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ember 8, 20021 Introdu
tionOne of the primary goals of a 
ompiler is to eliminate redundant 
omputations present in the input program.Su
h redundan
y elimination is espe
ially bene�
ial in loops, sin
e eliminating 
omputations from a fre-quently exe
uted region of 
ode 
an lead to massive performan
e gains in the program overall. Two indepen-dent 
ompiler optimizations are 
ustomarily used to eliminate redundan
ies: Global Common SubexpressionElimination (GCSE) and Loop Invariant Code Motion (LICM). GCSE essentially repla
es 
omputation siteswith a saved version of a 
omputation, provided that the value of the 
omputation has not been altered sin
ethe last time it was made. Loop-invariant 
ode motion is responsible for hoisting loop-invariant 
omputationsfrom the body of a loop or loop nest, provided that it 
an safely do so.However, neither LICM nor GCSE 
an handle partial redundan
ies: redundant 
omputations that o

uron some exe
ution paths rea
hing a given point, but not on others. Addressing this de�
ien
y is the goal ofa powerful data�ow-based optimization known as Partial Redundan
y Elimination (PRE). PRE e�e
tivelysubsumes both LICM and GCSE, in addition to safely transforming partial redundan
ies to full redundan
ies,whi
h 
an then be removed.In this report we present implementation details, empiri
al performan
e data, and notable modi�
ationsto an algorithm for PRE based on [1℄. In [1℄, a parti
ular realization of PRE, known as SSAPRE, isdes
ribed, whi
h is more e�
ient than traditional PRE implementations be
ause it relies on useful propertiesof Stati
 Single-Assignment (SSA) form to perform data�ow analysis in a mu
h more sparse manner than thetraditional bit-ve
tor-based approa
h. Our implementation is spe
i�
 to a SSA-based 
ompiler infrastru
tureknown as LLVM (Low-Level Virtual Ma
hine).This paper des
ribes the 
urrent state of our implementation using the LLVM infrastru
ture, and delin-eates important modi�
ations to the algorithm des
ribed in [1℄.2 Existing WorkPRE was �rst developed by Morel and Renvoise [1979℄. Their implementation used data�ow analysis todetermine partial redundan
ies and eliminate them. This method was enhan
ed by the introdu
tion of a
ode pla
ement strategy 
alled lazy 
ode motion (LCM) [3℄, whi
h �nds the optimal pla
ement for 
odewithin a 
ontrol �ow graph (CFG). However, the previous versions of PRE are based on a bit-ve
tor formu-lation of the problem and on the iterative solution of data �ow equations[1℄. The primary drawba
k to theappli
ation of bit-ve
tor-based data�ow optimizations to an SSA intermediate representation is the high 
ostof representational 
onversion. In order to propagate the data�ow predi
ates properly, the IR is essentiallytaken out of SSA form prior to the analysis and put ba
k into SSA form after, a pro
ess whi
h in
urs high
ompile-time 
ost.The SSAPRE paper provides an SSA-based version of PRE whi
h 
ombines the optimal pla
ementproperties of the previous algorithms for PRE with SSA's sparse use-de�nition information. In parti
ular,it leverages features of SSA su
h as the single-assignment property and dominan
e invariants so that PREanalysis 
osts are greatly redu
ed in 
omparison to the traditional approa
hes.[1℄1



3 Overview3.1 De�nitionsWe �rst present a few de�nitions from [1℄ whi
h we use throughout this paper:De�nition (Redundant): If E1 and E2 are o

urren
es of some 
omputation E and there is a 
ontrol �owpath from E1 to E2 
ontaining nothing that may alter the value of E, we say that E2 is redundant withrespe
t to E1.[1℄De�nition (Partially Available): We say a 
omputation is partially available at some point p in the pro-gram if there is a 
ontrol �ow path leading to p from some real o

urren
e of the 
omputation and not
rossing anything that may alter the value of the 
omputation.[1℄De�nition (Partially Redundant): We say an o

