_nonneg)
597 return 0;
598 }
599 return 1;
600}
601
602/* Check if there are any lower bounds on column variable "var",
603 * i.e., non-negative rows where var appears with a positive coefficient.
604 * Return 1 if there are no such bounds.
605 */
606static int min_is_manifestly_unbounded(struct isl_tab *tab,
607 struct isl_tab_var *var)
608{
609 int i;
610 unsigned off = 2 + tab->M;
611
612 if (var->is_row)
613 return 0;
614 for (i = tab->n_redundant; i < tab->n_row; ++i) {
615 if (!isl_int_is_pos(tab->mat->row[i][off + var->index])(isl_sioimath_sgn(*(tab->mat->row[i][off + var->index
])) > 0)
)
616 continue;
617 if (isl_tab_var_from_row(tab, i)->is_nonneg)
618 return 0;
619 }
620 return 1;
621}
622
623static int row_cmp(struct isl_tab *tab, int r1, int r2, int c, isl_int *t)
624{
625 unsigned off = 2 + tab->M;
626
627 if (tab->M) {
628 int s;
629 isl_int_mul(*t, tab->mat->row[r1][2], tab->mat->row[r2][off+c])isl_sioimath_mul((*t), *(tab->mat->row[r1][2]), *(tab->
mat->row[r2][off+c]))
;
630 isl_int_submul(*t, tab->mat->row[r2][2], tab->mat->row[r1][off+c])isl_sioimath_submul((*t), *(tab->mat->row[r2][2]), *(tab
->mat->row[r1][off+c]))
;
631 s = isl_int_sgn(*t)isl_sioimath_sgn(*(*t));
632 if (s)
633 return s;
634 }
635 isl_int_mul(*t, tab->mat->row[r1][1], tab->mat->row[r2][off + c])isl_sioimath_mul((*t), *(tab->mat->row[r1][1]), *(tab->
mat->row[r2][off + c]))
;
636 isl_int_submul(*t, tab->mat->row[r2][1], tab->mat->row[r1][off + c])isl_sioimath_submul((*t), *(tab->mat->row[r2][1]), *(tab
->mat->row[r1][off + c]))
;
637 return isl_int_sgn(*t)isl_sioimath_sgn(*(*t));
638}
639
640/* Given the index of a column "c", return the index of a row
641 * that can be used to pivot the column in, with either an increase
642 * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable.
643 * If "var" is not NULL, then the row returned will be different from
644 * the one associated with "var".
645 *
646 * Each row in the tableau is of the form
647 *
648 * x_r = a_r0 + \sum_i a_ri x_i
649 *
650 * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn"
651 * impose any limit on the increase or decrease in the value of x_c
652 * and this bound is equal to a_r0 / |a_rc|. We are therefore looking
653 * for the row with the smallest (most stringent) such bound.
654 * Note that the common denominator of each row drops out of the fraction.
655 * To check if row j has a smaller bound than row r, i.e.,
656 * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|,
657 * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0,
658 * where -sign(a_jc) is equal to "sgn".
659 */
660static int pivot_row(struct isl_tab *tab,
661 struct isl_tab_var *var, int sgn, int c)
662{
663 int j, r, tsgn;
664 isl_int t;
665 unsigned off = 2 + tab->M;
666
667 isl_int_init(t)isl_sioimath_init((t));
668 r = -1;
669 for (j = tab->n_redundant; j < tab->n_row; ++j) {
670 if (var && j == var->index)
671 continue;
672 if (!isl_tab_var_from_row(tab, j)->is_nonneg)
673 continue;
674 if (sgn * isl_int_sgn(tab->mat->row[j][off + c])isl_sioimath_sgn(*(tab->mat->row[j][off + c])) >= 0)
675 continue;
676 if (r < 0) {
677 r = j;
678 continue;
679 }
680 tsgn = sgn * row_cmp(tab, r, j, c, &t);
681 if (tsgn < 0 || (tsgn == 0 &&
682 tab->row_var[j] < tab->row_var[r]))
683 r = j;
684 }
685 isl_int_clear(t)isl_sioimath_clear((t));
686 return r;
687}
688
689/* Find a pivot (row and col) that will increase (sgn > 0) or decrease
690 * (sgn < 0) the value of row variable var.
691 * If not NULL, then skip_var is a row variable that should be ignored
692 * while looking for a pivot row. It is usually equal to var.
693 *
694 * As the given row in the tableau is of the form
695 *
696 * x_r = a_r0 + \sum_i a_ri x_i
697 *
698 * we need to find a column such that the sign of a_ri is equal to "sgn"
699 * (such that an increase in x_i will have the desired effect) or a
700 * column with a variable that may attain negative values.
701 * If a_ri is positive, then we need to move x_i in the same direction
702 * to obtain the desired effect. Otherwise, x_i has to move in the
703 * opposite direction.
704 */
705static void find_pivot(struct isl_tab *tab,
706 struct isl_tab_var *var, struct isl_tab_var *skip_var,
707 int sgn, int *row, int *col)
708{
709 int j, r, c;
710 isl_int *tr;
711
712 *row = *col = -1;
713
714 isl_assert(tab->mat->ctx, var->is_row, return)do { if (var->is_row) break; do { isl_handle_error(tab->
mat->ctx, isl_error_unknown, "Assertion \"" "var->is_row"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 714); return; } while (0); } while (0)
;
715 tr = tab->mat->row[var->index] + 2 + tab->M;
716
717 c = -1;
718 for (j = tab->n_dead; j < tab->n_col; ++j) {
719 if (isl_int_is_zero(tr[j])(isl_sioimath_sgn(*(tr[j])) == 0))
720 continue;
721 if (isl_int_sgn(tr[j])isl_sioimath_sgn(*(tr[j])) != sgn &&
722 var_from_col(tab, j)->is_nonneg)
723 continue;
724 if (c < 0 || tab->col_var[j] < tab->col_var[c])
725 c = j;
726 }
727 if (c < 0)
728 return;
729
730 sgn *= isl_int_sgn(tr[c])isl_sioimath_sgn(*(tr[c]));
731 r = pivot_row(tab, skip_var, sgn, c);
732 *row = r < 0 ? var->index : r;
733 *col = c;
734}
735
736/* Return 1 if row "row" represents an obviously redundant inequality.
737 * This means
738 * - it represents an inequality or a variable
739 * - that is the sum of a non-negative sample value and a positive
740 * combination of zero or more non-negative constraints.
741 */
742int isl_tab_row_is_redundant(struct isl_tab *tab, int row)
743{
744 int i;
745 unsigned off = 2 + tab->M;
746
747 if (tab->row_var[row] < 0 && !isl_tab_var_from_row(tab, row)->is_nonneg)
748 return 0;
749
750 if (isl_int_is_neg(tab->mat->row[row][1])(isl_sioimath_sgn(*(tab->mat->row[row][1])) < 0))
751 return 0;
752 if (tab->strict_redundant && isl_int_is_zero(tab->mat->row[row][1])(isl_sioimath_sgn(*(tab->mat->row[row][1])) == 0))
753 return 0;
754 if (tab->M && isl_int_is_neg(tab->mat->row[row][2])(isl_sioimath_sgn(*(tab->mat->row[row][2])) < 0))
755 return 0;
756
757 for (i = tab->n_dead; i < tab->n_col; ++i) {
758 if (isl_int_is_zero(tab->mat->row[row][off + i])(isl_sioimath_sgn(*(tab->mat->row[row][off + i])) == 0))
759 continue;
760 if (tab->col_var[i] >= 0)
761 return 0;
762 if (isl_int_is_neg(tab->mat->row[row][off + i])(isl_sioimath_sgn(*(tab->mat->row[row][off + i])) < 0
)
)
763 return 0;
764 if (!var_from_col(tab, i)->is_nonneg)
765 return 0;
766 }
767 return 1;
768}
769
770static void swap_rows(struct isl_tab *tab, int row1, int row2)
771{
772 int t;
773 enum isl_tab_row_sign s;
774
775 t = tab->row_var[row1];
776 tab->row_var[row1] = tab->row_var[row2];
777 tab->row_var[row2] = t;
778 isl_tab_var_from_row(tab, row1)->index = row1;
779 isl_tab_var_from_row(tab, row2)->index = row2;
780 tab->mat = isl_mat_swap_rows(tab->mat, row1, row2);
781
782 if (!tab->row_sign)
783 return;
784 s = tab->row_sign[row1];
785 tab->row_sign[row1] = tab->row_sign[row2];
786 tab->row_sign[row2] = s;
787}
788
789static int push_union(struct isl_tab *tab,
790 enum isl_tab_undo_type type, union isl_tab_undo_val u) WARN_UNUSED__attribute__((__warn_unused_result__));
791static int push_union(struct isl_tab *tab,
792 enum isl_tab_undo_type type, union isl_tab_undo_val u)
793{
794 struct isl_tab_undo *undo;
795
796 if (!tab)
797 return -1;
798 if (!tab->need_undo)
799 return 0;
800
801 undo = isl_alloc_type(tab->mat->ctx, struct isl_tab_undo)((struct isl_tab_undo *)isl_malloc_or_die(tab->mat->ctx
, sizeof(struct isl_tab_undo)))
;
802 if (!undo)
803 return -1;
804 undo->type = type;
805 undo->u = u;
806 undo->next = tab->top;
807 tab->top = undo;
808
809 return 0;
810}
811
812int isl_tab_push_var(struct isl_tab *tab,
813 enum isl_tab_undo_type type, struct isl_tab_var *var)
814{
815 union isl_tab_undo_val u;
816 if (var->is_row)
817 u.var_index = tab->row_var[var->index];
818 else
819 u.var_index = tab->col_var[var->index];
820 return push_union(tab, type, u);
821}
822
823int isl_tab_push(struct isl_tab *tab, enum isl_tab_undo_type type)
824{
825 union isl_tab_undo_val u = { 0 };
826 return push_union(tab, type, u);
827}
828
829/* Push a record on the undo stack describing the current basic
830 * variables, so that the this state can be restored during rollback.
831 */
832int isl_tab_push_basis(struct isl_tab *tab)
833{
834 int i;
835 union isl_tab_undo_val u;
836
837 u.col_var = isl_alloc_array(tab->mat->ctx, int, tab->n_col)((int *)isl_malloc_or_die(tab->mat->ctx, (tab->n_col
)*sizeof(int)))
;
838 if (tab->n_col && !u.col_var)
839 return -1;
840 for (i = 0; i < tab->n_col; ++i)
841 u.col_var[i] = tab->col_var[i];
842 return push_union(tab, isl_tab_undo_saved_basis, u);
843}
844
845int isl_tab_push_callback(struct isl_tab *tab, struct isl_tab_callback *callback)
846{
847 union isl_tab_undo_val u;
848 u.callback = callback;
849 return push_union(tab, isl_tab_undo_callback, u);
850}
851
852struct isl_tab *isl_tab_init_samples(struct isl_tab *tab)
853{
854 if (!tab)
855 return NULL((void*)0);
856
857 tab->n_sample = 0;
858 tab->n_outside = 0;
859 tab->samples = isl_mat_alloc(tab->mat->ctx, 1, 1 + tab->n_var);
860 if (!tab->samples)
861 goto error;
862 tab->sample_index = isl_alloc_array(tab->mat->ctx, int, 1)((int *)isl_malloc_or_die(tab->mat->ctx, (1)*sizeof(int
)))
;
863 if (!tab->sample_index)
864 goto error;
865 return tab;
866error:
867 isl_tab_free(tab);
868 return NULL((void*)0);
869}
870
871int isl_tab_add_sample(struct isl_tab *tab, __isl_take isl_vec *sample)
872{
873 if (!tab || !sample)
874 goto error;
875
876 if (tab->n_sample + 1 > tab->samples->n_row) {
877 int *t = isl_realloc_array(tab->mat->ctx,((int *)isl_realloc_or_die(tab->mat->ctx, tab->sample_index
, (tab->n_sample + 1)*sizeof(int)))
878 tab->sample_index, int, tab->n_sample + 1)((int *)isl_realloc_or_die(tab->mat->ctx, tab->sample_index
, (tab->n_sample + 1)*sizeof(int)))
;
879 if (!t)
880 goto error;
881 tab->sample_index = t;
882 }
883
884 tab->samples = isl_mat_extend(tab->samples,
885 tab->n_sample + 1, tab->samples->n_col);
886 if (!tab->samples)
887 goto error;
888
889 isl_seq_cpy(tab->samples->row[tab->n_sample], sample->el, sample->size);
890 isl_vec_free(sample);
891 tab->sample_index[tab->n_sample] = tab->n_sample;
892 tab->n_sample++;
893
894 return 0;
895error:
896 isl_vec_free(sample);
897 return -1;
898}
899
900struct isl_tab *isl_tab_drop_sample(struct isl_tab *tab, int s)
901{
902 if (s != tab->n_outside) {
903 int t = tab->sample_index[tab->n_outside];
904 tab->sample_index[tab->n_outside] = tab->sample_index[s];
905 tab->sample_index[s] = t;
906 isl_mat_swap_rows(tab->samples, tab->n_outside, s);
907 }
908 tab->n_outside++;
909 if (isl_tab_push(tab, isl_tab_undo_drop_sample) < 0) {
910 isl_tab_free(tab);
911 return NULL((void*)0);
912 }
913
914 return tab;
915}
916
917/* Record the current number of samples so that we can remove newer
918 * samples during a rollback.
919 */
920int isl_tab_save_samples(struct isl_tab *tab)
921{
922 union isl_tab_undo_val u;
923
924 if (!tab)
925 return -1;
926
927 u.n = tab->n_sample;
928 return push_union(tab, isl_tab_undo_saved_samples, u);
929}
930
931/* Mark row with index "row" as being redundant.
932 * If we may need to undo the operation or if the row represents
933 * a variable of the original problem, the row is kept,
934 * but no longer considered when looking for a pivot row.
935 * Otherwise, the row is simply removed.
936 *
937 * The row may be interchanged with some other row. If it
938 * is interchanged with a later row, return 1. Otherwise return 0.
939 * If the rows are checked in order in the calling function,
940 * then a return value of 1 means that the row with the given
941 * row number may now contain a different row that hasn't been checked yet.
942 */
943int isl_tab_mark_redundant(struct isl_tab *tab, int row)
944{
945 struct isl_tab_var *var = isl_tab_var_from_row(tab, row);
946 var->is_redundant = 1;
947 isl_assert(tab->mat->ctx, row >= tab->n_redundant, return -1)do { if (row >= tab->n_redundant) break; do { isl_handle_error
(tab->mat->ctx, isl_error_unknown, "Assertion \"" "row >= tab->n_redundant"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 947); return -1; } while (0); } while (0)
;
948 if (tab->preserve || tab->need_undo || tab->row_var[row] >= 0) {
949 if (tab->row_var[row] >= 0 && !var->is_nonneg) {
950 var->is_nonneg = 1;
951 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, var) < 0)
952 return -1;
953 }
954 if (row != tab->n_redundant)
955 swap_rows(tab, row, tab->n_redundant);
956 tab->n_redundant++;
957 return isl_tab_push_var(tab, isl_tab_undo_redundant, var);
958 } else {
959 if (row != tab->n_row - 1)
960 swap_rows(tab, row, tab->n_row - 1);
961 isl_tab_var_from_row(tab, tab->n_row - 1)->index = -1;
962 tab->n_row--;
963 return 1;
964 }
965}
966
967/* Mark "tab" as a rational tableau.
968 * If it wasn't marked as a rational tableau already and if we may
969 * need to undo changes, then arrange for the marking to be undone
970 * during the undo.
971 */
972int isl_tab_mark_rational(struct isl_tab *tab)
973{
974 if (!tab)
975 return -1;
976 if (!tab->rational && tab->need_undo)
977 if (isl_tab_push(tab, isl_tab_undo_rational) < 0)
978 return -1;
979 tab->rational = 1;
980 return 0;
981}
982
983isl_stat isl_tab_mark_empty(struct isl_tab *tab)
984{
985 if (!tab)
986 return isl_stat_error;
987 if (!tab->empty && tab->need_undo)
988 if (isl_tab_push(tab, isl_tab_undo_empty) < 0)
989 return isl_stat_error;
990 tab->empty = 1;
991 return isl_stat_ok;
992}
993
994int isl_tab_freeze_constraint(struct isl_tab *tab, int con)
995{
996 struct isl_tab_var *var;
997
998 if (!tab)
999 return -1;
1000
1001 var = &tab->con[con];
1002 if (var->frozen)
1003 return 0;
1004 if (var->index < 0)
1005 return 0;
1006 var->frozen = 1;
1007
1008 if (tab->need_undo)
1009 return isl_tab_push_var(tab, isl_tab_undo_freeze, var);
1010
1011 return 0;
1012}
1013
1014/* Update the rows signs after a pivot of "row" and "col", with "row_sgn"
1015 * the original sign of the pivot element.
1016 * We only keep track of row signs during PILP solving and in this case
1017 * we only pivot a row with negative sign (meaning the value is always
1018 * non-positive) using a positive pivot element.
1019 *
1020 * For each row j, the new value of the parametric constant is equal to
1021 *
1022 * a_j0 - a_jc a_r0/a_rc
1023 *
1024 * where a_j0 is the original parametric constant, a_rc is the pivot element,
1025 * a_r0 is the parametric constant of the pivot row and a_jc is the
1026 * pivot column entry of the row j.
1027 * Since a_r0 is non-positive and a_rc is positive, the sign of row j
1028 * remains the same if a_jc has the same sign as the row j or if
1029 * a_jc is zero. In all other cases, we reset the sign to "unknown".
1030 */
1031static void update_row_sign(struct isl_tab *tab, int row, int col, int row_sgn)
1032{
1033 int i;
1034 struct isl_mat *mat = tab->mat;
1035 unsigned off = 2 + tab->M;
1036
1037 if (!tab->row_sign)
1038 return;
1039
1040 if (tab->row_sign[row] == 0)
1041 return;
1042 isl_assert(mat->ctx, row_sgn > 0, return)do { if (row_sgn > 0) break; do { isl_handle_error(mat->
ctx, isl_error_unknown, "Assertion \"" "row_sgn > 0" "\" failed"
, "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1042); return; } while (0); } while (0)
;
1043 isl_assert(mat->ctx, tab->row_sign[row] == isl_tab_row_neg, return)do { if (tab->row_sign[row] == isl_tab_row_neg) break; do {
isl_handle_error(mat->ctx, isl_error_unknown, "Assertion \""
"tab->row_sign[row] == isl_tab_row_neg" "\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1043); return; } while (0); } while (0)
;
1044 tab->row_sign[row] = isl_tab_row_pos;
1045 for (i = 0; i < tab->n_row; ++i) {
1046 int s;
1047 if (i == row)
1048 continue;
1049 s = isl_int_sgn(mat->row[i][off + col])isl_sioimath_sgn(*(mat->row[i][off + col]));
1050 if (!s)
1051 continue;
1052 if (!tab->row_sign[i])
1053 continue;
1054 if (s < 0 && tab->row_sign[i] == isl_tab_row_neg)
1055 continue;
1056 if (s > 0 && tab->row_sign[i] == isl_tab_row_pos)
1057 continue;
1058 tab->row_sign[i] = isl_tab_row_unknown;
1059 }
1060}
1061
1062/* Given a row number "row" and a column number "col", pivot the tableau
1063 * such that the associated variables are interchanged.
1064 * The given row in the tableau expresses
1065 *
1066 * x_r = a_r0 + \sum_i a_ri x_i
1067 *
1068 * or
1069 *
1070 * x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc
1071 *
1072 * Substituting this equality into the other rows
1073 *
1074 * x_j = a_j0 + \sum_i a_ji x_i
1075 *
1076 * with a_jc \ne 0, we obtain
1077 *
1078 * x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc
1079 *
1080 * The tableau
1081 *
1082 * n_rc/d_r n_ri/d_r
1083 * n_jc/d_j n_ji/d_j
1084 *
1085 * where i is any other column and j is any other row,
1086 * is therefore transformed into
1087 *
1088 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1089 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1090 *
1091 * The transformation is performed along the following steps
1092 *
1093 * d_r/n_rc n_ri/n_rc
1094 * n_jc/d_j n_ji/d_j
1095 *
1096 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1097 * n_jc/d_j n_ji/d_j
1098 *
1099 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1100 * n_jc/(|n_rc| d_j) n_ji/(|n_rc| d_j)
1101 *
1102 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1103 * n_jc/(|n_rc| d_j) (n_ji |n_rc|)/(|n_rc| d_j)
1104 *
1105 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1106 * n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1107 *
1108 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1109 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1110 *
1111 */
1112int isl_tab_pivot(struct isl_tab *tab, int row, int col)
1113{
1114 int i, j;
1115 int sgn;
1116 int t;
1117 isl_ctx *ctx;
1118 struct isl_mat *mat = tab->mat;
1119 struct isl_tab_var *var;
1120 unsigned off = 2 + tab->M;
1121
1122 ctx = isl_tab_get_ctx(tab);
1123 if (isl_ctx_next_operation(ctx) < 0)
1124 return -1;
1125
1126 isl_int_swap(mat->row[row][0], mat->row[row][off + col])isl_sioimath_swap((mat->row[row][0]), (mat->row[row][off
+ col]))
;
1127 sgn = isl_int_sgn(mat->row[row][0])isl_sioimath_sgn(*(mat->row[row][0]));
1128 if (sgn < 0) {
1129 isl_int_neg(mat->row[row][0], mat->row[row][0])isl_sioimath_neg((mat->row[row][0]), *(mat->row[row][0]
))
;
1130 isl_int_neg(mat->row[row][off + col], mat->row[row][off + col])isl_sioimath_neg((mat->row[row][off + col]), *(mat->row
[row][off + col]))
;
1131 } else
1132 for (j = 0; j < off - 1 + tab->n_col; ++j) {
1133 if (j == off - 1 + col)
1134 continue;
1135 isl_int_neg(mat->row[row][1 + j], mat->row[row][1 + j])isl_sioimath_neg((mat->row[row][1 + j]), *(mat->row[row
][1 + j]))
;
1136 }
1137 if (!isl_int_is_one(mat->row[row][0])(isl_sioimath_cmp_si(*(mat->row[row][0]), 1) == 0))
1138 isl_seq_normalize(mat->ctx, mat->row[row], off + tab->n_col);
1139 for (i = 0; i < tab->n_row; ++i) {
1140 if (i == row)
1141 continue;
1142 if (isl_int_is_zero(mat->row[i][off + col])(isl_sioimath_sgn(*(mat->row[i][off + col])) == 0))
1143 continue;
1144 isl_int_mul(mat->row[i][0], mat->row[i][0], mat->row[row][0])isl_sioimath_mul((mat->row[i][0]), *(mat->row[i][0]), *
(mat->row[row][0]))
;
1145 for (j = 0; j < off - 1 + tab->n_col; ++j) {
1146 if (j == off - 1 + col)
1147 continue;
1148 isl_int_mul(mat->row[i][1 + j],isl_sioimath_mul((mat->row[i][1 + j]), *(mat->row[i][1 +
j]), *(mat->row[row][0]))
1149 mat->row[i][1 + j], mat->row[row][0])isl_sioimath_mul((mat->row[i][1 + j]), *(mat->row[i][1 +
j]), *(mat->row[row][0]))
;
1150 isl_int_addmul(mat->row[i][1 + j],isl_sioimath_addmul((mat->row[i][1 + j]), *(mat->row[i]
[off + col]), *(mat->row[row][1 + j]))
1151 mat->row[i][off + col], mat->row[row][1 + j])isl_sioimath_addmul((mat->row[i][1 + j]), *(mat->row[i]
[off + col]), *(mat->row[row][1 + j]))
;
1152 }
1153 isl_int_mul(mat->row[i][off + col],isl_sioimath_mul((mat->row[i][off + col]), *(mat->row[i
][off + col]), *(mat->row[row][off + col]))
1154 mat->row[i][off + col], mat->row[row][off + col])isl_sioimath_mul((mat->row[i][off + col]), *(mat->row[i
][off + col]), *(mat->row[row][off + col]))
;
1155 if (!isl_int_is_one(mat->row[i][0])(isl_sioimath_cmp_si(*(mat->row[i][0]), 1) == 0))
1156 isl_seq_normalize(mat->ctx, mat->row[i], off + tab->n_col);
1157 }
1158 t = tab->row_var[row];
1159 tab->row_var[row] = tab->col_var[col];
1160 tab->col_var[col] = t;
1161 var = isl_tab_var_from_row(tab, row);
1162 var->is_row = 1;
1163 var->index = row;
1164 var = var_from_col(tab, col);
1165 var->is_row = 0;
1166 var->index = col;
1167 update_row_sign(tab, row, col, sgn);
1168 if (tab->in_undo)
1169 return 0;
1170 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1171 if (isl_int_is_zero(mat->row[i][off + col])(isl_sioimath_sgn(*(mat->row[i][off + col])) == 0))
1172 continue;
1173 if (!isl_tab_var_from_row(tab, i)->frozen &&
1174 isl_tab_row_is_redundant(tab, i)) {
1175 int redo = isl_tab_mark_redundant(tab, i);
1176 if (redo < 0)
1177 return -1;
1178 if (redo)
1179 --i;
1180 }
1181 }
1182 return 0;
1183}
1184
1185/* If "var" represents a column variable, then pivot is up (sgn > 0)
1186 * or down (sgn < 0) to a row. The variable is assumed not to be
1187 * unbounded in the specified direction.
1188 * If sgn = 0, then the variable is unbounded in both directions,
1189 * and we pivot with any row we can find.
1190 */
1191static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign) WARN_UNUSED__attribute__((__warn_unused_result__));
1192static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign)
1193{
1194 int r;
1195 unsigned off = 2 + tab->M;
1196
1197 if (var->is_row)
1198 return 0;
1199
1200 if (sign == 0) {
1201 for (r = tab->n_redundant; r < tab->n_row; ++r)
1202 if (!isl_int_is_zero(tab->mat->row[r][off+var->index])(isl_sioimath_sgn(*(tab->mat->row[r][off+var->index]
)) == 0)
)
1203 break;
1204 isl_assert(tab->mat->ctx, r < tab->n_row, return -1)do { if (r < tab->n_row) break; do { isl_handle_error(tab
->mat->ctx, isl_error_unknown, "Assertion \"" "r < tab->n_row"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1204); return -1; } while (0); } while (0)
;
1205 } else {
1206 r = pivot_row(tab, NULL((void*)0), sign, var->index);
1207 isl_assert(tab->mat->ctx, r >= 0, return -1)do { if (r >= 0) break; do { isl_handle_error(tab->mat->
ctx, isl_error_unknown, "Assertion \"" "r >= 0" "\" failed"
, "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1207); return -1; } while (0); } while (0)
;
1208 }
1209
1210 return isl_tab_pivot(tab, r, var->index);
1211}
1212
1213/* Check whether all variables that are marked as non-negative
1214 * also have a non-negative sample value. This function is not
1215 * called from the current code but is useful during debugging.
