Changing Everything With Clang
Plugins:

A Story About Syntax Extensions, Clang's AST, and
Quantum Computing

Hal Finkel, Alex McCaskey, Tobi Popoola, Dmitry Lyakh, and Johannes Doerfert

2020 LLVM Developers' Meeting

I
S Argonne & ¥0AK RIDGE
(AID)E | G‘C\l NATIONAL LABORATORY y

You can be forgiven for not knowing that...

Clang supports plugins!

clang++ -c source.cpp -fplugin=/path/to/somePlL

Provided using the -fplugin command-line option

Each plugin contains one or more Handler classes:

PragmaHandler
Provides new kinds of pragmas

ParsedAttrInfo
Provides new kinds of attributes

PluginASTAction
Provides an AST consumer to observe node-creation events

Documentation on making Clang plugins is here:

https://clang.llvm.org/docs/ClangPlugins.html

https://clang.llvm.org/docs/ClangPlugins.html

To build the example plugins, configure using -DCLANG BUILD EXAMPLES=ON

static FrontendPluginRegistry: :Add<AnnotateFunctionsAction>
X("annotate-fns", "annotate functions");

static PragmaHandlerRegistry: :Add<PragmaAnnotateHandler>
Y("enable annotate", "enable annotation");

Each kind of handler has a registration object

Let's talk about domain-specific languages (DSLSs)...

We have lots of DSLs:

For compilers: Lex, Yacc, ANTLR, re2c, and many others. Don't forget TableGen (our
LLVM favorite)!

For high-performance computing: SPIRAL, TCE, TACO, Kranc, GraphlIt, and many
others.

No.

Embedded DSLs are great (e.g., C++ expression templates, template
metaprogramming, constexpr programming), but...

Fitting inside the host language imposes often-unfortunate constraints.

Compilers often are not efficient interpreters, so embedded DSLs have high compile
times.

Sometimes, a properly-engineered compiler is just the right tool for the task at
hand.

But DSLs are often difficult to integrate well into larger projects...

Build-system integration can be difficult, and even if it's not that bad, what about all
of your other tooling?

The DSL input is generally in separate source files, impeding your source readability.

How do we want it to work?

[[clang::syntax(MyDSL)]] ReturnT myFunction(ArglT &A1, .
This is code in MyDSL, not C++, using Al and A2. It d

}

We created a new kind of Clang plugin: The syntax handler!

Available from: https://github.com/hfinkel/llvm-project-csp

https://github.com/hfinkel/llvm-project-csp

How does it work?

When parsing a function definition, and a [[clang: :syntax(syntax_name)]]
attribute is present

Capture the token stream - find the closing } using balanced delimiter matching
Replace the function body with _ builtin unreachable(); and rename the
function name to something internal

Call the plugin to get the replacement text

Parse that text (as though it were just included via the preprocessor)

Continue processing as usual

static SyntaxHandlerRegistry: :Add<PrintTokensHandler>
X("tokens", "collect all tokens");

The handler registers itself using the same scheme as other for other
handlers

Let's look at some real examples...

TACOPlug

[[clang::syntax(taco)]]
void matrix vector mul
(vector *y,csr *A,vector *x,
std::string format=
" -f=A:ds:0,1 -f=x:d -f=y:d")
\ y(1) = A(1,3) * x(J)

TACO: http://tensor-compiler.org/

[[clang: :syntax(taco)]]
void matrix vector mul
(vector *y,csr *A,vector *x,
std::string format=
" -f=A:ds:0,1 -f=x:d -f
y(i) = A(i,3) * x(J)

// Generated by TACO:

int taco comput 1(taco tensor t *,
taco tensor_t *,taco tensor t *);

int taco assm 1(taco tensor t *,
taco tensor_t *,taco tensor t *);

// Assembly Code.
int taco assm 1
(taco_tensor_ t *y, taco tensor t */
taco tensor t *x) {
int yl dimension = (int) (y->dimensior

y->vals = (uint8 t*)y vals;
return 0;

}

// Compute Code.
int taco comput 1(taco tensor t *y,
taco tensor t *A, taco tensor t *x,

#pragma omp parallel for schedule(rut
for (int32 t 1 = 0; 1 < Al dimension,
double tjy val = 0.0;
for (int32 t jA = A2 pos[i];
jJA < A2 pos[(i + 1)]; jA++) {
int32 t j = A2 crd[jA];
tjy val += A vals[jA] * x vals[j.
¥
y vals[i] = tjy val;
}

return 0;

