
Loop Fusion Amid Complex

Control Flow

R Ramshankar

Dibyendu Das

AMD

1

Loop Fusion

Two loops with proximity in control flow iterating over same
large arrays

– Will show poor scalability

– Why? Loops on large arrays stride over memory that is too big to fit in
the cache.

– Loops can be fused if dependences can be preserved, but

– How do we deal with proximity amid complex control flows (and function
calls)?

2

Loop fusion with control dependence

• Build from trivial loop fusion: adjacent loops

– Loops are typically guarded by an if (i != end)

condition

– Control dependence graph: derive from the CFG

• If two loops have the same or almost identical control

dependence

3

Control dependence

If (x) { A; }

A is control-dependent on the block that contains the conditional branch BR (x ==

true), A

(i.e., A is control-dependent on the block that decides to bypass A or go to A)

• Formally, a statement y is said to be control dependent on another statement x if

– (1) there exists a non-trivial path from x to y such that every statement z≠x in the

path is post-dominated by y and

– (2) x is not post-dominated by y

• Added the control dependence construction algorithm from

Kennedy/Allen

4

Generic CFG pattern containing

natural loops
int test(int A[], long size…) {

long i =0;

for (i=0; i < size; i++) {

A[i] |= (1 << a);

}

for (i=0; i < size; i++) {

A[i] |= (1 << b);

}

// …

return 0;

}

• entry leads to the first loop

– By nature, a control

dependence

• Generalize based on this

standard pattern

– Two proximal singly nested

loops

• For ex: proximal in breadth-first

order

– What if instead of the single

blocks “entry”/”if.end” we

have complex control flow?

5

Fusing loops despite complex control

flow: slicing out paths from the CFG

int test(int A[], long size, int a, int b, int c,

int d, int e) {

long i =0;

if (a & b) {

for (i=0; i < size; i++) {

A[i] |= …;

}

}

if (d&e) {

for (i=0; i < size; i++) {

A[i] |= …;

}

}

…

• Suppose a&b and d&e are

not mutually exclusive

– Loop fusion will be of benefit

• entry and if.end are the

control-dependences

• entry dominates if.end and

if.end post-dominates entry

• if.end is the single exit for

first loop (could be a DAG)

• if.end18 is the first common

post-dominator of the loops’

exits

• Handle complex control flow

by this approach: Transform

the CFG by duplicating paths

leading from entry to

if.end18

• Use aforementioned

dominance/control

dependence relations

6

• To fuse merge entry,
if.end blocks
– Create control flow: no

need for C/C++ short-
circuiting

– All conditions are
anticipated at entry:
collapse conditions
with bitwise-and: done
here in entrypflLander

• Fuse all the way to the
common post-
dominator for both
loop’s exits: if.end18
• Preserves the CFG

structure; easy
recursive application of
loop fusion with
subsequent loops

Loop fusion

7

Loop fusion – control

merging using closures
• We want to allow more control-dependences to be

merged:

– Create closures of the control dependence graph

• Warshall’s algorithm

– Ensure that the newly created control flow

preserves data dependences

– Start from the common control prefix of the two

loops and attempt to merge or collapse the

suffices

– Control how different the closures are using a

heuristic number on the size of suffices (<5

control dependences now)

8

Head and tail control flow

strands

• for.end could be more than one block

– Deal with tail control flows between the two

loops

– Likewise with if.then: there can be head control

flows leading to the two loops

• The approach used at this time is to

enumerate all paths through the head/tail

control flow blocks and insert the fused

loop in each path

– Managing this with profile data should be more

profitable (TBD)

– Orthogonal approach would be code-

motion(TBD)

9

Fusing more than two adjacent loops

• Recursive application of fusion using a graph with
edges between loop fusion candidates
– Share a prefix control dependence closure

– Second loop has a control dependence parent that post-
dominates first loop’s exit

– Breadth-first order of the control flow graph breaks ties
• Provides a proximity metric

• Perhaps allows rethinking recursions until fixed point

• Walk over the graph and merge from bottom-up

• Iteratively build loop graphs and fuse, until fixed point
(or a specific number of iterations)
• Intensive optimization

10

Complex control flow
• Dependences/aliases/phis/opaque-calls will prune the number of

collapsed paths

• Adjacent function calls may have loops that can be fused

– Inlining may allow some loops to be fused

– Function unswitching (useful approach that looks for the quickly exiting function

pattern)

• Inter-procedural mod-ref information provide additional alias information

– Added metadata to carry over address non-taken global mod-ref info in load/stores for

use in scalar transforms or analysis

• Inline functions in a selective manner

• Walk over call graph SCCs and ascertain if inlining a call may allow loop fusion

11

Dependence analysis

• First cut approach chooses inner-most loops that are simple

(for example, loops that may be favored by the

loopvectorizer)

• Need to develop a cache model that verifies to a certain

degree of accuracy if loop fusion will be beneficial or not

• Exit/step SCEVs of both loops are checked to be exact

matches, check for no LCD with the dependence analyzer

• Used LLVM Dependence Analyzer

– Dependency Analyzer is said not to be robust, but was able

to handle our tests

12

Results (preliminary)
• Several synthetic cases demonstrate effectiveness

– for() {} if () { for(){} } else { for () }

– for() {} if () { for(){} }

– for() {} for() {}

– if() {for() {}} if() {for() {} }

– For large arrays fusion improved performance almost

exponentially

• Improves SPECCPU INT 2006

• 462.libquantum rate performance improves close to 2.5X in x86

(AMD/Intel)

– Non-trivial control flow, inlining, unswitching, global mod-ref

– more than 100 loop fusion steps

• POC code received favorable response from llvmdev

– Working to address llvmdev comments

• Need to explore way for use of profile information

13

Reference

– R. Allen and K. Kennedy, Optimizing Compilers for Modern

Architectures: A Dependence-based Approach. Morgan Kaufmann

2001, ISBN 1-55860-286-0

– S. S. Muchnick, Advanced Compiler Design and Implementation.

Morgan Kaufmann 1997, ISBN 1-55860-320-4

– M. Wolfe: High performance compilers for parallel computing. Addison-

Wesley 1996, ISBN 0-8053-2730-4

Trademark Attribution

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this

publication are for identification purposes only and may be trademarks of their respective companies.

14