1216 */
1217static void check_table(struct isl_tab *tab) __attribute__ ((unused));
1218static void check_table(struct isl_tab *tab)
1219{
1220 int i;
1221
1222 if (tab->empty)
1223 return;
1224 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1225 struct isl_tab_var *var;
1226 var = isl_tab_var_from_row(tab, i);
1227 if (!var->is_nonneg)
1228 continue;
1229 if (tab->M) {
1230 isl_assert(tab->mat->ctx,do { if (!(isl_sioimath_sgn(*(tab->mat->row[i][2])) <
0)) break; do { isl_handle_error(tab->mat->ctx, isl_error_unknown
, "Assertion \"" "!(isl_sioimath_sgn(*(tab->mat->row[i][2])) < 0)"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1231); abort(); } while (0); } while (0)
1231 !isl_int_is_neg(tab->mat->row[i][2]), abort())do { if (!(isl_sioimath_sgn(*(tab->mat->row[i][2])) <
0)) break; do { isl_handle_error(tab->mat->ctx, isl_error_unknown
, "Assertion \"" "!(isl_sioimath_sgn(*(tab->mat->row[i][2])) < 0)"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1231); abort(); } while (0); } while (0)
;
1232 if (isl_int_is_pos(tab->mat->row[i][2])(isl_sioimath_sgn(*(tab->mat->row[i][2])) > 0))
1233 continue;
1234 }
1235 isl_assert(tab->mat->ctx, !isl_int_is_neg(tab->mat->row[i][1]),do { if (!(isl_sioimath_sgn(*(tab->mat->row[i][1])) <
0)) break; do { isl_handle_error(tab->mat->ctx, isl_error_unknown
, "Assertion \"" "!(isl_sioimath_sgn(*(tab->mat->row[i][1])) < 0)"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1236); abort(); } while (0); } while (0)
1236 abort())do { if (!(isl_sioimath_sgn(*(tab->mat->row[i][1])) <
0)) break; do { isl_handle_error(tab->mat->ctx, isl_error_unknown
, "Assertion \"" "!(isl_sioimath_sgn(*(tab->mat->row[i][1])) < 0)"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1236); abort(); } while (0); } while (0)
;
1237 }
1238}
1239
1240/* Return the sign of the maximal value of "var".
1241 * If the sign is not negative, then on return from this function,
1242 * the sample value will also be non-negative.
1243 *
1244 * If "var" is manifestly unbounded wrt positive values, we are done.
1245 * Otherwise, we pivot the variable up to a row if needed
1246 * Then we continue pivoting down until either
1247 * - no more down pivots can be performed
1248 * - the sample value is positive
1249 * - the variable is pivoted into a manifestly unbounded column
1250 */
1251static int sign_of_max(struct isl_tab *tab, struct isl_tab_var *var)
1252{
1253 int row, col;
1254
1255 if (max_is_manifestly_unbounded(tab, var))
1256 return 1;
1257 if (to_row(tab, var, 1) < 0)
1258 return -2;
1259 while (!isl_int_is_pos(tab->mat->row[var->index][1])(isl_sioimath_sgn(*(tab->mat->row[var->index][1])) >
0)
) {
1260 find_pivot(tab, var, var, 1, &row, &col);
1261 if (row == -1)
1262 return isl_int_sgn(tab->mat->row[var->index][1])isl_sioimath_sgn(*(tab->mat->row[var->index][1]));
1263 if (isl_tab_pivot(tab, row, col) < 0)
1264 return -2;
1265 if (!var->is_row) /* manifestly unbounded */
1266 return 1;
1267 }
1268 return 1;
1269}
1270
1271int isl_tab_sign_of_max(struct isl_tab *tab, int con)
1272{
1273 struct isl_tab_var *var;
1274
1275 if (!tab)
1276 return -2;
1277
1278 var = &tab->con[con];
1279 isl_assert(tab->mat->ctx, !var->is_redundant, return -2)do { if (!var->is_redundant) break; do { isl_handle_error(
tab->mat->ctx, isl_error_unknown, "Assertion \"" "!var->is_redundant"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1279); return -2; } while (0); } while (0)
;
1280 isl_assert(tab->mat->ctx, !var->is_zero, return -2)do { if (!var->is_zero) break; do { isl_handle_error(tab->
mat->ctx, isl_error_unknown, "Assertion \"" "!var->is_zero"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1280); return -2; } while (0); } while (0)
;
1281
1282 return sign_of_max(tab, var);
1283}
1284
1285static int row_is_neg(struct isl_tab *tab, int row)
1286{
1287 if (!tab->M)
1288 return isl_int_is_neg(tab->mat->row[row][1])(isl_sioimath_sgn(*(tab->mat->row[row][1])) < 0);
1289 if (isl_int_is_pos(tab->mat->row[row][2])(isl_sioimath_sgn(*(tab->mat->row[row][2])) > 0))
1290 return 0;
1291 if (isl_int_is_neg(tab->mat->row[row][2])(isl_sioimath_sgn(*(tab->mat->row[row][2])) < 0))
1292 return 1;
1293 return isl_int_is_neg(tab->mat->row[row][1])(isl_sioimath_sgn(*(tab->mat->row[row][1])) < 0);
1294}
1295
1296static int row_sgn(struct isl_tab *tab, int row)
1297{
1298 if (!tab->M)
1299 return isl_int_sgn(tab->mat->row[row][1])isl_sioimath_sgn(*(tab->mat->row[row][1]));
1300 if (!isl_int_is_zero(tab->mat->row[row][2])(isl_sioimath_sgn(*(tab->mat->row[row][2])) == 0))
1301 return isl_int_sgn(tab->mat->row[row][2])isl_sioimath_sgn(*(tab->mat->row[row][2]));
1302 else
1303 return isl_int_sgn(tab->mat->row[row][1])isl_sioimath_sgn(*(tab->mat->row[row][1]));
1304}
1305
1306/* Perform pivots until the row variable "var" has a non-negative
1307 * sample value or until no more upward pivots can be performed.
1308 * Return the sign of the sample value after the pivots have been
1309 * performed.
1310 */
1311static int restore_row(struct isl_tab *tab, struct isl_tab_var *var)
1312{
1313 int row, col;
1314
1315 while (row_is_neg(tab, var->index)) {
1316 find_pivot(tab, var, var, 1, &row, &col);
1317 if (row == -1)
1318 break;
1319 if (isl_tab_pivot(tab, row, col) < 0)
1320 return -2;
1321 if (!var->is_row) /* manifestly unbounded */
1322 return 1;
1323 }
1324 return row_sgn(tab, var->index);
1325}
1326
1327/* Perform pivots until we are sure that the row variable "var"
1328 * can attain non-negative values. After return from this
1329 * function, "var" is still a row variable, but its sample
1330 * value may not be non-negative, even if the function returns 1.
1331 */
1332static int at_least_zero(struct isl_tab *tab, struct isl_tab_var *var)
1333{
1334 int row, col;
1335
1336 while (isl_int_is_neg(tab->mat->row[var->index][1])(isl_sioimath_sgn(*(tab->mat->row[var->index][1])) <
0)
) {
1337 find_pivot(tab, var, var, 1, &row, &col);
1338 if (row == -1)
1339 break;
1340 if (row == var->index) /* manifestly unbounded */
1341 return 1;
1342 if (isl_tab_pivot(tab, row, col) < 0)
1343 return -1;
1344 }
1345 return !isl_int_is_neg(tab->mat->row[var->index][1])(isl_sioimath_sgn(*(tab->mat->row[var->index][1])) <
0)
;
1346}
1347
1348/* Return a negative value if "var" can attain negative values.
1349 * Return a non-negative value otherwise.
1350 *
1351 * If "var" is manifestly unbounded wrt negative values, we are done.
1352 * Otherwise, if var is in a column, we can pivot it down to a row.
1353 * Then we continue pivoting down until either
1354 * - the pivot would result in a manifestly unbounded column
1355 * => we don't perform the pivot, but simply return -1
1356 * - no more down pivots can be performed
1357 * - the sample value is negative
1358 * If the sample value becomes negative and the variable is supposed
1359 * to be nonnegative, then we undo the last pivot.
1360 * However, if the last pivot has made the pivoting variable
1361 * obviously redundant, then it may have moved to another row.
1362 * In that case we look for upward pivots until we reach a non-negative
1363 * value again.
1364 */
1365static int sign_of_min(struct isl_tab *tab, struct isl_tab_var *var)
1366{
1367 int row, col;
1368 struct isl_tab_var *pivot_var = NULL((void*)0);
1369
1370 if (min_is_manifestly_unbounded(tab, var))
1371 return -1;
1372 if (!var->is_row) {
1373 col = var->index;
1374 row = pivot_row(tab, NULL((void*)0), -1, col);
1375 pivot_var = var_from_col(tab, col);
1376 if (isl_tab_pivot(tab, row, col) < 0)
1377 return -2;
1378 if (var->is_redundant)
1379 return 0;
1380 if (isl_int_is_neg(tab->mat->row[var->index][1])(isl_sioimath_sgn(*(tab->mat->row[var->index][1])) <
0)
) {
1381 if (var->is_nonneg) {
1382 if (!pivot_var->is_redundant &&
1383 pivot_var->index == row) {
1384 if (isl_tab_pivot(tab, row, col) < 0)
1385 return -2;
1386 } else
1387 if (restore_row(tab, var) < -1)
1388 return -2;
1389 }
1390 return -1;
1391 }
1392 }
1393 if (var->is_redundant)
1394 return 0;
1395 while (!isl_int_is_neg(tab->mat->row[var->index][1])(isl_sioimath_sgn(*(tab->mat->row[var->index][1])) <
0)
) {
1396 find_pivot(tab, var, var, -1, &row, &col);
1397 if (row == var->index)
1398 return -1;
1399 if (row == -1)
1400 return isl_int_sgn(tab->mat->row[var->index][1])isl_sioimath_sgn(*(tab->mat->row[var->index][1]));
1401 pivot_var = var_from_col(tab, col);
1402 if (isl_tab_pivot(tab, row, col) < 0)
1403 return -2;
1404 if (var->is_redundant)
1405 return 0;
1406 }
1407 if (pivot_var && var->is_nonneg) {
1408 /* pivot back to non-negative value */
1409 if (!pivot_var->is_redundant && pivot_var->index == row) {
1410 if (isl_tab_pivot(tab, row, col) < 0)
1411 return -2;
1412 } else
1413 if (restore_row(tab, var) < -1)
1414 return -2;
1415 }
1416 return -1;
1417}
1418
1419static int row_at_most_neg_one(struct isl_tab *tab, int row)
1420{
1421 if (tab->M) {
1422 if (isl_int_is_pos(tab->mat->row[row][2])(isl_sioimath_sgn(*(tab->mat->row[row][2])) > 0))
1423 return 0;
1424 if (isl_int_is_neg(tab->mat->row[row][2])(isl_sioimath_sgn(*(tab->mat->row[row][2])) < 0))
1425 return 1;
1426 }
1427 return isl_int_is_neg(tab->mat->row[row][1])(isl_sioimath_sgn(*(tab->mat->row[row][1])) < 0) &&
1428 isl_int_abs_ge(tab->mat->row[row][1],(isl_sioimath_abs_cmp(*(tab->mat->row[row][1]), *(tab->
mat->row[row][0])) >= 0)
1429 tab->mat->row[row][0])(isl_sioimath_abs_cmp(*(tab->mat->row[row][1]), *(tab->
mat->row[row][0])) >= 0)
;
1430}
1431
1432/* Return 1 if "var" can attain values <= -1.
1433 * Return 0 otherwise.
1434 *
1435 * If the variable "var" is supposed to be non-negative (is_nonneg is set),
1436 * then the sample value of "var" is assumed to be non-negative when the
1437 * the function is called. If 1 is returned then the constraint
1438 * is not redundant and the sample value is made non-negative again before
1439 * the function returns.
1440 */
1441int isl_tab_min_at_most_neg_one(struct isl_tab *tab, struct isl_tab_var *var)
1442{
1443 int row, col;
1444 struct isl_tab_var *pivot_var;
1445
1446 if (min_is_manifestly_unbounded(tab, var))
1447 return 1;
1448 if (!var->is_row) {
1449 col = var->index;
1450 row = pivot_row(tab, NULL((void*)0), -1, col);
1451 pivot_var = var_from_col(tab, col);
1452 if (isl_tab_pivot(tab, row, col) < 0)
1453 return -1;
1454 if (var->is_redundant)
1455 return 0;
1456 if (row_at_most_neg_one(tab, var->index)) {
1457 if (var->is_nonneg) {
1458 if (!pivot_var->is_redundant &&
1459 pivot_var->index == row) {
1460 if (isl_tab_pivot(tab, row, col) < 0)
1461 return -1;
1462 } else
1463 if (restore_row(tab, var) < -1)
1464 return -1;
1465 }
1466 return 1;
1467 }
1468 }
1469 if (var->is_redundant)
1470 return 0;
1471 do {
1472 find_pivot(tab, var, var, -1, &row, &col);
1473 if (row == var->index) {
1474 if (var->is_nonneg && restore_row(tab, var) < -1)
1475 return -1;
1476 return 1;
1477 }
1478 if (row == -1)
1479 return 0;
1480 pivot_var = var_from_col(tab, col);
1481 if (isl_tab_pivot(tab, row, col) < 0)
1482 return -1;
1483 if (var->is_redundant)
1484 return 0;
1485 } while (!row_at_most_neg_one(tab, var->index));
1486 if (var->is_nonneg) {
1487 /* pivot back to non-negative value */
1488 if (!pivot_var->is_redundant && pivot_var->index == row)
1489 if (isl_tab_pivot(tab, row, col) < 0)
1490 return -1;
1491 if (restore_row(tab, var) < -1)
1492 return -1;
1493 }
1494 return 1;
1495}
1496
1497/* Return 1 if "var" can attain values >= 1.
1498 * Return 0 otherwise.
1499 */
1500static int at_least_one(struct isl_tab *tab, struct isl_tab_var *var)
1501{
1502 int row, col;
1503 isl_int *r;
1504
1505 if (max_is_manifestly_unbounded(tab, var))
1506 return 1;
1507 if (to_row(tab, var, 1) < 0)
1508 return -1;
1509 r = tab->mat->row[var->index];
1510 while (isl_int_lt(r[1], r[0])(isl_sioimath_cmp(*(r[1]), *(r[0])) < 0)) {
1511 find_pivot(tab, var, var, 1, &row, &col);
1512 if (row == -1)
1513 return isl_int_ge(r[1], r[0])(isl_sioimath_cmp(*(r[1]), *(r[0])) >= 0);
1514 if (row == var->index) /* manifestly unbounded */
1515 return 1;
1516 if (isl_tab_pivot(tab, row, col) < 0)
1517 return -1;
1518 }
1519 return 1;
1520}
1521
1522static void swap_cols(struct isl_tab *tab, int col1, int col2)
1523{
1524 int t;
1525 unsigned off = 2 + tab->M;
1526 t = tab->col_var[col1];
1527 tab->col_var[col1] = tab->col_var[col2];
1528 tab->col_var[col2] = t;
1529 var_from_col(tab, col1)->index = col1;
1530 var_from_col(tab, col2)->index = col2;
1531 tab->mat = isl_mat_swap_cols(tab->mat, off + col1, off + col2);
1532}
1533
1534/* Mark column with index "col" as representing a zero variable.
1535 * If we may need to undo the operation the column is kept,
1536 * but no longer considered.
1537 * Otherwise, the column is simply removed.
1538 *
1539 * The column may be interchanged with some other column. If it
1540 * is interchanged with a later column, return 1. Otherwise return 0.
1541 * If the columns are checked in order in the calling function,
1542 * then a return value of 1 means that the column with the given
1543 * column number may now contain a different column that
1544 * hasn't been checked yet.
1545 */
1546int isl_tab_kill_col(struct isl_tab *tab, int col)
1547{
1548 var_from_col(tab, col)->is_zero = 1;
1549 if (tab->need_undo) {
1550 if (isl_tab_push_var(tab, isl_tab_undo_zero,
1551 var_from_col(tab, col)) < 0)
1552 return -1;
1553 if (col != tab->n_dead)
1554 swap_cols(tab, col, tab->n_dead);
1555 tab->n_dead++;
1556 return 0;
1557 } else {
1558 if (col != tab->n_col - 1)
1559 swap_cols(tab, col, tab->n_col - 1);
1560 var_from_col(tab, tab->n_col - 1)->index = -1;
1561 tab->n_col--;
1562 return 1;
1563 }
1564}
1565
1566static int row_is_manifestly_non_integral(struct isl_tab *tab, int row)
1567{
1568 unsigned off = 2 + tab->M;
1569
1570 if (tab->M && !isl_int_eq(tab->mat->row[row][2],(isl_sioimath_cmp(*(tab->mat->row[row][2]), *(tab->mat
->row[row][0])) == 0)
1571 tab->mat->row[row][0])(isl_sioimath_cmp(*(tab->mat->row[row][2]), *(tab->mat
->row[row][0])) == 0)
)
1572 return 0;
1573 if (isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1574 tab->n_col - tab->n_dead) != -1)
1575 return 0;
1576
1577 return !isl_int_is_divisible_by(tab->mat->row[row][1],isl_sioimath_is_divisible_by(*(tab->mat->row[row][1]), *
(tab->mat->row[row][0]))
1578 tab->mat->row[row][0])isl_sioimath_is_divisible_by(*(tab->mat->row[row][1]), *
(tab->mat->row[row][0]))
;
1579}
1580
1581/* For integer tableaus, check if any of the coordinates are stuck
1582 * at a non-integral value.
1583 */
1584static int tab_is_manifestly_empty(struct isl_tab *tab)
1585{
1586 int i;
1587
1588 if (tab->empty)
1589 return 1;
1590 if (tab->rational)
1591 return 0;
1592
1593 for (i = 0; i < tab->n_var; ++i) {
1594 if (!tab->var[i].is_row)
1595 continue;
1596 if (row_is_manifestly_non_integral(tab, tab->var[i].index))
1597 return 1;
1598 }
1599
1600 return 0;
1601}
1602
1603/* Row variable "var" is non-negative and cannot attain any values
1604 * larger than zero. This means that the coefficients of the unrestricted
1605 * column variables are zero and that the coefficients of the non-negative
1606 * column variables are zero or negative.
1607 * Each of the non-negative variables with a negative coefficient can
1608 * then also be written as the negative sum of non-negative variables
1609 * and must therefore also be zero.
1610 *
1611 * If "temp_var" is set, then "var" is a temporary variable that
1612 * will be removed after this function returns and for which
1613 * no information is recorded on the undo stack.
1614 * Do not add any undo records involving this variable in this case
1615 * since the variable will have been removed before any future undo
1616 * operations. Also avoid marking the variable as redundant,
1617 * since that either adds an undo record or needlessly removes the row
1618 * (the caller will take care of removing the row).
1619 */
1620static isl_stat close_row(struct isl_tab *tab, struct isl_tab_var *var,
1621 int temp_var) WARN_UNUSED__attribute__((__warn_unused_result__));
1622static isl_stat close_row(struct isl_tab *tab, struct isl_tab_var *var,
1623 int temp_var)
1624{
1625 int j;
1626 struct isl_mat *mat = tab->mat;
1627 unsigned off = 2 + tab->M;
1628
1629 if (!var->is_nonneg)
1630 isl_die(isl_tab_get_ctx(tab), isl_error_internal,do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_internal
, "expecting non-negative variable", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1632); return isl_stat_error; } while (0)
1631 "expecting non-negative variable",do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_internal
, "expecting non-negative variable", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1632); return isl_stat_error; } while (0)
1632 return isl_stat_error)do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_internal
, "expecting non-negative variable", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1632); return isl_stat_error; } while (0)
;
1633 var->is_zero = 1;
1634 if (!temp_var && tab->need_undo)
1635 if (isl_tab_push_var(tab, isl_tab_undo_zero, var) < 0)
1636 return isl_stat_error;
1637 for (j = tab->n_dead; j < tab->n_col; ++j) {
1638 int recheck;
1639 if (isl_int_is_zero(mat->row[var->index][off + j])(isl_sioimath_sgn(*(mat->row[var->index][off + j])) == 0
)
)
1640 continue;
1641 if (isl_int_is_pos(mat->row[var->index][off + j])(isl_sioimath_sgn(*(mat->row[var->index][off + j])) >
0)
)
1642 isl_die(isl_tab_get_ctx(tab), isl_error_internal,do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_internal
, "row cannot have positive coefficients", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1644); return isl_stat_error; } while (0)
1643 "row cannot have positive coefficients",do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_internal
, "row cannot have positive coefficients", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1644); return isl_stat_error; } while (0)
1644 return isl_stat_error)do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_internal
, "row cannot have positive coefficients", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1644); return isl_stat_error; } while (0)
;
1645 recheck = isl_tab_kill_col(tab, j);
1646 if (recheck < 0)
1647 return isl_stat_error;
1648 if (recheck)
1649 --j;
1650 }
1651 if (!temp_var && isl_tab_mark_redundant(tab, var->index) < 0)
1652 return isl_stat_error;
1653 if (tab_is_manifestly_empty(tab) && isl_tab_mark_empty(tab) < 0)
1654 return isl_stat_error;
1655 return isl_stat_ok;
1656}
1657
1658/* Add a constraint to the tableau and allocate a row for it.
1659 * Return the index into the constraint array "con".
1660 *
1661 * This function assumes that at least one more row and at least
1662 * one more element in the constraint array are available in the tableau.
1663 */
1664int isl_tab_allocate_con(struct isl_tab *tab)
1665{
1666 int r;
1667
1668 isl_assert(tab->mat->ctx, tab->n_row < tab->mat->n_row, return -1)do { if (tab->n_row < tab->mat->n_row) break; do {
isl_handle_error(tab->mat->ctx, isl_error_unknown, "Assertion \""
"tab->n_row < tab->mat->n_row" "\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1668); return -1; } while (0); } while (0)
;
1669 isl_assert(tab->mat->ctx, tab->n_con < tab->max_con, return -1)do { if (tab->n_con < tab->max_con) break; do { isl_handle_error
(tab->mat->ctx, isl_error_unknown, "Assertion \"" "tab->n_con < tab->max_con"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1669); return -1; } while (0); } while (0)
;
1670
1671 r = tab->n_con;
1672 tab->con[r].index = tab->n_row;
1673 tab->con[r].is_row = 1;
1674 tab->con[r].is_nonneg = 0;
1675 tab->con[r].is_zero = 0;
1676 tab->con[r].is_redundant = 0;
1677 tab->con[r].frozen = 0;
1678 tab->con[r].negated = 0;
1679 tab->row_var[tab->n_row] = ~r;
1680
1681 tab->n_row++;
1682 tab->n_con++;
1683 if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->con[r]) < 0)
1684 return -1;
1685
1686 return r;
1687}
1688
1689/* Move the entries in tab->var up one position, starting at "first",
1690 * creating room for an extra entry at position "first".
1691 * Since some of the entries of tab->row_var and tab->col_var contain
1692 * indices into this array, they have to be updated accordingly.
1693 */
1694static int var_insert_entry(struct isl_tab *tab, int first)
1695{
1696 int i;
1697
1698 if (tab->n_var >= tab->max_var)
1699 isl_die(isl_tab_get_ctx(tab), isl_error_internal,do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_internal
, "not enough room for new variable", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1700); return -1; } while (0)
1700 "not enough room for new variable", return -1)do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_internal
, "not enough room for new variable", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1700); return -1; } while (0)
;
1701 if (first > tab->n_var)
1702 isl_die(isl_tab_get_ctx(tab), isl_error_internal,do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_internal
, "invalid initial position", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1703); return -1; } while (0)
1703 "invalid initial position", return -1)do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_internal
, "invalid initial position", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1703); return -1; } while (0)
;
1704
1705 for (i = tab->n_var - 1; i >= first; --i) {
1706 tab->var[i + 1] = tab->var[i];
1707 if (tab->var[i + 1].is_row)
1708 tab->row_var[tab->var[i + 1].index]++;
1709 else
1710 tab->col_var[tab->var[i + 1].index]++;
1711 }
1712
1713 tab->n_var++;
1714
1715 return 0;
1716}
1717
1718/* Drop the entry at position "first" in tab->var, moving all
1719 * subsequent entries down.
1720 * Since some of the entries of tab->row_var and tab->col_var contain
1721 * indices into this array, they have to be updated accordingly.
1722 */
1723static int var_drop_entry(struct isl_tab *tab, int first)
1724{
1725 int i;
1726
1727 if (first >= tab->n_var)
1728 isl_die(isl_tab_get_ctx(tab), isl_error_internal,do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_internal
, "invalid initial position", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1729); return -1; } while (0)
1729 "invalid initial position", return -1)do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_internal
, "invalid initial position", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1729); return -1; } while (0)
;
1730
1731 tab->n_var--;
1732
1733 for (i = first; i < tab->n_var; ++i) {
1734 tab->var[i] = tab->var[i + 1];
1735 if (tab->var[i + 1].is_row)
1736 tab->row_var[tab->var[i].index]--;
1737 else
1738 tab->col_var[tab->var[i].index]--;
1739 }
1740
1741 return 0;
1742}
1743
1744/* Add a variable to the tableau at position "r" and allocate a column for it.
1745 * Return the index into the variable array "var", i.e., "r",
1746 * or -1 on error.
1747 */
1748int isl_tab_insert_var(struct isl_tab *tab, int r)
1749{
1750 int i;
1751 unsigned off = 2 + tab->M;
1752
1753 isl_assert(tab->mat->ctx, tab->n_col < tab->mat->n_col, return -1)do { if (tab->n_col < tab->mat->n_col) break; do {
isl_handle_error(tab->mat->ctx, isl_error_unknown, "Assertion \""
"tab->n_col < tab->mat->n_col" "\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1753); return -1; } while (0); } while (0)
;
1754
1755 if (var_insert_entry(tab, r) < 0)
1756 return -1;
1757
1758 tab->var[r].index = tab->n_col;
1759 tab->var[r].is_row = 0;
1760 tab->var[r].is_nonneg = 0;
1761 tab->var[r].is_zero = 0;
1762 tab->var[r].is_redundant = 0;
1763 tab->var[r].frozen = 0;
1764 tab->var[r].negated = 0;
1765 tab->col_var[tab->n_col] = r;
1766
1767 for (i = 0; i < tab->n_row; ++i)
1768 isl_int_set_si(tab->mat->row[i][off + tab->n_col], 0)isl_sioimath_set_si((tab->mat->row[i][off + tab->n_col
]), 0)
;
1769
1770 tab->n_col++;
1771 if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->var[r]) < 0)
1772 return -1;
1773
1774 return r;
1775}
1776
1777/* Add a variable to the tableau and allocate a column for it.
1778 * Return the index into the variable array "var".
1779 */
1780int isl_tab_allocate_var(struct isl_tab *tab)
1781{
1782 if (!tab)
1783 return -1;
1784
1785 return isl_tab_insert_var(tab, tab->n_var);
1786}
1787
1788/* Add a row to the tableau. The row is given as an affine combination
1789 * of the original variables and needs to be expressed in terms of the
1790 * column variables.
1791 *
1792 * This function assumes that at least one more row and at least
1793 * one more element in the constraint array are available in the tableau.
1794 *
1795 * We add each term in turn.