urren
e ! is partially redundant if it is an o

urren
e ofa 
omputation that is partially available just before !.[1℄De�nition (�): In the same way that the literature uses a � operator in SSA form to fa
tor the use-def relation for variables, we introdu
e a � operator that fa
tors the redundan
y relation for 
omputationo

urren
es.[1℄De�nition (?): There 
an be operands of � that are not partially redundant; these have no 
ounterpartin SSA form, and we denote them by the symbol ?.[1℄De�nition (Representative O

urren
e): We de�ne the representative o

urren
e for an expression tobe the nearest expression that is either a � O

urren
e or a non-partially redundant real o

urren
e thatdominates the expression. [1℄3.2 SSAPRE AlgorithmThe paper presents two versions of the SSAPRE algorithm. The �rst version provides everything ne
essaryto 
reate a working version of SSAPRE for a 
ompiler. There are six steps in the algorithm: � Insertion,Rename, DownSafety, WillBeAvail, Finalize, and CodeMotion. However, this version isn't sparse (thereare potentially extraneous � nodes pla
ed into the graph, and the naive rename algorithm 
onsiders manyversions of variables that may not appear in any PRE 
andidate expression) and deals with all of theexpressions in the program simultaneously, whi
h 
an indu
e a large memory footprint.The se
ond version of the algorithm is a pra
ti
al implementation of SSAPRE. It is a worklist drivenversion of the algorithm and requires a prepass over the 
ode to 
olle
t all lexi
ally identi�ed o

urren
es ofexpressions into lexi
ally equivalent sets. On
e this is done, however, we no longer need to look at all of the
ode again but only at the 
olle
ted o

urren
es. Ea
h 
olle
ted o

urren
e set is pla
ed into the worklistthen removed one at a time so that the algorithm 
an be applied to it. The pra
ti
al implementationalgorithm repla
es the �rst two parts of the initial algorithm � � Insertion and Rename � with a demand-driven version of � Insertion and a delayed version of Rename. See Figure 1 for a graphi
al representationof the implementation of the worklist driven algorithm.We 
hose to implement the worklist driven version of the algorithm.4 ImplementationWhile we 
hose to implement the worklist driven version of the SSAPRE algorithm, our implementationdoesn't a
tually use the worklist in the way a traditional worklist is used. In the paper, the worklist isneeded for �
ompound� expressions (those of the form a+ b� 
, where a+ b is a subexpression of the wholeexpression). LLVM is a three-address representation and doesn't allow for 
ompound expressions.2



Figure 1: PRE Worklist Driven Approa
h from [1℄4.1 AssumptionsThe assumptions that we make are as follows (the �rst two assumptions are dire
tly stated in the paper,and the latter two 
an easily be inferred):� "Ea
h � assignment has the property that its left-hand side and all of its operands are versions of thesame original program variable"[1℄� "The live ranges of di�erent versions of the same original program variable do not overlap"[1℄� All 
riti
al edges are broken; and� We have a

ess to the dominator tree and dominan
e frontiers of basi
 blo
ksBe
ause of the �rst two assumptions, we need to disable running a few optimization passes before our passis run. In parti
ular, inst
ombine, mem2reg, and reasso
iate shouldn't be run as they 
ould potentiallyviolate the �rst two assumptions. Of 
ourse, sin
e our pass is supposed to subsume GCSE and LICM, bothg
se and li
m shouldn't be run. In order to ensure that 
riti
al edges have been broken, the break-
rit-edges is required before our pass.4.2 Data Stru
turesOur implementation of the algorithm is based on infrastru
ture that 
onsists of a hierar
hy of O

urren
e
lasses. There are 5 types of o

urren
es: Real, �, � Operand, Exit, and Inserted; their instan
es tra
kany information about them that the paper spe
i�es as ne
essary. The main O

urren
e 
lass maintainsinformation that is shared by all types of o

urren
es. This information in
ludes: the basi
 blo
k it existsin, the instru
tion it represents, the 
a
hed temporary instru
tion that saves the result (if any), and theRedundan
y Class Number (RCN). The Real O

