
www.inf.ed.ac.uk

Introducing a Heterogeneous
Execution Engine for LLVM

Chris Margiolas
chrmargiolas@gmail.com

mailto:chrmargiolas@gmail.com

Chris Margiolas chrmargiolas@gmail.com

What is this presentation about?

Hexe: A compiler and runtime infrastructure targeting
transparent software execution on heterogeneous
platforms.
➢Hexe stands for Heterogeneous EXecution Engine

Key features:
▪Compiler Passes for Workload Analysis and Extraction.
▪Runtime Environment (Scheduling, Data Sharing and Coherency etc).
▪Modular Design. Core functionality independent of the accelerator type.

Specialization via Plugins both on the compiler and runtime.
▪Extending the LLVM infrastructure.

mailto:chrmargiolas@gmail.com

Chris Margiolas chrmargiolas@gmail.com

A Reference Heterogeneous System

▪Two platform components, named Host and Device.
▪The Host is the main architecture where the OS and core applications run.
▪The Device is a co-processor that computes workloads dispatched by Host.
▪H2D: Host to Device Communication/Coherency operations.
▪D2H: Device to Host Communication/Coherency operations.

This is only a high level abstraction, actual hardware varies.

CPU Cores

Memory

Host Side

CPU Cores

Memory

Host

CPU Cores

Memory

Host Side

Accel. Cores

Memory

Device

Interconnect

H2D

D2H

mailto:chrmargiolas@gmail.com

Chris Margiolas chrmargiolas@gmail.com

Workload Offloading Concept

Offloading operations:
a) Enforce Data Sharing & Coherency (From Host to Device).
b) Kernel Dispatch (From Host to Device)
c) Kernel Execution (On Device)
d) Enforce Data Sharing & Coherency (From Device to Host).

This scheme is followed by:
▪OpenCL
▪CUDA
▪DSP SDKs
▪OpenGL
▪Cell BE in the past etc..

➢Depending on the hardware and
software capabilities these
operations may vary significantly.

Input
Memory

Output
Memory

Input
Buffer

Kernel
Execution

Output
Memory

H2D

D2H

DeviceHost

Kernel
Dispatch

(a)

(b) (c)

(d)

mailto:chrmargiolas@gmail.com

Chris Margiolas chrmargiolas@gmail.com

Existing Solutions for Workload Offloading

▪Programming languages for explicit accelerator programming such as
OpenCL and CUDA.
▪ Language extensions such as OpenMP 4.0, OpenACC.
▪Domain Specific Languages.
▪Source to Source compilers.

Upcoming Issues:
▪Adoption of a new programming model is required.
▪Significant development effort.
▪No actual compiler integration.
▪No integration with JIT technologies.
▪Current solutions are language, platform and processor specific.

mailto:chrmargiolas@gmail.com

Chris Margiolas chrmargiolas@gmail.com

What is missing? (1)

CPU Cores

▪Targeting CPUs is trivial.
▪Minimal development effort.
▪Well defined programming model

and conventions (been in use for
decades).

mailto:chrmargiolas@gmail.com

Chris Margiolas chrmargiolas@gmail.com

What is missing? (2)

Accelerator
Cores

▪Targeting accelerators is complex.
▪Significant development effort.
▪Multiple and diverse programming

environments.
▪The programming models and

conventions vary across
accelerator types and vendors.

mailto:chrmargiolas@gmail.com

Chris Margiolas chrmargiolas@gmail.com

What is missing? (3)

CPU Cores

▪How do we target multiple
processor types at the same time?
▪How do we remain portable and

transparent?
▪How do we support diverse

processors and platform types?

Accelerator
Cores

?

mailto:chrmargiolas@gmail.com

Chris Margiolas chrmargiolas@gmail.com

What is missing? (4)

CPU Cores

▪Multi-Target Support.
▪Minimal development effort.
▪Transparent offloading.
▪Portable design across

accelerators and platforms.
▪Dynamic scheduling.

Accelerator
Cores

Hexe Compiler
Passes

Hexe Runtime

mailto:chrmargiolas@gmail.com

Chris Margiolas chrmargiolas@gmail.com

Hexe Compilation Overview
Step 1: Compilation Targeting the Host

Step 2: Compilation Targeting the Device

mailto:chrmargiolas@gmail.com

Chris Margiolas chrmargiolas@gmail.com

Hexe Execution Overview

▪Hexe runtime handles the Host-Accelerator interaction.
▪Hexe runtime manages the accelerator environment and loads the

accelerator binary.
▪Hexe compiler transformations inject calls to Hexe runtime library. These

calls handle scheduling, data sharing and coherency.
▪Executable types and their Loading Procedure is target dependent. They

are handled by the appropriate runtime plugin.