1796 * If r = n/d_r is the current sum and we need to add k x, then
1797 * if x is a column variable, we increase the numerator of
1798 * this column by k d_r
1799 * if x = f/d_x is a row variable, then the new representation of r is
1800 *
1801 * n k f d_x/g n + d_r/g k f m/d_r n + m/d_g k f
1802 * --- + --- = ------------------- = -------------------
1803 * d_r d_r d_r d_x/g m
1804 *
1805 * with g the gcd of d_r and d_x and m the lcm of d_r and d_x.
1806 *
1807 * If tab->M is set, then, internally, each variable x is represented
1808 * as x' - M. We then also need no subtract k d_r from the coefficient of M.
1809 */
1810int isl_tab_add_row(struct isl_tab *tab, isl_int *line)
1811{
1812 int i;
1813 int r;
1814 isl_int *row;
1815 isl_int a, b;
1816 unsigned off = 2 + tab->M;
1817
1818 r = isl_tab_allocate_con(tab);
1819 if (r < 0)
1820 return -1;
1821
1822 isl_int_init(a)isl_sioimath_init((a));
1823 isl_int_init(b)isl_sioimath_init((b));
1824 row = tab->mat->row[tab->con[r].index];
1825 isl_int_set_si(row[0], 1)isl_sioimath_set_si((row[0]), 1);
1826 isl_int_set(row[1], line[0])isl_sioimath_set((row[1]), *(line[0]));
1827 isl_seq_clr(row + 2, tab->M + tab->n_col);
1828 for (i = 0; i < tab->n_var; ++i) {
1829 if (tab->var[i].is_zero)
1830 continue;
1831 if (tab->var[i].is_row) {
1832 isl_int_lcm(a,isl_sioimath_lcm((a), *(row[0]), *(tab->mat->row[tab->
var[i].index][0]))
1833 row[0], tab->mat->row[tab->var[i].index][0])isl_sioimath_lcm((a), *(row[0]), *(tab->mat->row[tab->
var[i].index][0]))
;
1834 isl_int_swap(a, row[0])isl_sioimath_swap((a), (row[0]));
1835 isl_int_divexact(a, row[0], a)isl_sioimath_tdiv_q((a), *(row[0]), *(a));
1836 isl_int_divexact(b,isl_sioimath_tdiv_q((b), *(row[0]), *(tab->mat->row[tab
->var[i].index][0]))
1837 row[0], tab->mat->row[tab->var[i].index][0])isl_sioimath_tdiv_q((b), *(row[0]), *(tab->mat->row[tab
->var[i].index][0]))
;
1838 isl_int_mul(b, b, line[1 + i])isl_sioimath_mul((b), *(b), *(line[1 + i]));
1839 isl_seq_combine(row + 1, a, row + 1,
1840 b, tab->mat->row[tab->var[i].index] + 1,
1841 1 + tab->M + tab->n_col);
1842 } else
1843 isl_int_addmul(row[off + tab->var[i].index],isl_sioimath_addmul((row[off + tab->var[i].index]), *(line
[1 + i]), *(row[0]))
1844 line[1 + i], row[0])isl_sioimath_addmul((row[off + tab->var[i].index]), *(line
[1 + i]), *(row[0]))
;
1845 if (tab->M && i >= tab->n_param && i < tab->n_var - tab->n_div)
1846 isl_int_submul(row[2], line[1 + i], row[0])isl_sioimath_submul((row[2]), *(line[1 + i]), *(row[0]));
1847 }
1848 isl_seq_normalize(tab->mat->ctx, row, off + tab->n_col);
1849 isl_int_clear(a)isl_sioimath_clear((a));
1850 isl_int_clear(b)isl_sioimath_clear((b));
1851
1852 if (tab->row_sign)
1853 tab->row_sign[tab->con[r].index] = isl_tab_row_unknown;
1854
1855 return r;
1856}
1857
1858static isl_stat drop_row(struct isl_tab *tab, int row)
1859{
1860 isl_assert(tab->mat->ctx, ~tab->row_var[row] == tab->n_con - 1,do { if (~tab->row_var[row] == tab->n_con - 1) break; do
{ isl_handle_error(tab->mat->ctx, isl_error_unknown, "Assertion \""
"~tab->row_var[row] == tab->n_con - 1" "\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1861); return isl_stat_error; } while (0); } while (0)
1861 return isl_stat_error)do { if (~tab->row_var[row] == tab->n_con - 1) break; do
{ isl_handle_error(tab->mat->ctx, isl_error_unknown, "Assertion \""
"~tab->row_var[row] == tab->n_con - 1" "\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1861); return isl_stat_error; } while (0); } while (0)
;
1862 if (row != tab->n_row - 1)
1863 swap_rows(tab, row, tab->n_row - 1);
1864 tab->n_row--;
1865 tab->n_con--;
1866 return isl_stat_ok;
1867}
1868
1869/* Drop the variable in column "col" along with the column.
1870 * The column is removed first because it may need to be moved
1871 * into the last position and this process requires
1872 * the contents of the col_var array in a state
1873 * before the removal of the variable.
1874 */
1875static isl_stat drop_col(struct isl_tab *tab, int col)
1876{
1877 int var;
1878
1879 var = tab->col_var[col];
1880 if (col != tab->n_col - 1)
1881 swap_cols(tab, col, tab->n_col - 1);
1882 tab->n_col--;
1883 if (var_drop_entry(tab, var) < 0)
1884 return isl_stat_error;
1885 return isl_stat_ok;
1886}
1887
1888/* Add inequality "ineq" and check if it conflicts with the
1889 * previously added constraints or if it is obviously redundant.
1890 *
1891 * This function assumes that at least one more row and at least
1892 * one more element in the constraint array are available in the tableau.
1893 */
1894isl_stat isl_tab_add_ineq(struct isl_tab *tab, isl_int *ineq)
1895{
1896 int r;
1897 int sgn;
1898 isl_int cst;
1899
1900 if (!tab)
20
Taking false branch
1901 return isl_stat_error;
1902 if (tab->bmap) {
21
Taking true branch
1903 struct isl_basic_map *bmap = tab->bmap;
1904
1905 isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq,do { if (tab->n_eq == bmap->n_eq) break; do { isl_handle_error
(tab->mat->ctx, isl_error_unknown, "Assertion \"" "tab->n_eq == bmap->n_eq"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1906); return isl_stat_error; } while (0); } while (0)
1906 return isl_stat_error)do { if (tab->n_eq == bmap->n_eq) break; do { isl_handle_error
(tab->mat->ctx, isl_error_unknown, "Assertion \"" "tab->n_eq == bmap->n_eq"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1906); return isl_stat_error; } while (0); } while (0)
;
1907 isl_assert(tab->mat->ctx,do { if (tab->n_con == bmap->n_eq + bmap->n_ineq) break
; do { isl_handle_error(tab->mat->ctx, isl_error_unknown
, "Assertion \"" "tab->n_con == bmap->n_eq + bmap->n_ineq"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1909); return isl_stat_error; } while (0); } while (0)
1908 tab->n_con == bmap->n_eq + bmap->n_ineq,do { if (tab->n_con == bmap->n_eq + bmap->n_ineq) break
; do { isl_handle_error(tab->mat->ctx, isl_error_unknown
, "Assertion \"" "tab->n_con == bmap->n_eq + bmap->n_ineq"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1909); return isl_stat_error; } while (0); } while (0)
1909 return isl_stat_error)do { if (tab->n_con == bmap->n_eq + bmap->n_ineq) break
; do { isl_handle_error(tab->mat->ctx, isl_error_unknown
, "Assertion \"" "tab->n_con == bmap->n_eq + bmap->n_ineq"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1909); return isl_stat_error; } while (0); } while (0)
;
1910 tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq);
1911 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
22
Taking false branch
1912 return isl_stat_error;
1913 if (!tab->bmap)
23
Assuming the condition is false
24
Taking false branch
1914 return isl_stat_error;
1915 }
1916 if (tab->cone) {
25
Assuming the condition is false
26
Taking false branch
1917 isl_int_init(cst)isl_sioimath_init((cst));
1918 isl_int_set_si(cst, 0)isl_sioimath_set_si((cst), 0);
1919 isl_int_swap(ineq[0], cst)isl_sioimath_swap((ineq[0]), (cst));
1920 }
1921 r = isl_tab_add_row(tab, ineq);
1922 if (tab->cone) {
27
Assuming the condition is true
28
Taking true branch
1923 isl_int_swap(ineq[0], cst)isl_sioimath_swap((ineq[0]), (cst));
29
Within the expansion of the macro 'isl_int_swap':
a
Calling 'isl_sioimath_swap'
1924 isl_int_clear(cst)isl_sioimath_clear((cst));
1925 }
1926 if (r < 0)
1927 return isl_stat_error;
1928 tab->con[r].is_nonneg = 1;
1929 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1930 return isl_stat_error;
1931 if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
1932 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1933 return isl_stat_error;
1934 return isl_stat_ok;
1935 }
1936
1937 sgn = restore_row(tab, &tab->con[r]);
1938 if (sgn < -1)
1939 return isl_stat_error;
1940 if (sgn < 0)
1941 return isl_tab_mark_empty(tab);
1942 if (tab->con[r].is_row && isl_tab_row_is_redundant(tab, tab->con[r].index))
1943 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1944 return isl_stat_error;
1945 return isl_stat_ok;
1946}
1947
1948/* Pivot a non-negative variable down until it reaches the value zero
1949 * and then pivot the variable into a column position.
1950 */
1951static int to_col(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED__attribute__((__warn_unused_result__));
1952static int to_col(struct isl_tab *tab, struct isl_tab_var *var)
1953{
1954 int i;
1955 int row, col;
1956 unsigned off = 2 + tab->M;
1957
1958 if (!var->is_row)
1959 return 0;
1960
1961 while (isl_int_is_pos(tab->mat->row[var->index][1])(isl_sioimath_sgn(*(tab->mat->row[var->index][1])) >
0)
) {
1962 find_pivot(tab, var, NULL((void*)0), -1, &row, &col);
1963 isl_assert(tab->mat->ctx, row != -1, return -1)do { if (row != -1) break; do { isl_handle_error(tab->mat->
ctx, isl_error_unknown, "Assertion \"" "row != -1" "\" failed"
, "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1963); return -1; } while (0); } while (0)
;
1964 if (isl_tab_pivot(tab, row, col) < 0)
1965 return -1;
1966 if (!var->is_row)
1967 return 0;
1968 }
1969
1970 for (i = tab->n_dead; i < tab->n_col; ++i)
1971 if (!isl_int_is_zero(tab->mat->row[var->index][off + i])(isl_sioimath_sgn(*(tab->mat->row[var->index][off + i
])) == 0)
)
1972 break;
1973
1974 isl_assert(tab->mat->ctx, i < tab->n_col, return -1)do { if (i < tab->n_col) break; do { isl_handle_error(tab
->mat->ctx, isl_error_unknown, "Assertion \"" "i < tab->n_col"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 1974); return -1; } while (0); } while (0)
;
1975 if (isl_tab_pivot(tab, var->index, i) < 0)
1976 return -1;
1977
1978 return 0;
1979}
1980
1981/* We assume Gaussian elimination has been performed on the equalities.
1982 * The equalities can therefore never conflict.
1983 * Adding the equalities is currently only really useful for a later call
1984 * to isl_tab_ineq_type.
1985 *
1986 * This function assumes that at least one more row and at least
1987 * one more element in the constraint array are available in the tableau.
1988 */
1989static struct isl_tab *add_eq(struct isl_tab *tab, isl_int *eq)
1990{
1991 int i;
1992 int r;
1993
1994 if (!tab)
1995 return NULL((void*)0);
1996 r = isl_tab_add_row(tab, eq);
1997 if (r < 0)
1998 goto error;
1999
2000 r = tab->con[r].index;
2001 i = isl_seq_first_non_zero(tab->mat->row[r] + 2 + tab->M + tab->n_dead,
2002 tab->n_col - tab->n_dead);
2003 isl_assert(tab->mat->ctx, i >= 0, goto error)do { if (i >= 0) break; do { isl_handle_error(tab->mat->
ctx, isl_error_unknown, "Assertion \"" "i >= 0" "\" failed"
, "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 2003); goto error; } while (0); } while (0)
;
2004 i += tab->n_dead;
2005 if (isl_tab_pivot(tab, r, i) < 0)
2006 goto error;
2007 if (isl_tab_kill_col(tab, i) < 0)
2008 goto error;
2009 tab->n_eq++;
2010
2011 return tab;
2012error:
2013 isl_tab_free(tab);
2014 return NULL((void*)0);
2015}
2016
2017/* Does the sample value of row "row" of "tab" involve the big parameter,
2018 * if any?
2019 */
2020static int row_is_big(struct isl_tab *tab, int row)
2021{
2022 return tab->M && !isl_int_is_zero(tab->mat->row[row][2])(isl_sioimath_sgn(*(tab->mat->row[row][2])) == 0);
2023}
2024
2025static int row_is_manifestly_zero(struct isl_tab *tab, int row)
2026{
2027 unsigned off = 2 + tab->M;
2028
2029 if (!isl_int_is_zero(tab->mat->row[row][1])(isl_sioimath_sgn(*(tab->mat->row[row][1])) == 0))
2030 return 0;
2031 if (row_is_big(tab, row))
2032 return 0;
2033 return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
2034 tab->n_col - tab->n_dead) == -1;
2035}
2036
2037/* Add an equality that is known to be valid for the given tableau.
2038 *
2039 * This function assumes that at least one more row and at least
2040 * one more element in the constraint array are available in the tableau.
2041 */
2042int isl_tab_add_valid_eq(struct isl_tab *tab, isl_int *eq)
2043{
2044 struct isl_tab_var *var;
2045 int r;
2046
2047 if (!tab)
2048 return -1;
2049 r = isl_tab_add_row(tab, eq);
2050 if (r < 0)
2051 return -1;
2052
2053 var = &tab->con[r];
2054 r = var->index;
2055 if (row_is_manifestly_zero(tab, r)) {
2056 var->is_zero = 1;
2057 if (isl_tab_mark_redundant(tab, r) < 0)
2058 return -1;
2059 return 0;
2060 }
2061
2062 if (isl_int_is_neg(tab->mat->row[r][1])(isl_sioimath_sgn(*(tab->mat->row[r][1])) < 0)) {
2063 isl_seq_neg(tab->mat->row[r] + 1, tab->mat->row[r] + 1,
2064 1 + tab->n_col);
2065 var->negated = 1;
2066 }
2067 var->is_nonneg = 1;
2068 if (to_col(tab, var) < 0)
2069 return -1;
2070 var->is_nonneg = 0;
2071 if (isl_tab_kill_col(tab, var->index) < 0)
2072 return -1;
2073
2074 return 0;
2075}
2076
2077/* Add a zero row to "tab" and return the corresponding index
2078 * in the constraint array.
2079 *
2080 * This function assumes that at least one more row and at least
2081 * one more element in the constraint array are available in the tableau.
2082 */
2083static int add_zero_row(struct isl_tab *tab)
2084{
2085 int r;
2086 isl_int *row;
2087
2088 r = isl_tab_allocate_con(tab);
2089 if (r < 0)
2090 return -1;
2091
2092 row = tab->mat->row[tab->con[r].index];
2093 isl_seq_clr(row + 1, 1 + tab->M + tab->n_col);
2094 isl_int_set_si(row[0], 1)isl_sioimath_set_si((row[0]), 1);
2095
2096 return r;
2097}
2098
2099/* Add equality "eq" and check if it conflicts with the
2100 * previously added constraints or if it is obviously redundant.
2101 *
2102 * This function assumes that at least one more row and at least
2103 * one more element in the constraint array are available in the tableau.
2104 * If tab->bmap is set, then two rows are needed instead of one.
2105 */
2106int isl_tab_add_eq(struct isl_tab *tab, isl_int *eq)
2107{
2108 struct isl_tab_undo *snap = NULL((void*)0);
2109 struct isl_tab_var *var;
2110 int r;
2111 int row;
2112 int sgn;
2113 isl_int cst;
2114
2115 if (!tab)
2116 return -1;
2117 isl_assert(tab->mat->ctx, !tab->M, return -1)do { if (!tab->M) break; do { isl_handle_error(tab->mat
->ctx, isl_error_unknown, "Assertion \"" "!tab->M" "\" failed"
, "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 2117); return -1; } while (0); } while (0)
;
2118
2119 if (tab->need_undo)
2120 snap = isl_tab_snap(tab);
2121
2122 if (tab->cone) {
2123 isl_int_init(cst)isl_sioimath_init((cst));
2124 isl_int_set_si(cst, 0)isl_sioimath_set_si((cst), 0);
2125 isl_int_swap(eq[0], cst)isl_sioimath_swap((eq[0]), (cst));
2126 }
2127 r = isl_tab_add_row(tab, eq);
2128 if (tab->cone) {
2129 isl_int_swap(eq[0], cst)isl_sioimath_swap((eq[0]), (cst));
2130 isl_int_clear(cst)isl_sioimath_clear((cst));
2131 }
2132 if (r < 0)
2133 return -1;
2134
2135 var = &tab->con[r];
2136 row = var->index;
2137 if (row_is_manifestly_zero(tab, row)) {
2138 if (snap)
2139 return isl_tab_rollback(tab, snap);
2140 return drop_row(tab, row);
2141 }
2142
2143 if (tab->bmap) {
2144 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
2145 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
2146 return -1;
2147 isl_seq_neg(eq, eq, 1 + tab->n_var);
2148 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
2149 isl_seq_neg(eq, eq, 1 + tab->n_var);
2150 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
2151 return -1;
2152 if (!tab->bmap)
2153 return -1;
2154 if (add_zero_row(tab) < 0)
2155 return -1;
2156 }
2157
2158 sgn = isl_int_sgn(tab->mat->row[row][1])isl_sioimath_sgn(*(tab->mat->row[row][1]));
2159
2160 if (sgn > 0) {
2161 isl_seq_neg(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
2162 1 + tab->n_col);
2163 var->negated = 1;
2164 sgn = -1;
2165 }
2166
2167 if (sgn < 0) {
2168 sgn = sign_of_max(tab, var);
2169 if (sgn < -1)
2170 return -1;
2171 if (sgn < 0) {
2172 if (isl_tab_mark_empty(tab) < 0)
2173 return -1;
2174 return 0;
2175 }
2176 }
2177
2178 var->is_nonneg = 1;
2179 if (to_col(tab, var) < 0)
2180 return -1;
2181 var->is_nonneg = 0;
2182 if (isl_tab_kill_col(tab, var->index) < 0)
2183 return -1;
2184
2185 return 0;
2186}
2187
2188/* Construct and return an inequality that expresses an upper bound
2189 * on the given div.
2190 * In particular, if the div is given by
2191 *
2192 * d = floor(e/m)
2193 *
2194 * then the inequality expresses
2195 *
2196 * m d <= e
2197 */
2198static struct isl_vec *ineq_for_div(struct isl_basic_map *bmap, unsigned div)
2199{
2200 unsigned total;
2201 unsigned div_pos;
2202 struct isl_vec *ineq;
2203
2204 if (!bmap)
2205 return NULL((void*)0);
2206
2207 total = isl_basic_map_total_dim(bmap);
2208 div_pos = 1 + total - bmap->n_div + div;
2209
2210 ineq = isl_vec_alloc(bmap->ctx, 1 + total);
2211 if (!ineq)
2212 return NULL((void*)0);
2213
2214 isl_seq_cpy(ineq->el, bmap->div[div] + 1, 1 + total);
2215 isl_int_neg(ineq->el[div_pos], bmap->div[div][0])isl_sioimath_neg((ineq->el[div_pos]), *(bmap->div[div][
0]))
;
2216 return ineq;
2217}
2218
2219/* For a div d = floor(f/m), add the constraints
2220 *
2221 * f - m d >= 0
2222 * -(f-(m-1)) + m d >= 0
2223 *
2224 * Note that the second constraint is the negation of
2225 *
2226 * f - m d >= m
2227 *
2228 * If add_ineq is not NULL, then this function is used
2229 * instead of isl_tab_add_ineq to effectively add the inequalities.
2230 *
2231 * This function assumes that at least two more rows and at least
2232 * two more elements in the constraint array are available in the tableau.
2233 */
2234static isl_stat add_div_constraints(struct isl_tab *tab, unsigned div,
2235 isl_stat (*add_ineq)(void *user, isl_int *), void *user)
2236{
2237 unsigned total;
2238 unsigned div_pos;
2239 struct isl_vec *ineq;
2240
2241 total = isl_basic_map_total_dim(tab->bmap);
2242 div_pos = 1 + total - tab->bmap->n_div + div;
2243
2244 ineq = ineq_for_div(tab->bmap, div);
2245 if (!ineq)
17
Taking false branch
2246 goto error;
2247
2248 if (add_ineq) {
18
Taking false branch
2249 if (add_ineq(user, ineq->el) < 0)
2250 goto error;
2251 } else {
2252 if (isl_tab_add_ineq(tab, ineq->el) < 0)
19
Calling 'isl_tab_add_ineq'
2253 goto error;
2254 }
2255
2256 isl_seq_neg(ineq->el, tab->bmap->div[div] + 1, 1 + total);
2257 isl_int_set(ineq->el[div_pos], tab->bmap->div[div][0])isl_sioimath_set((ineq->el[div_pos]), *(tab->bmap->div
[div][0]))
;
2258 isl_int_add(ineq->el[0], ineq->el[0], ineq->el[div_pos])isl_sioimath_add((ineq->el[0]), *(ineq->el[0]), *(ineq->
el[div_pos]))
;
2259 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1)isl_sioimath_sub_ui((ineq->el[0]), *(ineq->el[0]), 1);
2260
2261 if (add_ineq) {
2262 if (add_ineq(user, ineq->el) < 0)
2263 goto error;
2264 } else {
2265 if (isl_tab_add_ineq(tab, ineq->el) < 0)
2266 goto error;
2267 }
2268
2269 isl_vec_free(ineq);
2270
2271 return 0;
2272error:
2273 isl_vec_free(ineq);
2274 return -1;
2275}
2276
2277/* Check whether the div described by "div" is obviously non-negative.
2278 * If we are using a big parameter, then we will encode the div
2279 * as div' = M + div, which is always non-negative.
2280 * Otherwise, we check whether div is a non-negative affine combination
2281 * of non-negative variables.
2282 */
2283static int div_is_nonneg(struct isl_tab *tab, __isl_keep isl_vec *div)
2284{
2285 int i;
2286
2287 if (tab->M)
2288 return 1;
2289
2290 if (isl_int_is_neg(div->el[1])(isl_sioimath_sgn(*(div->el[1])) < 0))
2291 return 0;
2292
2293 for (i = 0; i < tab->n_var; ++i) {
2294 if (isl_int_is_neg(div->el[2 + i])(isl_sioimath_sgn(*(div->el[2 + i])) < 0))
2295 return 0;
2296 if (isl_int_is_zero(div->el[2 + i])(isl_sioimath_sgn(*(div->el[2 + i])) == 0))
2297 continue;
2298 if (!tab->var[i].is_nonneg)
2299 return 0;
2300 }
2301
2302 return 1;
2303}
2304
2305/* Insert an extra div, prescribed by "div", to the tableau and
2306 * the associated bmap (which is assumed to be non-NULL).
2307 * The extra integer division is inserted at (tableau) position "pos".
2308 * Return "pos" or -1 if an error occurred.
2309 *
2310 * If add_ineq is not NULL, then this function is used instead
2311 * of isl_tab_add_ineq to add the div constraints.
2312 * This complication is needed because the code in isl_tab_pip
2313 * wants to perform some extra processing when an inequality
2314 * is added to the tableau.
2315 */
2316int isl_tab_insert_div(struct isl_tab *tab, int pos, __isl_keep isl_vec *div,
2317 isl_stat (*add_ineq)(void *user, isl_int *), void *user)
2318{
2319 int r;
2320 int nonneg;
2321 int n_div, o_div;
2322
2323 if (!tab || !div)
4
Assuming 'div' is non-null
5
Taking false branch
2324 return -1;
2325
2326 if (div->size != 1 + 1 + tab->n_var)
6
Taking false branch
2327 isl_die(isl_tab_get_ctx(tab), isl_error_invalid,do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_invalid
, "unexpected size", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 2328); return -1; } while (0)
2328 "unexpected size", return -1)do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_invalid
, "unexpected size", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 2328); return -1; } while (0)
;
2329
2330 isl_assert(tab->mat->ctx, tab->bmap, return -1)do { if (tab->bmap) break; do { isl_handle_error(tab->mat
->ctx, isl_error_unknown, "Assertion \"" "tab->bmap" "\" failed"
, "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 2330); return -1; } while (0); } while (0)
;
2331 n_div = isl_basic_map_dim(tab->bmap, isl_dim_div);
2332 o_div = tab->n_var - n_div;
2333 if (pos < o_div || pos > tab->n_var)
7
Taking false branch
2334 isl_die(isl_tab_get_ctx(tab), isl_error_invalid,do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_invalid
, "invalid position", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 2335); return -1; } while (0)
2335 "invalid position", return -1)do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_invalid
, "invalid position", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 2335); return -1; } while (0)
;
2336
2337 nonneg = div_is_nonneg(tab, div);
2338
2339 if (isl_tab_extend_cons(tab, 3) < 0)
8
Assuming the condition is false
9
Taking false branch
2340 return -1;
2341 if (isl_tab_extend_vars(tab, 1) < 0)
10
Taking false branch
2342 return -1;
2343 r = isl_tab_insert_var(tab, pos);
2344 if (r < 0)
11
Taking false branch
2345 return -1;
2346
2347 if (nonneg)
12
Taking true branch
2348 tab->var[r].is_nonneg = 1;
2349
2350 tab->bmap = isl_basic_map_insert_div(tab->bmap, pos - o_div, div);
2351 if (!tab->bmap)
13
Assuming the condition is false
14
Taking false branch
2352 return -1;
2353 if (isl_tab_push_var(tab, isl_tab_undo_bmap_div, &tab->var[r]) < 0)
15
Taking false branch
2354 return -1;
2355
2356 if (add_div_constraints(tab, pos - o_div, add_ineq, user) < 0)
16
Calling 'add_div_constraints'
2357 return -1;
2358
2359 return r;
2360}
2361
2362/* Add an extra div, prescribed by "div", to the tableau and
2363 * the associated bmap (which is assumed to be non-NULL).
2364 */
2365int isl_tab_add_div(struct isl_tab *tab, __isl_keep isl_vec *div)
2366{
2367 if (!tab)
1
Assuming 'tab' is non-null
2
Taking false branch
2368 return -1;
2369 return isl_tab_insert_div(tab, tab->n_var, div, NULL((void*)0), NULL((void*)0));
3
Calling 'isl_tab_insert_div'
2370}
2371
2372/* If "track" is set, then we want to keep track of all constraints in tab
2373 * in its bmap field. This field is initialized from a copy of "bmap",
2374 * so we need to make sure that all constraints in "bmap" also appear
2375 * in the constructed tab.