urren
e 
lass has additional �ags asso
iated with it su
has: Reload, Save, and a pointer to its representative O

urren
e. � O

urren
es have �ags to indi
ate3



whether they are downsafe, extraneous, �
anbeavail�, or are �later�. � Operand o

urren
es maintain whattheir representative o

urren
e is, what � they belong to, what instru
tion would be inserted there if needed,and a �ag indi
ating if they have a real use. Inserted O

urren
es and Exit O

urren
es do not store anyadditional information.4.3 Pass DetailsThe SSAPRE algorithm is done in six separate phases, whi
h are dis
ussed in detail below.4.3.1 Colle
t O

urren
esThe main idea behind the Colle
t O

urren
es phase is to identify lexi
ally identi�ed1 expressions to partitionthem in to equivalen
e 
lasses (also referred to as �o

urren
e sets�). Unfortunately, the authors do notdes
ribe any information how this is best a

omplished.Sin
e LLVM does not expli
itly represent the �SSA version� of a parti
ular �original� program variable,we dis
over versions of the same SSA variable by examining where values are merged by �-nodes in the SSArepresentation. Whenever we witness a �-node in the linear s
an of the program instru
tions2, we 
onsiderthe def of the � and its operands �equivalent� for purposes of hashing expressions to the proper lexi
ally-identi�ed equivalen
e 
lasses. The hashing step 
an be made more e�e
tive through the previous appli
ationof reasso
iation, but we have not fully explored the e�
a
y of su
h reasso
iation, as the LLVM reasso
iationpass has the potential to violate the �-operand deadness invariant required by the SSAPRE algorithm. Fore�
ien
y, we use a Union-Find me
hanism with both Union-By-Rank and Path Compression, so that theruntime 
ost of determining di�erent versions of the same variable is a small �
onstant�3 for any 
on
eivableprogram size.[4℄4.3.2 � InsertionOur implementation uses the demand-driven � Insertion algorithm[1℄. �The resulting algorithm is sparse inthe sense that all the �s inserted are justi�ed either by appearing in the iterated dominan
e frontier of somereal o

urren
e of the expression or by appearing at a point where the expression is partially anti
ipated.�[1℄With LLVM, sparse � insertion is easy. Using the dominan
e frontier information supplied by LLVM,we determine the iterated dominan
e frontier (IDF) for the basi
 blo
k of an expression's real o

urren
e.That is, we get the initial dominan
e frontier for the original basi
 blo
k and then re
urse on ea
h individualbasi
 blo
k in that dominan
e frontier adding to the IDF if it isn't in there already. Also, LLVM providesqui
k a

ess to the de�nitions of operands in expressions, so determining if they were SSA � nodes or not issimple. This involves a re
ursive step on the � node to see if its operands were de�ned by � nodes or not.4.3.3 RenameThe primary purpose of the Rename pass is to assign redundan
y 
lass numbers (RCNs) to ea
h o

urren
ewhi
h pla
es them into equivalen
e 
lasses. Two o

urren
es with equivalent RCNs have the same valuethroughout the program. That is, they are a re�nement of the o

urren
e sets, whi
h are populated withlexi
ally identi�ed expressions. Furthermore, it is straightforward to 
on
lude that any two o

urren
es alonga 
ontrol path with two di�erent RCNs will have a rede�nition of one of their variables at some point betweenthe o

urren
es on that path. The se
ondary purpose of Rename is to 
onstru
t the Fa
tored Redundan
yGraph (FRG). The FRG is de�ned as a 
olle
tion of real o

urren
es, and �± in the same redundan
y 
lass,whi
h represent the nodes. Upward edges in the FRG are from ea
h partially redundant � Operand or RealO

