
Cerberus, and the Memory Object
Semantics for ISO and De Facto C

Kayvan Memarian Victor B F Gomes Peter Sewell

University of Cambridge

http://www.cl.cam.ac.uk/~pes20/cerberus/

EuroLLVM, Bristol, 16 April 2018

1/43

http://www.cl.cam.ac.uk/~pes20/cerberus/

C and C++

2/43

Over 45 years old:
C 1972 K&R ANSI C/C90 C99 C11 C2x
C++ 1985 C++2.0 (89) C++11 C++14 C++17 C++20

but still ubiquitous, especially for systems and embedded code
survive all attempts to kill them off

3/43

Notionally, defined by ISO standards

contracts between compiler writers and programmers, from WG14 and WG21
committees:

“The Committee’s overall goal was to develop a
clear, consistent, and unambiguous Standard
for the C programming language which codifies the
common, existing definition of C and which pro-
motes the portability of user programs across C
language environments.”

4/43

Actually?

ISO C11 is 702 pages of prose. C++17 is 1622

I inevitably imprecise, incomplete, and ambiguous
I not executable in any form

I can’t automatically compute the set of all allowed behaviour of examples
– and whether there is undefined behaviour

I can’t use as a test oracle, for compiler, analysis, or sanitiser testing

I not just prose, but pretty subtle prose – a source of endless debate and
confusion, even for experts

I some real disagreements between the standards and de facto
usage/implementation. Major projects rely on semantics not specified by
ISO, both explicitly, eg -fno-strict-aliasing, and implicitly,
e.g. flat-address-space assumptions

5/43

Actually?

ISO C11 is 702 pages of prose. C++17 is 1622

I inevitably imprecise, incomplete, and ambiguous

I not executable in any form
I can’t automatically compute the set of all allowed behaviour of examples

– and whether there is undefined behaviour
I can’t use as a test oracle, for compiler, analysis, or sanitiser testing

I not just prose, but pretty subtle prose – a source of endless debate and
confusion, even for experts

I some real disagreements between the standards and de facto
usage/implementation. Major projects rely on semantics not specified by
ISO, both explicitly, eg -fno-strict-aliasing, and implicitly,
e.g. flat-address-space assumptions

5/43

Actually?

ISO C11 is 702 pages of prose. C++17 is 1622

I inevitably imprecise, incomplete, and ambiguous
I not executable in any form

I can’t automatically compute the set of all allowed behaviour of examples
– and whether there is undefined behaviour

I can’t use as a test oracle, for compiler, analysis, or sanitiser testing

I not just prose, but pretty subtle prose – a source of endless debate and
confusion, even for experts

I some real disagreements between the standards and de facto
usage/implementation. Major projects rely on semantics not specified by
ISO, both explicitly, eg -fno-strict-aliasing, and implicitly,
e.g. flat-address-space assumptions

5/43

Actually?

ISO C11 is 702 pages of prose. C++17 is 1622

I inevitably imprecise, incomplete, and ambiguous
I not executable in any form

I can’t automatically compute the set of all allowed behaviour of examples
– and whether there is undefined behaviour

I can’t use as a test oracle, for compiler, analysis, or sanitiser testing

I not just prose, but pretty subtle prose – a source of endless debate and
confusion, even for experts

I some real disagreements between the standards and de facto
usage/implementation. Major projects rely on semantics not specified by
ISO, both explicitly, eg -fno-strict-aliasing, and implicitly,
e.g. flat-address-space assumptions

5/43

Actually?

ISO C11 is 702 pages of prose. C++17 is 1622

I inevitably imprecise, incomplete, and ambiguous
I not executable in any form

I can’t automatically compute the set of all allowed behaviour of examples
– and whether there is undefined behaviour

I can’t use as a test oracle, for compiler, analysis, or sanitiser testing

I not just prose, but pretty subtle prose – a source of endless debate and
confusion, even for experts

I some real disagreements between the standards and de facto
usage/implementation. Major projects rely on semantics not specified by
ISO, both explicitly, eg -fno-strict-aliasing, and implicitly,
e.g. flat-address-space assumptions

5/43

Actually?

a “clear, consistent, and unambiguous Standard”?