2376 */
2377__isl_give struct isl_tab *isl_tab_from_basic_map(
2378 __isl_keep isl_basic_map *bmap, int track)
2379{
2380 int i;
2381 struct isl_tab *tab;
2382
2383 if (!bmap)
2384 return NULL((void*)0);
2385 tab = isl_tab_alloc(bmap->ctx,
2386 isl_basic_map_total_dim(bmap) + bmap->n_ineq + 1,
2387 isl_basic_map_total_dim(bmap), 0);
2388 if (!tab)
2389 return NULL((void*)0);
2390 tab->preserve = track;
2391 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)(!!(((bmap)->flags) & ((1 << 4))));
2392 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)(!!(((bmap)->flags) & ((1 << 1))))) {
2393 if (isl_tab_mark_empty(tab) < 0)
2394 goto error;
2395 goto done;
2396 }
2397 for (i = 0; i < bmap->n_eq; ++i) {
2398 tab = add_eq(tab, bmap->eq[i]);
2399 if (!tab)
2400 return tab;
2401 }
2402 for (i = 0; i < bmap->n_ineq; ++i) {
2403 if (isl_tab_add_ineq(tab, bmap->ineq[i]) < 0)
2404 goto error;
2405 if (tab->empty)
2406 goto done;
2407 }
2408done:
2409 if (track && isl_tab_track_bmap(tab, isl_basic_map_copy(bmap)) < 0)
2410 goto error;
2411 return tab;
2412error:
2413 isl_tab_free(tab);
2414 return NULL((void*)0);
2415}
2416
2417__isl_give struct isl_tab *isl_tab_from_basic_set(
2418 __isl_keep isl_basic_setisl_basic_map *bset, int track)
2419{
2420 return isl_tab_from_basic_map(bset, track);
2421}
2422
2423/* Construct a tableau corresponding to the recession cone of "bset".
2424 */
2425struct isl_tab *isl_tab_from_recession_cone(__isl_keep isl_basic_setisl_basic_map *bset,
2426 int parametric)
2427{
2428 isl_int cst;
2429 int i;
2430 struct isl_tab *tab;
2431 unsigned offset = 0;
2432
2433 if (!bset)
2434 return NULL((void*)0);
2435 if (parametric)
2436 offset = isl_basic_set_dim(bset, isl_dim_param);
2437 tab = isl_tab_alloc(bset->ctx, bset->n_eq + bset->n_ineq,
2438 isl_basic_set_total_dim(bset) - offset, 0);
2439 if (!tab)
2440 return NULL((void*)0);
2441 tab->rational = ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL)(!!(((bset)->flags) & ((1 << 4))));
2442 tab->cone = 1;
2443
2444 isl_int_init(cst)isl_sioimath_init((cst));
2445 isl_int_set_si(cst, 0)isl_sioimath_set_si((cst), 0);
2446 for (i = 0; i < bset->n_eq; ++i) {
2447 isl_int_swap(bset->eq[i][offset], cst)isl_sioimath_swap((bset->eq[i][offset]), (cst));
2448 if (offset > 0) {
2449 if (isl_tab_add_eq(tab, bset->eq[i] + offset) < 0)
2450 goto error;
2451 } else
2452 tab = add_eq(tab, bset->eq[i]);
2453 isl_int_swap(bset->eq[i][offset], cst)isl_sioimath_swap((bset->eq[i][offset]), (cst));
2454 if (!tab)
2455 goto done;
2456 }
2457 for (i = 0; i < bset->n_ineq; ++i) {
2458 int r;
2459 isl_int_swap(bset->ineq[i][offset], cst)isl_sioimath_swap((bset->ineq[i][offset]), (cst));
2460 r = isl_tab_add_row(tab, bset->ineq[i] + offset);
2461 isl_int_swap(bset->ineq[i][offset], cst)isl_sioimath_swap((bset->ineq[i][offset]), (cst));
2462 if (r < 0)
2463 goto error;
2464 tab->con[r].is_nonneg = 1;
2465 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
2466 goto error;
2467 }
2468done:
2469 isl_int_clear(cst)isl_sioimath_clear((cst));
2470 return tab;
2471error:
2472 isl_int_clear(cst)isl_sioimath_clear((cst));
2473 isl_tab_free(tab);
2474 return NULL((void*)0);
2475}
2476
2477/* Assuming "tab" is the tableau of a cone, check if the cone is
2478 * bounded, i.e., if it is empty or only contains the origin.
2479 */
2480isl_bool isl_tab_cone_is_bounded(struct isl_tab *tab)
2481{
2482 int i;
2483
2484 if (!tab)
2485 return isl_bool_error;
2486 if (tab->empty)
2487 return isl_bool_true;
2488 if (tab->n_dead == tab->n_col)
2489 return isl_bool_true;
2490
2491 for (;;) {
2492 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2493 struct isl_tab_var *var;
2494 int sgn;
2495 var = isl_tab_var_from_row(tab, i);
2496 if (!var->is_nonneg)
2497 continue;
2498 sgn = sign_of_max(tab, var);
2499 if (sgn < -1)
2500 return isl_bool_error;
2501 if (sgn != 0)
2502 return isl_bool_false;
2503 if (close_row(tab, var, 0) < 0)
2504 return isl_bool_error;
2505 break;
2506 }
2507 if (tab->n_dead == tab->n_col)
2508 return isl_bool_true;
2509 if (i == tab->n_row)
2510 return isl_bool_false;
2511 }
2512}
2513
2514int isl_tab_sample_is_integer(struct isl_tab *tab)
2515{
2516 int i;
2517
2518 if (!tab)
2519 return -1;
2520
2521 for (i = 0; i < tab->n_var; ++i) {
2522 int row;
2523 if (!tab->var[i].is_row)
2524 continue;
2525 row = tab->var[i].index;
2526 if (!isl_int_is_divisible_by(tab->mat->row[row][1],isl_sioimath_is_divisible_by(*(tab->mat->row[row][1]), *
(tab->mat->row[row][0]))
2527 tab->mat->row[row][0])isl_sioimath_is_divisible_by(*(tab->mat->row[row][1]), *
(tab->mat->row[row][0]))
)
2528 return 0;
2529 }
2530 return 1;
2531}
2532
2533static struct isl_vec *extract_integer_sample(struct isl_tab *tab)
2534{
2535 int i;
2536 struct isl_vec *vec;
2537
2538 vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2539 if (!vec)
2540 return NULL((void*)0);
2541
2542 isl_int_set_si(vec->block.data[0], 1)isl_sioimath_set_si((vec->block.data[0]), 1);
2543 for (i = 0; i < tab->n_var; ++i) {
2544 if (!tab->var[i].is_row)
2545 isl_int_set_si(vec->block.data[1 + i], 0)isl_sioimath_set_si((vec->block.data[1 + i]), 0);
2546 else {
2547 int row = tab->var[i].index;
2548 isl_int_divexact(vec->block.data[1 + i],isl_sioimath_tdiv_q((vec->block.data[1 + i]), *(tab->mat
->row[row][1]), *(tab->mat->row[row][0]))
2549 tab->mat->row[row][1], tab->mat->row[row][0])isl_sioimath_tdiv_q((vec->block.data[1 + i]), *(tab->mat
->row[row][1]), *(tab->mat->row[row][0]))
;
2550 }
2551 }
2552
2553 return vec;
2554}
2555
2556struct isl_vec *isl_tab_get_sample_value(struct isl_tab *tab)
2557{
2558 int i;
2559 struct isl_vec *vec;
2560 isl_int m;
2561
2562 if (!tab)
2563 return NULL((void*)0);
2564
2565 vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2566 if (!vec)
2567 return NULL((void*)0);
2568
2569 isl_int_init(m)isl_sioimath_init((m));
2570
2571 isl_int_set_si(vec->block.data[0], 1)isl_sioimath_set_si((vec->block.data[0]), 1);
2572 for (i = 0; i < tab->n_var; ++i) {
2573 int row;
2574 if (!tab->var[i].is_row) {
2575 isl_int_set_si(vec->block.data[1 + i], 0)isl_sioimath_set_si((vec->block.data[1 + i]), 0);
2576 continue;
2577 }
2578 row = tab->var[i].index;
2579 isl_int_gcd(m, vec->block.data[0], tab->mat->row[row][0])isl_sioimath_gcd((m), *(vec->block.data[0]), *(tab->mat
->row[row][0]))
;
2580 isl_int_divexact(m, tab->mat->row[row][0], m)isl_sioimath_tdiv_q((m), *(tab->mat->row[row][0]), *(m)
)
;
2581 isl_seq_scale(vec->block.data, vec->block.data, m, 1 + i);
2582 isl_int_divexact(m, vec->block.data[0], tab->mat->row[row][0])isl_sioimath_tdiv_q((m), *(vec->block.data[0]), *(tab->
mat->row[row][0]))
;
2583 isl_int_mul(vec->block.data[1 + i], m, tab->mat->row[row][1])isl_sioimath_mul((vec->block.data[1 + i]), *(m), *(tab->
mat->row[row][1]))
;
2584 }
2585 vec = isl_vec_normalize(vec);
2586
2587 isl_int_clear(m)isl_sioimath_clear((m));
2588 return vec;
2589}
2590
2591/* Store the sample value of "var" of "tab" rounded up (if sgn > 0)
2592 * or down (if sgn < 0) to the nearest integer in *v.
2593 */
2594static void get_rounded_sample_value(struct isl_tab *tab,
2595 struct isl_tab_var *var, int sgn, isl_int *v)
2596{
2597 if (!var->is_row)
2598 isl_int_set_si(*v, 0)isl_sioimath_set_si((*v), 0);
2599 else if (sgn > 0)
2600 isl_int_cdiv_q(*v, tab->mat->row[var->index][1],isl_sioimath_cdiv_q((*v), *(tab->mat->row[var->index
][1]), *(tab->mat->row[var->index][0]))
2601 tab->mat->row[var->index][0])isl_sioimath_cdiv_q((*v), *(tab->mat->row[var->index
][1]), *(tab->mat->row[var->index][0]))
;
2602 else
2603 isl_int_fdiv_q(*v, tab->mat->row[var->index][1],isl_sioimath_fdiv_q((*v), *(tab->mat->row[var->index
][1]), *(tab->mat->row[var->index][0]))
2604 tab->mat->row[var->index][0])isl_sioimath_fdiv_q((*v), *(tab->mat->row[var->index
][1]), *(tab->mat->row[var->index][0]))
;
2605}
2606
2607/* Update "bmap" based on the results of the tableau "tab".
2608 * In particular, implicit equalities are made explicit, redundant constraints
2609 * are removed and if the sample value happens to be integer, it is stored
2610 * in "bmap" (unless "bmap" already had an integer sample).
2611 *
2612 * The tableau is assumed to have been created from "bmap" using
2613 * isl_tab_from_basic_map.
2614 */
2615struct isl_basic_map *isl_basic_map_update_from_tab(struct isl_basic_map *bmap,
2616 struct isl_tab *tab)
2617{
2618 int i;
2619 unsigned n_eq;
2620
2621 if (!bmap)
2622 return NULL((void*)0);
2623 if (!tab)
2624 return bmap;
2625
2626 n_eq = tab->n_eq;
2627 if (tab->empty)
2628 bmap = isl_basic_map_set_to_empty(bmap);
2629 else
2630 for (i = bmap->n_ineq - 1; i >= 0; --i) {
2631 if (isl_tab_is_equality(tab, n_eq + i))
2632 isl_basic_map_inequality_to_equality(bmap, i);
2633 else if (isl_tab_is_redundant(tab, n_eq + i))
2634 isl_basic_map_drop_inequality(bmap, i);
2635 }
2636 if (bmap->n_eq != n_eq)
2637 bmap = isl_basic_map_gauss(bmap, NULL((void*)0));
2638 if (!tab->rational &&
2639 bmap && !bmap->sample && isl_tab_sample_is_integer(tab))
2640 bmap->sample = extract_integer_sample(tab);
2641 return bmap;
2642}
2643
2644struct isl_basic_setisl_basic_map *isl_basic_set_update_from_tab(struct isl_basic_setisl_basic_map *bset,
2645 struct isl_tab *tab)
2646{
2647 return bset_from_bmap(isl_basic_map_update_from_tab(bset_to_bmap(bset),
2648 tab));
2649}
2650
2651/* Drop the last constraint added to "tab" in position "r".
2652 * The constraint is expected to have remained in a row.
2653 */
2654static isl_stat drop_last_con_in_row(struct isl_tab *tab, int r)
2655{
2656 if (!tab->con[r].is_row)
2657 isl_die(isl_tab_get_ctx(tab), isl_error_internal,do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_internal
, "row unexpectedly moved to column", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 2659); return isl_stat_error; } while (0)
2658 "row unexpectedly moved to column",do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_internal
, "row unexpectedly moved to column", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 2659); return isl_stat_error; } while (0)
2659 return isl_stat_error)do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_internal
, "row unexpectedly moved to column", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 2659); return isl_stat_error; } while (0)
;
2660 if (r + 1 != tab->n_con)
2661 isl_die(isl_tab_get_ctx(tab), isl_error_internal,do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_internal
, "additional constraints added", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 2662); return isl_stat_error; } while (0)
2662 "additional constraints added", return isl_stat_error)do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_internal
, "additional constraints added", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 2662); return isl_stat_error; } while (0)
;
2663 if (drop_row(tab, tab->con[r].index) < 0)
2664 return isl_stat_error;
2665
2666 return isl_stat_ok;
2667}
2668
2669/* Given a non-negative variable "var", temporarily add a new non-negative
2670 * variable that is the opposite of "var", ensuring that "var" can only attain
2671 * the value zero. The new variable is removed again before this function
2672 * returns. However, the effect of forcing "var" to be zero remains.
2673 * If var = n/d is a row variable, then the new variable = -n/d.
2674 * If var is a column variables, then the new variable = -var.
2675 * If the new variable cannot attain non-negative values, then
2676 * the resulting tableau is empty.
2677 * Otherwise, we know the value will be zero and we close the row.
2678 */
2679static isl_stat cut_to_hyperplane(struct isl_tab *tab, struct isl_tab_var *var)
2680{
2681 unsigned r;
2682 isl_int *row;
2683 int sgn;
2684 unsigned off = 2 + tab->M;
2685
2686 if (var->is_zero)
2687 return isl_stat_ok;
2688 if (var->is_redundant || !var->is_nonneg)
2689 isl_die(isl_tab_get_ctx(tab), isl_error_invalid,do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_invalid
, "expecting non-redundant non-negative variable", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 2691); return isl_stat_error; } while (0)
2690 "expecting non-redundant non-negative variable",do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_invalid
, "expecting non-redundant non-negative variable", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 2691); return isl_stat_error; } while (0)
2691 return isl_stat_error)do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_invalid
, "expecting non-redundant non-negative variable", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 2691); return isl_stat_error; } while (0)
;
2692
2693 if (isl_tab_extend_cons(tab, 1) < 0)
2694 return isl_stat_error;
2695
2696 r = tab->n_con;
2697 tab->con[r].index = tab->n_row;
2698 tab->con[r].is_row = 1;
2699 tab->con[r].is_nonneg = 0;
2700 tab->con[r].is_zero = 0;
2701 tab->con[r].is_redundant = 0;
2702 tab->con[r].frozen = 0;
2703 tab->con[r].negated = 0;
2704 tab->row_var[tab->n_row] = ~r;
2705 row = tab->mat->row[tab->n_row];
2706
2707 if (var->is_row) {
2708 isl_int_set(row[0], tab->mat->row[var->index][0])isl_sioimath_set((row[0]), *(tab->mat->row[var->index
][0]))
;
2709 isl_seq_neg(row + 1,
2710 tab->mat->row[var->index] + 1, 1 + tab->n_col);
2711 } else {
2712 isl_int_set_si(row[0], 1)isl_sioimath_set_si((row[0]), 1);
2713 isl_seq_clr(row + 1, 1 + tab->n_col);
2714 isl_int_set_si(row[off + var->index], -1)isl_sioimath_set_si((row[off + var->index]), -1);
2715 }
2716
2717 tab->n_row++;
2718 tab->n_con++;
2719
2720 sgn = sign_of_max(tab, &tab->con[r]);
2721 if (sgn < -1)
2722 return isl_stat_error;
2723 if (sgn < 0) {
2724 if (drop_last_con_in_row(tab, r) < 0)
2725 return isl_stat_error;
2726 if (isl_tab_mark_empty(tab) < 0)
2727 return isl_stat_error;
2728 return isl_stat_ok;
2729 }
2730 tab->con[r].is_nonneg = 1;
2731 /* sgn == 0 */
2732 if (close_row(tab, &tab->con[r], 1) < 0)
2733 return isl_stat_error;
2734 if (drop_last_con_in_row(tab, r) < 0)
2735 return isl_stat_error;
2736
2737 return isl_stat_ok;
2738}
2739
2740/* Given a tableau "tab" and an inequality constraint "con" of the tableau,
2741 * relax the inequality by one. That is, the inequality r >= 0 is replaced
2742 * by r' = r + 1 >= 0.
2743 * If r is a row variable, we simply increase the constant term by one
2744 * (taking into account the denominator).
2745 * If r is a column variable, then we need to modify each row that
2746 * refers to r = r' - 1 by substituting this equality, effectively
2747 * subtracting the coefficient of the column from the constant.
2748 * We should only do this if the minimum is manifestly unbounded,
2749 * however. Otherwise, we may end up with negative sample values
2750 * for non-negative variables.
2751 * So, if r is a column variable with a minimum that is not
2752 * manifestly unbounded, then we need to move it to a row.
2753 * However, the sample value of this row may be negative,
2754 * even after the relaxation, so we need to restore it.
2755 * We therefore prefer to pivot a column up to a row, if possible.
2756 */
2757int isl_tab_relax(struct isl_tab *tab, int con)
2758{
2759 struct isl_tab_var *var;
2760
2761 if (!tab)
2762 return -1;
2763
2764 var = &tab->con[con];
2765
2766 if (var->is_row && (var->index < 0 || var->index < tab->n_redundant))
2767 isl_die(tab->mat->ctx, isl_error_invalid,do { isl_handle_error(tab->mat->ctx, isl_error_invalid,
"cannot relax redundant constraint", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 2768); return -1; } while (0)
2768 "cannot relax redundant constraint", return -1)do { isl_handle_error(tab->mat->ctx, isl_error_invalid,
"cannot relax redundant constraint", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 2768); return -1; } while (0)
;
2769 if (!var->is_row && (var->index < 0 || var->index < tab->n_dead))
2770 isl_die(tab->mat->ctx, isl_error_invalid,do { isl_handle_error(tab->mat->ctx, isl_error_invalid,
"cannot relax dead constraint", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 2771); return -1; } while (0)
2771 "cannot relax dead constraint", return -1)do { isl_handle_error(tab->mat->ctx, isl_error_invalid,
"cannot relax dead constraint", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 2771); return -1; } while (0)
;
2772
2773 if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
2774 if (to_row(tab, var, 1) < 0)
2775 return -1;
2776 if (!var->is_row && !min_is_manifestly_unbounded(tab, var))
2777 if (to_row(tab, var, -1) < 0)
2778 return -1;
2779
2780 if (var->is_row) {
2781 isl_int_add(tab->mat->row[var->index][1],isl_sioimath_add((tab->mat->row[var->index][1]), *(tab
->mat->row[var->index][1]), *(tab->mat->row[var
->index][0]))
2782 tab->mat->row[var->index][1], tab->mat->row[var->index][0])isl_sioimath_add((tab->mat->row[var->index][1]), *(tab
->mat->row[var->index][1]), *(tab->mat->row[var
->index][0]))
;
2783 if (restore_row(tab, var) < 0)
2784 return -1;
2785 } else {
2786 int i;
2787 unsigned off = 2 + tab->M;
2788
2789 for (i = 0; i < tab->n_row; ++i) {
2790 if (isl_int_is_zero(tab->mat->row[i][off + var->index])(isl_sioimath_sgn(*(tab->mat->row[i][off + var->index
])) == 0)
)
2791 continue;
2792 isl_int_sub(tab->mat->row[i][1], tab->mat->row[i][1],isl_sioimath_sub((tab->mat->row[i][1]), *(tab->mat->
row[i][1]), *(tab->mat->row[i][off + var->index]))
2793 tab->mat->row[i][off + var->index])isl_sioimath_sub((tab->mat->row[i][1]), *(tab->mat->
row[i][1]), *(tab->mat->row[i][off + var->index]))
;
2794 }
2795
2796 }
2797
2798 if (isl_tab_push_var(tab, isl_tab_undo_relax, var) < 0)
2799 return -1;
2800
2801 return 0;
2802}
2803
2804/* Replace the variable v at position "pos" in the tableau "tab"
2805 * by v' = v + shift.
2806 *
2807 * If the variable is in a column, then we first check if we can
2808 * simply plug in v = v' - shift. The effect on a row with
2809 * coefficient f/d for variable v is that the constant term c/d
2810 * is replaced by (c - f * shift)/d. If shift is positive and
2811 * f is negative for each row that needs to remain non-negative,
2812 * then this is clearly safe. In other words, if the minimum of v
2813 * is manifestly unbounded, then we can keep v in a column position.
2814 * Otherwise, we can pivot it down to a row.
2815 * Similarly, if shift is negative, we need to check if the maximum
2816 * of is manifestly unbounded.
2817 *
2818 * If the variable is in a row (from the start or after pivoting),
2819 * then the constant term c/d is replaced by (c + d * shift)/d.
2820 */
2821int isl_tab_shift_var(struct isl_tab *tab, int pos, isl_int shift)
2822{
2823 struct isl_tab_var *var;
2824
2825 if (!tab)
2826 return -1;
2827 if (isl_int_is_zero(shift)(isl_sioimath_sgn(*(shift)) == 0))
2828 return 0;
2829
2830 var = &tab->var[pos];
2831 if (!var->is_row) {
2832 if (isl_int_is_neg(shift)(isl_sioimath_sgn(*(shift)) < 0)) {
2833 if (!max_is_manifestly_unbounded(tab, var))
2834 if (to_row(tab, var, 1) < 0)
2835 return -1;
2836 } else {
2837 if (!min_is_manifestly_unbounded(tab, var))
2838 if (to_row(tab, var, -1) < 0)
2839 return -1;
2840 }
2841 }
2842
2843 if (var->is_row) {
2844 isl_int_addmul(tab->mat->row[var->index][1],isl_sioimath_addmul((tab->mat->row[var->index][1]), *
(shift), *(tab->mat->row[var->index][0]))
2845 shift, tab->mat->row[var->index][0])isl_sioimath_addmul((tab->mat->row[var->index][1]), *
(shift), *(tab->mat->row[var->index][0]))
;
2846 } else {
2847 int i;
2848 unsigned off = 2 + tab->M;
2849
2850 for (i = 0; i < tab->n_row; ++i) {
2851 if (isl_int_is_zero(tab->mat->row[i][off + var->index])(isl_sioimath_sgn(*(tab->mat->row[i][off + var->index
])) == 0)
)
2852 continue;
2853 isl_int_submul(tab->mat->row[i][1],isl_sioimath_submul((tab->mat->row[i][1]), *(shift), *(
tab->mat->row[i][off + var->index]))
2854 shift, tab->mat->row[i][off + var->index])isl_sioimath_submul((tab->mat->row[i][1]), *(shift), *(
tab->mat->row[i][off + var->index]))
;
2855 }
2856
2857 }
2858
2859 return 0;
2860}
2861
2862/* Remove the sign constraint from constraint "con".
2863 *
2864 * If the constraint variable was originally marked non-negative,
2865 * then we make sure we mark it non-negative again during rollback.
2866 */
2867int isl_tab_unrestrict(struct isl_tab *tab, int con)
2868{
2869 struct isl_tab_var *var;
2870
2871 if (!tab)
2872 return -1;
2873
2874 var = &tab->con[con];
2875 if (!var->is_nonneg)
2876 return 0;
2877
2878 var->is_nonneg = 0;
2879 if (isl_tab_push_var(tab, isl_tab_undo_unrestrict, var) < 0)
2880 return -1;
2881
2882 return 0;
2883}
2884
2885int isl_tab_select_facet(struct isl_tab *tab, int con)
2886{
2887 if (!tab)
2888 return -1;
2889
2890 return cut_to_hyperplane(tab, &tab->con[con]);
2891}
2892
2893static int may_be_equality(struct isl_tab *tab, int row)
2894{
2895 return tab->rational ? isl_int_is_zero(tab->mat->row[row][1])(isl_sioimath_sgn(*(tab->mat->row[row][1])) == 0)
2896 : isl_int_lt(tab->mat->row[row][1],(isl_sioimath_cmp(*(tab->mat->row[row][1]), *(tab->mat
->row[row][0])) < 0)
2897 tab->mat->row[row][0])(isl_sioimath_cmp(*(tab->mat->row[row][1]), *(tab->mat
->row[row][0])) < 0)
;
2898}
2899
2900/* Return an isl_tab_var that has been marked or NULL if no such
2901 * variable can be found.
2902 * The marked field has only been set for variables that
2903 * appear in non-redundant rows or non-dead columns.
2904 *
2905 * Pick the last constraint variable that is marked and
2906 * that appears in either a non-redundant row or a non-dead columns.
2907 * Since the returned variable is tested for being a redundant constraint or
2908 * an implicit equality, there is no need to return any tab variable that
2909 * corresponds to a variable.
2910 */
2911static struct isl_tab_var *select_marked(struct isl_tab *tab)
2912{
2913 int i;
2914 struct isl_tab_var *var;
2915
2916 for (i = tab->n_con - 1; i >= 0; --i) {
2917 var = &tab->con[i];
2918 if (var->index < 0)
2919 continue;
2920 if (var->is_row && var->index < tab->n_redundant)
2921 continue;
2922 if (!var->is_row && var->index < tab->n_dead)
2923 continue;
2924 if (var->marked)
2925 return var;
2926 }
2927
2928 return NULL((void*)0);
2929}
2930
2931/* Check for (near) equalities among the constraints.
2932 * A constraint is an equality if it is non-negative and if
2933 * its maximal value is either
2934 * - zero (in case of rational tableaus), or
2935 * - strictly less than 1 (in case of integer tableaus)
2936 *
2937 * We first mark all non-redundant and non-dead variables that
2938 * are not frozen and not obviously not an equality.
2939 * Then we iterate over all marked variables if they can attain
2940 * any values larger than zero or at least one.
2941 * If the maximal value is zero, we mark any column variables
2942 * that appear in the row as being zero and mark the row as being redundant.
2943 * Otherwise, if the maximal value is strictly less than one (and the
2944 * tableau is integer), then we restrict the value to being zero
2945 * by adding an opposite non-negative variable.
2946 * The order in which the variables are considered is not important.