urren
e to their representative o

urren
e.The non-worklist driven approa
h for Rename is modeled after the SSA Renaming algorithm in [5℄,modi�ed slightly to maintain a sta
k for ea
h expression in addition to sta
ks for ea
h variable. The sole1Re
all that two expressions are lexi
ally identi�ed if their respe
tive operands are versions of the same program variable.Thus, a5 + b4 is lexi
ally identi�ed with a0 + b192This is the only time the entire program is visited by SSAPRE3That is, the Inverse A
kerman's fun
tion 4



purpose of having the version sta
ks for the variables is to determine whether or not a new RCN needs tobe assigned. Be
ause performing rename this way requires the examination of many versions of variablesthat may not appear in any PRE 
andidate expression, the algorithm is not sparse. Thus, Kennedy et al.presents an alternative algorithm 
alled Delayed Renaming[1℄.For pure redundan
y 
lass assignment, Delayed Renaming uses a redundan
y 
lass sta
k for the expressionbeing analyzed. Delayed Renaming maintains the invariant that, at any point during analysis, the top of thesta
k represents the 
urrent RCN and the representative o

urren
e node for the expression. Ea
h RCN hasa representative o

urren
e, whi
h means that we 
an safely repla
e other o

urren
es with the same RCNand still maintain the original program semanti
s. This is due to the property expressed above that twoo

urren
es of the same RCN have the same value. A representative o

urren
e is always a real o

urren
eor a � O

urren
e, and � O

urren
es always get a new RCN (sin
e they represent a merge of expression
omputations), so there are only four situations that might arise when attempting to assign a RCN to anO

urren
e:1. The top of the sta
k is a Real O

urren
e and(a) Our 
urrent o

urren
e is a Real(b) Our 
urrent o

urren
e is a � Operand2. The top of the sta
k is a � O

urren
e and(a) Our 
urrent o

urren
e is a Real(b) Our 
urrent o

urren
e is a � OperandDelayed Renaming is performed in two steps. The �rst, Rename1, pro
esses ea
h O

urren
e separately,pushing items onto the sta
k when they are assigned a new RCN, and popping items if they do not dom-inate the 
urrent o

urren
e. If the top of the sta
k is a Real O

urren
e, we have the 
urrent version ofthe variables available and assigning a new RCN is as simple as 
omparing those versions to the 
urrento

urren
e. In LLVM there is no notion of versions, so this is equivalent to performing 
omparisons of ea
hoperand's Value pointer. If the top of the sta
k is a � O

urren
e, the versions of variables are not provided.To resolve this issue, Rename1 uses dominan
e information to determine whi
h RCN is appropriate. Thisdominan
e relation is that if all variable de�nitions of the 
urrent o

urren
e dominate the � O

urren
e atthe top of the sta
k, then the versions are identi
al[1℄.However, there is one small detail overlooked in Rename1. When the 
urrent O

urren
e is a � Operand,there exists no Real O

urren
e whi
h 
an provide us with the 
urrent versions of the variables. In these
ases, Rename1 makes an optimisti
 assumption and assumes that the top of the redundan
y 
lass sta
kprovides its variables versions and therefore is given the same RCN. This assumption is either 
orre
t or the� operand will have no representative o

urren
e, ?. Having no representative o

urren
e means that the� Operand is not partially redundant. Rename1 keeps tra
k of ea
h Real O

urren
e that is de�ned by a �and pla
es them into a set to be pro
essed. This set is pro
essed by Rename2 whi
h 
orre
ts the optimisti
assumption regarding � operands if ne
essary.Rename2 pro
esses ea
h item in the set 
onstru
ted by Rename1. Ea
h of these Real O

urren
es arede�ned by a � and provides the versions of the variables at that � that de�nes it. Rename2 �rst obtainsthe � for the Real O

urren
e and notes what basi
 blo
k it resides in. If there exists a � for any of thevariables of that Real O

urren
e in the basi
 blo
k of its de�ning �, we must double 
he
k our optimisti
assumption made to the � operands.For ea
h � Operand, a Real O

urren
e is manufa
tured with the 
orre
t versions of the variables at thatpoint. The � for the variable provides us with the version to use when manufa
turing this real o