6/43

Actually?

a “clear, consistent, and unambiguous Standard”?

no, there are many C’s:

I ISO C
I ...modulo interpretation and debate

I each compiler implementation
I ...with various compiler flag choices

I assumptions implicit in codebase

I programmer beliefs

6/43

Previously...

Helped clarify C/C++11 concurrency:

I engaged with WG21 and WG14, clarifying proposed model with
mathematical definitions, and finding and fixing flaws

I final C/C++11 text in tight correspondence with mathematical model
I proofs of correctness of concurrency mapping w.r.t. hardware models

(x86, IBM POWER, ARM)
I cppmem exploration tool
I Batty, Owens, Sarkar, Memarian, Sewell – with C++0x concurrency

working group: Boehm, Adve, McKenney, Crowl, Nelson, Wong, etc.

[caveats: see later fixes by Batty, Lahav, etc., and the thin-air problem
remains – see Batty et al., Pichon-Pharabod, and Hur et al.]

7/43

What about the rest of C?

Cerberus
I rigorous semantics for a large fragment of C
I executable as test oracle (for small tests) with web interface
I closely follows ISO where that is clear and uncontroversial
I NB: a semantic reference, not an analysis tool/sanitiser

Investigation of Memory object semantics
I areas where ISO is unclear and/or differs with practice

...pointer provenance, uninitialised values, etc.
I identifying questions, making examples, surveying experts

(EuroLLVM 2015?), implementing candidate models in Cerberus,
engaging with WG14

Caveat: all work in progress!

8/43

Goal

make C (and C++?)

I have a clear unambiguous definition
I ...that’s usable as a test oracle
I ...and supports the language that systems code – OS kernels etc –

actually uses (with options, attributes, etc. as needed)

I without unduly constraining compiler optimisation
I ...and with clear relationship to compiler intermediate languages

...c.f. Lopes, Hur, Regehr et al.

I provide smooth migration path to safer C, with fewer UB gotchas, where
desired

9/43

...for today/tomorrow:

get a clear picture of what you think the source-language semantics for some
of these issues is / should be

...see if plausible consensus

off to WG14 again next week

10/43

Cerberus

11/43

How to express C semantics cleanly?
I Translate into a purpose-built simpler language, Core
I Define Core with an operational-semantics interpreter combined with a

memory object model

Cerberus pipeline: C source
parse��

C abstract syntax (Cabs)
desugar��

C abstract syntax, desugared (Ail))
C type inference/checking��

C abstract syntax, desugared and type annotated (Typed Ail)
translation��

Core
Core-to-Core transforms��

Core
Core operational semantics
and memory object model

��
all allowed executions

12/43

One clause of the C 7→Core translation: left-shift e1 << e2

13/43

Demo 1

int main(void) {
int x=3+2;

}

looks simple – but already a lot going on in C: lifetime of x, unsequenced
evaluation of arguments to +, integer conversions, UB-on-overflow

14/43

Demo 1

int main(void) {
int x=3+2;

}

looks simple – but already a lot going on in C: lifetime of x, unsequenced
evaluation of arguments to +, integer conversions, UB-on-overflow

15/43

Demo 2

Cerberus defines, and can identify, all sources of undefined behaviour (for
small enough examples):

int f(int n) {
return 20 << n;

}

int g(void){
int ret = 3;
int i = 4;
while (i--) ret--;
return ret;

}

int main() {
f(g());

}

Exhaustive execution: { Undefined UB051a_negative_shift }

16/43

Demo 3

How can we explore all allowed executions without trying all possible
allocations?

Optionally, use symbolic allocation, accumulating constraints and using Z3 to
solve them

#include <stdint.h>
int main(void) {
int x,y;
return (uintptr_t)&x < (uintptr_t)&y;

}

Exhaustive execution: { Defined Specified(0), Defined Specified(1) }

(or, use concrete model, with specific allocator – faster)

17/43

Demo 4

#include <stdint.h>
int main(void) {
int x,y,z;
if ((uintptr_t)&x < (uintptr_t)&y && (uintptr_t)&y < (uintptr_t)&z)
return (uintptr_t)&x < (uintptr_t)&z;

else
return 22;

}

Exhaustive execution: { Defined Specified(1), Defined Specified(22) }

18/43

Pointer Provenance

19/43

What’s a pointer value?