2947 */
2948int isl_tab_detect_implicit_equalities(struct isl_tab *tab)
2949{
2950 int i;
2951 unsigned n_marked;
2952
2953 if (!tab)
2954 return -1;
2955 if (tab->empty)
2956 return 0;
2957 if (tab->n_dead == tab->n_col)
2958 return 0;
2959
2960 n_marked = 0;
2961 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2962 struct isl_tab_var *var = isl_tab_var_from_row(tab, i);
2963 var->marked = !var->frozen && var->is_nonneg &&
2964 may_be_equality(tab, i);
2965 if (var->marked)
2966 n_marked++;
2967 }
2968 for (i = tab->n_dead; i < tab->n_col; ++i) {
2969 struct isl_tab_var *var = var_from_col(tab, i);
2970 var->marked = !var->frozen && var->is_nonneg;
2971 if (var->marked)
2972 n_marked++;
2973 }
2974 while (n_marked) {
2975 struct isl_tab_var *var;
2976 int sgn;
2977 var = select_marked(tab);
2978 if (!var)
2979 break;
2980 var->marked = 0;
2981 n_marked--;
2982 sgn = sign_of_max(tab, var);
2983 if (sgn < 0)
2984 return -1;
2985 if (sgn == 0) {
2986 if (close_row(tab, var, 0) < 0)
2987 return -1;
2988 } else if (!tab->rational && !at_least_one(tab, var)) {
2989 if (cut_to_hyperplane(tab, var) < 0)
2990 return -1;
2991 return isl_tab_detect_implicit_equalities(tab);
2992 }
2993 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2994 var = isl_tab_var_from_row(tab, i);
2995 if (!var->marked)
2996 continue;
2997 if (may_be_equality(tab, i))
2998 continue;
2999 var->marked = 0;
3000 n_marked--;
3001 }
3002 }
3003
3004 return 0;
3005}
3006
3007/* Update the element of row_var or col_var that corresponds to
3008 * constraint tab->con[i] to a move from position "old" to position "i".
3009 */
3010static int update_con_after_move(struct isl_tab *tab, int i, int old)
3011{
3012 int *p;
3013 int index;
3014
3015 index = tab->con[i].index;
3016 if (index == -1)
3017 return 0;
3018 p = tab->con[i].is_row ? tab->row_var : tab->col_var;
3019 if (p[index] != ~old)
3020 isl_die(tab->mat->ctx, isl_error_internal,do { isl_handle_error(tab->mat->ctx, isl_error_internal
, "broken internal state", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 3021); return -1; } while (0)
3021 "broken internal state", return -1)do { isl_handle_error(tab->mat->ctx, isl_error_internal
, "broken internal state", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 3021); return -1; } while (0)
;
3022 p[index] = ~i;
3023
3024 return 0;
3025}
3026
3027/* Rotate the "n" constraints starting at "first" to the right,
3028 * putting the last constraint in the position of the first constraint.
3029 */
3030static int rotate_constraints(struct isl_tab *tab, int first, int n)
3031{
3032 int i, last;
3033 struct isl_tab_var var;
3034
3035 if (n <= 1)
3036 return 0;
3037
3038 last = first + n - 1;
3039 var = tab->con[last];
3040 for (i = last; i > first; --i) {
3041 tab->con[i] = tab->con[i - 1];
3042 if (update_con_after_move(tab, i, i - 1) < 0)
3043 return -1;
3044 }
3045 tab->con[first] = var;
3046 if (update_con_after_move(tab, first, last) < 0)
3047 return -1;
3048
3049 return 0;
3050}
3051
3052/* Make the equalities that are implicit in "bmap" but that have been
3053 * detected in the corresponding "tab" explicit in "bmap" and update
3054 * "tab" to reflect the new order of the constraints.
3055 *
3056 * In particular, if inequality i is an implicit equality then
3057 * isl_basic_map_inequality_to_equality will move the inequality
3058 * in front of the other equality and it will move the last inequality
3059 * in the position of inequality i.
3060 * In the tableau, the inequalities of "bmap" are stored after the equalities
3061 * and so the original order
3062 *
3063 * E E E E E A A A I B B B B L
3064 *
3065 * is changed into
3066 *
3067 * I E E E E E A A A L B B B B
3068 *
3069 * where I is the implicit equality, the E are equalities,
3070 * the A inequalities before I, the B inequalities after I and
3071 * L the last inequality.
3072 * We therefore need to rotate to the right two sets of constraints,
3073 * those up to and including I and those after I.
3074 *
3075 * If "tab" contains any constraints that are not in "bmap" then they
3076 * appear after those in "bmap" and they should be left untouched.
3077 *
3078 * Note that this function leaves "bmap" in a temporary state
3079 * as it does not call isl_basic_map_gauss. Calling this function
3080 * is the responsibility of the caller.
3081 */
3082__isl_give isl_basic_map *isl_tab_make_equalities_explicit(struct isl_tab *tab,
3083 __isl_take isl_basic_map *bmap)
3084{
3085 int i;
3086
3087 if (!tab || !bmap)
3088 return isl_basic_map_free(bmap);
3089 if (tab->empty)
3090 return bmap;
3091
3092 for (i = bmap->n_ineq - 1; i >= 0; --i) {
3093 if (!isl_tab_is_equality(tab, bmap->n_eq + i))
3094 continue;
3095 isl_basic_map_inequality_to_equality(bmap, i);
3096 if (rotate_constraints(tab, 0, tab->n_eq + i + 1) < 0)
3097 return isl_basic_map_free(bmap);
3098 if (rotate_constraints(tab, tab->n_eq + i + 1,
3099 bmap->n_ineq - i) < 0)
3100 return isl_basic_map_free(bmap);
3101 tab->n_eq++;
3102 }
3103
3104 return bmap;
3105}
3106
3107static int con_is_redundant(struct isl_tab *tab, struct isl_tab_var *var)
3108{
3109 if (!tab)
3110 return -1;
3111 if (tab->rational) {
3112 int sgn = sign_of_min(tab, var);
3113 if (sgn < -1)
3114 return -1;
3115 return sgn >= 0;
3116 } else {
3117 int irred = isl_tab_min_at_most_neg_one(tab, var);
3118 if (irred < 0)
3119 return -1;
3120 return !irred;
3121 }
3122}
3123
3124/* Check for (near) redundant constraints.
3125 * A constraint is redundant if it is non-negative and if
3126 * its minimal value (temporarily ignoring the non-negativity) is either
3127 * - zero (in case of rational tableaus), or
3128 * - strictly larger than -1 (in case of integer tableaus)
3129 *
3130 * We first mark all non-redundant and non-dead variables that
3131 * are not frozen and not obviously negatively unbounded.
3132 * Then we iterate over all marked variables if they can attain
3133 * any values smaller than zero or at most negative one.
3134 * If not, we mark the row as being redundant (assuming it hasn't
3135 * been detected as being obviously redundant in the mean time).
3136 */
3137int isl_tab_detect_redundant(struct isl_tab *tab)
3138{
3139 int i;
3140 unsigned n_marked;
3141
3142 if (!tab)
3143 return -1;
3144 if (tab->empty)
3145 return 0;
3146 if (tab->n_redundant == tab->n_row)
3147 return 0;
3148
3149 n_marked = 0;
3150 for (i = tab->n_redundant; i < tab->n_row; ++i) {
3151 struct isl_tab_var *var = isl_tab_var_from_row(tab, i);
3152 var->marked = !var->frozen && var->is_nonneg;
3153 if (var->marked)
3154 n_marked++;
3155 }
3156 for (i = tab->n_dead; i < tab->n_col; ++i) {
3157 struct isl_tab_var *var = var_from_col(tab, i);
3158 var->marked = !var->frozen && var->is_nonneg &&
3159 !min_is_manifestly_unbounded(tab, var);
3160 if (var->marked)
3161 n_marked++;
3162 }
3163 while (n_marked) {
3164 struct isl_tab_var *var;
3165 int red;
3166 var = select_marked(tab);
3167 if (!var)
3168 break;
3169 var->marked = 0;
3170 n_marked--;
3171 red = con_is_redundant(tab, var);
3172 if (red < 0)
3173 return -1;
3174 if (red && !var->is_redundant)
3175 if (isl_tab_mark_redundant(tab, var->index) < 0)
3176 return -1;
3177 for (i = tab->n_dead; i < tab->n_col; ++i) {
3178 var = var_from_col(tab, i);
3179 if (!var->marked)
3180 continue;
3181 if (!min_is_manifestly_unbounded(tab, var))
3182 continue;
3183 var->marked = 0;
3184 n_marked--;
3185 }
3186 }
3187
3188 return 0;
3189}
3190
3191int isl_tab_is_equality(struct isl_tab *tab, int con)
3192{
3193 int row;
3194 unsigned off;
3195
3196 if (!tab)
3197 return -1;
3198 if (tab->con[con].is_zero)
3199 return 1;
3200 if (tab->con[con].is_redundant)
3201 return 0;
3202 if (!tab->con[con].is_row)
3203 return tab->con[con].index < tab->n_dead;
3204
3205 row = tab->con[con].index;
3206
3207 off = 2 + tab->M;
3208 return isl_int_is_zero(tab->mat->row[row][1])(isl_sioimath_sgn(*(tab->mat->row[row][1])) == 0) &&
3209 !row_is_big(tab, row) &&
3210 isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
3211 tab->n_col - tab->n_dead) == -1;
3212}
3213
3214/* Return the minimal value of the affine expression "f" with denominator
3215 * "denom" in *opt, *opt_denom, assuming the tableau is not empty and
3216 * the expression cannot attain arbitrarily small values.
3217 * If opt_denom is NULL, then *opt is rounded up to the nearest integer.
3218 * The return value reflects the nature of the result (empty, unbounded,
3219 * minimal value returned in *opt).
3220 *
3221 * This function assumes that at least one more row and at least
3222 * one more element in the constraint array are available in the tableau.
3223 */
3224enum isl_lp_result isl_tab_min(struct isl_tab *tab,
3225 isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom,
3226 unsigned flags)
3227{
3228 int r;
3229 enum isl_lp_result res = isl_lp_ok;
3230 struct isl_tab_var *var;
3231 struct isl_tab_undo *snap;
3232
3233 if (!tab)
3234 return isl_lp_error;
3235
3236 if (tab->empty)
3237 return isl_lp_empty;
3238
3239 snap = isl_tab_snap(tab);
3240 r = isl_tab_add_row(tab, f);
3241 if (r < 0)
3242 return isl_lp_error;
3243 var = &tab->con[r];
3244 for (;;) {
3245 int row, col;
3246 find_pivot(tab, var, var, -1, &row, &col);
3247 if (row == var->index) {
3248 res = isl_lp_unbounded;
3249 break;
3250 }
3251 if (row == -1)
3252 break;
3253 if (isl_tab_pivot(tab, row, col) < 0)
3254 return isl_lp_error;
3255 }
3256 isl_int_mul(tab->mat->row[var->index][0],isl_sioimath_mul((tab->mat->row[var->index][0]), *(tab
->mat->row[var->index][0]), *(denom))
3257 tab->mat->row[var->index][0], denom)isl_sioimath_mul((tab->mat->row[var->index][0]), *(tab
->mat->row[var->index][0]), *(denom))
;
3258 if (ISL_FL_ISSET(flags, ISL_TAB_SAVE_DUAL)(!!((flags) & ((1 << 0))))) {
3259 int i;
3260
3261 isl_vec_free(tab->dual);
3262 tab->dual = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_con);
3263 if (!tab->dual)
3264 return isl_lp_error;
3265 isl_int_set(tab->dual->el[0], tab->mat->row[var->index][0])isl_sioimath_set((tab->dual->el[0]), *(tab->mat->
row[var->index][0]))
;
3266 for (i = 0; i < tab->n_con; ++i) {
3267 int pos;
3268 if (tab->con[i].is_row) {
3269 isl_int_set_si(tab->dual->el[1 + i], 0)isl_sioimath_set_si((tab->dual->el[1 + i]), 0);
3270 continue;
3271 }
3272 pos = 2 + tab->M + tab->con[i].index;
3273 if (tab->con[i].negated)
3274 isl_int_neg(tab->dual->el[1 + i],isl_sioimath_neg((tab->dual->el[1 + i]), *(tab->mat->
row[var->index][pos]))
3275 tab->mat->row[var->index][pos])isl_sioimath_neg((tab->dual->el[1 + i]), *(tab->mat->
row[var->index][pos]))
;
3276 else
3277 isl_int_set(tab->dual->el[1 + i],isl_sioimath_set((tab->dual->el[1 + i]), *(tab->mat->
row[var->index][pos]))
3278 tab->mat->row[var->index][pos])isl_sioimath_set((tab->dual->el[1 + i]), *(tab->mat->
row[var->index][pos]))
;
3279 }
3280 }
3281 if (opt && res == isl_lp_ok) {
3282 if (opt_denom) {
3283 isl_int_set(*opt, tab->mat->row[var->index][1])isl_sioimath_set((*opt), *(tab->mat->row[var->index]
[1]))
;
3284 isl_int_set(*opt_denom, tab->mat->row[var->index][0])isl_sioimath_set((*opt_denom), *(tab->mat->row[var->
index][0]))
;
3285 } else
3286 get_rounded_sample_value(tab, var, 1, opt);
3287 }
3288 if (isl_tab_rollback(tab, snap) < 0)
3289 return isl_lp_error;
3290 return res;
3291}
3292
3293/* Is the constraint at position "con" marked as being redundant?
3294 * If it is marked as representing an equality, then it is not
3295 * considered to be redundant.
3296 * Note that isl_tab_mark_redundant marks both the isl_tab_var as
3297 * redundant and moves the corresponding row into the first
3298 * tab->n_redundant positions (or removes the row, assigning it index -1),
3299 * so the final test is actually redundant itself.
3300 */
3301int isl_tab_is_redundant(struct isl_tab *tab, int con)
3302{
3303 if (!tab)
3304 return -1;
3305 if (con < 0 || con >= tab->n_con)
3306 isl_die(isl_tab_get_ctx(tab), isl_error_invalid,do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_invalid
, "position out of bounds", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 3307); return -1; } while (0)
3307 "position out of bounds", return -1)do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_invalid
, "position out of bounds", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 3307); return -1; } while (0)
;
3308 if (tab->con[con].is_zero)
3309 return 0;
3310 if (tab->con[con].is_redundant)
3311 return 1;
3312 return tab->con[con].is_row && tab->con[con].index < tab->n_redundant;
3313}
3314
3315/* Is variable "var" of "tab" fixed to a constant value by its row
3316 * in the tableau?
3317 * If so and if "value" is not NULL, then store this constant value
3318 * in "value".
3319 *
3320 * That is, is it a row variable that only has non-zero coefficients
3321 * for dead columns?
3322 */
3323static isl_bool is_constant(struct isl_tab *tab, struct isl_tab_var *var,
3324 isl_int *value)
3325{
3326 unsigned off = 2 + tab->M;
3327 isl_mat *mat = tab->mat;
3328 int n;
3329 int row;
3330 int pos;
3331
3332 if (!var->is_row)
3333 return isl_bool_false;
3334 row = var->index;
3335 if (row_is_big(tab, row))
3336 return isl_bool_false;
3337 n = tab->n_col - tab->n_dead;
3338 pos = isl_seq_first_non_zero(mat->row[row] + off + tab->n_dead, n);
3339 if (pos != -1)
3340 return isl_bool_false;
3341 if (value)
3342 isl_int_divexact(*value, mat->row[row][1], mat->row[row][0])isl_sioimath_tdiv_q((*value), *(mat->row[row][1]), *(mat->
row[row][0]))
;
3343 return isl_bool_true;
3344}
3345
3346/* Has the variable "var' of "tab" reached a value that is greater than
3347 * or equal (if sgn > 0) or smaller than or equal (if sgn < 0) to "target"?
3348 * "tmp" has been initialized by the caller and can be used
3349 * to perform local computations.
3350 *
3351 * If the sample value involves the big parameter, then any value
3352 * is reached.
3353 * Otherwise check if n/d >= t, i.e., n >= d * t (if sgn > 0)
3354 * or n/d <= t, i.e., n <= d * t (if sgn < 0).
3355 */
3356static int reached(struct isl_tab *tab, struct isl_tab_var *var, int sgn,
3357 isl_int target, isl_int *tmp)
3358{
3359 if (row_is_big(tab, var->index))
3360 return 1;
3361 isl_int_mul(*tmp, tab->mat->row[var->index][0], target)isl_sioimath_mul((*tmp), *(tab->mat->row[var->index]
[0]), *(target))
;
3362 if (sgn > 0)
3363 return isl_int_ge(tab->mat->row[var->index][1], *tmp)(isl_sioimath_cmp(*(tab->mat->row[var->index][1]), *
(*tmp)) >= 0)
;
3364 else
3365 return isl_int_le(tab->mat->row[var->index][1], *tmp)(isl_sioimath_cmp(*(tab->mat->row[var->index][1]), *
(*tmp)) <= 0)
;
3366}
3367
3368/* Can variable "var" of "tab" attain the value "target" by
3369 * pivoting up (if sgn > 0) or down (if sgn < 0)?
3370 * If not, then pivot up [down] to the greatest [smallest]
3371 * rational value.
3372 * "tmp" has been initialized by the caller and can be used
3373 * to perform local computations.
3374 *
3375 * If the variable is manifestly unbounded in the desired direction,
3376 * then it can attain any value.
3377 * Otherwise, it can be moved to a row.
3378 * Continue pivoting until the target is reached.
3379 * If no more pivoting can be performed, the maximal [minimal]
3380 * rational value has been reached and the target cannot be reached.
3381 * If the variable would be pivoted into a manifestly unbounded column,
3382 * then the target can be reached.
3383 */
3384static isl_bool var_reaches(struct isl_tab *tab, struct isl_tab_var *var,
3385 int sgn, isl_int target, isl_int *tmp)
3386{
3387 int row, col;
3388
3389 if (sgn < 0 && min_is_manifestly_unbounded(tab, var))
3390 return isl_bool_true;
3391 if (sgn > 0 && max_is_manifestly_unbounded(tab, var))
3392 return isl_bool_true;
3393 if (to_row(tab, var, sgn) < 0)
3394 return isl_bool_error;
3395 while (!reached(tab, var, sgn, target, tmp)) {
3396 find_pivot(tab, var, var, sgn, &row, &col);
3397 if (row == -1)
3398 return isl_bool_false;
3399 if (row == var->index)
3400 return isl_bool_true;
3401 if (isl_tab_pivot(tab, row, col) < 0)
3402 return isl_bool_error;
3403 }
3404
3405 return isl_bool_true;
3406}
3407
3408/* Check if variable "var" of "tab" can only attain a single (integer)
3409 * value, and, if so, add an equality constraint to fix the variable
3410 * to this single value and store the result in "target".
3411 * "target" and "tmp" have been initialized by the caller.
3412 *
3413 * Given the current sample value, round it down and check
3414 * whether it is possible to attain a strictly smaller integer value.
3415 * If so, the variable is not restricted to a single integer value.
3416 * Otherwise, the search stops at the smallest rational value.
3417 * Round up this value and check whether it is possible to attain
3418 * a strictly greater integer value.
3419 * If so, the variable is not restricted to a single integer value.
3420 * Otherwise, the search stops at the greatest rational value.
3421 * If rounding down this value yields a value that is different
3422 * from rounding up the smallest rational value, then the variable
3423 * cannot attain any integer value. Mark the tableau empty.
3424 * Otherwise, add an equality constraint that fixes the variable
3425 * to the single integer value found.
3426 */
3427static isl_bool detect_constant_with_tmp(struct isl_tab *tab,
3428 struct isl_tab_var *var, isl_int *target, isl_int *tmp)
3429{
3430 isl_bool reached;
3431 isl_vec *eq;
3432 int pos;
3433 isl_stat r;
3434
3435 get_rounded_sample_value(tab, var, -1, target);
3436 isl_int_sub_ui(*target, *target, 1)isl_sioimath_sub_ui((*target), *(*target), 1);
3437 reached = var_reaches(tab, var, -1, *target, tmp);
3438 if (reached < 0 || reached)
3439 return isl_bool_not(reached);
3440 get_rounded_sample_value(tab, var, 1, target);
3441 isl_int_add_ui(*target, *target, 1)isl_sioimath_add_ui((*target), *(*target), 1);
3442 reached = var_reaches(tab, var, 1, *target, tmp);
3443 if (reached < 0 || reached)
3444 return isl_bool_not(reached);
3445 get_rounded_sample_value(tab, var, -1, tmp);
3446 isl_int_sub_ui(*target, *target, 1)isl_sioimath_sub_ui((*target), *(*target), 1);
3447 if (isl_int_ne(*target, *tmp)(isl_sioimath_cmp(*(*target), *(*tmp)) != 0)) {
3448 if (isl_tab_mark_empty(tab) < 0)
3449 return isl_bool_error;
3450 return isl_bool_false;
3451 }
3452
3453 if (isl_tab_extend_cons(tab, 1) < 0)
3454 return isl_bool_error;
3455 eq = isl_vec_alloc(isl_tab_get_ctx(tab), 1 + tab->n_var);
3456 if (!eq)
3457 return isl_bool_error;
3458 pos = var - tab->var;
3459 isl_seq_clr(eq->el + 1, tab->n_var);
3460 isl_int_set_si(eq->el[1 + pos], -1)isl_sioimath_set_si((eq->el[1 + pos]), -1);
3461 isl_int_set(eq->el[0], *target)isl_sioimath_set((eq->el[0]), *(*target));
3462 r = isl_tab_add_eq(tab, eq->el);
3463 isl_vec_free(eq);
3464
3465 return r < 0 ? isl_bool_error : isl_bool_true;
3466}
3467
3468/* Check if variable "var" of "tab" can only attain a single (integer)
3469 * value, and, if so, add an equality constraint to fix the variable
3470 * to this single value and store the result in "value" (if "value"
3471 * is not NULL).
3472 *
3473 * If the current sample value involves the big parameter,
3474 * then the variable cannot have a fixed integer value.
3475 * If the variable is already fixed to a single value by its row, then
3476 * there is no need to add another equality constraint.
3477 *
3478 * Otherwise, allocate some temporary variables and continue
3479 * with detect_constant_with_tmp.
3480 */
3481static isl_bool get_constant(struct isl_tab *tab, struct isl_tab_var *var,
3482 isl_int *value)
3483{
3484 isl_int target, tmp;
3485 isl_bool is_cst;
3486
3487 if (var->is_row && row_is_big(tab, var->index))
3488 return isl_bool_false;
3489 is_cst = is_constant(tab, var, value);
3490 if (is_cst < 0 || is_cst)
3491 return is_cst;
3492
3493 if (!value)
3494 isl_int_init(target)isl_sioimath_init((target));
3495 isl_int_init(tmp)isl_sioimath_init((tmp));
3496
3497 is_cst = detect_constant_with_tmp(tab, var,
3498 value ? value : &target, &tmp);
3499
3500 isl_int_clear(tmp)isl_sioimath_clear((tmp));
3501 if (!value)
3502 isl_int_clear(target)isl_sioimath_clear((target));
3503
3504 return is_cst;
3505}
3506
3507/* Check if variable "var" of "tab" can only attain a single (integer)
3508 * value, and, if so, add an equality constraint to fix the variable
3509 * to this single value and store the result in "value" (if "value"
3510 * is not NULL).
3511 *
3512 * For rational tableaus, nothing needs to be done.
3513 */
3514isl_bool isl_tab_is_constant(struct isl_tab *tab, int var, isl_int *value)
3515{
3516 if (!tab)
3517 return isl_bool_error;
3518 if (var < 0 || var >= tab->n_var)
3519 isl_die(isl_tab_get_ctx(tab), isl_error_invalid,do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_invalid
, "position out of bounds", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 3520); return isl_bool_error; } while (0)
3520 "position out of bounds", return isl_bool_error)do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_invalid
, "position out of bounds", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 3520); return isl_bool_error; } while (0)
;
3521 if (tab->rational)
3522 return isl_bool_false;
3523
3524 return get_constant(tab, &tab->var[var], value);
3525}
3526
3527/* Check if any of the variables of "tab" can only attain a single (integer)
3528 * value, and, if so, add equality constraints to fix those variables
3529 * to these single values.
3530 *
3531 * For rational tableaus, nothing needs to be done.
3532 */
3533isl_stat isl_tab_detect_constants(struct isl_tab *tab)
3534{
3535 int i;
3536
3537 if (!tab)
3538 return isl_stat_error;
3539 if (tab->rational)
3540 return isl_stat_ok;
3541
3542 for (i = 0; i < tab->n_var; ++i) {
3543 if (get_constant(tab, &tab->var[i], NULL((void*)0)) < 0)
3544 return isl_stat_error;
3545 }
3546
3547 return isl_stat_ok;
3548}
3549
3550/* Take a snapshot of the tableau that can be restored by a call to
3551 * isl_tab_rollback.
3552 */
3553struct isl_tab_undo *isl_tab_snap(struct isl_tab *tab)
3554{
3555 if (!tab)
3556 return NULL((void*)0);
3557 tab->need_undo = 1;
3558 return tab->top;
3559}
3560
3561/* Does "tab" need to keep track of undo information?
3562 * That is, was a snapshot taken that may need to be restored?
3563 */
3564isl_bool isl_tab_need_undo(struct isl_tab *tab)
3565{
3566 if (!tab)
3567 return isl_bool_error;
3568
3569 return tab->need_undo;
3570}
3571
3572/* Remove all tracking of undo information from "tab", invalidating
3573 * any snapshots that may have been taken of the tableau.
3574 * Since all snapshots have been invalidated, there is also
3575 * no need to start keeping track of undo information again.
3576 */
3577void isl_tab_clear_undo(struct isl_tab *tab)
3578{
3579 if (!tab)
3580 return;
3581
3582 free_undo(tab);
3583 tab->need_undo = 0;
3584}
3585
3586/* Undo the operation performed by isl_tab_relax.
3587 */
3588static isl_stat unrelax(struct isl_tab *tab, struct isl_tab_var *var)
3589 WARN_UNUSED__attribute__((__warn_unused_result__));
3590static isl_stat unrelax(struct isl_tab *tab, struct isl_tab_var *var)
3591{
3592 unsigned off = 2 + tab->M;
3593
3594 if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
3595 if (to_row(tab, var, 1) < 0)
3596 return isl_stat_error;
3597
3598 if (var->is_row) {
3599 isl_int_sub(tab->mat->row[var->index][1],isl_sioimath_sub((tab->mat->row[var->index][1]), *(tab
->mat->row[var->index][1]), *(tab->mat->row[var
->index][0]))
3600 tab->mat->row[var->index][1], tab->mat->row[var->index][0])isl_sioimath_sub((tab->mat->row[var->index][1]), *(tab
->mat->row[var->index][1]), *(tab->mat->row[var
->index][0]))
;
3601 if (var->is_nonneg) {
3602 int sgn = restore_row(tab, var);
3603 isl_assert(tab->mat->ctx, sgn >= 0,do { if (sgn >= 0) break; do { isl_handle_error(tab->mat
->ctx, isl_error_unknown, "Assertion \"" "sgn >= 0" "\" failed"
, "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 3604); return isl_stat_error; } while (0); } while (0)
3604 return isl_stat_error)do { if (sgn >= 0) break; do { isl_handle_error(tab->mat
->ctx, isl_error_unknown, "Assertion \"" "sgn >= 0" "\" failed"
, "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 3604); return isl_stat_error; } while (0); } while (0)
;
3605 }
3606 } else {
3607 int i;
3608
3609 for (i = 0; i < tab->n_row; ++i) {
3610 if (isl_int_is_zero(tab->mat->row[i][off + var->index])(isl_sioimath_sgn(*(tab->mat->row[i][off + var->index
])) == 0)
)
3611 continue;
3612 isl_int_add(tab->mat->row[i][1], tab->mat->row[i][1],isl_sioimath_add((tab->mat->row[i][1]), *(tab->mat->
row[i][1]), *(tab->mat->row[i][off + var->index]))
3613 tab->mat->row[i][off + var->index])isl_sioimath_add((tab->mat->row[i][1]), *(tab->mat->
row[i][1]), *(tab->mat->row[i][off + var->index]))
;
3614 }
3615
3616 }
3617
3618 return isl_stat_ok;
3619}
3620
3621/* Undo the operation performed by isl_tab_unrestrict.
