
D
ra
ft



D
ra
ft

Overview of the talk

Autosar, problem analysis and objectives
Autosar guidelines for C++14 language
Checking compliance with automotive co-
ding standards

Clang’s support and interfaces
Support within Clang
Interfaces for semantic analyses
Sophisticated static analysis

AutoCheck
Implementation details
Results
Comparison to Clang-Tidy

Conclusions and Further Work



D
ra
ft

Autosar, problem analysis and objectives Clang’s support and interfaces AutoCheck Conclusions and Further Work

Autosar guidelines for C++14 language

• Autosar guidelines are tailored to improve security, safety and quality of
software in critical and safety-related systems (primarily automotive, but these
guidelines can be used in other embedded application sectors)

• 402 rules:
• ∼ 200 derived/based on the existing C++ standards
• ∼ 150 adopted without modifications from MISRA C++:2008 (64% of MISRA is

adopted without modifications)
• ∼ 60 based on research papers, other literature or other resources

Milena Vujošević Janičić SYRMIA — AutoCheck llvm-dev ’20 1 / 26



D
ra
ft

Autosar, problem analysis and objectives Clang’s support and interfaces AutoCheck Conclusions and Further Work

Autosar guidelines for C++14 language

Rule classification according to
• Obligation level: required and advisory
• Allocated target: implementation, verification, toolchain and infrastructure
• Enforcement by static code analysis tools

• Automated: rules that are automatically enforceable by means of static analysis.
• Partially automated: rules that can be supported by static code analysis, e.g. by

heuristic or by covering some error scenarios (as a support for a manual code review)
• Non-automated: rules where the static analysis cannot provide any reasonable

support

Milena Vujošević Janičić SYRMIA — AutoCheck llvm-dev ’20 2 / 26



D
ra
ft

Autosar, problem analysis and objectives Clang’s support and interfaces AutoCheck Conclusions and Further Work

Autosar guidelines for C++14 language

Our focus: ∼ 340 rules
• Implementation based rules
• Rules that can be automated
• Rules that are required or advisory

Milena Vujošević Janičić SYRMIA — AutoCheck llvm-dev ’20 3 / 26



D
ra
ft

Autosar, problem analysis and objectives Clang’s support and interfaces AutoCheck Conclusions and Further Work

Examples

• Simple decidable rules:
• Trigraphs shall not be used (-Wtrigraphs)
• Literal suffixes shall be upper case.

• Decidable rules:
• Different identifiers shall be typographically unambiguous
• The continue statement shall only be used within a well-formed for loop.

• Undecidable rules (run-time features):
• A project shall not contain unreachable code (-Wunreachable-code).
• The right hand operand of the integer division or remainder operators shall not be

equal to zero (-Wdivision-by-zero).

Milena Vujošević Janičić SYRMIA — AutoCheck llvm-dev ’20 4 / 26



D
ra
ft

Autosar, problem analysis and objectives Clang’s support and interfaces AutoCheck Conclusions and Further Work

Problem analysis

• Big number of rules (∼ 340)
• Big differences between rules: some are easy to check while some are very complex
• False alarms vs undiscovered violations
• Existing support:

• Clang,
• Clang’s AST Visitors and AST Matchers,
• Clang-tidy, as a framework for using AST Matchers,
• Clang Static Analyzer

Milena Vujošević Janičić SYRMIA — AutoCheck llvm-dev ’20 5 / 26



D
ra
ft

Autosar, problem analysis and objectives Clang’s support and interfaces AutoCheck Conclusions and Further Work

Objectives

• No undiscovered violations
• Efficient and precise analysis
• User friendly: like compiler warnings, but with additional control over reporting

mechanism
• Good design principles: easy to maintain and verify

Milena Vujošević Janičić SYRMIA — AutoCheck llvm-dev ’20 6 / 26



D
ra
ft

Autosar, problem analysis and objectives Clang’s support and interfaces AutoCheck Conclusions and Further Work

Existing support within Clang

• 44 rules that are supported or partially supported by Clang:
Examples:

• Supported:
- Trigraphs shall not be used (-Wtrigraphs).

