
Confidential + Proprietary

GWP-TSan
Zero-Cost Detection of Data Races in Production

Matt Morehouse, Kostya Serebryany

October 2020

What is GWP-TSan?

● “GWP-TSan Will Provide Thread Sanitization”

● Probabilistic data race detector (heap only).
○ Still under development.

● Built on top of GWP-ASan.

What is GWP-TSan?

http://llvm.org/docs/GwpAsan.html

Background: GWP-ASan

malloc()

return GuardedAlloc();

// Normal malloc
 ...
return alloc;

ShouldSample()

0.001%

99.999%

● Tiny fraction of allocations (e.g. 1/100,000) routed to GWP-ASan.
○ Sampling rate adjusted for negligible CPU overhead.

Background: GWP-ASan
● Detects heap-buffer-overflows using guard pages.
● Detects use-after-frees by mprotect-ing freed memory.

 Guard Page Guard Page Guard Page Allocation Freed

Background: DataCollider

int racy_counter = 0;

int get_racy_counter() {

 return racy_counter;

}

void inc_racy_counter() {

 ++racy_counter;

}

Background: DataCollider

int racy_counter = 0;

int get_racy_counter() {

 return racy_counter;

}

void inc_racy_counter() {

 ++racy_counter;

}

1. Set breakpoint on a random memory access.

Background: DataCollider

int racy_counter = 0;

int get_racy_counter() {

 return racy_counter;

}

void inc_racy_counter() {

 ++racy_counter;

}

1. Set breakpoint on a random memory access.

2. When breakpoint fires, remove breakpoint and set a
watchpoint on the accessed memory.

T1

Background: DataCollider

int racy_counter = 0;

int get_racy_counter() {

 return racy_counter;

}

void inc_racy_counter() {

 ++racy_counter;

}

1. Set breakpoint on a random memory access.

2. When breakpoint fires, remove breakpoint and set a
watchpoint on the accessed memory.

T1

Background: DataCollider

int racy_counter = 0;

int get_racy_counter() {

 return racy_counter;

}

void inc_racy_counter() {

 ++racy_counter;

}

1. Set breakpoint on a random memory access.

2. When breakpoint fires, remove breakpoint and set a
watchpoint on the accessed memory.

3. Wait.T1

Background: DataCollider

int racy_counter = 0;

int get_racy_counter() {

 return racy_counter;

}

void inc_racy_counter() {

 ++racy_counter;

}

1. Set breakpoint on a random memory access.

2. When breakpoint fires, remove breakpoint and set a
watchpoint on the accessed memory.

3. Wait.

4. If watchpoint fires while waiting, report a data race.

T1

T2

Background: DataCollider

int racy_counter = 0;

int get_racy_counter() {

 return racy_counter;

}

void inc_racy_counter() {

 ++racy_counter;

}

1. Set breakpoint on a random memory access.

2. When breakpoint fires, remove breakpoint and set a
watchpoint on the accessed memory.

3. Wait.

4. If watchpoint fires while waiting, report a data race.

T1

T2

DATA RACE!

Background: DataCollider

int racy_counter = 0;

int get_racy_counter() {

 return racy_counter;

}

void inc_racy_counter() {

 ++racy_counter;

}

1. Set breakpoint on a random memory access.

2. When breakpoint fires, remove breakpoint and set a
watchpoint on the accessed memory.

3. Wait.

4. If watchpoint fires while waiting, report a data race.

5. Otherwise, remove watchpoint and continue execution.

GWP-TSan = GWP-ASan + DataCollider
● Periodically set watchpoints on GWP-ASan allocations.

● Report a data race when concurrent accesses to the same address are
detected, with:

○ At least one write.
○ At least one non-atomic access.

Watchpoints
● DataCollider uses debug registers.

○ + Trap on accesses to specific address only.
○ - Only 4 debug registers.

● GWP-TSan uses mprotect(PROT_NONE) and SEGV handler.
○ - Trap on any access within the same 4KB page.
○ + Unlimited watchpoints.
○ + Potential use of Intel pkeys for speed.

Challenges

Atomic Accesses
Problem:

● Concurrent atomic accesses should not be reported as races.
● How to tell if an access is atomic?

Solution:

● LLVM backend pass to create a PC table of atomic access instructions.
● Read the table into memory during GWP-TSan initialization.
● O(1) isAtomic() check for any PC.

System Calls
Problem:

● Passing PROT_NONE memory to syscalls makes them fail with EFAULT.

Solution:

● Intercept glibc syscall wrappers.
● Remove watchpoints before syscalls.

Thank you!
(Feedback is welcome)