3622 *
3623 * In particular, mark the variable as being non-negative and make
3624 * sure the sample value respects this constraint.
3625 */
3626static isl_stat ununrestrict(struct isl_tab *tab, struct isl_tab_var *var)
3627{
3628 var->is_nonneg = 1;
3629
3630 if (var->is_row && restore_row(tab, var) < -1)
3631 return isl_stat_error;
3632
3633 return isl_stat_ok;
3634}
3635
3636/* Unmark the last redundant row in "tab" as being redundant.
3637 * This undoes part of the modifications performed by isl_tab_mark_redundant.
3638 * In particular, remove the redundant mark and make
3639 * sure the sample value respects the constraint again.
3640 * A variable that is marked non-negative by isl_tab_mark_redundant
3641 * is covered by a separate undo record.
3642 */
3643static isl_stat restore_last_redundant(struct isl_tab *tab)
3644{
3645 struct isl_tab_var *var;
3646
3647 if (tab->n_redundant < 1)
3648 isl_die(isl_tab_get_ctx(tab), isl_error_internal,do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_internal
, "no redundant rows", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 3649); return isl_stat_error; } while (0)
3649 "no redundant rows", return isl_stat_error)do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_internal
, "no redundant rows", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 3649); return isl_stat_error; } while (0)
;
3650
3651 var = isl_tab_var_from_row(tab, tab->n_redundant - 1);
3652 var->is_redundant = 0;
3653 tab->n_redundant--;
3654 restore_row(tab, var);
3655
3656 return isl_stat_ok;
3657}
3658
3659static isl_stat perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo)
3660 WARN_UNUSED__attribute__((__warn_unused_result__));
3661static isl_stat perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo)
3662{
3663 struct isl_tab_var *var = var_from_index(tab, undo->u.var_index);
3664 switch (undo->type) {
3665 case isl_tab_undo_nonneg:
3666 var->is_nonneg = 0;
3667 break;
3668 case isl_tab_undo_redundant:
3669 if (!var->is_row || var->index != tab->n_redundant - 1)
3670 isl_die(isl_tab_get_ctx(tab), isl_error_internal,do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_internal
, "not undoing last redundant row", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 3671); return -1; } while (0)
3671 "not undoing last redundant row", return -1)do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_internal
, "not undoing last redundant row", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 3671); return -1; } while (0)
;
3672 return restore_last_redundant(tab);
3673 case isl_tab_undo_freeze:
3674 var->frozen = 0;
3675 break;
3676 case isl_tab_undo_zero:
3677 var->is_zero = 0;
3678 if (!var->is_row)
3679 tab->n_dead--;
3680 break;
3681 case isl_tab_undo_allocate:
3682 if (undo->u.var_index >= 0) {
3683 isl_assert(tab->mat->ctx, !var->is_row,do { if (!var->is_row) break; do { isl_handle_error(tab->
mat->ctx, isl_error_unknown, "Assertion \"" "!var->is_row"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 3684); return isl_stat_error; } while (0); } while (0)
3684 return isl_stat_error)do { if (!var->is_row) break; do { isl_handle_error(tab->
mat->ctx, isl_error_unknown, "Assertion \"" "!var->is_row"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 3684); return isl_stat_error; } while (0); } while (0)
;
3685 return drop_col(tab, var->index);
3686 }
3687 if (!var->is_row) {
3688 if (!max_is_manifestly_unbounded(tab, var)) {
3689 if (to_row(tab, var, 1) < 0)
3690 return isl_stat_error;
3691 } else if (!min_is_manifestly_unbounded(tab, var)) {
3692 if (to_row(tab, var, -1) < 0)
3693 return isl_stat_error;
3694 } else
3695 if (to_row(tab, var, 0) < 0)
3696 return isl_stat_error;
3697 }
3698 return drop_row(tab, var->index);
3699 case isl_tab_undo_relax:
3700 return unrelax(tab, var);
3701 case isl_tab_undo_unrestrict:
3702 return ununrestrict(tab, var);
3703 default:
3704 isl_die(tab->mat->ctx, isl_error_internal,do { isl_handle_error(tab->mat->ctx, isl_error_internal
, "perform_undo_var called on invalid undo record", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 3706); return isl_stat_error; } while (0)
3705 "perform_undo_var called on invalid undo record",do { isl_handle_error(tab->mat->ctx, isl_error_internal
, "perform_undo_var called on invalid undo record", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 3706); return isl_stat_error; } while (0)
3706 return isl_stat_error)do { isl_handle_error(tab->mat->ctx, isl_error_internal
, "perform_undo_var called on invalid undo record", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 3706); return isl_stat_error; } while (0)
;
3707 }
3708
3709 return isl_stat_ok;
3710}
3711
3712/* Restore all rows that have been marked redundant by isl_tab_mark_redundant
3713 * and that have been preserved in the tableau.
3714 * Note that isl_tab_mark_redundant may also have marked some variables
3715 * as being non-negative before marking them redundant. These need
3716 * to be removed as well as otherwise some constraints could end up
3717 * getting marked redundant with respect to the variable.
3718 */
3719isl_stat isl_tab_restore_redundant(struct isl_tab *tab)
3720{
3721 if (!tab)
3722 return isl_stat_error;
3723
3724 if (tab->need_undo)
3725 isl_die(isl_tab_get_ctx(tab), isl_error_invalid,do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_invalid
, "manually restoring redundant constraints " "interferes with undo history"
, "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 3728); return isl_stat_error; } while (0)
3726 "manually restoring redundant constraints "do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_invalid
, "manually restoring redundant constraints " "interferes with undo history"
, "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 3728); return isl_stat_error; } while (0)
3727 "interferes with undo history",do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_invalid
, "manually restoring redundant constraints " "interferes with undo history"
, "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 3728); return isl_stat_error; } while (0)
3728 return isl_stat_error)do { isl_handle_error(isl_tab_get_ctx(tab), isl_error_invalid
, "manually restoring redundant constraints " "interferes with undo history"
, "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 3728); return isl_stat_error; } while (0)
;
3729
3730 while (tab->n_redundant > 0) {
3731 if (tab->row_var[tab->n_redundant - 1] >= 0) {
3732 struct isl_tab_var *var;
3733
3734 var = isl_tab_var_from_row(tab, tab->n_redundant - 1);
3735 var->is_nonneg = 0;
3736 }
3737 restore_last_redundant(tab);
3738 }
3739 return isl_stat_ok;
3740}
3741
3742/* Undo the addition of an integer division to the basic map representation
3743 * of "tab" in position "pos".
3744 */
3745static isl_stat drop_bmap_div(struct isl_tab *tab, int pos)
3746{
3747 int off;
3748
3749 off = tab->n_var - isl_basic_map_dim(tab->bmap, isl_dim_div);
3750 if (isl_basic_map_drop_div(tab->bmap, pos - off) < 0)
3751 return isl_stat_error;
3752 if (tab->samples) {
3753 tab->samples = isl_mat_drop_cols(tab->samples, 1 + pos, 1);
3754 if (!tab->samples)
3755 return isl_stat_error;
3756 }
3757
3758 return isl_stat_ok;
3759}
3760
3761/* Restore the tableau to the state where the basic variables
3762 * are those in "col_var".
3763 * We first construct a list of variables that are currently in
3764 * the basis, but shouldn't. Then we iterate over all variables
3765 * that should be in the basis and for each one that is currently
3766 * not in the basis, we exchange it with one of the elements of the
3767 * list constructed before.
3768 * We can always find an appropriate variable to pivot with because
3769 * the current basis is mapped to the old basis by a non-singular
3770 * matrix and so we can never end up with a zero row.
3771 */
3772static int restore_basis(struct isl_tab *tab, int *col_var)
3773{
3774 int i, j;
3775 int n_extra = 0;
3776 int *extra = NULL((void*)0); /* current columns that contain bad stuff */
3777 unsigned off = 2 + tab->M;
3778
3779 extra = isl_alloc_array(tab->mat->ctx, int, tab->n_col)((int *)isl_malloc_or_die(tab->mat->ctx, (tab->n_col
)*sizeof(int)))
;
3780 if (tab->n_col && !extra)
3781 goto error;
3782 for (i = 0; i < tab->n_col; ++i) {
3783 for (j = 0; j < tab->n_col; ++j)
3784 if (tab->col_var[i] == col_var[j])
3785 break;
3786 if (j < tab->n_col)
3787 continue;
3788 extra[n_extra++] = i;
3789 }
3790 for (i = 0; i < tab->n_col && n_extra > 0; ++i) {
3791 struct isl_tab_var *var;
3792 int row;
3793
3794 for (j = 0; j < tab->n_col; ++j)
3795 if (col_var[i] == tab->col_var[j])
3796 break;
3797 if (j < tab->n_col)
3798 continue;
3799 var = var_from_index(tab, col_var[i]);
3800 row = var->index;
3801 for (j = 0; j < n_extra; ++j)
3802 if (!isl_int_is_zero(tab->mat->row[row][off+extra[j]])(isl_sioimath_sgn(*(tab->mat->row[row][off+extra[j]])) ==
0)
)
3803 break;
3804 isl_assert(tab->mat->ctx, j < n_extra, goto error)do { if (j < n_extra) break; do { isl_handle_error(tab->
mat->ctx, isl_error_unknown, "Assertion \"" "j < n_extra"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 3804); goto error; } while (0); } while (0)
;
3805 if (isl_tab_pivot(tab, row, extra[j]) < 0)
3806 goto error;
3807 extra[j] = extra[--n_extra];
3808 }
3809
3810 free(extra);
3811 return 0;
3812error:
3813 free(extra);
3814 return -1;
3815}
3816
3817/* Remove all samples with index n or greater, i.e., those samples
3818 * that were added since we saved this number of samples in
3819 * isl_tab_save_samples.
3820 */
3821static void drop_samples_since(struct isl_tab *tab, int n)
3822{
3823 int i;
3824
3825 for (i = tab->n_sample - 1; i >= 0 && tab->n_sample > n; --i) {
3826 if (tab->sample_index[i] < n)
3827 continue;
3828
3829 if (i != tab->n_sample - 1) {
3830 int t = tab->sample_index[tab->n_sample-1];
3831 tab->sample_index[tab->n_sample-1] = tab->sample_index[i];
3832 tab->sample_index[i] = t;
3833 isl_mat_swap_rows(tab->samples, tab->n_sample-1, i);
3834 }
3835 tab->n_sample--;
3836 }
3837}
3838
3839static isl_stat perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo)
3840 WARN_UNUSED__attribute__((__warn_unused_result__));
3841static isl_stat perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo)
3842{
3843 switch (undo->type) {
3844 case isl_tab_undo_rational:
3845 tab->rational = 0;
3846 break;
3847 case isl_tab_undo_empty:
3848 tab->empty = 0;
3849 break;
3850 case isl_tab_undo_nonneg:
3851 case isl_tab_undo_redundant:
3852 case isl_tab_undo_freeze:
3853 case isl_tab_undo_zero:
3854 case isl_tab_undo_allocate:
3855 case isl_tab_undo_relax:
3856 case isl_tab_undo_unrestrict:
3857 return perform_undo_var(tab, undo);
3858 case isl_tab_undo_bmap_eq:
3859 return isl_basic_map_free_equality(tab->bmap, 1);
3860 case isl_tab_undo_bmap_ineq:
3861 return isl_basic_map_free_inequality(tab->bmap, 1);
3862 case isl_tab_undo_bmap_div:
3863 return drop_bmap_div(tab, undo->u.var_index);
3864 case isl_tab_undo_saved_basis:
3865 if (restore_basis(tab, undo->u.col_var) < 0)
3866 return isl_stat_error;
3867 break;
3868 case isl_tab_undo_drop_sample:
3869 tab->n_outside--;
3870 break;
3871 case isl_tab_undo_saved_samples:
3872 drop_samples_since(tab, undo->u.n);
3873 break;
3874 case isl_tab_undo_callback:
3875 return undo->u.callback->run(undo->u.callback);
3876 default:
3877 isl_assert(tab->mat->ctx, 0, return isl_stat_error)do { if (0) break; do { isl_handle_error(tab->mat->ctx,
isl_error_unknown, "Assertion \"" "0" "\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 3877); return isl_stat_error; } while (0); } while (0)
;
3878 }
3879 return isl_stat_ok;
3880}
3881
3882/* Return the tableau to the state it was in when the snapshot "snap"
3883 * was taken.
3884 */
3885int isl_tab_rollback(struct isl_tab *tab, struct isl_tab_undo *snap)
3886{
3887 struct isl_tab_undo *undo, *next;
3888
3889 if (!tab)
3890 return -1;
3891
3892 tab->in_undo = 1;
3893 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
3894 next = undo->next;
3895 if (undo == snap)
3896 break;
3897 if (perform_undo(tab, undo) < 0) {
3898 tab->top = undo;
3899 free_undo(tab);
3900 tab->in_undo = 0;
3901 return -1;
3902 }
3903 free_undo_record(undo);
3904 }
3905 tab->in_undo = 0;
3906 tab->top = undo;
3907 if (!undo)
3908 return -1;
3909 return 0;
3910}
3911
3912/* The given row "row" represents an inequality violated by all
3913 * points in the tableau. Check for some special cases of such
3914 * separating constraints.
3915 * In particular, if the row has been reduced to the constant -1,
3916 * then we know the inequality is adjacent (but opposite) to
3917 * an equality in the tableau.
3918 * If the row has been reduced to r = c*(-1 -r'), with r' an inequality
3919 * of the tableau and c a positive constant, then the inequality
3920 * is adjacent (but opposite) to the inequality r'.
3921 */
3922static enum isl_ineq_type separation_type(struct isl_tab *tab, unsigned row)
3923{
3924 int pos;
3925 unsigned off = 2 + tab->M;
3926
3927 if (tab->rational)
3928 return isl_ineq_separate;
3929
3930 if (!isl_int_is_one(tab->mat->row[row][0])(isl_sioimath_cmp_si(*(tab->mat->row[row][0]), 1) == 0))
3931 return isl_ineq_separate;
3932
3933 pos = isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
3934 tab->n_col - tab->n_dead);
3935 if (pos == -1) {
3936 if (isl_int_is_negone(tab->mat->row[row][1])(isl_sioimath_cmp_si(*(tab->mat->row[row][1]), -1) == 0
)
)
3937 return isl_ineq_adj_eq;
3938 else
3939 return isl_ineq_separate;
3940 }
3941
3942 if (!isl_int_eq(tab->mat->row[row][1],(isl_sioimath_cmp(*(tab->mat->row[row][1]), *(tab->mat
->row[row][off + tab->n_dead + pos])) == 0)
3943 tab->mat->row[row][off + tab->n_dead + pos])(isl_sioimath_cmp(*(tab->mat->row[row][1]), *(tab->mat
->row[row][off + tab->n_dead + pos])) == 0)
)
3944 return isl_ineq_separate;
3945
3946 pos = isl_seq_first_non_zero(
3947 tab->mat->row[row] + off + tab->n_dead + pos + 1,
3948 tab->n_col - tab->n_dead - pos - 1);
3949
3950 return pos == -1 ? isl_ineq_adj_ineq : isl_ineq_separate;
3951}
3952
3953/* Check the effect of inequality "ineq" on the tableau "tab".
3954 * The result may be
3955 * isl_ineq_redundant: satisfied by all points in the tableau
3956 * isl_ineq_separate: satisfied by no point in the tableau
3957 * isl_ineq_cut: satisfied by some by not all points
3958 * isl_ineq_adj_eq: adjacent to an equality
3959 * isl_ineq_adj_ineq: adjacent to an inequality.
3960 */
3961enum isl_ineq_type isl_tab_ineq_type(struct isl_tab *tab, isl_int *ineq)
3962{
3963 enum isl_ineq_type type = isl_ineq_error;
3964 struct isl_tab_undo *snap = NULL((void*)0);
3965 int con;
3966 int row;
3967
3968 if (!tab)
3969 return isl_ineq_error;
3970
3971 if (isl_tab_extend_cons(tab, 1) < 0)
3972 return isl_ineq_error;
3973
3974 snap = isl_tab_snap(tab);
3975
3976 con = isl_tab_add_row(tab, ineq);
3977 if (con < 0)
3978 goto error;
3979
3980 row = tab->con[con].index;
3981 if (isl_tab_row_is_redundant(tab, row))
3982 type = isl_ineq_redundant;
3983 else if (isl_int_is_neg(tab->mat->row[row][1])(isl_sioimath_sgn(*(tab->mat->row[row][1])) < 0) &&
3984 (tab->rational ||
3985 isl_int_abs_ge(tab->mat->row[row][1],(isl_sioimath_abs_cmp(*(tab->mat->row[row][1]), *(tab->
mat->row[row][0])) >= 0)
3986 tab->mat->row[row][0])(isl_sioimath_abs_cmp(*(tab->mat->row[row][1]), *(tab->
mat->row[row][0])) >= 0)
)) {
3987 int nonneg = at_least_zero(tab, &tab->con[con]);
3988 if (nonneg < 0)
3989 goto error;
3990 if (nonneg)
3991 type = isl_ineq_cut;
3992 else
3993 type = separation_type(tab, row);
3994 } else {
3995 int red = con_is_redundant(tab, &tab->con[con]);
3996 if (red < 0)
3997 goto error;
3998 if (!red)
3999 type = isl_ineq_cut;
4000 else
4001 type = isl_ineq_redundant;
4002 }
4003
4004 if (isl_tab_rollback(tab, snap))
4005 return isl_ineq_error;
4006 return type;
4007error:
4008 return isl_ineq_error;
4009}
4010
4011isl_stat isl_tab_track_bmap(struct isl_tab *tab, __isl_take isl_basic_map *bmap)
4012{
4013 bmap = isl_basic_map_cow(bmap);
4014 if (!tab || !bmap)
4015 goto error;
4016
4017 if (tab->empty) {
4018 bmap = isl_basic_map_set_to_empty(bmap);
4019 if (!bmap)
4020 goto error;
4021 tab->bmap = bmap;
4022 return isl_stat_ok;
4023 }
4024
4025 isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq, goto error)do { if (tab->n_eq == bmap->n_eq) break; do { isl_handle_error
(tab->mat->ctx, isl_error_unknown, "Assertion \"" "tab->n_eq == bmap->n_eq"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 4025); goto error; } while (0); } while (0)
;
4026 isl_assert(tab->mat->ctx,do { if (tab->n_con == bmap->n_eq + bmap->n_ineq) break
; do { isl_handle_error(tab->mat->ctx, isl_error_unknown
, "Assertion \"" "tab->n_con == bmap->n_eq + bmap->n_ineq"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 4027); goto error; } while (0); } while (0)
4027 tab->n_con == bmap->n_eq + bmap->n_ineq, goto error)do { if (tab->n_con == bmap->n_eq + bmap->n_ineq) break
; do { isl_handle_error(tab->mat->ctx, isl_error_unknown
, "Assertion \"" "tab->n_con == bmap->n_eq + bmap->n_ineq"
"\" failed", "/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_tab.c"
, 4027); goto error; } while (0); } while (0)
;
4028
4029 tab->bmap = bmap;
4030
4031 return isl_stat_ok;
4032error:
4033 isl_basic_map_free(bmap);
4034 return isl_stat_error;
4035}
4036
4037isl_stat isl_tab_track_bset(struct isl_tab *tab, __isl_take isl_basic_setisl_basic_map *bset)
4038{
4039 return isl_tab_track_bmap(tab, bset_to_bmap(bset));
4040}
4041
4042__isl_keep isl_basic_setisl_basic_map *isl_tab_peek_bset(struct isl_tab *tab)
4043{
4044 if (!tab)
4045 return NULL((void*)0);
4046
4047 return bset_from_bmap(tab->bmap);
4048}
4049
4050static void isl_tab_print_internal(__isl_keep struct isl_tab *tab,
4051 FILE *out, int indent)
4052{
4053 unsigned r, c;
4054 int i;
4055
4056 if (!tab) {
4057 fprintf(out, "%*snull tab\n", indent, "");
4058 return;
4059 }
4060 fprintf(out, "%*sn_redundant: %d, n_dead: %d", indent, "",
4061 tab->n_redundant, tab->n_dead);
4062 if (tab->rational)
4063 fprintf(out, ", rational");
4064 if (tab->empty)
4065 fprintf(out, ", empty");
4066 fprintf(out, "\n");
4067 fprintf(out, "%*s[", indent, "");
4068 for (i = 0; i < tab->n_var; ++i) {
4069 if (i)
4070 fprintf(out, (i == tab->n_param ||
4071 i == tab->n_var - tab->n_div) ? "; "
4072 : ", ");
4073 fprintf(out, "%c%d%s", tab->var[i].is_row ? 'r' : 'c',
4074 tab->var[i].index,
4075 tab->var[i].is_zero ? " [=0]" :
4076 tab->var[i].is_redundant ? " [R]" : "");
4077 }
4078 fprintf(out, "]\n");
4079 fprintf(out, "%*s[", indent, "");
4080 for (i = 0; i < tab->n_con; ++i) {
4081 if (i)
4082 fprintf(out, ", ");
4083 fprintf(out, "%c%d%s", tab->con[i].is_row ? 'r' : 'c',
4084 tab->con[i].index,
4085 tab->con[i].is_zero ? " [=0]" :
4086 tab->con[i].is_redundant ? " [R]" : "");
4087 }
4088 fprintf(out, "]\n");
4089 fprintf(out, "%*s[", indent, "");
4090 for (i = 0; i < tab->n_row; ++i) {
4091 const char *sign = "";
4092 if (i)
4093 fprintf(out, ", ");
4094 if (tab->row_sign) {
4095 if (tab->row_sign[i] == isl_tab_row_unknown)
4096 sign = "?";
4097 else if (tab->row_sign[i] == isl_tab_row_neg)
4098 sign = "-";
4099 else if (tab->row_sign[i] == isl_tab_row_pos)
4100 sign = "+";
4101 else
4102 sign = "+-";
4103 }
4104 fprintf(out, "r%d: %d%s%s", i, tab->row_var[i],
4105 isl_tab_var_from_row(tab, i)->is_nonneg ? " [>=0]" : "", sign);
4106 }
4107 fprintf(out, "]\n");
4108 fprintf(out, "%*s[", indent, "");
4109 for (i = 0; i < tab->n_col; ++i) {
4110 if (i)
4111 fprintf(out, ", ");
4112 fprintf(out, "c%d: %d%s", i, tab->col_var[i],
4113 var_from_col(tab, i)->is_nonneg ? " [>=0]" : "");
4114 }
4115 fprintf(out, "]\n");
4116 r = tab->mat->n_row;
4117 tab->mat->n_row = tab->n_row;
4118 c = tab->mat->n_col;
4119 tab->mat->n_col = 2 + tab->M + tab->n_col;
4120 isl_mat_print_internal(tab->mat, out, indent);
4121 tab->mat->n_row = r;
4122 tab->mat->n_col = c;
4123 if (tab->bmap)
4124 isl_basic_map_print_internal(tab->bmap, out, indent);
4125}
4126
4127void isl_tab_dump(__isl_keep struct isl_tab *tab)
4128{
4129 isl_tab_print_internal(tab, stderrstderr, 0);
4130}

/build/llvm-toolchain-snapshot-6.0~svn318801/tools/polly/lib/External/isl/isl_int_sioimath.h

1/*
2 * Copyright 2015 INRIA Paris-Rocquencourt
3 *
4 * Use of this software is governed by the MIT license
5 *
6 * Written by Michael Kruse, INRIA Paris-Rocquencourt,
7 * Domaine de Voluceau, Rocquenqourt, B.P. 105,
8 * 78153 Le Chesnay Cedex France
9 */
10#ifndef ISL_INT_SIOIMATH_H
11#define ISL_INT_SIOIMATH_H
12
13#include <inttypes.h>
14#include <limits.h>
15#include <stdint.h>
16#include <stdlib.h>
17
18#include <isl_imath.h>
19#include <isl/hash.h>
20
21#define ARRAY_SIZE(array)(sizeof(array)/sizeof(*array)) (sizeof(array)/sizeof(*array))
22
23/* Visual Studio before VS2015 does not support the inline keyword when
24 * compiling in C mode because it was introduced in C99 which it does not
25 * officially support. Instead, it has a proprietary extension using __inline.
26 */
27#if defined(_MSC_VER) && (_MSC_VER < 1900)
28#define inline __inline
29#endif
30
31/* The type to represent integers optimized for small values. It is either a
32 * pointer to an mp_int ( = mpz_t*; big representation) or an int32_t (small
33 * represenation) with a discriminator at the least significant bit. In big
34 * representation it will be always zero because of heap alignment. It is set
35 * to 1 for small representation and use the 32 most significant bits for the
36 * int32_t.
37 *
38 * Structure on 64 bit machines, with 8-byte aligment (3 bits):
39 *
40 * Big representation:
41 * MSB LSB
42 * |------------------------------------------------------------000
43 * | mpz_t* |
44 * | != NULL |
45 *
46 * Small representation:
47 * MSB 32 LSB
48 * |------------------------------|00000000000000000000000000000001
49 * | int32_t |
50 * | 2147483647 ... -2147483647 |
51 * ^
52 * |
53 * discriminator bit
54 *
55 * On 32 bit machines isl_sioimath type is blown up to 8 bytes, i.e.
56 * isl_sioimath is guaranteed to be at least 8 bytes. This is to ensure the
57 * int32_t can be hidden in that type without data loss. In the future we might
58 * optimize this to use 31 hidden bits in a 32 bit pointer. We may also use 63
59 * bits on 64 bit machines, but this comes with the cost of additional overflow
60 * checks because there is no standardized 128 bit integer we could expand to.
61 *
62 * We use native integer types and avoid union structures to avoid assumptions
63 * on the machine's endianness.
64 *
65 * This implementation makes the following assumptions:
66 * - long can represent any int32_t
67 * - mp_small is signed long
68 * - mp_usmall is unsigned long
69 * - adresses returned by malloc are aligned to 2-byte boundaries (leastmost
70 * bit is zero)
71 */
72#if UINT64_MAX(18446744073709551615UL) > UINTPTR_MAX(18446744073709551615UL)
73typedef uint64_t isl_sioimath;
74#else
75typedef uintptr_t isl_sioimath;
76#endif
77
78/* The negation of the smallest possible number in int32_t, INT32_MIN
79 * (0x80000000u, -2147483648), cannot be represented in an int32_t, therefore
80 * every operation that may produce this value needs to special-case it.