• Partially supported:
- The form of delete operator shall match the form of new operator used to allocate
the memory (-Wmismatched-new-delete).
- The right hand operand of the integer division or remainder operators shall not be
equal to zero (-Wdivision-by-zero).

Milena Vujošević Janičić SYRMIA — AutoCheck llvm-dev ’20 7 / 26



D
ra
ft

Autosar, problem analysis and objectives Clang’s support and interfaces AutoCheck Conclusions and Further Work

Improvements of Clang’s diagnostics

• It is possible to directly improve Clangs’s diagnostics by adding support for some
simple checks when appropriate

• Definition of appropriate: whenever that does not affect Clang’s efficiency and
whenever it is easy to maintain the extended code between different versions of
Clang

• We keep Clang’s behavior unchanged, unless our flags are present

Milena Vujošević Janičić SYRMIA — AutoCheck llvm-dev ’20 8 / 26



D
ra
ft

Autosar, problem analysis and objectives Clang’s support and interfaces AutoCheck Conclusions and Further Work

Semantic analyses via AST Visitors and AST Matchers

• Two interfaces for semantic analysis:
• AST Matchers — provide a simple, powerful, and concise way to describe specific

patterns in the AST.
• AST Visitors — provide using the full power of the Clang AST

• Pros and cons: matchers should be easier to implement and maintain, but do not
always give you a full control over the AST, Clang-Tidy gives a valuable framework
for writing code-style checks by AST Matchers, efficiency issues

• Experimental analysis

Milena Vujošević Janičić SYRMIA — AutoCheck llvm-dev ’20 9 / 26



D
ra
ft

Autosar, problem analysis and objectives Clang’s support and interfaces AutoCheck Conclusions and Further Work

AST Visitors vs AST Matchers

Example:
A8-4-1 Functions shall not be defined using the ellipsis notation.

void function1(int a, ...) {
// ...

}

AST:

‘-FunctionDecl 0x12223e8 <48.cpp:18:1, col:29> col:6 function1 ’void (int, ...)’
|-ParmVarDecl 0x1222310 <col:16, col:20> col:20 a ’int’
‘-CompoundStmt 0x12224d8 <col:28, col:29>

...

Milena Vujošević Janičić SYRMIA — AutoCheck llvm-dev ’20 10 / 26



D
ra
ft

Autosar, problem analysis and objectives Clang’s support and interfaces AutoCheck Conclusions and Further Work

Matchers are easier to implement and maintain

Example:
A8-4-1 Functions shall not be defined using the ellipsis notation.
Visitor:

bool VisitFunctionDecl(const FunctionDecl *FD) {
if (FD->isVariadic()) {

// report warning
}
return true;

}

Matcher:

functionDecl(isVariadic())

Milena Vujošević Janičić SYRMIA — AutoCheck llvm-dev ’20 11 / 26



D
ra
ft

Autosar, problem analysis and objectives Clang’s support and interfaces AutoCheck Conclusions and Further Work

AST Visitors vs AST Matchers

Example:
Rule 6–6–5 A function shall have a single point of exit at the end of the
function.
Visitor:

bool VisitReturnStmt(const ReturnStmt *RS) {
++returnCount;
if (returnCount > 1) { /*report warning*/ }
return true;

}

Matcher:

functionDecl(hasDescendant(returnStmt().bind("return")),
hasDescendant(returnStmt(unless(equalsBoundNode("return")))));

Milena Vujošević Janičić SYRMIA — AutoCheck llvm-dev ’20 12 / 26



D
ra
ft

Autosar, problem analysis and objectives Clang’s support and interfaces AutoCheck Conclusions and Further Work

