
Branch Coverage: Squeezing more out of
LLVM Source-based Code Coverage

Alan Phipps, Texas Instruments

2020 LLVM Developers’ Meeting

1

What is Source-based Code Coverage?

• A measurement for how thoroughly code has been executed during testing

– Ideally all sections of code have an associated test

– Un-executed code may be at higher risk of having lurking bugs

• Supported Coverage criteria (in increasing level of granularity)

– Function

• Percentage of code functions executed at least once

– Line

• Percentage of code lines executed at least once

– Region

• Percentage of code statements executed at least once

2

Basic Phases (High Level)

3

Counter Allocation and

Counter-to-Source

Region Mapping (clang)

Counter Instrumentation

in LLVM IR (clang)

Data Visualization

(llvm-profdata & llvm-cov)

Test Execution

Counter Region Mapping and Instrumentation

• Counters are inserted into basic blocks of generated code mapped to source

4

line 9: bool foo(int x, int y) {

line 10: if ((x > 0) && (y > 0))

line 11: return true;
line 12:
line 13: return false;
line 14: }

Counter1++

^Counter2++

• Counter1 instrumented to track
• Region (9:24 10:23)

• Function (line 9 – foo())

• Line (line 10)

• Statement: if-stmt

• Counter2 instrumented to track
• Region (10:18 10:25)

• Statement (y > 0)

• Counter3 instrumented to track
• Region (11:0 11:12)

• Line coverage (line 11)

• (Counter1 – Counter3) tracks
• Region (12:0 14:0)

• Line coverage (line 13)

Counter3++

LLVM Coverage Visualization

5

• Text (llvm-cov) • LLVM Coverage Utility (llvm-cov)

 8| |
 9| 2|bool foo (int x, int y) {
 10| 2| if ((x > 0) && (y > 0))
 ^1
 11| 0| return true;
 12| 2|
 13| 2| return false;
 14| 2|}

Why is branch Coverage Important?

Line | Cnt |
 9| |bool foo(int x, int y) {
 10| 4| if ((x > 0) && (y > 0))
 ^1
 11| 1| return true;
 12| |
 13| 3| return false;
 14| 3|}

• There are two conditions on line 10 that form a decision: (x > 0), (y > 0)

• Line 11 shows that “return true” was executed once

– What was the execution path through the control flow that facilitated this?

– What was the execution path through the control flow around this?

– If we don’t know, we can’t be sure we are executing all paths!

• Branch Coverage tells us this!

– How many times is each condition taken (True) or not taken (False)?
6

Line | Cnt |
 9| |bool foo(int x, int y)
 10| 4|{
 11| 4| return ((x > 0) && (y > 0));
 ^1
 12| 4|}

LLVM Coverage Visualization + Branch Coverage

7

• LLVM Coverage Utility (llvm-cov) • Text (llvm-cov)

 9| 2|bool foo (int x, int y) {
 10| 2| if ((x > 0) && (y > 0))

 | Branch (10:7): [True: 1, False: 1]
Branch (10:18): [True: 0, False: 1]
 11| 0| return true;
 12| 2|
 13| 2| return false;
 14| 2|}

Goal: Ensure 100% Branch Coverage

• C short-circuit semantics on logical operators

– Testing all individual conditions also tests corresponding decisions

8

foo(1, 0): (x > 0) = true
 (y > 0) = false
(x > 0) && (y > 0) = false

foo(0, 1): (x > 0) = false
 (y > 0) = … not executed!
(x > 0) && (y > 0) = false

foo(1, 1): (x > 0) = true
 (y > 0) = true
(x > 0) && (y > 0) = true

bool foo(int x, int y) {
 if ((x > 0) && (y > 0))
 return true;

 return false;
}

How is Branch Coverage implemented?