81 * The operations are:
82 * abs(INT32_MIN)
83 * -INT32_MIN (negation)
84 * -1 * INT32_MIN (multiplication)
85 * INT32_MIN/-1 (any division: divexact, fdiv, cdiv, tdiv)
86 * To avoid checking these cases, we exclude INT32_MIN from small
87 * representation.
88 */
89#define ISL_SIOIMATH_SMALL_MIN(-(2147483647)) (-INT32_MAX(2147483647))
90
91/* Largest possible number in small representation */
92#define ISL_SIOIMATH_SMALL_MAX(2147483647) INT32_MAX(2147483647)
93
94/* Used for function parameters the function modifies. */
95typedef isl_sioimath *isl_sioimath_ptr;
96
97/* Used for function parameters that are read-only. */
98typedef isl_sioimath isl_sioimath_src;
99
100/* Return whether the argument is stored in small representation.
101 */
102inline int isl_sioimath_is_small(isl_sioimath val)
103{
104 return val & 0x00000001;
105}
106
107/* Return whether the argument is stored in big representation.
108 */
109inline int isl_sioimath_is_big(isl_sioimath val)
110{
111 return !isl_sioimath_is_small(val);
112}
113
114/* Get the number of an isl_int in small representation. Result is undefined if
115 * val is not stored in that format.
116 */
117inline int32_t isl_sioimath_get_small(isl_sioimath val)
118{
119 return val >> 32;
120}
121
122/* Get the number of an in isl_int in big representation. Result is undefined if
123 * val is not stored in that format.
124 */
125inline mp_int isl_sioimath_get_big(isl_sioimath val)
126{
127 return (mp_int)(uintptr_t) val;
128}
129
130/* Return 1 if val is stored in small representation and store its value to
131 * small. We rely on the compiler to optimize the isl_sioimath_get_small such
132 * that the shift is moved into the branch that executes in case of small
133 * representation. If there is no such branch, then a single shift is still
134 * cheaper than introducing branching code.
135 */
136inline int isl_sioimath_decode_small(isl_sioimath val, int32_t *small)
137{
138 *small = isl_sioimath_get_small(val);
139 return isl_sioimath_is_small(val);
140}
141
142/* Return 1 if val is stored in big representation and store its value to big.
143 */
144inline int isl_sioimath_decode_big(isl_sioimath val, mp_int *big)
145{
146 *big = isl_sioimath_get_big(val);
147 return isl_sioimath_is_big(val);
148}
149
150/* Encode a small representation into an isl_int.
151 */
152inline isl_sioimath isl_sioimath_encode_small(int32_t val)
153{
154 return ((isl_sioimath) val) << 32 | 0x00000001;
155}
156
157/* Encode a big representation.
158 */
159inline isl_sioimath isl_sioimath_encode_big(mp_int val)
160{
161 return (isl_sioimath)(uintptr_t) val;
162}
163
164/* A common situation is to call an IMath function with at least one argument
165 * that is currently in small representation or an integer parameter, i.e. a big
166 * representation of the same number is required. Promoting the original
167 * argument comes with multiple problems, such as modifying a read-only
168 * argument, the responsibility of deallocation and the execution cost. Instead,
169 * we make a copy by 'faking' the IMath internal structure.
170 *
171 * We reserve the maximum number of required digits on the stack to avoid heap
172 * allocations.
173 *
174 * mp_digit can be uint32_t or uint16_t. This code must work for little and big
175 * endian digits. The structure for an uint64_t argument and 32-bit mp_digits is
176 * sketched below.
177 *
178 * |----------------------------|
179 * uint64_t
180 *
181 * |-------------||-------------|
182 * mp_digit mp_digit
183 * digits[1] digits[0]
184 * Most sig digit Least sig digit
185 */
186typedef struct {
187 mpz_t big;
188 mp_digit digits[(sizeof(uintmax_t) + sizeof(mp_digit) - 1) /
189 sizeof(mp_digit)];
190} isl_sioimath_scratchspace_t;
191
192/* Convert a native integer to IMath's digit representation. A native integer
193 * might be big- or little endian, but IMath always stores the least significant
194 * digit in the lowest array indices. memcpy therefore is not possible.
195 *
196 * We also have to consider that long and mp_digit can be of different sizes,
197 * depending on the compiler (LP64, LLP64) and IMath's USE_64BIT_WORDS. This
198 * macro should work for all of them.
199 *
200 * "used" is set to the number of written digits. It must be minimal (IMath
201 * checks zeroness using the used field), but always at least one. Also note
202 * that the result of num>>(sizeof(num)*CHAR_BIT) is undefined.
203 */
204#define ISL_SIOIMATH_TO_DIGITS(num, digits, used)do { int i = 0; do { (digits)[i] = ((num) >> (sizeof(mp_digit
) * 8 * i)); i += 1; if (i >= (sizeof(num) + sizeof(mp_digit
) - 1) / sizeof(mp_digit)) break; if (((num) >> (sizeof
(mp_digit) * 8 * i)) == 0) break; } while (1); (used) = i; } while
(0)
\
205 do { \
206 int i = 0; \
207 do { \
208 (digits)[i] = \
209 ((num) >> (sizeof(mp_digit) * CHAR_BIT8 * i)); \
210 i += 1; \
211 if (i >= (sizeof(num) + sizeof(mp_digit) - 1) / \
212 sizeof(mp_digit)) \
213 break; \
214 if (((num) >> (sizeof(mp_digit) * CHAR_BIT8 * i)) == 0) \
215 break; \
216 } while (1); \
217 (used) = i; \
218 } while (0)
219
220inline void isl_siomath_uint32_to_digits(uint32_t num, mp_digit *digits,
221 mp_size *used)
222{
223 ISL_SIOIMATH_TO_DIGITS(num, digits, *used)do { int i = 0; do { (digits)[i] = ((num) >> (sizeof(mp_digit
) * 8 * i)); i += 1; if (i >= (sizeof(num) + sizeof(mp_digit
) - 1) / sizeof(mp_digit)) break; if (((num) >> (sizeof
(mp_digit) * 8 * i)) == 0) break; } while (1); (*used) = i; }
while (0)
;
224}
225
226inline void isl_siomath_ulong_to_digits(unsigned long num, mp_digit *digits,
227 mp_size *used)
228{
229 ISL_SIOIMATH_TO_DIGITS(num, digits, *used)do { int i = 0; do { (digits)[i] = ((num) >> (sizeof(mp_digit
) * 8 * i)); i += 1; if (i >= (sizeof(num) + sizeof(mp_digit
) - 1) / sizeof(mp_digit)) break; if (((num) >> (sizeof
(mp_digit) * 8 * i)) == 0) break; } while (1); (*used) = i; }
while (0)
;
230}
231
232inline void isl_siomath_uint64_to_digits(uint64_t num, mp_digit *digits,
233 mp_size *used)
234{
235 ISL_SIOIMATH_TO_DIGITS(num, digits, *used)do { int i = 0; do { (digits)[i] = ((num) >> (sizeof(mp_digit
) * 8 * i)); i += 1; if (i >= (sizeof(num) + sizeof(mp_digit
) - 1) / sizeof(mp_digit)) break; if (((num) >> (sizeof
(mp_digit) * 8 * i)) == 0) break; } while (1); (*used) = i; }
while (0)
;
236}
237
238/* Get the IMath representation of an isl_int without modifying it.
239 * For the case it is not in big representation yet, pass some scratch space we
240 * can use to store the big representation in.
241 * In order to avoid requiring init and free on the scratch space, we directly
242 * modify the internal representation.
243 *
244 * The name derives from its indented use: getting the big representation of an
245 * input (src) argument.
246 */
247inline mp_int isl_sioimath_bigarg_src(isl_sioimath arg,
248 isl_sioimath_scratchspace_t *scratch)
249{
250 mp_int big;
251 int32_t small;
252 uint32_t num;
253
254 if (isl_sioimath_decode_big(arg, &big))
255 return big;
256
257 small = isl_sioimath_get_small(arg);
258 scratch->big.digits = scratch->digits;
259 scratch->big.alloc = ARRAY_SIZE(scratch->digits)(sizeof(scratch->digits)/sizeof(*scratch->digits));
260 if (small >= 0) {
261 scratch->big.sign = MP_ZPOS;
262 num = small;
263 } else {
264 scratch->big.sign = MP_NEG;
265 num = -small;
266 }
267
268 isl_siomath_uint32_to_digits(num, scratch->digits, &scratch->big.used);
269 return &scratch->big;
270}
271
272/* Create a temporary IMath mp_int for a signed long.
273 */
274inline mp_int isl_sioimath_siarg_src(signed long arg,
275 isl_sioimath_scratchspace_t *scratch)
276{
277 unsigned long num;
278
279 scratch->big.digits = scratch->digits;
280 scratch->big.alloc = ARRAY_SIZE(scratch->digits)(sizeof(scratch->digits)/sizeof(*scratch->digits));
281 if (arg >= 0) {
282 scratch->big.sign = MP_ZPOS;
283 num = arg;
284 } else {
285 scratch->big.sign = MP_NEG;
286 num = (arg == LONG_MIN(-9223372036854775807L -1L)) ? ((unsigned long) LONG_MAX9223372036854775807L) + 1 : -arg;
287 }
288
289 isl_siomath_ulong_to_digits(num, scratch->digits, &scratch->big.used);
290 return &scratch->big;
291}
292
293/* Create a temporary IMath mp_int for an int64_t.
294 */
295inline mp_int isl_sioimath_si64arg_src(int64_t arg,
296 isl_sioimath_scratchspace_t *scratch)
297{
298 uint64_t num;
299
300 scratch->big.digits = scratch->digits;
301 scratch->big.alloc = ARRAY_SIZE(scratch->digits)(sizeof(scratch->digits)/sizeof(*scratch->digits));
302 if (arg >= 0) {
303 scratch->big.sign = MP_ZPOS;
304 num = arg;
305 } else {
306 scratch->big.sign = MP_NEG;
307 num = (arg == INT64_MIN(-9223372036854775807L -1)) ? ((uint64_t) INT64_MAX(9223372036854775807L)) + 1 : -arg;
308 }
309
310 isl_siomath_uint64_to_digits(num, scratch->digits, &scratch->big.used);
311 return &scratch->big;
312}
313
314/* Create a temporary IMath mp_int for an unsigned long.
315 */
316inline mp_int isl_sioimath_uiarg_src(unsigned long arg,
317 isl_sioimath_scratchspace_t *scratch)
318{
319 scratch->big.digits = scratch->digits;
320 scratch->big.alloc = ARRAY_SIZE(scratch->digits)(sizeof(scratch->digits)/sizeof(*scratch->digits));
321 scratch->big.sign = MP_ZPOS;
322
323 isl_siomath_ulong_to_digits(arg, scratch->digits, &scratch->big.used);
324 return &scratch->big;
325}
326
327/* Ensure big representation. Does not preserve the current number.
328 * Callers may use the fact that the value _is_ preserved if the presentation
329 * was big before.
330 */
331inline mp_int isl_sioimath_reinit_big(isl_sioimath_ptr ptr)
332{
333 if (isl_sioimath_is_small(*ptr))
334 *ptr = isl_sioimath_encode_big(mp_int_alloc());
335 return isl_sioimath_get_big(*ptr);
336}
337
338/* Set ptr to a number in small representation.
339 */
340inline void isl_sioimath_set_small(isl_sioimath_ptr ptr, int32_t val)
341{
342 if (isl_sioimath_is_big(*ptr))
343 mp_int_free(isl_sioimath_get_big(*ptr));
344 *ptr = isl_sioimath_encode_small(val);
345}
346
347/* Set ptr to val, choosing small representation if possible.
348 */
349inline void isl_sioimath_set_int32(isl_sioimath_ptr ptr, int32_t val)
350{
351 if (ISL_SIOIMATH_SMALL_MIN(-(2147483647)) <= val && val <= ISL_SIOIMATH_SMALL_MAX(2147483647)) {
352 isl_sioimath_set_small(ptr, val);
353 return;
354 }
355
356 mp_int_init_value(isl_sioimath_reinit_big(ptr), val);
357}
358
359/* Assign an int64_t number using small representation if possible.
360 */
361inline void isl_sioimath_set_int64(isl_sioimath_ptr ptr, int64_t val)
362{
363 if (ISL_SIOIMATH_SMALL_MIN(-(2147483647)) <= val && val <= ISL_SIOIMATH_SMALL_MAX(2147483647)) {
364 isl_sioimath_set_small(ptr, val);
365 return;
366 }
367
368 isl_sioimath_scratchspace_t scratch;
369 mp_int_copy(isl_sioimath_si64arg_src(val, &scratch),
370 isl_sioimath_reinit_big(ptr));
371}
372
373/* Convert to big representation while preserving the current number.
374 */
375inline void isl_sioimath_promote(isl_sioimath_ptr dst)
376{
377 int32_t small;
378
379 if (isl_sioimath_is_big(*dst))
380 return;
381
382 small = isl_sioimath_get_small(*dst);
383 mp_int_set_value(isl_sioimath_reinit_big(dst), small);
384}
385
386/* Convert to small representation while preserving the current number. Does
387 * nothing if dst doesn't fit small representation.
388 */
389inline void isl_sioimath_try_demote(isl_sioimath_ptr dst)
390{
391 mp_small small;
392
393 if (isl_sioimath_is_small(*dst))
394 return;
395
396 if (mp_int_to_int(isl_sioimath_get_big(*dst), &small) != MP_OK)
397 return;
398
399 if (ISL_SIOIMATH_SMALL_MIN(-(2147483647)) <= small && small <= ISL_SIOIMATH_SMALL_MAX(2147483647))
400 isl_sioimath_set_small(dst, small);
401}
402
403/* Initialize an isl_int. The implicit value is 0 in small representation.
404 */
405inline void isl_sioimath_init(isl_sioimath_ptr dst)
406{
407 *dst = isl_sioimath_encode_small(0);
408}
409
410/* Free the resources taken by an isl_int.
411 */
412inline void isl_sioimath_clear(isl_sioimath_ptr dst)
413{
414 if (isl_sioimath_is_small(*dst))
415 return;
416
417 mp_int_free(isl_sioimath_get_big(*dst));
418}
419
420/* Copy the value of one isl_int to another.
421 */
422inline void isl_sioimath_set(isl_sioimath_ptr dst, isl_sioimath_src val)
423{
424 if (isl_sioimath_is_small(val)) {
425 isl_sioimath_set_small(dst, isl_sioimath_get_small(val));
426 return;
427 }
428
429 mp_int_copy(isl_sioimath_get_big(val), isl_sioimath_reinit_big(dst));
430}
431
432/* Store a signed long into an isl_int.
433 */
434inline void isl_sioimath_set_si(isl_sioimath_ptr dst, long val)
435{
436 if (ISL_SIOIMATH_SMALL_MIN(-(2147483647)) <= val && val <= ISL_SIOIMATH_SMALL_MAX(2147483647)) {
437 isl_sioimath_set_small(dst, val);
438 return;
439 }
440
441 mp_int_set_value(isl_sioimath_reinit_big(dst), val);
442}
443
444/* Store an unsigned long into an isl_int.
445 */
446inline void isl_sioimath_set_ui(isl_sioimath_ptr dst, unsigned long val)
447{
448 if (val <= ISL_SIOIMATH_SMALL_MAX(2147483647)) {
449 isl_sioimath_set_small(dst, val);
450 return;
451 }
452
453 mp_int_set_uvalue(isl_sioimath_reinit_big(dst), val);
454}
455
456/* Return whether a number can be represented by a signed long.
457 */
458inline int isl_sioimath_fits_slong(isl_sioimath_src val)
459{
460 mp_small dummy;
461
462 if (isl_sioimath_is_small(val))
463 return 1;
464
465 return mp_int_to_int(isl_sioimath_get_big(val), &dummy) == MP_OK;
466}
467
468/* Return a number as signed long. Result is undefined if the number cannot be
469 * represented as long.
470 */
471inline long isl_sioimath_get_si(isl_sioimath_src val)
472{
473 mp_small result;
474
475 if (isl_sioimath_is_small(val))
476 return isl_sioimath_get_small(val);
477
478 mp_int_to_int(isl_sioimath_get_big(val), &result);
479 return result;
480}
481
482/* Return whether a number can be represented as unsigned long.
483 */
484inline int isl_sioimath_fits_ulong(isl_sioimath_src val)
485{
486 mp_usmall dummy;
487
488 if (isl_sioimath_is_small(val))
489 return isl_sioimath_get_small(val) >= 0;
490
491 return mp_int_to_uint(isl_sioimath_get_big(val), &dummy) == MP_OK;
492}
493
494/* Return a number as unsigned long. Result is undefined if the number cannot be
495 * represented as unsigned long.
496 */
497inline unsigned long isl_sioimath_get_ui(isl_sioimath_src val)
498{
499 mp_usmall result;
500
501 if (isl_sioimath_is_small(val))
502 return isl_sioimath_get_small(val);
503
504 mp_int_to_uint(isl_sioimath_get_big(val), &result);
505 return result;
506}
507
508/* Return a number as floating point value.
509 */
510inline double isl_sioimath_get_d(isl_sioimath_src val)
511{
512 mp_int big;
513 double result = 0;
514 int i;
515
516 if (isl_sioimath_is_small(val))
517 return isl_sioimath_get_small(val);
518
519 big = isl_sioimath_get_big(val);
520 for (i = 0; i < big->used; ++i)
521 result = result * (double) ((uintmax_t) MP_DIGIT_MAX((4294967295U) * 1UL) + 1) +
522 (double) big->digits[i];
523
524 if (big->sign == MP_NEG)
525 result = -result;
526
527 return result;
528}
529
530/* Format a number as decimal string.
531 *
532 * The largest possible string from small representation is 12 characters
533 * ("-2147483647").
534 */
535inline char *isl_sioimath_get_str(isl_sioimath_src val)
536{
537 char *result;
538
539 if (isl_sioimath_is_small(val)) {
540 result = malloc(12);
541 snprintf(result, 12, "%" PRIi32"i", isl_sioimath_get_small(val));
542 return result;
543 }
544
545 return impz_get_str(NULL((void*)0), 10, isl_sioimath_get_big(val));
546}
547
548/* Return the absolute value.
549 */
550inline void isl_sioimath_abs(isl_sioimath_ptr dst, isl_sioimath_src arg)
551{
552 if (isl_sioimath_is_small(arg)) {
553 isl_sioimath_set_small(dst, labs(isl_sioimath_get_small(arg)));
554 return;
555 }
556
557 mp_int_abs(isl_sioimath_get_big(arg), isl_sioimath_reinit_big(dst));
558}
559
560/* Return the negation of a number.
561 */
562inline void isl_sioimath_neg(isl_sioimath_ptr dst, isl_sioimath_src arg)
563{
564 if (isl_sioimath_is_small(arg)) {
565 isl_sioimath_set_small(dst, -isl_sioimath_get_small(arg));
566 return;
567 }
568
569 mp_int_neg(isl_sioimath_get_big(arg), isl_sioimath_reinit_big(dst));
570}
571
572/* Swap two isl_ints.
573 *
574 * isl_sioimath can be copied bytewise; nothing depends on its address. It can
575 * also be stored in a CPU register.
576 */
577inline void isl_sioimath_swap(isl_sioimath_ptr lhs, isl_sioimath_ptr rhs)
578{
579 isl_sioimath tmp = *lhs;
580 *lhs = *rhs;
30
Assigned value is garbage or undefined
581 *rhs = tmp;
582}
583
584/* Add an unsigned long to the number.
585 *
586 * On LP64 unsigned long exceeds the range of an int64_t, therefore we check in
587 * advance whether small representation possibly overflows.
588 */
589inline void isl_sioimath_add_ui(isl_sioimath_ptr dst, isl_sioimath lhs,
590 unsigned long rhs)
591{
592 int32_t smalllhs;
593 isl_sioimath_scratchspace_t lhsscratch;
594
595 if (isl_sioimath_decode_small(lhs, &smalllhs) &&
596 (rhs <= (uint64_t) INT64_MAX(9223372036854775807L) - (uint64_t) ISL_SIOIMATH_SMALL_MAX(2147483647))) {
597 isl_sioimath_set_int64(dst, (int64_t) smalllhs + rhs);
598 return;
599 }
600
601 impz_add_ui(isl_sioimath_reinit_big(dst),
602 isl_sioimath_bigarg_src(lhs, &lhsscratch), rhs);
603 isl_sioimath_try_demote(dst);
604}
605
606/* Subtract an unsigned long.
607 *
608 * On LP64 unsigned long exceeds the range of an int64_t. If
609 * ISL_SIOIMATH_SMALL_MIN-rhs>=INT64_MIN we can do the calculation using int64_t
610 * without risking an overflow.
611 */
612inline void isl_sioimath_sub_ui(isl_sioimath_ptr dst, isl_sioimath lhs,
613 unsigned long rhs)
614{
615 int32_t smalllhs;
616 isl_sioimath_scratchspace_t lhsscratch;
617
618 if (isl_sioimath_decode_small(lhs, &smalllhs) &&
619 (rhs < (uint64_t) INT64_MIN(-9223372036854775807L -1) - (uint64_t) ISL_SIOIMATH_SMALL_MIN(-(2147483647)))) {
620 isl_sioimath_set_int64(dst, (int64_t) smalllhs - rhs);
621 return;
622 }
623
624 impz_sub_ui(isl_sioimath_reinit_big(dst),
625 isl_sioimath_bigarg_src(lhs, &lhsscratch), rhs);
626 isl_sioimath_try_demote(dst);
627}
628
629/* Sum of two isl_ints.
630 */
631inline void isl_sioimath_add(isl_sioimath_ptr dst, isl_sioimath_src lhs,
632 isl_sioimath_src rhs)
633{
634 isl_sioimath_scratchspace_t scratchlhs, scratchrhs;
635 int32_t smalllhs, smallrhs;
636
637 if (isl_sioimath_decode_small(lhs, &smalllhs) &&
638 isl_sioimath_decode_small(rhs, &smallrhs)) {
639 isl_sioimath_set_int64(
640 dst, (int64_t) smalllhs + (int64_t) smallrhs);
641 return;
642 }
643
644 mp_int_add(isl_sioimath_bigarg_src(lhs, &scratchlhs),
645 isl_sioimath_bigarg_src(rhs, &scratchrhs),
646 isl_sioimath_reinit_big(dst));
647 isl_sioimath_try_demote(dst);
648}
649
650/* Subtract two isl_ints.
651 */
652inline void isl_sioimath_sub(isl_sioimath_ptr dst, isl_sioimath_src lhs,
653 isl_sioimath_src rhs)
654{
655 isl_sioimath_scratchspace_t scratchlhs, scratchrhs;
656 int32_t smalllhs, smallrhs;
657
658 if (isl_sioimath_decode_small(lhs, &smalllhs) &&
659 isl_sioimath_decode_small(rhs, &smallrhs)) {
660 isl_sioimath_set_int64(
661 dst, (int64_t) smalllhs - (int64_t) smallrhs);
662 return;
663 }
664
665 mp_int_sub(isl_sioimath_bigarg_src(lhs, &scratchlhs),
666 isl_sioimath_bigarg_src(rhs, &scratchrhs),
667 isl_sioimath_reinit_big(dst));
668 isl_sioimath_try_demote(dst);
669}
670
671/* Multiply two isl_ints.
672 */
673inline void isl_sioimath_mul(isl_sioimath_ptr dst, isl_sioimath_src lhs,
674 isl_sioimath_src rhs)
675{
676 isl_sioimath_scratchspace_t scratchlhs, scratchrhs;
677 int32_t smalllhs, smallrhs;
678
679 if (isl_sioimath_decode_small(lhs, &smalllhs) &&
680 isl_sioimath_decode_small(rhs, &smallrhs)) {
681 isl_sioimath_set_int64(
682 dst, (int64_t) smalllhs * (int64_t) smallrhs);
683 return;
684 }
685
686 mp_int_mul(isl_sioimath_bigarg_src(lhs, &scratchlhs),
687 isl_sioimath_bigarg_src(rhs, &scratchrhs),
688 isl_sioimath_reinit_big(dst));
689 isl_sioimath_try_demote(dst);
690}
691
692/* Shift lhs by rhs bits to the left and store the result in dst. Effectively,
693 * this operation computes 'lhs * 2^rhs'.
694 */
695inline void isl_sioimath_mul_2exp(isl_sioimath_ptr dst, isl_sioimath lhs,
696 unsigned long rhs)
697{
698 isl_sioimath_scratchspace_t scratchlhs;
699 int32_t smalllhs;
700
701 if (isl_sioimath_decode_small(lhs, &smalllhs) && (rhs <= 32ul)) {
702 isl_sioimath_set_int64(dst, ((int64_t) smalllhs) << rhs);
703 return;
704 }
705
706 mp_int_mul_pow2(isl_sioimath_bigarg_src(lhs, &scratchlhs), rhs,
707 isl_sioimath_reinit_big(dst));
708}
709
710/* Multiply an isl_int and a signed long.
711 */
712inline void isl_sioimath_mul_si(isl_sioimath_ptr dst, isl_sioimath lhs,
713 signed long rhs)
714{
715 isl_sioimath_scratchspace_t scratchlhs, scratchrhs;
716 int32_t smalllhs;
717
718 if (isl_sioimath_decode_small(lhs, &smalllhs) && (rhs > LONG_MIN(-9223372036854775807L -1L)) &&
719 (labs(rhs) <= UINT32_MAX(4294967295U))) {
720 isl_sioimath_set_int64(dst, (int64_t) smalllhs * (int64_t) rhs);
721 return;
722 }
723
724 mp_int_mul(isl_sioimath_bigarg_src(lhs, &scratchlhs),
725 isl_sioimath_siarg_src(rhs, &scratchrhs),
726 isl_sioimath_reinit_big(dst));
727 isl_sioimath_try_demote(dst);
728}
729
730/* Multiply an isl_int and an unsigned long.
731 */
732inline void isl_sioimath_mul_ui(isl_sioimath_ptr dst, isl_sioimath lhs,
733 unsigned long rhs)
734{
735 isl_sioimath_scratchspace_t scratchlhs, scratchrhs;
736 int32_t smalllhs;
737
738 if (isl_sioimath_decode_small(lhs, &smalllhs) && (rhs <= UINT32_MAX(4294967295U))) {
739 isl_sioimath_set_int64(dst, (int64_t) smalllhs * (int64_t) rhs);
740 return;
741 }
742
743 mp_int_mul(isl_sioimath_bigarg_src(lhs, &scratchlhs),
744 isl_sioimath_uiarg_src(rhs, &scratchrhs),
745 isl_sioimath_reinit_big(dst));
746 isl_sioimath_try_demote(dst);
747}
748
749/* Compute the power of an isl_int to an unsigned long.
750 * Always let IMath do it; the result is unlikely to be small except in some
751 * special cases.