A simple numeric address?

20/43

What’s a pointer value?

A simple numeric address?

At runtime, normally yes. But WG14 DR260 CR (2001):

“Implementations are permitted to track the origins of a
bit-pattern [...] They may also treat pointers based on different
origins as distinct even though they are bitwise identical.”

20/43

What’s a pointer value?

A simple numeric address?

At runtime, normally yes. But WG14 DR260 CR (2001):

“Implementations are permitted to track the origins of a
bit-pattern [...] They may also treat pointers based on different
origins as distinct even though they are bitwise identical.”

Exploited in practice by some compilers: alias analysis uses provenance to
reason that two pointers are distinct (even if they might have the same
runtime numeric address), with optimisations assuming that is correct.

20/43

What’s a pointer value?

A simple numeric address?

At runtime, normally yes. But WG14 DR260 CR (2001):

“Implementations are permitted to track the origins of a
bit-pattern [...] They may also treat pointers based on different
origins as distinct even though they are bitwise identical.”

Exploited in practice by some compilers: alias analysis uses provenance to
reason that two pointers are distinct (even if they might have the same
runtime numeric address), with optimisations assuming that is correct.

From ISO p.o.v.: using a pointer “originally” to one object to access another
object (after some pointer arithmetic) is UB, so this is ok.

20/43

What’s a pointer value?

A simple numeric address?

At runtime, normally yes. But WG14 DR260 CR (2001):

“Implementations are permitted to track the origins of a
bit-pattern [...] They may also treat pointers based on different
origins as distinct even though they are bitwise identical.”

Exploited in practice by some compilers: alias analysis uses provenance to
reason that two pointers are distinct (even if they might have the same
runtime numeric address), with optimisations assuming that is correct.

From ISO p.o.v.: using a pointer “originally” to one object to access another
object (after some pointer arithmetic) is UB, so this is ok.

But what does DR260CR really mean? It was never incorporated into the
standard, and there are lots of choices – which determine what code is legal,
and what alias analysis & optimisation is allowed to do. 20/43

Provenance: Proposed semantics

Associate a provenance to every pointer and integer value:
I a single provenance ID, freshly chosen at each allocation
I the “empty” provenance

(in the C abstract machine, not at runtime in normal impls!)

Check provenance on all accesses, with UB otherwise:
I access via a pointer value with a single provenance ID must be within

the memory footprint of the corresponding original allocation
I access via a pointer value with empty provenance is undefined behaviour

(except device memory)
I ...plus escape hatches, TBD, for exotic code

Now take care which operations preserve provenance....

21/43

Q1′. Must the pointer used for a memory access have the right provenance,
i.e. be derived from the pointer to the original allocation (UB otherwise)? Yes

Example provenance_basic_global_xy.c:

int x=1, y=2;
...
int *p = &x + 1;
int *q = &y;
if (memcmp(&p, &q, sizeof(p)) == 0) {

*p = 11; // does this have undefined behaviour?
printf("x=%d y=%d *p=%d *q=%d\n",x,y,*p,*q);

}

(NB these are tests of tricky edge-cases – not necessarily sensible code!)

p has the provenance of the x allocation, but is used to access memory
outside that, so the access gives UB

...licensing alias analysis and optimisations that assume p and q don’t alias X

22/43

Q3 Can one make a usable pointer via casts to intptr_t and back? Yes

Example provenance_roundtrip_via_intptr_t.c

int x=1;
...
int *p = &x;
intptr_t i = (intptr_t)p;
int *q = (int *)i;

*q = 11; // is this free of undefined behaviour?