9

Clang Source Region Creation

10

Counter-to-Source

Region Mapping (clang)

Counter Instrumentation

in LLVM IR (clang)

Data Visualization

Test Execution

Regions created based on AST walk

CounterMappingRegion

11

struct CounterMappingRegion {
 enum RegionKind {
 /// A CodeRegion associates some code with a counter.
 CodeRegion,

 /// An ExpansionRegion represents a file expansion region that associates
 /// a source range with the expansion of a virtual source file, such as
 /// for a macro instantiation or #include file.
 ExpansionRegion,

 /// A SkippedRegion represents a source range with code that was skipped
 /// by a preprocessor or similar means.
 SkippedRegion,

 /// A GapRegion is like a CodeRegion, but its count is only set as the
 /// line execution count when its the only region in the line.
 GapRegion,

 /// A BranchRegion represents leaf-level boolean expressions and is
 /// associated with two counters, each representing the number of times the
 /// expression evaluates to true or false.
 BranchRegion
 };

 /// Primary Counter that is also used for Branch Regions (TrueCount).
 Counter Count;

 /// Secondary Counter used for Branch Regions (FalseCount).
 Counter FalseCount;

 unsigned FileID, ExpandedFileID;
 unsigned LineStart, ColumnStart, LineEnd, ColumnEnd;

1.) Extend RegionKind to include a

new BranchRegion kind to

represent branch-generating

conditions

2.) Use existing Counter to

represent “True” BranchRegion

counts

3.) Add a second Counter to

represent “False” BranchRegion

counts

CounterMappingRegion

associates a source range with a

counter. It uses RegionKind to

identify how to interpret its data.

Counter Region Mapping (clang)

• Instrumentation profile Counters are already created for statement regions

– We can trivially reuse them to calculate Branch condition counts!

– A Counter can also refer to an arithmetic expression between two counters

12

if (C) {

 …

}

Counter1++

Counter2++

• Counter1 maps to “Parent” region

• Counter2 maps to If-Stmt “Then” region

• For BranchRegion(C)

• C.TrueCounter = Counter2

• C.FalseCounter = Counter1 – Counter2

This is true for all control-flow statements: if, for, while, switch, ternary ?:

Clang Counter Instrumentation

13

Counter-to-Source

Region Mapping (clang)

Counter Instrumentation

in LLVM IR (clang)

Data Visualization

Test Execution

ASTs lowered to LLVM IR

Since we reuse counters,

no special instrumentation

needed! … except …

Counter Instrumentation for Logical Operators

14

bool X = C1 || C2;

Counter1++

^ Counter2++

I have to instrument a new counter (Counter3) to track C2’s counts

• Counter1 maps to “Parent” region

• Counter2 maps to “C2”, the right-hand-side,

representing C2 execution count

• C short-circuit semantics on logical operators

• Counter2 increments only when C1 is false

• For BranchRegion(C1)

• C1.FalseCounter = Counter2

• C1.TrueCounter = Counter1 – Counter2

• For BranchRegion(C2)

• C2.FalseCounter = ?

• C2.TrueCounter = ?

|| Counter3++

• For BranchRegion(C2)

• C2.FalseCounter = Counter3

• C2.TrueCounter = Counter2 – Counter3

New

Data Visualization

15

Counter-to-Source

Region Mapping (clang)

Counter Instrumentation

in LLVM IR (clang)

Data Visualization

(llvm-cov)

Test Execution

Data

Decoded

and

Statistics

Calculated

Visualization (llvm-cov)

• Decode mapping regions and filter based on

Function and Macro Expansion

16

Function (foo)

- CodeRegion1 (9:24-10:23)
- CodeRegion2 (11:0-11:12)
- CodeRegion3 (12:0-14:0)
BranchRegions:
- BranchRegion1 (10:5-10:11)
- BranchRegion2 (10:16-10:22)

Function (bar)

- CodeRegion1 (19:24-24:0)
- ExpansionRegion1 (20:10-20:13)

Expansion (MAX)