752 * Note: 0^0 == 1
753 */
754inline void isl_sioimath_pow_ui(isl_sioimath_ptr dst, isl_sioimath_src lhs,
755 unsigned long rhs)
756{
757 isl_sioimath_scratchspace_t scratchlhs, scratchrhs;
758 int32_t smalllhs;
759
760 switch (rhs) {
761 case 0:
762 isl_sioimath_set_small(dst, 1);
763 return;
764 case 1:
765 isl_sioimath_set(dst, lhs);
766 return;
767 case 2:
768 isl_sioimath_mul(dst, lhs, lhs);
769 return;
770 }
771
772 if (isl_sioimath_decode_small(lhs, &smalllhs)) {
773 switch (smalllhs) {
774 case 0:
775 isl_sioimath_set_small(dst, 0);
776 return;
777 case 1:
778 isl_sioimath_set_small(dst, 1);
779 return;
780 case 2:
781 isl_sioimath_set_small(dst, 1);
782 isl_sioimath_mul_2exp(dst, *dst, rhs);
783 return;
784 default:
785 if ((MP_SMALL_MIN(-9223372036854775807L -1L) <= rhs) && (rhs <= MP_SMALL_MAX9223372036854775807L)) {
786 mp_int_expt_value(smalllhs, rhs,
787 isl_sioimath_reinit_big(dst));
788 isl_sioimath_try_demote(dst);
789 return;
790 }
791 }
792 }
793
794 mp_int_expt_full(isl_sioimath_bigarg_src(lhs, &scratchlhs),
795 isl_sioimath_uiarg_src(rhs, &scratchrhs),
796 isl_sioimath_reinit_big(dst));
797 isl_sioimath_try_demote(dst);
798}
799
800/* Fused multiply-add.
801 */
802inline void isl_sioimath_addmul(isl_sioimath_ptr dst, isl_sioimath_src lhs,
803 isl_sioimath_src rhs)
804{
805 isl_sioimath tmp;
806 isl_sioimath_init(&tmp);
807 isl_sioimath_mul(&tmp, lhs, rhs);
808 isl_sioimath_add(dst, *dst, tmp);
809 isl_sioimath_clear(&tmp);
810}
811
812/* Fused multiply-add with an unsigned long.
813 */
814inline void isl_sioimath_addmul_ui(isl_sioimath_ptr dst, isl_sioimath_src lhs,
815 unsigned long rhs)
816{
817 isl_sioimath tmp;
818 isl_sioimath_init(&tmp);
819 isl_sioimath_mul_ui(&tmp, lhs, rhs);
820 isl_sioimath_add(dst, *dst, tmp);
821 isl_sioimath_clear(&tmp);
822}
823
824/* Fused multiply-subtract.
825 */
826inline void isl_sioimath_submul(isl_sioimath_ptr dst, isl_sioimath_src lhs,
827 isl_sioimath_src rhs)
828{
829 isl_sioimath tmp;
830 isl_sioimath_init(&tmp);
831 isl_sioimath_mul(&tmp, lhs, rhs);
832 isl_sioimath_sub(dst, *dst, tmp);
833 isl_sioimath_clear(&tmp);
834}
835
836/* Fused multiply-add with an unsigned long.
837 */
838inline void isl_sioimath_submul_ui(isl_sioimath_ptr dst, isl_sioimath_src lhs,
839 unsigned long rhs)
840{
841 isl_sioimath tmp;
842 isl_sioimath_init(&tmp);
843 isl_sioimath_mul_ui(&tmp, lhs, rhs);
844 isl_sioimath_sub(dst, *dst, tmp);
845 isl_sioimath_clear(&tmp);
846}
847
848void isl_sioimath_gcd(isl_sioimath_ptr dst, isl_sioimath_src lhs,
849 isl_sioimath_src rhs);
850void isl_sioimath_lcm(isl_sioimath_ptr dst, isl_sioimath_src lhs,
851 isl_sioimath_src rhs);
852
853/* Divide lhs by rhs, rounding to zero (Truncate).
854 */
855inline void isl_sioimath_tdiv_q(isl_sioimath_ptr dst, isl_sioimath_src lhs,
856 isl_sioimath_src rhs)
857{
858 isl_sioimath_scratchspace_t lhsscratch, rhsscratch;
859 int32_t lhssmall, rhssmall;
860
861 if (isl_sioimath_decode_small(lhs, &lhssmall) &&
862 isl_sioimath_decode_small(rhs, &rhssmall)) {
863 isl_sioimath_set_small(dst, lhssmall / rhssmall);
864 return;
865 }
866
867 mp_int_div(isl_sioimath_bigarg_src(lhs, &lhsscratch),
868 isl_sioimath_bigarg_src(rhs, &rhsscratch),
869 isl_sioimath_reinit_big(dst), NULL((void*)0));
870 isl_sioimath_try_demote(dst);
871 return;
872}
873
874/* Divide lhs by an unsigned long rhs, rounding to zero (Truncate).
875 */
876inline void isl_sioimath_tdiv_q_ui(isl_sioimath_ptr dst, isl_sioimath_src lhs,
877 unsigned long rhs)
878{
879 isl_sioimath_scratchspace_t lhsscratch, rhsscratch;
880 int32_t lhssmall;
881
882 if (isl_sioimath_is_small(lhs) && (rhs <= (unsigned long) INT32_MAX(2147483647))) {
883 lhssmall = isl_sioimath_get_small(lhs);
884 isl_sioimath_set_small(dst, lhssmall / (int32_t) rhs);
885 return;
886 }
887
888 if (rhs <= MP_SMALL_MAX9223372036854775807L) {
889 mp_int_div_value(isl_sioimath_bigarg_src(lhs, &lhsscratch), rhs,
890 isl_sioimath_reinit_big(dst), NULL((void*)0));
891 isl_sioimath_try_demote(dst);
892 return;
893 }
894
895 mp_int_div(isl_sioimath_bigarg_src(lhs, &lhsscratch),
896 isl_sioimath_uiarg_src(rhs, &rhsscratch),
897 isl_sioimath_reinit_big(dst), NULL((void*)0));
898 isl_sioimath_try_demote(dst);
899}
900
901/* Divide lhs by rhs, rounding to positive infinity (Ceil).
902 */
903inline void isl_sioimath_cdiv_q(isl_sioimath_ptr dst, isl_sioimath_src lhs,
904 isl_sioimath_src rhs)
905{
906 int32_t lhssmall, rhssmall;
907 isl_sioimath_scratchspace_t lhsscratch, rhsscratch;
908 int32_t q;
909
910 if (isl_sioimath_decode_small(lhs, &lhssmall) &&
911 isl_sioimath_decode_small(rhs, &rhssmall)) {
912 if ((lhssmall >= 0) && (rhssmall >= 0))
913 q = ((int64_t) lhssmall + (int64_t) rhssmall - 1) /
914 rhssmall;
915 else if ((lhssmall < 0) && (rhssmall < 0))
916 q = ((int64_t) lhssmall + (int64_t) rhssmall + 1) /
917 rhssmall;
918 else
919 q = lhssmall / rhssmall;
920 isl_sioimath_set_small(dst, q);
921 return;
922 }
923
924 impz_cdiv_q(isl_sioimath_reinit_big(dst),
925 isl_sioimath_bigarg_src(lhs, &lhsscratch),
926 isl_sioimath_bigarg_src(rhs, &rhsscratch));
927 isl_sioimath_try_demote(dst);
928}
929
930/* Compute the division of lhs by a rhs of type unsigned long, rounding towards
931 * positive infinity (Ceil).
932 */
933inline void isl_sioimath_cdiv_q_ui(isl_sioimath_ptr dst, isl_sioimath_src lhs,
934 unsigned long rhs)
935{
936 isl_sioimath_scratchspace_t lhsscratch, rhsscratch;
937 int32_t lhssmall, q;
938
939 if (isl_sioimath_decode_small(lhs, &lhssmall) && (rhs <= INT32_MAX(2147483647))) {
940 if (lhssmall >= 0)
941 q = ((int64_t) lhssmall + ((int64_t) rhs - 1)) /
942 (int64_t) rhs;
943 else
944 q = lhssmall / (int32_t) rhs;
945 isl_sioimath_set_small(dst, q);
946 return;
947 }
948
949 impz_cdiv_q(isl_sioimath_reinit_big(dst),
950 isl_sioimath_bigarg_src(lhs, &lhsscratch),
951 isl_sioimath_uiarg_src(rhs, &rhsscratch));
952 isl_sioimath_try_demote(dst);
953}
954
955/* Divide lhs by rhs, rounding to negative infinity (Floor).
956 */
957inline void isl_sioimath_fdiv_q(isl_sioimath_ptr dst, isl_sioimath_src lhs,
958 isl_sioimath_src rhs)
959{
960 isl_sioimath_scratchspace_t lhsscratch, rhsscratch;
961 int32_t lhssmall, rhssmall;
962 int32_t q;
963
964 if (isl_sioimath_decode_small(lhs, &lhssmall) &&
965 isl_sioimath_decode_small(rhs, &rhssmall)) {
966 if ((lhssmall < 0) && (rhssmall >= 0))
967 q = ((int64_t) lhssmall - ((int64_t) rhssmall - 1)) /
968 rhssmall;
969 else if ((lhssmall >= 0) && (rhssmall < 0))
970 q = ((int64_t) lhssmall - ((int64_t) rhssmall + 1)) /
971 rhssmall;
972 else
973 q = lhssmall / rhssmall;
974 isl_sioimath_set_small(dst, q);
975 return;
976 }
977
978 impz_fdiv_q(isl_sioimath_reinit_big(dst),
979 isl_sioimath_bigarg_src(lhs, &lhsscratch),
980 isl_sioimath_bigarg_src(rhs, &rhsscratch));
981 isl_sioimath_try_demote(dst);
982}
983
984/* Compute the division of lhs by a rhs of type unsigned long, rounding towards
985 * negative infinity (Floor).
986 */
987inline void isl_sioimath_fdiv_q_ui(isl_sioimath_ptr dst, isl_sioimath_src lhs,
988 unsigned long rhs)
989{
990 isl_sioimath_scratchspace_t lhsscratch, rhsscratch;
991 int32_t lhssmall, q;
992
993 if (isl_sioimath_decode_small(lhs, &lhssmall) && (rhs <= INT32_MAX(2147483647))) {
994 if (lhssmall >= 0)
995 q = (uint32_t) lhssmall / rhs;
996 else
997 q = ((int64_t) lhssmall - ((int64_t) rhs - 1)) /
998 (int64_t) rhs;
999 isl_sioimath_set_small(dst, q);
1000 return;
1001 }
1002
1003 impz_fdiv_q(isl_sioimath_reinit_big(dst),
1004 isl_sioimath_bigarg_src(lhs, &lhsscratch),
1005 isl_sioimath_uiarg_src(rhs, &rhsscratch));
1006 isl_sioimath_try_demote(dst);
1007}
1008
1009/* Get the remainder of: lhs divided by rhs rounded towards negative infinite
1010 * (Floor).
1011 */
1012inline void isl_sioimath_fdiv_r(isl_sioimath_ptr dst, isl_sioimath_src lhs,
1013 isl_sioimath_src rhs)
1014{
1015 isl_sioimath_scratchspace_t lhsscratch, rhsscratch;
1016 int64_t lhssmall, rhssmall;
1017 int32_t r;
1018
1019 if (isl_sioimath_is_small(lhs) && isl_sioimath_is_small(rhs)) {
1020 lhssmall = isl_sioimath_get_small(lhs);
1021 rhssmall = isl_sioimath_get_small(rhs);
1022 r = (rhssmall + lhssmall % rhssmall) % rhssmall;
1023 isl_sioimath_set_small(dst, r);
1024 return;
1025 }
1026
1027 impz_fdiv_r(isl_sioimath_reinit_big(dst),
1028 isl_sioimath_bigarg_src(lhs, &lhsscratch),
1029 isl_sioimath_bigarg_src(rhs, &rhsscratch));
1030 isl_sioimath_try_demote(dst);
1031}
1032
1033void isl_sioimath_read(isl_sioimath_ptr dst, const char *str);
1034
1035/* Return:
1036 * +1 for a positive number
1037 * -1 for a negative number
1038 * 0 if the number is zero
1039 */
1040inline int isl_sioimath_sgn(isl_sioimath_src arg)
1041{
1042 int32_t small;
1043
1044 if (isl_sioimath_decode_small(arg, &small))
1045 return (small > 0) - (small < 0);
1046
1047 return mp_int_compare_zero(isl_sioimath_get_big(arg));
1048}
1049
1050/* Return:
1051 * +1 if lhs > rhs
1052 * -1 if lhs < rhs
1053 * 0 if lhs = rhs
1054 */
1055inline int isl_sioimath_cmp(isl_sioimath_src lhs, isl_sioimath_src rhs)
1056{
1057 isl_sioimath_scratchspace_t lhsscratch, rhsscratch;
1058 int32_t lhssmall, rhssmall;
1059
1060 if (isl_sioimath_decode_small(lhs, &lhssmall) &&
1061 isl_sioimath_decode_small(rhs, &rhssmall))
1062 return (lhssmall > rhssmall) - (lhssmall < rhssmall);
1063
1064 if (isl_sioimath_decode_small(rhs, &rhssmall))
1065 return mp_int_compare_value(
1066 isl_sioimath_bigarg_src(lhs, &lhsscratch), rhssmall);
1067
1068 if (isl_sioimath_decode_small(lhs, &lhssmall))
1069 return -mp_int_compare_value(
1070 isl_sioimath_bigarg_src(rhs, &rhsscratch), lhssmall);
1071
1072 return mp_int_compare(
1073 isl_sioimath_get_big(lhs), isl_sioimath_get_big(rhs));
1074}
1075
1076/* As isl_sioimath_cmp, but with signed long rhs.
1077 */
1078inline int isl_sioimath_cmp_si(isl_sioimath_src lhs, signed long rhs)
1079{
1080 int32_t lhssmall;
1081
1082 if (isl_sioimath_decode_small(lhs, &lhssmall))
1083 return (lhssmall > rhs) - (lhssmall < rhs);
1084
1085 return mp_int_compare_value(isl_sioimath_get_big(lhs), rhs);
1086}
1087
1088/* Return:
1089 * +1 if |lhs| > |rhs|
1090 * -1 if |lhs| < |rhs|
1091 * 0 if |lhs| = |rhs|
1092 */
1093inline int isl_sioimath_abs_cmp(isl_sioimath_src lhs, isl_sioimath_src rhs)
1094{
1095 isl_sioimath_scratchspace_t lhsscratch, rhsscratch;
1096 int32_t lhssmall, rhssmall;
1097
1098 if (isl_sioimath_decode_small(lhs, &lhssmall) &&
1099 isl_sioimath_decode_small(rhs, &rhssmall)) {
1100 lhssmall = labs(lhssmall);
1101 rhssmall = labs(rhssmall);
1102 return (lhssmall > rhssmall) - (lhssmall < rhssmall);
1103 }
1104
1105 return mp_int_compare_unsigned(
1106 isl_sioimath_bigarg_src(lhs, &lhsscratch),
1107 isl_sioimath_bigarg_src(rhs, &rhsscratch));
1108}
1109
1110/* Return whether lhs is divisible by rhs.
1111 * In particular, can rhs be multiplied by some integer to result in lhs?
1112 * If rhs is zero, then this means lhs has to be zero too.
1113 */
1114inline int isl_sioimath_is_divisible_by(isl_sioimath_src lhs,
1115 isl_sioimath_src rhs)
1116{
1117 isl_sioimath_scratchspace_t lhsscratch, rhsscratch;
1118 int32_t lhssmall, rhssmall;
1119 mpz_t rem;
1120 int cmp;
1121
1122 if (isl_sioimath_sgn(rhs) == 0)
1123 return isl_sioimath_sgn(lhs) == 0;
1124
1125 if (isl_sioimath_decode_small(lhs, &lhssmall) &&
1126 isl_sioimath_decode_small(rhs, &rhssmall))
1127 return lhssmall % rhssmall == 0;
1128
1129 if (isl_sioimath_decode_small(rhs, &rhssmall))
1130 return mp_int_divisible_value(
1131 isl_sioimath_bigarg_src(lhs, &lhsscratch), rhssmall);
1132
1133 mp_int_init(&rem);
1134 mp_int_div(isl_sioimath_bigarg_src(lhs, &lhsscratch),
1135 isl_sioimath_bigarg_src(rhs, &rhsscratch), NULL((void*)0), &rem);
1136 cmp = mp_int_compare_zero(&rem);
1137 mp_int_clear(&rem);
1138 return cmp == 0;
1139}
1140
1141/* Return a hash code of an isl_sioimath.
1142 * The hash code for a number in small and big representation must be identical
1143 * on the same machine because small representation if not obligatory if fits.
1144 */
1145inline uint32_t isl_sioimath_hash(isl_sioimath_src arg, uint32_t hash)
1146{
1147 int32_t small;
1148 int i;
1149 uint32_t num;
1150 mp_digit digits[(sizeof(uint32_t) + sizeof(mp_digit) - 1) /
1151 sizeof(mp_digit)];
1152 mp_size used;
1153 const unsigned char *digitdata = (const unsigned char *) &digits;
1154
1155 if (isl_sioimath_decode_small(arg, &small)) {
1156 if (small < 0)
1157 isl_hash_byte(hash, 0xFF)do { hash *= 16777619; hash ^= 0xFF; } while(0);
1158 num = labs(small);
1159
1160 isl_siomath_uint32_to_digits(num, digits, &used);
1161 for (i = 0; i < used * sizeof(mp_digit); i += 1)
1162 isl_hash_byte(hash, digitdata[i])do { hash *= 16777619; hash ^= digitdata[i]; } while(0);
1163 return hash;
1164 }
1165
1166 return isl_imath_hash(isl_sioimath_get_big(arg), hash);
1167}
1168
1169/* Return the number of digits in a number of the given base or more, i.e. the
1170 * string length without sign and null terminator.
1171 *
1172 * Current implementation for small representation returns the maximal number
1173 * of binary digits in that representation, which can be much larger than the
1174 * smallest possible solution.
1175 */
1176inline size_t isl_sioimath_sizeinbase(isl_sioimath_src arg, int base)
1177{
1178 int32_t small;
1179
1180 if (isl_sioimath_decode_small(arg, &small))
1181 return sizeof(int32_t) * CHAR_BIT8 - 1;
1182
1183 return impz_sizeinbase(isl_sioimath_get_big(arg), base);
1184}
1185
1186void isl_sioimath_print(FILE *out, isl_sioimath_src i, int width);
1187void isl_sioimath_dump(isl_sioimath_src arg);
1188
1189typedef isl_sioimath isl_int[1];
1190#define isl_int_init(i)isl_sioimath_init((i)) isl_sioimath_init((i))
1191#define isl_int_clear(i)isl_sioimath_clear((i)) isl_sioimath_clear((i))
1192
1193#define isl_int_set(r, i)isl_sioimath_set((r), *(i)) isl_sioimath_set((r), *(i))
1194#define isl_int_set_si(r, i)isl_sioimath_set_si((r), i) isl_sioimath_set_si((r), i)
1195#define isl_int_set_ui(r, i)isl_sioimath_set_ui((r), i) isl_sioimath_set_ui((r), i)
1196#define isl_int_fits_slong(r)isl_sioimath_fits_slong(*(r)) isl_sioimath_fits_slong(*(r))
1197#define isl_int_get_si(r)isl_sioimath_get_si(*(r)) isl_sioimath_get_si(*(r))
1198#define isl_int_fits_ulong(r)isl_sioimath_fits_ulong(*(r)) isl_sioimath_fits_ulong(*(r))
1199#define isl_int_get_ui(r)isl_sioimath_get_ui(*(r)) isl_sioimath_get_ui(*(r))
1200#define isl_int_get_d(r)isl_sioimath_get_d(*(r)) isl_sioimath_get_d(*(r))
1201#define isl_int_get_str(r)isl_sioimath_get_str(*(r)) isl_sioimath_get_str(*(r))
1202#define isl_int_abs(r, i)isl_sioimath_abs((r), *(i)) isl_sioimath_abs((r), *(i))
1203#define isl_int_neg(r, i)isl_sioimath_neg((r), *(i)) isl_sioimath_neg((r), *(i))
1204#define isl_int_swap(i, j)isl_sioimath_swap((i), (j)) isl_sioimath_swap((i), (j))
1205#define isl_int_swap_or_set(i, j)isl_sioimath_swap((i), (j)) isl_sioimath_swap((i), (j))
1206#define isl_int_add_ui(r, i, j)isl_sioimath_add_ui((r), *(i), j) isl_sioimath_add_ui((r), *(i), j)
1207#define isl_int_sub_ui(r, i, j)isl_sioimath_sub_ui((r), *(i), j) isl_sioimath_sub_ui((r), *(i), j)
1208
1209#define isl_int_add(r, i, j)isl_sioimath_add((r), *(i), *(j)) isl_sioimath_add((r), *(i), *(j))
1210#define isl_int_sub(r, i, j)isl_sioimath_sub((r), *(i), *(j)) isl_sioimath_sub((r), *(i), *(j))
1211#define isl_int_mul(r, i, j)isl_sioimath_mul((r), *(i), *(j)) isl_sioimath_mul((r), *(i), *(j))
1212#define isl_int_mul_2exp(r, i, j)isl_sioimath_mul_2exp((r), *(i), j) isl_sioimath_mul_2exp((r), *(i), j)
1213#define isl_int_mul_si(r, i, j)isl_sioimath_mul_si((r), *(i), j) isl_sioimath_mul_si((r), *(i), j)
1214#define isl_int_mul_ui(r, i, j)isl_sioimath_mul_ui((r), *(i), j) isl_sioimath_mul_ui((r), *(i), j)
1215#define isl_int_pow_ui(r, i, j)isl_sioimath_pow_ui((r), *(i), j) isl_sioimath_pow_ui((r), *(i), j)
1216#define isl_int_addmul(r, i, j)isl_sioimath_addmul((r), *(i), *(j)) isl_sioimath_addmul((r), *(i), *(j))
1217#define isl_int_addmul_ui(r, i, j)isl_sioimath_addmul_ui((r), *(i), j) isl_sioimath_addmul_ui((r), *(i), j)
1218#define isl_int_submul(r, i, j)isl_sioimath_submul((r), *(i), *(j)) isl_sioimath_submul((r), *(i), *(j))
1219#define isl_int_submul_ui(r, i, j)isl_sioimath_submul_ui((r), *(i), j) isl_sioimath_submul_ui((r), *(i), j)
1220
1221#define isl_int_gcd(r, i, j)isl_sioimath_gcd((r), *(i), *(j)) isl_sioimath_gcd((r), *(i), *(j))
1222#define isl_int_lcm(r, i, j)isl_sioimath_lcm((r), *(i), *(j)) isl_sioimath_lcm((r), *(i), *(j))
1223#define isl_int_divexact(r, i, j)isl_sioimath_tdiv_q((r), *(i), *(j)) isl_sioimath_tdiv_q((r), *(i), *(j))
1224#define isl_int_divexact_ui(r, i, j)isl_sioimath_tdiv_q_ui((r), *(i), j) isl_sioimath_tdiv_q_ui((r), *(i), j)
1225#define isl_int_tdiv_q(r, i, j)isl_sioimath_tdiv_q((r), *(i), *(j)) isl_sioimath_tdiv_q((r), *(i), *(j))
1226#define isl_int_cdiv_q(r, i, j)isl_sioimath_cdiv_q((r), *(i), *(j)) isl_sioimath_cdiv_q((r), *(i), *(j))
1227#define isl_int_cdiv_q_ui(r, i, j)isl_sioimath_cdiv_q_ui((r), *(i), j) isl_sioimath_cdiv_q_ui((r), *(i), j)
1228#define isl_int_fdiv_q(r, i, j)isl_sioimath_fdiv_q((r), *(i), *(j)) isl_sioimath_fdiv_q((r), *(i), *(j))
1229#define isl_int_fdiv_r(r, i, j)isl_sioimath_fdiv_r((r), *(i), *(j)) isl_sioimath_fdiv_r((r), *(i), *(j))
1230#define isl_int_fdiv_q_ui(r, i, j)isl_sioimath_fdiv_q_ui((r), *(i), j) isl_sioimath_fdiv_q_ui((r), *(i), j)
1231
1232#define isl_int_read(r, s)isl_sioimath_read((r), s) isl_sioimath_read((r), s)
1233#define isl_int_sgn(i)isl_sioimath_sgn(*(i)) isl_sioimath_sgn(*(i))
1234#define isl_int_cmp(i, j)isl_sioimath_cmp(*(i), *(j)) isl_sioimath_cmp(*(i), *(j))
1235#define isl_int_cmp_si(i, si)isl_sioimath_cmp_si(*(i), si) isl_sioimath_cmp_si(*(i), si)
1236#define isl_int_eq(i, j)(isl_sioimath_cmp(*(i), *(j)) == 0) (isl_sioimath_cmp(*(i), *(j)) == 0)
1237#define isl_int_ne(i, j)(isl_sioimath_cmp(*(i), *(j)) != 0) (isl_sioimath_cmp(*(i), *(j)) != 0)
1238#define isl_int_lt(i, j)(isl_sioimath_cmp(*(i), *(j)) < 0) (isl_sioimath_cmp(*(i), *(j)) < 0)
1239#define isl_int_le(i, j)(isl_sioimath_cmp(*(i), *(j)) <= 0) (isl_sioimath_cmp(*(i), *(j)) <= 0)
1240#define isl_int_gt(i, j)(isl_sioimath_cmp(*(i), *(j)) > 0) (isl_sioimath_cmp(*(i), *(j)) > 0)
1241#define isl_int_ge(i, j)(isl_sioimath_cmp(*(i), *(j)) >= 0) (isl_sioimath_cmp(*(i), *(j)) >= 0)
1242#define isl_int_abs_cmp(i, j)isl_sioimath_abs_cmp(*(i), *(j)) isl_sioimath_abs_cmp(*(i), *(j))
1243#define isl_int_abs_eq(i, j)(isl_sioimath_abs_cmp(*(i), *(j)) == 0) (isl_sioimath_abs_cmp(*(i), *(j)) == 0)
1244#define isl_int_abs_ne(i, j)(isl_sioimath_abs_cmp(*(i), *(j)) != 0) (isl_sioimath_abs_cmp(*(i), *(j)) != 0)
1245#define isl_int_abs_lt(i, j)(isl_sioimath_abs_cmp(*(i), *(j)) < 0) (isl_sioimath_abs_cmp(*(i), *(j)) < 0)
1246#define isl_int_abs_gt(i, j)(isl_sioimath_abs_cmp(*(i), *(j)) > 0) (isl_sioimath_abs_cmp(*(i), *(j)) > 0)
1247#define isl_int_abs_ge(i, j)(isl_sioimath_abs_cmp(*(i), *(j)) >= 0) (isl_sioimath_abs_cmp(*(i), *(j)) >= 0)
1248#define isl_int_is_divisible_by(i, j)isl_sioimath_is_divisible_by(*(i), *(j)) isl_sioimath_is_divisible_by(*(i), *(j))
1249
1250#define isl_int_hash(v, h)isl_sioimath_hash(*(v), h) isl_sioimath_hash(*(v), h)
1251#define isl_int_free_str(s)free(s) free(s)
1252#define isl_int_print(out, i, width)isl_sioimath_print(out, *(i), width) isl_sioimath_print(out, *(i), width)
1253
1254#endif /* ISL_INT_SIOIMATH_H */