AST Visitors vs AST Matchers

• Counting becomes tiresome if we count for more than just two
• In addition, matchers do not naturally solve the problems concerning the order of

statements that is important in some rules (like in: The goto statement shall jump
to a label declared later in the same function body), especially if that is important
as a part of some sub-goal within the rule

• There are also additional examples when Matchers are not the first choice

Milena Vujošević Janičić SYRMIA — AutoCheck llvm-dev ’20 13 / 26



D
ra
ft

Autosar, problem analysis and objectives Clang’s support and interfaces AutoCheck Conclusions and Further Work

Experimental setup for measuring efficiency

• Write several AST Matchers and AST Visitors checking the same property
• Generate code that

• Contains only the expected structure that is checked
• Does not contain any of the expected structure that is checked
• Contains approximately 5% of code with the expected structure

• Vary size of the generated code: 100, 500, 1000, 2000, 5000, 10000 LOC
• Measure 100 times and take the average

Milena Vujošević Janičić SYRMIA — AutoCheck llvm-dev ’20 14 / 26



D
ra
ft

Autosar, problem analysis and objectives Clang’s support and interfaces AutoCheck Conclusions and Further Work

Experimental setup

• Measure the efficiency also on Automotive Grade Linux open source code, which
serves as an industry standard to enable rapid development of new features and
technologies

• AGL contains a code base with many sub-projects and we use several sub-projects
as testing benchmarks

Milena Vujošević Janičić SYRMIA — AutoCheck llvm-dev ’20 15 / 26



D
ra
ft

Autosar, problem analysis and objectives Clang’s support and interfaces AutoCheck Conclusions and Further Work

Results

• No big differences between different sizes of code and between different checks
• The smallest difference — no expected structure that is checked:

• Visitors are as fast as matchers, i.e. there are no big differences
• The biggest difference — only the expected structure that is checked

• Visitors are faster compared to matchers between 3.1 and 5.1 times
• On code with 5 percent of expected structure

• Visitors are faster compared to matchers between 1.2 and 1.5 times
• On AGL code

• Visitors are faster compared to matchers between 2 and 3 times

Milena Vujošević Janičić SYRMIA — AutoCheck llvm-dev ’20 16 / 26



D
ra
ft

Autosar, problem analysis and objectives Clang’s support and interfaces AutoCheck Conclusions and Further Work

Static Analyzer

• Source code analysis tool for bug finding
• Takes into account CFG, not only AST
• Based on bounded model checking and considers loops with just a few loop

unrollings, and therefore should not report false positive results but can have false
negatives

• Much slower than compilation (visitors or matchers)

Milena Vujošević Janičić SYRMIA — AutoCheck llvm-dev ’20 17 / 26



D
ra
ft

Autosar, problem analysis and objectives Clang’s support and interfaces AutoCheck Conclusions and Further Work

AutoCheck

• Implemented 190 rules from Autosar C++14 guidelines
• Some of these rules are language independent or can be used on C code as well

(∼ 120 rules)
• Some rules are implemented directly within Clang (∼ 80 rules), others are

implemented through AST Visitors
• Visitors are grouped into clusters that maximize efficiency

• Four rules are additionally supported by more precise analysis through Static
Analyzer (division by zero, null pointer dereferencing, pointer arithmetic, recursive
function calls)

• Autocheck uses llvm’s infrastructure for testing (each rule is covered with several
positive/negative test cases), and also AGL code

Milena Vujošević Janičić SYRMIA — AutoCheck llvm-dev ’20 18 / 26



D
ra
ft

Autosar, problem analysis and objectives Clang’s support and interfaces AutoCheck Conclusions and Further Work

Usage

• AutoCheck is used internally on projects that require compliance with Autosar
guidelines

• The obtained feedback is used for guiding the development of the tool
• AutoCheck is an extension of Clang so plugins for Clang’s integration within

different software development environments can be used

Milena Vujošević Janičić SYRMIA — AutoCheck llvm-dev ’20 19 / 26



D
ra
ft

Autosar, problem analysis and objectives Clang’s support and interfaces AutoCheck Conclusions and Further Work