}

void

mat vec mul(vector *y, csr *A, vector °
std::string format=
"-f=A:ds:0,1 -f=y:d -f=x:d'

[[clang: :syntax(taprol)]]

void test(std::vector<std::complex<double>>& tz
std::shared ptr<talsh::Tensor> talsh
std::shared ptr<talsh::Tensor> talsh_
double& norm x2) {

//Declaring the TAProL entry point:
entry: main;

//0pening a TAProL scope (optional):
scope main group(tensor workload);
//Declaring linear spaces of some dimension:
space(complex): space0 = [0:255], spacel = [C
//Declaring subspaces of declared linear spac
subspace(space0): sO = [0:127], sl = [128:25¢
subspace(spacel): r0 = [0:283], rl1 = [284:511
//Associating index labels with declared subs
index(s0): i, j, k, 1;
index(r@AY A h ¢ Ad-

Note that parameters are used directly in the DSL

/I I Trnhna+1ATl1—=anAn A +Anecnanr v/ A~ ramn1 ~+AarAaAd Fiin~+4

QCOR - Programming Quantum Computers

[[clang: :syntax(quantum)]]
vold ansatz(qreg q, double x) {
X(ql[0]);
Ry(ql[1l], x);
} CX(ql1l, qlo]);

QCOR (XACCQC): https://github.com/ORNL-QCI/qgcor

[[clang: :syntax(quantum)]]

}

void ansatz(qreg g, double
X(q[0]);
Ry(q[l], x);
CX(qlll, qlO]);

// SyntaxHandler-generated code for ans
void ansatz(qreg g, double x) {

void internal ansatz call(qreg, doubl
internal ansatz call(q, x);

class ansatz :

public QuantumKernel<ansatz, qreg,

public:

ansatz(qreg g, double x)

QuantumKernel<ansatz, qreg, double>
virtual ~ansatz() {

auto [q,x] = args tuple;

[/ mmmm e -
// Generated from Token Analysis
auto provider = xacc::getIRProvider(
auto 10 = provider->createlnstructio
auto il =

provider->createInstruction("Ry"

auto 12 = provider->createlnstructio
_parent kernel->addInstructions ({10,
[/ mmmm e -
auto qpu = xacc::getAccelerator("ibm
gpu->execute(q, parent kernel);

[[clang:: (quantum)]]
(qreg q,
std::vector<int> bit config) {

// Setup the initial bit configuration
// This 1s using XASM language
for (auto [1, bit] : enumerate(bit config)

if (bit) {

(ql1]);

}
1

The DSL support naturally intermixing of (properly tokenized) C++ statements
(translated for the output)

Concusions

Clang supports a powerful plugin interface.

This interface allows inspecting (and, to some extent, modifying) the AST, adding
new pragmas, and adding new attributes.

We have extended the plugin interface to support DSL integration via syntax
plugins.

Syntax plugins allow function bodies to use a DSL-specified syntax.

We now have several syntax plugins for real scientific use cases, many more are
possible.

We will continue working to create productive programming environments
harnessing the best-available tools.

We would like to thank the LLVM community, without which this work would not
have been possible!

This work has been supported by the US Department of Energy (DOE) Office of
Science Advanced Scientific Computing Research (ASCR) Quantum Computing
Application Teams (QCAT), Quantum Algorithms Team (QAT), and Accelerated
Research in Quantum Computing (ARQC).

This research was also supported by the Exascale Computing Project (17-SC-20-
SC), a collaborative effort of the U.S. Department of Energy Office of Science and
the National Nuclear Security Administration. ORNL is managed by UT-Battelle,
LLC, for the US Department of Energy under contract no. DE-AC05-000R22725.
This research used resources of the Argonne Leadership Computing Facility,
which is a DOE Office of Science User Facility supported under Contract DE-ACO2-
06CH11357. This research used resources of the Oak Ridge Leadership
Computing Facility, which is a DOE Office of Science User Facility supported under
Contract DE-ACO05-000R22725.

We would also like to acknowledge the Laboratory Directed Research and

r\A‘.AIAlAIMAIA‘- II nnh\ rnlnﬁl:nm rlﬁAlM ‘-IAA n—;ll n:.-.l.-u.-. kl—n-‘-:Au\—nl I AIAAI‘-‘-‘-A-‘"I—;I.'A-AAI