Hexe Process Lifecycle:

mailto:chrmargiolas@gmail.com

Chris Margiolas chrmargiolas@gmail.com

Compilation For The Host

▪Two new compiler passes, Workload Analysis and Workload Extractor.
▪The application code is transformed to IR and optimized as usual.
▪Workload Analysis detects Loops and Functions that can be offloaded.
▪Workload Extractor extracts Loops and Functions for offloading (Hexe

Workload IR), transforms the host code and injects Hexe Runtime calls.
▪The IR is optimized again, compiled for the host architecture and linked

against the Hexe Runtime Library.

mailto:chrmargiolas@gmail.com

Chris Margiolas chrmargiolas@gmail.com

Workload Analysis

▪A Module Analysis Pass, Target Independent.
▪ It investigates the eligibility of Workloads for offloading.
▪We consider as a Workload either (a) a call to a function or (b) a loop.
▪Analysis assumptions:
▪ Different Host and Accelerator architectures.
▪ Different types of memory coherency may be available.
▪ The origin of the input LLVM IR may be C/C++ (via clang), other high level

languages or a Virtual Machine.

Analysis steps (for Loops and Functions):
1. Code Eligibility
2. Memory Reference Eligibility

mailto:chrmargiolas@gmail.com

Chris Margiolas chrmargiolas@gmail.com

Workload Analysis – Code Eligibility

Instruction Inspection:
▪Host and Accelerator architectures can vary significantly in:
‣Atomic Operation Support.
‣Special instructions (a.k.a. LLVM Intrinsics).
‣Exception handling.

We Do Not Support the offloading of code containing:
▪Atomics.
▪Intrinsics. However, we relax this to support the core Memory Intrinsics

of LLVM which are generated by front-ends or LLVM transformations.
▪Function Calls. This could be supported in the future at some extent.
▪Exceptions.

mailto:chrmargiolas@gmail.com

Chris Margiolas chrmargiolas@gmail.com

Workload Analysis – Memory Reference Eligibility (1)

Why to analyze memory references?
▪We need to extract code to a new module. We need to make sure that this

code still access valid memory.

We require a Function to only access memory via:
A. Its Function Interface (pointer arguments).
B. Global Variables.

We require a Loop to only access memory via:
A. Its Host Function Interface (pointer arguments).
B. Global Variables.

We keep track of the Global Variables and Function Pointer Arguments for
each Workload. This information is later used by the Workload Extractor.

mailto:chrmargiolas@gmail.com

Chris Margiolas chrmargiolas@gmail.com

Workload Analysis – Memory Reference Eligibility (2)

Function Interface: array
Global Vars: -
Valid Code to Offload

Function Interface: array
Global Vars: GV

Valid Code to Offload

Function Interface: array
Invalid: reference to 0xfffffff
Invalid Code to Offload

Example 1:

Example 2:

Example 3:

mailto:chrmargiolas@gmail.com

Chris Margiolas chrmargiolas@gmail.com

Workload Extractor

▪Workload Extractor is a Module Transformation Pass, which is Target
Independent.
▪We provide a set of Utility Classes that perform the following:

➢Code Extraction and Cloning (for Loops and Functions).
➢Host Code Transformation (To support workload offloading).
➢Injection of Hexe runtime calls; they manage scheduling, offloading

and data sharing. Their interface is platform independent.

▪The Workload Extractor pass is built on the top of these utilities.
▪The pass can be easily specialized to support specific use cases.
▪Compiler flags control Workload Extraction.

mailto:chrmargiolas@gmail.com

Chris Margiolas chrmargiolas@gmail.com

Workload Extractor – Code Extraction and Cloning

▪We extract eligible Workloads (Loops and Functions) by cloning them to a
separate Module named Hexe Workload.
▪We preserve the original Workload code on the main module. The runtime

scheduling may either offload a Workload or compute it on the CPU.

▪A Loop is cloned to Hexe Workload in two steps:
1. The Loop is extracted to a Function.
2. The Function is then cloned to the Hexe Workload.

Original
LLVM

Module

Hexe
Workload
Module

Function and Loop Cloning

Hexe Metadata Generation

mailto:chrmargiolas@gmail.com

Chris Margiolas chrmargiolas@gmail.com

Workload Extractor – Host Code Transformation

At this point, all the workloads are functions.
We enable offloading at their call points.
We support automatic offloading by
modifying the control flow and injecting calls
to the runtime library.
The runtime decides on the fly if the CPU or
the accelerator will compute the workload.

