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Loop Fusion

Two loops with proximity in control flow iterating over same 
large arrays

– Will show poor scalability

– Why? Loops on large arrays stride over memory that is too big to fit in 
the cache. 

– Loops can be fused if dependences can be preserved, but

– How do we deal with proximity amid complex control flows (and function 
calls)?
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Loop fusion with control dependence

• Build from trivial loop fusion: adjacent loops

– Loops are typically guarded by an if (i != end) 

condition

– Control dependence graph: derive from the CFG

• If two loops have the same or almost identical control 

dependence
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Control dependence

If (x) { A; }

A is control-dependent on the block that contains the conditional branch BR (x == 

true), A

(i.e., A is control-dependent on the block that decides to bypass A or go to A)

• Formally, a statement y is said to be control dependent on another statement x if

– (1) there exists a non-trivial path from x to y such that every statement z≠x in the 

path is post-dominated by y and

– (2) x is not post-dominated by y

• Added the control dependence construction algorithm from 

Kennedy/Allen
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Generic CFG pattern containing 

natural loops
int test(int A[], long size…) {

long i =0;

for (i=0; i < size; i++) {

A[i] |= (1 << a);

}

for (i=0; i < size; i++) {

A[i] |= (1 << b);

}

// …

return 0;

}

• entry leads to the first loop

– By nature, a control 

dependence

• Generalize based on this 

standard pattern

– Two proximal singly nested 

loops

• For ex: proximal in breadth-first 

order

– What if instead of the single 

blocks “entry”/”if.end” we 

have complex control flow?
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Fusing loops despite complex control 

flow: slicing out paths from the CFG

int test(int A[], long size, int a, int b, int c, 

int d, int e) {

long i =0;

if (a & b) {

for (i=0; i < size; i++) {

A[i] |= …;

}

}

if (d&e) {

for (i=0; i < size; i++) {

A[i] |= …;

}

}

…

• Suppose a&b and d&e are 

not mutually exclusive

– Loop fusion will be of benefit

• entry and if.end are the 

control-dependences

• entry dominates if.end and 

if.end post-dominates entry

• if.end is the single exit for 

first loop (could be a DAG)

• if.end18 is the first common 

post-dominator of the loops’ 

exits

• Handle complex control flow 

by this approach: Transform 

the CFG by duplicating paths 

leading from entry to 

if.end18

• Use aforementioned  

dominance/control 

dependence relations
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• To fuse merge entry, 
if.end blocks
– Create control flow: no 

need for C/C++ short-
circuiting 

– All conditions are 
anticipated at entry: 
collapse conditions 
with bitwise-and: done 
here in entrypflLander

• Fuse all the way to the 
common post-
dominator for both 
loop’s exits: if.end18
• Preserves the CFG 

structure; easy 
recursive application of 
loop fusion with 
subsequent loops

Loop fusion
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Loop fusion – control 

merging using closures
• We want to allow more control-dependences to be 

merged:

– Create closures of the control dependence graph

• Warshall’s algorithm

– Ensure that the newly created control flow 

preserves data dependences

– Start from the common control prefix of the two 

loops and attempt to merge or collapse the 

suffices

– Control how different the closures are using a 

heuristic number on the size of suffices (<5 

control dependences now)
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Head and tail control flow 

strands

• for.end could be more than one block

– Deal with tail control flows between the two 

loops

– Likewise with if.then: there can be head control 

flows leading to the two loops

• The approach used at this time is to 

enumerate all paths through the head/tail 

control flow blocks and insert the fused 

loop in each path

– Managing this with profile data should be more 

profitable (TBD)

– Orthogonal approach would be code-

motion(TBD)
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Fusing more than two adjacent loops

• Recursive application of fusion using a graph with 
edges between loop fusion candidates
– Share a prefix control dependence closure

– Second loop has a control dependence parent that post-
dominates first loop’s exit

– Breadth-first order of the control flow graph breaks ties
• Provides a proximity metric

• Perhaps allows rethinking recursions until fixed point

• Walk over the graph and merge from bottom-up

• Iteratively build loop graphs and fuse, until fixed point 
(or a specific number of iterations)
• Intensive optimization
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Complex control flow
• Dependences/aliases/phis/opaque-calls will prune the number of 

collapsed paths

• Adjacent function calls may have loops that can be fused

– Inlining may allow some loops to be fused

– Function unswitching (useful approach that looks for the quickly exiting function 

pattern)

• Inter-procedural mod-ref information provide additional alias information

– Added metadata to carry over address non-taken global mod-ref info in load/stores for 

use in scalar transforms or analysis

• Inline functions in a selective manner

• Walk over call graph SCCs and ascertain if inlining a call may allow loop fusion
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Dependence analysis

• First cut approach chooses inner-most loops that are simple 

(for example, loops that may be favored by the 

loopvectorizer)

• Need to develop a cache model that verifies to a certain 

degree of accuracy if loop fusion will be beneficial or not

• Exit/step SCEVs of both loops are checked to be exact 

matches, check for no LCD with the dependence analyzer

• Used LLVM Dependence Analyzer

– Dependency Analyzer is said not to be robust, but was able 

to handle our tests
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Results (preliminary)
• Several synthetic cases demonstrate effectiveness

– for() {} if () { for(){} } else { for () }

– for() {} if () { for(){} }

– for() {} for() {}

– if() {for() {}} if() {for() {} }

– For large arrays fusion improved performance almost 

exponentially

• Improves SPECCPU INT 2006

• 462.libquantum rate performance improves close to 2.5X in x86 

(AMD/Intel)

– Non-trivial control flow, inlining, unswitching, global mod-ref

– more than 100 loop fusion steps

• POC code received favorable response from llvmdev

– Working to address llvmdev comments

• Need to explore way for use of profile information
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