urren
e.The manufa
tured Real O

urren
e is 
ompared to the representative o

urren
e for the � Operands. If therepresentative o

urren
e is a Real O

urren
e then pointers are 
ompared. If it is a � O

urren
e, we 
he
kif all the de�nitions of the variables in the manufa
tured o

urren
e dominate that �. If not in either 
ase,the optimisti
 assumption was indeed wrong and the � Operand is set to ?. If the RCN is determined tobe 
orre
t and the representative o

urren
e is a �, the manufa
tured o

urren
e needs to be added to theset for further pro
essing in order to ensure that the operands of that � are also 
orre
t.5



It is important to note that the paper did not explain how to 
reate this manufa
tured real o

urren
e,nor how its def edge ought to be set. Initially it seemed as simple as 
loning the Real O

urren
e, but laterproved to be more 
ompli
ated be
ause a 
riti
al detail was simply left out in the algorithm. The edge inthe FRG from this manufa
tured o

urren
e must not be an exa
t 
opy, but should be to the representativeo

urren
e for the � Operand being examined. It is 
riti
al to re
ursively 
he
k � O

urren
es and theiroperands as mentioned above.Upon 
ompletion, Delayed Renaming will have assigned RCNs, and 
reated FRGs for ea
h redundan
y
lass of the variable. This �rst pass is 
ru
ial to the su

ess of the algorithm as a whole and during ourimplementation and testing, several bugs have been linked ba
k to this pass due to its 
omplexity.4.3.4 DownSafetyIn order for PRE to insert a 
omputation it must be down safe or fully anti
ipated at the point of insertion[1℄.Down safety is used to ensure that new ex
eptions or redundan
y are not introdu
ed by inserting an ex-pression. Sin
e insertions are only done at � Operands, it is su�
ient to determine down safety only at �O

urren
es. Note that it is only safe to do so be
ause we require 
riti
al edges to be broken. DownSafetyis done in two steps: Initialization and Propagation. In addition to determining DownSafety, this pass alsosets the hasRealUse �ags for � Operand O

urren
es.In order for a � O

urren
e to not be down safe, there must exist a 
ontrol �ow path from the � su
hthat the expression is either not 
omputed prior to an exit or is not 
omputed prior to a rede�nition of one ofits operands[1℄. Be
ause Rename is already pro
essing the O

urren
es in DT preorder, it is an appropriatepla
e to perform the initialization. While the paper gives ex
ellent details on what modi�
ations to make tothe non-worklist driven rename algorithm, it does not give any information on how to modify the delayedrename pass. Therefore, it took a signi�
ant amount of time to 
ome up with the 
orre
t approa
h.All downsafety �ags are initialized to true, whi
h is an optimisti
 assumption. Down safety 
an only beset to false if we see an Exit O

urren
e before a Real O

urren
e, or before a � Operand that is de�nedby a down safe �. The paper suggests that whenever Rename assigns a Real O

urren
e a new RCN, sets a� Operand to ? or en
ounters a program exit, it 
he
ks the top of the sta
k to see if it is a � O

urren
e.If so, it will reset that �'s downsafety �ag. This approa
h seems reasonable, ex
ept in delayed RenamingO

urren
es are only pushed onto the sta
k if they are assigned a new redundan
y 
lass number. However,there are 
ases where a Real O

urren
e is given the same RCN as a � or another Real O

urren
e and
onsequently it is not pushed onto the sta
k. If a Real O

urren
e is not pushed onto the sta
k and thenext O

urren
e is an Exit O

urren
e, it presents a problem during down safety initialization. It will markthe � not down safe be
ause it never witnessed the Real O

urren
e at the top of the sta
k. This is also aproblem for setting hasRealUse �ags, where � Operands will not see a Real O

urren
e on the top of thesta
k and their hasRealUse �ags will be in
orre
tly set to false.It is not su�
ient to have only the sta
k des
ribed in Rename1 and still initialize the downsafety andhasRealUse �ags appropriately. Therefore, we keep another sta
k that keeps tra
k of all of the O