Controlling the output

• New options that differ to standard compiler options
• Limit the number of warnings issued for each violated rule and stop performing the

analysis for each rule after its limit is reached:
option -autocheck-limit=N

• Analyze and report warnings only between some specific lines
-autocheck-between-lines=<from-line>,<to-line>

• Suppress warnings corresponding to macro extensions
-autocheck-dont-check-macro-expansions

• Disable checks within headers
-autocheck-dont-check-headers

Milena Vujošević Janičić SYRMIA — AutoCheck llvm-dev ’20 20 / 26



D
ra
ft

Autosar, problem analysis and objectives Clang’s support and interfaces AutoCheck Conclusions and Further Work

Automotive Grade Linux open source code

• The efficiency of AutoCheck is measured on different corpora
• When building AGL subprojects:

• If only options that are implemented directly within Clang are included, time that
AutoCheck takes is bigger between 1.1 and 1.7 times (compared to Clang)

• If all visitors are also included, time that AutoCheck takes is bigger between 1.7 and
9.2 times (compared to Clang)

• These differences depend on number of violated rules and on number of times the
rule is violated.

Milena Vujošević Janičić SYRMIA — AutoCheck llvm-dev ’20 21 / 26



D
ra
ft

Autosar, problem analysis and objectives Clang’s support and interfaces AutoCheck Conclusions and Further Work

Automotive Grade Linux open source code

• Options -autocheck-limit and -autocheck-dont-check-headers reduce
significantly these time differences

• Examples:
• In qrc_hvac.cpp, there are 11 different rules that are violated

∼ 15K times (headers included),
∼ 3K times (headers not included)

• In qrc_images.cpp, there are 11 different rules that are violated
∼ 97K times (headers included),
∼ 23K times (headers not included)

Milena Vujošević Janičić SYRMIA — AutoCheck llvm-dev ’20 22 / 26



D
ra
ft

Autosar, problem analysis and objectives Clang’s support and interfaces AutoCheck Conclusions and Further Work

Clang’s code base

• There are 129 rules violated within Clang’s code base
• 8 rules are violated less than 10 times
• 11 rules are violated between 10 and 100 times
• 9 rules are violated between 100 and 1.000 times
• 25 rules are violated between 1.000 and 10.000 times
• 37 rules are violated between 10.000 and 100.000 times
• 39 rules are violated more than 100.000 times

• The biggest number of warnings
fixed width integer types from <cstdint>, indicating the size and
signedness, shall be used in place of the basic numerical types

Milena Vujošević Janičić SYRMIA — AutoCheck llvm-dev ’20 23 / 26



D
ra
ft

Autosar, problem analysis and objectives Clang’s support and interfaces AutoCheck Conclusions and Further Work

Comparison to Clang-Tidy

• Clang-Tidy
• is a C++ ”linter” tool, support for different coding conventions and an interface for

adding new checks
• is LibTooling-based tool, uses AST Matchers
• can run Static analyzer

• AutoCheck
• support for C++14 Autosar guidelines, custom tailored solution
• can be invoked as a Clang option, is based on Clang and AST Visitors
• can run Static analyzer

Milena Vujošević Janičić SYRMIA — AutoCheck llvm-dev ’20 24 / 26



D
ra
ft

Autosar, problem analysis and objectives Clang’s support and interfaces AutoCheck Conclusions and Further Work

Conclusions and Further work

• LLVM/Clang give several frameworks for implementing syntax and semantic
analysis

• We had many different decisions to make on our road, that were explained and
commented during this talk

• We successfully implemented 190 rules from Autosar guidelines, together with
different options controlling the output in the user friendly way

• Further work: implement the rest of the rules

Milena Vujošević Janičić SYRMIA — AutoCheck llvm-dev ’20 25 / 26



D
ra
ft


