la gloi=Aillg pol=ll Ablldl Sypmoll d=olall

E-JUST

Egypt-Japan University of Science and Technology

T V7 kb BABFEEWKE

®)

\

* QOur work introduces OJIT (Obfuscated Just-In-Time compilation
technique); a technique inspired by the “security by obscurity”
principles adopted in foist viruses and surreptitious malware design.

« Target securing remote computation platforms such as those in cloud
computing.

Introduction

Just-In-Time Compilation

Basic Idea Critique

e Increased the cost of
infrastructure.

 Hardware cost for
encrypted execution
“garbled circuit”.

* The Trusted Private
Cloud : for evaluating
encrypted security critical
“Twin Clouds “ data.
by Bugiel, et al Commodity public
cloud :for computing More communication
time critical queries in cost among the
parallel under encryption clouds.
in the query phase.

M. Hatabal*, A. EI-Mahd

« The world of computing is now undergoing a major paradigm shift.
The unlimited potentials of a connected world have allowed a new
form of “remote execution” of programs, where processing of one’s
data is done on a physically out of reach computing premise. For
example we have cloud computing platforms bundled with thin
clients like smartphones.

* Costly start overhead.
e Side-channels attacks.

" RTM “Root Trust * Certificate authority

. . Management”.)
“Hypervisor Security : 2 as a central point of
e Chain of trust. :
by McCune, et al y p failure.
O S S ifee: » Sabotage attacks via
Authority”. &

buffer and memory
overflow.

« Unfortunately, a new breed of cyber threats appeared such as side-
channel attacks and cartography. Relying solely on data encryption
IS not enough, as the decryption software itself runs remotely on the
cloud, and therefore security can be compromised.

The Security Problem In The Cloud

e Add instructions for * Eavesdropping types

memory safety, type of attack.
» : safety and control flow * Focus only on the
Secure Virtual . : : :
) " integrity. instruction set beyond
Architecture . . :
. * Monitor all privileged the code-generation
by Criswell, et al . e
operations. phases- not utilizing
* Control physical LLVM’s JIT
resources. compiler.

 The dilemma here is how to trust a
computing environment that one
cannot control.

* We have to invent new security
measures to trust that execution will be
private and the outcomes are integral.

* Depending solely on cryptography is
not sufficient because the decryption
itself will be done on untrusted
platforms.

Figure 1: Cloud Computing Architecture

« Side-Channel attacks are one of the major threats in the cloud
environment.

* The idea behind them is to analyze usage patterns and/or their timing to
get information about code behavior.

 Utilize this information to reverse engineer or tamper with the code.

* This attack could be launched by a malicious insider or even a third
party impersonator.

Our Approach: Security By Obscurity

« Hiding the purpose, meaning, and operation of the code from
attackers either humans or reverse engineering software.

« Gaming security by obscurity utilizing the information imbalance
between the end-user and the service provider.

« Compilers offer a vast amount of semantic information which can
be utilized for security objectives.

 Fortification and logical complexity together with the dynamic

nature of the JIT compiler covers a wide range of attack vectors .
« Continually changing “What” , “When” and perhaps “Where it's
done too”.

« Our focus is on the execution phase against side-channel attacks;

we are not currently concerned with securing the JIT compiler
itself.

/ e / Front-end Compiler

Start JIT Compilation

Back-end Compller

Figure 2: Flow Chart of OJIT System Operation.

We are currently focusing on JITed code obfuscation.

Code morphing — i.e multi-versioning of the same code with
same functionality

Dynamic switching - Jump around between these ever changing

versions

We modified the Execution Engine of LLVM forcing it to lazily
call the JIT compiler every time a function is invoked.

Every case of recursion is treated as a new function call.

OJIT mainly works on a function call passes (Trampoline Call)
as a trigger for recompiling a piece of code.

Every function call results in a random order set of
transformation passes applied to it.

We can also extract loops as recursive function calls.

Thereby we made the entire program as a series of function
calls

A strong random number generator forces unexpected code

version “O(NK) 7, N is the no. of transformation, size of pass set.

v¥*, A. Shoukry*, E. Rohou**
*Parallel Computing Lab, E-JUST **INRIA,Rennes

Current Approaches System Operation Evaluation Metrics

OJIT: A Novel Secure Remote Execution Technology By Obfuscated

* We selected a concrete set of metrics to evaluate and assess the
obfuscation strength of the system.

* \We collected information about the number of instructions before
and after every obfuscation step.

*\We also deduce the cyclomatic number and the knot count to
measure the complexity in the Control Flow Graph.

* We introduced a new obfuscation metric to measure how different
IS every code version as compared to its predecessor during the
dynamic code-morphing/obfuscation phase.

*This is expressed in terms of a similarity percentage of the Longest
Common Subsequence between the two code versions.

Experimental Analysis

We tested our system on a recursion intensive program that is
the Bzip2 benchmark available in the SPEC CPU 2006 suite.

100

9 HAlHEH I IR AR R AR - R R

W F1
uF2
F3

E oo R EE CIE R R R R R L LA R - - B =rs

KF5

F6
40 e Rt ITIEINIEITIE ITIE IR — =k = B I I e I e e A HF7
“F8
F9
20 ML A AR AR ARt =H AL A e < Fo
)7 F11
R IR L | | I | I 1 (] 01 THE i 114 | 1IHE I8 i 1 _IJ_ F12

0 . I I AL MRAL RRHE WRRE MR J .]i IIIIII ML ARE AL LRl DL IRAE hal
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Transformation Number |

Figure 3: LCS between successive versions of the various functions of
the Bzip2 benchmark.

* Cloud Computing is now facing what the first banking systems faced:
trust issues, privacy concerns and reasonable security doubts.

« Security by Obscurity has been around and misused for some time —
we hope to bring the right side.

By utilizing the dynamic nature of JITed compiler we only hope that we
added an insufferable burden on a reverse engineering or tampering
malicious insiders.

1l mohamed.hataba@ejust.edu.eg