So make casts between pointer and integer values preserve provenance X

23/43

Q9′ Can one make a usable pointer to one allocation from a pointer to
another allocation by arithmetic? No
Example pointer_offset_from_subtraction_1_global.c

int y = 2, x=1;
...
intptr_t ix = (intptr_t)&x;
intptr_t iy = (intptr_t)&y;
intptr_t offset = iy - ix;

int *p = (int *)(ix + offset);
int *q = &y;
if (memcmp(&p, &q, sizeof(p)) == 0) {

*p = 11; // is this free of undefined behaviour?
}

To forbid this, make binary subtraction of mixed-provenance values have
empty-provenance result. Then p has provenance of x but address of y, and
*p=11 is UB.X

This also forbids XOR linked-list idiom – do we care?
Systems code might need inter-object arithmetic, rarely – add escape hatch?24/43

Q6 Can one use bit manipulation and integer casts to store information in
unused bits of pointers? Yes
Example provenance_tag_bits_via_uintptr_t_1.c

int x=1;
int *p = &x;
uintptr_t i = (uintptr_t) p; // cast &x to an integer
// check the bottom two bits of an int* are not used
assert(_Alignof(int) >= 4);
assert((i & 3u) == 0u);
// construct an integer like &x with low-order bit set
i = i | 1u;
// cast back to a pointer
int *q = (int *) i; // defined behaviour?
// cast to integer and mask out the low-order two bits
uintptr_t j = ((uintptr_t)q) & ~((uintptr_t)3u);
// cast back to a pointer
int *r = (int *) j;

*r = 11; // defined behaviour?

Systems code relies on this, but ISO leaves it unclear.
To support it, define those operations so provenance is preserved here, and
make set of unused bits implementation-defined X

25/43

Q14 Can one make a usable copy of a pointer by copying its representation
bytes (unchanged) in user code? Yes
Example pointer_copy_user_dataflow_direct_bytewise.c

int x=1;
void user_memcpy(unsigned char* dest, unsigned char *src, size_t n) {
while (n > 0) {

*dest = *src;
src += 1;
dest += 1;
n -= 1;

}
}
int main() {
int *p = &x;
int *q;
user_memcpy((unsigned char*)&q, (unsigned char*)&p, sizeof(p));

*q = 11; // is this free of undefined behaviour?
}

Our proposal makes it legal: each representation byte (as an integer value)
has the provenance of the original pointer, and the result pointer, being
composed of representation bytes all with that provenance, does too

26/43

Can one make a usable copy of a pointer by a non-bytewise copy, e.g. via
encryption and decryption? No

...need escape hatch, TBD

27/43

Q19 Can one make a usable pointer via IO? Yes

This is used in practice: in graphics code for serialisation/unserialisation,
using %p, in xlib, using SCNuPTR, and in debuggers.

Either use escape hatch or record (in abstract machine) the escaped pointers
and find the right provenance on reconstruction.

28/43

Can intptr_t arithmetic be used to mimic pointer arithmetic? Debatable

Example adapted from Martin Sebor mail (WG14):

int a[2];
int *p = &a[0];
uintptr_t i = (uintptr_t)p;
uintptr_t j = i + sizeof (int);
int *q = (int *)j; // defined behaviour?

*q=11; // defined behaviour?

Our proposal allows this if the implementation-defined conversions are
reasonable. Should it be forbidden?

By recording the original address at pointer-to-integer casts, not just the
provenance?

29/43

Are provenance checks only on a per-allocation granularity, or per-subobject?
Per-allocation?

typedef struct { int x; int y; } st;
st s;
...
int *p = &s.x + 1;
int *q = &s.y;
if (memcmp(&p, &q, sizeof(p)) == 0) {

*p = 11; // does this have undefined behaviour?
}

A priori, we don’t care whether this example is allowed or not.

Our proposal allows it – and to forbid it would need a more complex
provenance semantics.

30/43

Provenance Summary

More questions, examples, and a proposed C standard diff in:

Clarifying Pointer Provenance v4 (a revision of WG14 N2219)
Kayvan Memarian, Victor Gomes, Peter Sewell. University of Cambridge
2018-05-04
http://www.cl.cam.ac.uk/~pes20/cerberus/clarifying-provenance-v4.html

A few things wrong there (esp. the proposed diff), and some others subject to
debate – but hopefully basically uncontroversial.