Instruction 1
Instruction 2
……..

CallInst @F
……..

Instruction N

Instruction 1
Instruction 2
……..

Hexe_sched
Sched branch

CallInst @F

Enforce Coherency
Call Data Marshaling
Dispatch Workload
Wait for Completion
Enforce Coherency
Read Return Value

PhiNode (Ret. Value)
……..

Instruction N-1
Instruction N

Original BB

Function Call Offloading:

Host BB

Offloading BB

Merge BB

mailto:chrmargiolas@gmail.com

Chris Margiolas chrmargiolas@gmail.com

Compilation For The Accelerator

▪Workload Transform, a Module Transformation pass
▪ It transforms the code to guarantee compatibility with the target accelerator

architecture. Reminder: The host and accelerator architectures may be
quite different (e.g. 32 bit vs 64 bit, stack alignment, endianness, ABI etc).
▪The IR is transformed to comply to a set of conventions defined by the

accelerator toolchain (e.g. function interface, accelerator runtime calls).
▪The IR is then optimized and an accelerator binary is generated. The

binary type (e.g. elf executable, shared library etc) is accelerator specific.

mailto:chrmargiolas@gmail.com

Chris Margiolas chrmargiolas@gmail.com

Workload Transform Pass Adaptors
Key Design:
▪ Core design remains accelerator and

platform independent.
▪ An Adaptor performs the required

accelerator specific transformations.
Remainder: These transformations
handle compatibility transformations
and toolchain conventions.

Available Adaptors:
▪Debug Adaptor. It supports debugging and

correctness runs. It transforms the Workload
code for offloading on the host architecture.
▪OpenCL Adaptor. It transforms Workload

code for execution on accelerators that
support OpenCL.
▪Hexagon Adaptor. It transforms Workload

code for execution on Qualcomm DSPs.

mailto:chrmargiolas@gmail.com

Chris Margiolas chrmargiolas@gmail.com

Hexe Runtime Environment Key Design:
▪ Core design remains

accelerator and platform
independent.

▪ The runtime exposes a
standard interface which is
called by the application.

▪ A plugin interface is defined.
▪ Plugins support individual

accelerators and platforms.

Features:
▪ Low overhead runtime, written exclusively in C.
▪ Minimalist design. This component may run on embedded systems.
▪ Plugin interface built with virtual tables (Linux kernel style).
▪ It handles scheduling, memory management, data sharing and coherency.
▪ The design considers asynchronous offloading (not supported yet).

mailto:chrmargiolas@gmail.com

Chris Margiolas chrmargiolas@gmail.com

Hexe Runtime Environment - Data Sharing Management

Platforms with varying data sharing capabilities:
▪ No memory sharing or coherency (explicit data copies are required).
▪ Hardware/Driver Support for Data Sharing (Virtual Shared Memory).
▪ Special Memory Pools (for data sharing or high performance).

Based on the platform capabilities, Hexe may:
▪ Track host program memory allocations.
▪ Handle explicitly data transfers.
▪ Utilize special memory pools.
▪ Rely on hardware/driver assisted data sharing (HSA, CUDA Unified

Addressing, OpenCL Shared Memory).

These action are managed by the runtime and its plugins. Every plugin
should specialize its behavior based on the platform capabilities.

Current paradigms are the OpenCL, Debug and Hexagon plugins.

mailto:chrmargiolas@gmail.com

Chris Margiolas chrmargiolas@gmail.com

Hexe Integration with Third Parties
Hexe and Just in Time Compilation (Host):

Vectorization and Auto-parallelization (Accelerator):

Combining Hexe with MCJIT is easy. However, picking the right vectorization and
parallelization infrastructure and strategy per accelerator is tricky.

mailto:chrmargiolas@gmail.com

Chris Margiolas chrmargiolas@gmail.com

Comparing against the Developer

Baseline:
Developer’s
port to the
accelerator
environment

mailto:chrmargiolas@gmail.com

Chris Margiolas chrmargiolas@gmail.com

Conclusion

This presentation is about Hexe, a heterogeneous execution engine.
It comprises the following:
▪Compiler Passes for Workload Analysis and Extraction.
▪Runtime Environment (Scheduling, Data Sharing and Coherency etc).
▪Modular Design. Core functionality independent of the accelerator type.

Specialization via Plugins both on the compiler and runtime.
▪Extends the LLVM infrastructure.

mailto:chrmargiolas@gmail.com