- CodeRegion1 (18:18-18:40)
BranchRegions:
- BranchRegion1 (18:19-18:24)

line 9: bool foo(int x, int y) {
line 10: if ((x > 0) && (y > 0))
line 11: return true;
line 12:
line 13: return false;
line 14: }

line 19: bool bar(int x, int y) {
line 20: return MAX(x,y);
line 24: }

line 18: #define MAX(x,y) ((x) > (y) ? (x) : (y))

Visualization (llvm-cov) SubViews

• Extend notion of region SubView to include branches

– SubViews are demarcated nested views in the source-code

– Branches on the same line are grouped into the same SubView

– SubViews are also used to demarcate macro expansions

• Macro expansions can be recursive

• Macro expansions can contain conditions

• Extend summary reports to include Branch Coverage

– Add BranchCoverageInfo class

17

BranchCoverageInfo
- Total # of Branches (2 per region)

- # Branches executed at least once

Branch Coverage Future Optimizations

• Better counter reuse for logical operators

– Nested conditions: bool myval = (C1 && C2 && (C3 || C4));

• Enable HTML ToolTip “hover” capability on source conditions

– Hovering will reveal actual True/False Branch Counts

– Similar to how region coverage counts show up today

• Better identification of special branch regions

– Identify an implicit default Case in a switch statement

– Identify the sense of constant-folded conditions: always True or never True

18

What’s Next: MC/DC

• Ultimate Goal: Modified Condition/Decision Coverage (MC/DC)

– Percentage of all condition outcomes that independently affect a decision outcome

– Built on top of branch-coverage

• Usually involves emitting a truth table to confirm all possibilities

19

Observations on GCC Branch Coverage

• GCC HTML (LCOV)

• GCC Text (GCOV)

20

• True/False Branch Data shown
– “+” Executed at least once

– “-” Not Executed (i.e. “0”)

– Hover to see counts

• Difficult to tie branches to source

– Which branch goes with which condition?

– Which branch represents taken vs not taken?

• In other contexts…

– May see additional branches that aren’t visible

in source code

– Some branches may be removed

• GCC advises against using optimization with

code coverage

function _Z3fooii called 2 returned 100% blocks executed 80%
 2: 9:bool foo (int x, int y) {
 2: 10: if ((x > 0) && (y > 0))
branch 0 taken 1 (fallthrough)
branch 1 taken 1
branch 2 taken 0 (fallthrough)
branch 3 taken 1
 #####: 11: return true;
 -: 12:
 2: 13: return false;
 -: 14:}

GCC vs. LLVM

• GCC HTML (LCOV)

• GCC Text (GCOV)

21

• LLVM HTML

• LLVM Text
function _Z3fooii called 2 returned 100% blocks executed 80%
 2: 9:bool foo (int x, int y) {
 2: 10: if ((x > 0) && (y > 0))
branch 0 taken 1 (fallthrough)
branch 1 taken 1
branch 2 taken 0 (fallthrough)
branch 3 taken 1
 #####: 11: return true;
 -: 12:
 2: 13: return false;
 -: 14:}

 9| 2|bool foo (int x, int y) {
 10| 2| if ((x > 0) && (y > 0))

 | Branch (10:7): [True: 1, False: 1]
Branch (10:18): [True: 0, False: 1]
 11| 0| return true;
 12| 2|
 13| 2| return false;
 14| 2|}

Current State of LLVM Branch Coverage

• Implementation is complete -- in the process of upstreaming the work!

– Phabricator Review https://reviews.llvm.org/D84467

• Should be included with stock LLVM Source-based Code Coverage

• A lot of ways to improve branch coverage! Want to be involved?

– Contact me! a-phipps@ti.com

22

https://reviews.llvm.org/D84467
mailto:a-phipps@ti.com
mailto:a-phipps@ti.com
mailto:a-phipps@ti.com

Thank you!

• Acknowledgements

– Vedant Kumar, Apple

– Cody Addison, Nvidia

– Alan Davis, Texas Instruments

23