31/43

http://www.cl.cam.ac.uk/~pes20/cerberus/clarifying-provenance-v4.html

Uninitialised Values

32/43

Uninitialised reads: Survey data

C semantics web survey, 2015

15 questions

323 responses

aiming for experts, not random C hackers

33/43

Uninitialised reads: Survey data

Is reading an uninitialised variable or struct member (with a current
mainstream compiler):

a) undefined behaviour (meaning that the compiler is free to arbitrarily
miscompile the program, with or without a warning)

b) going to make the result of any expression involving that value
unpredictable

c) going to give an arbitrary and unstable value (maybe with a different
value if you read again)

d) going to give an arbitrary but stable value (with the same value if you
read again)

33/43

Uninitialised reads: Survey data

Is reading an uninitialised variable or struct member (with a current
mainstream compiler):

a) undefined behaviour (meaning that the compiler is free to arbitrarily
miscompile the program, with or without a warning) : 139 (43%)

b) going to make the result of any expression involving that value
unpredictable : 42 (13%)

c) going to give an arbitrary and unstable value (maybe with a different
value if you read again) : 21 (6%)

d) going to give an arbitrary but stable value (with the same value if you
read again) : 112 (35%)

33/43

Uninitialised reads in practice

I consenus: entirely-uninitialised reads are almost always programmer
errors – except integers used for incrementally initialised bits?

I current compilers do implicitly exploit current UB, giving unstable results
for repeated reads

I ...but it’s not necessary (for compilation) or useful (for programmers) to
have arbitrary behaviour in those cases. Even unstable results are
confusing for debugging

34/43

Uninitialised reads in practice
I consenus: entirely-uninitialised reads are almost always programmer

errors – except integers used for incrementally initialised bits?
I current compilers do implicitly exploit current UB, giving unstable results

for repeated reads
I ...but it’s not necessary (for compilation) or useful (for programmers) to

have arbitrary behaviour in those cases. Even unstable results are
confusing for debugging

C/C++ notion of UB is too crude – it conflates:
I programmer errors that should be compile-time detected where possible
I cases where the behaviour of a conventional implementation can’t be

sensibly constrained, e.g. wild writes
I cases where for optimisation / portability we want to assume the

programmer doesn’t do something – but actually we could bound the
potential bad behaviour

34/43

Uninitialised reads in ISO text
Confused

35/43

Uninitialised reads in ISO text
Confused

Trap representations are particular object representations that do not
represent values of the object type, for which merely reading them (except at
character type), is UB (3.19.4, 6.2.6.1p5, 6.2.6.2p2, DR338).

I might but does not have to trap
I but common impls don’t have unused representations at most types
I only exception(?): _Bool

35/43

Uninitialised reads in ISO text
Confused

Trap representations are particular object representations that do not
represent values of the object type, for which merely reading them (except at
character type), is UB (3.19.4, 6.2.6.1p5, 6.2.6.2p2, DR338).

I might but does not have to trap
I but common impls don’t have unused representations at most types
I only exception(?): _Bool

For types without trap representations, uninitialised reads are UB iff “the
lvalue designates an object of automatic storage duration that could have
been declared with the register storage class (never had its address taken)”

I confused attempt to handle Itanium NaT (Not-a-Thing) behaviour?

35/43

Uninitialised reads in ISO text
Confused

Trap representations are particular object representations that do not
represent values of the object type, for which merely reading them (except at
character type), is UB (3.19.4, 6.2.6.1p5, 6.2.6.2p2, DR338).

I might but does not have to trap
I but common impls don’t have unused representations at most types
I only exception(?): _Bool

For types without trap representations, uninitialised reads are UB iff “the
lvalue designates an object of automatic storage duration that could have
been declared with the register storage class (never had its address taken)”

I confused attempt to handle Itanium NaT (Not-a-Thing) behaviour?

some of WG14 report their intent was to make uninitialised reads at
non-character-type always UB

35/43

Uninitialised reads in C2x?

I Non-struct uninitialised reads are essentially always programmer errors –
except integers used for incrementally initialised bits?

I Where a compiler can statically detect them, it should

36/43

Uninitialised reads in C2x?

I Non-struct uninitialised reads are essentially always programmer errors –
except integers used for incrementally initialised bits?

I Where a compiler can statically detect them, it should

Then where it can’t, which semantics is most useful?
a) UB
b) the result of any expression involving that value becomes unpredictable
c) an arbitrary value (maybe different if you read again)
d) an arbitrary but stable value (with the same value if you read again)

– the actual value from memory
e) zero, for static/thread/automatic; from memory, for allocated
f) zero

36/43

Uninitialised reads in C2x?

I Non-struct uninitialised reads are essentially always programmer errors –
except integers used for incrementally initialised bits?

I Where a compiler can statically detect them, it should

Then where it can’t, which semantics is most useful?
a) UB
b) the result of any expression involving that value becomes unpredictable
c) an arbitrary value (maybe different if you read again)
d) an arbitrary but stable value (with the same value if you read again)

– the actual value from memory
e) zero, for static/thread/automatic; from memory, for allocated
f) zero

In N2221 we proposed (b) everywhere
But now?

36/43

Q55 Can a structure containing an unspecified-value member can be copied
as a whole? Yes?

Example unspecified_value_struct_copy.c

typedef struct { int i1; int i2; } st;
int main() {
st s1;
s1.i1 = 1;
st s2;
s2 = s1; // should this have defined behaviour?
printf("s2.i1=%i\n",s2.i1);

}

37/43

Padding

38/43

Padding

Usually, code shouldn’t care about the contents of padding

But sometimes it matters:
I to prevent leakage of security-relevant information
I for bytewise serialisation, encryption, and suchlike

Then what semantics should we give?

39/43

I Can structure-copy copy padding? Y
I After an explicit write of a padding byte, does that byte hold a well-defined value?

(not an unspecified value) Y
I After an explicit write of a padding byte followed by a write to the whole structure,

does the padding byte hold a well-defined value? (not an unspecified value) N
I After an explicit write of a padding byte followed by a write to adjacent members of

the structure, does the padding byte hold a well-defined value? (not an unspecified
value) N (or only one side?)

I After an explicit write of zero to a padding byte followed by a write to adjacent
members of the structure, does the padding byte hold a well-defined zero value? (not
an unspecified value) N

I After an explicit write of a padding byte followed by a write to a non-adjacent
member of the whole structure, does the padding byte hold a well-defined value?
(not an unspecified value) Y

I After an explicit write of a padding byte followed by a writes to adjacent members of
the whole structure, but accessed via pointers to the members rather than via the
structure, does the padding byte hold a well-defined value? (not an unspecified value)
Y

I Can the user make a copy of a structure or union by copying just the representation
bytes of its members and writing junk into the padding bytes? Y

40/43

Further Pointer Issues

41/43

Q31 Can one construct out-of-bounds (by more than one) pointer values by
pointer arithmetic (without undefined behaviour)? Yes?
Example cheri_03_ii.c

int x[2];
int *p = &x[0];
int *q = p + 11; // is this free of undefined behaviour?
q = q - 10;

*q = 1; // and this?

ISO: no. Can imagine cases where it would go wrong: hardware bounds
checking, or where intermediate unaligned value isn’t representation, or near
the top of memory, or where pointer subtraction overflows.

But real code seems to rely on it (Chisnall et al., 2015).

Can one identify reasonable cases in which it can be guaranteed to work?

42/43

Conclusion

For many years most semantics researchers gave up C as a lost cause
(except a few: Norrish, Ellison et al., Krebbers, etc.)

But it’s an inescapable part of our infrastructure

...and the current state leaves much to be desired, especially for memory
object model issues and from a rigorous semantics pov.

It is possible to improve: both the state of the definition, and the language
itself.

Hope to establish some consensus as to what that should be

...in a way that can be precisely related to compiler behaviour and internal
languages.

43/43