urren
esthat dominate the 
urrent expression and that have been pro
essed. When determining if down safety shouldbe reset or hasRealUse should be set, it looks at the top of this se
ond sta
k. We avoid the problem of missinga Real O

urren
e that was not assigned a new RCN.The se
ond part of downsafety is to propagate a non-down safe value to any �'s that have operands thatuse the non-down safe � as their representative o

urren
e. This is a simple walk of the FRG.4.3.5 WillBeAvailThe WillBeAvail step tells us if a value will be available at a � o

urren
e following insertions. If the � hasits will_be_avail predi
ate set but a value isn't available there, later steps will insert an o

urren
e of theexpression at this point. This, 
ombined with the DownSafety step, gives us the optimal pla
ement for newexpressions in the �nal CFG.The algorithm starts where DownSafety ends. It 
al
ulates if a value 
an be available at a � and whetheror not it 
an be pla
ed �later� in the CFG. The algorithm re
ursively visits ea
h � node either 
learingor setting the 
an_be_avail and later �ags. The will_be_avail predi
ate is determined by the followingequation: 6



will_be_avail = 
an_be_avail ^ :later4.3.6 FinalizeFinalize is responsible for transforming the FRG into a new form that re�e
ts insertions and no � Operand is?. In addition this new form is optimized by removing any extraneous � O

urren
es. The pass is separatedinto two parts: Finalize1 and Finalize2.Finalize1 is responsible for determining whi
h Real O

urren
es should be reloaded from a temporary or
omputed. It uses a STL map to asso
iate redundan
y 
lass numbers to their available de�ning o

urren
e.Ea
h O

urren
e is pro
essed in a preorder dominator tree traversal. Upon en
ountering a Real O

urren
ethe map for an available de�nition is a

essed for its RCN. If no de�nition exists, or the de�nition doesnot dominate the Real O

urren
e, it will be
ome its RCN's de�ning o

urren
e and reset its reload �ag.Otherwise, the Real O

urren
e will set its reload �ag to true and update the FRG by 
hanging its upwardedge to point to the available de�nition. When Finalize1 pro
esses a � O

urren
e, it will only make this �the available de�nition for its RCN if it satis�es will_be_avail.Lastly, when pro
essing � Operands Finalize1 must de
ide whether it is possible to insert an expressionand 
hange its representative o

urren
e to the Inserted O

urren
e. In order to insert an expression, two
onditions must hold[1℄:1. The � that it belongs to must satisfy will_be_avail2. The � Operand must be ?; or hasRealUse �ag is false and its representative o

urren
e is a � thatdoes not satisfy will_be_availIf insert is satis�ed, the 
urrent expression at the pla
e the � Operand o

urs in the CFG should beinserted. While this step seems very straight-forward, no details are provided in the paper about obtainingthe 
orre
t expression to insert. Due to the fa
t that we implemented the worklist driven approa
h, it isine�
ient to pass over the program to �nd the 
orre
t versions of the variables to formulate this insertedexpression. Rather, the proper pla
e to perform this analysis is in the Rename pass. This is a modi�
ation tothe Rename algorithm not mentioned in the paper. When pro
essing the � Operand O

urren
es, Rename2is aware of the 
urrent versions of variables at that point in the program. It is trivial to 
reate the insertedinstru
tion at that point, in the event that it is needed by Finalize in the future. It is a signi�
antly moree�
ient to have this inserted instru
tion 
a
hed, versus obtaining it during the Finalize pass. If insert is notsatis�ed, the � Operand will update its representative o

urren
e to point to the available de�nition.Finalize2 marks ea
h Real O

urren
e that is not reloaded as saved, and removes extraneous � 's tominimize the FRG. While not 
ru
ial to the su

ess of PRE, leaving extraneous � 's requires more spa
e inprogram representation and may impa
t the e�
ien
y of future optimizations[1℄. However, removing theseextraneous � 's requires that the o

urren
es in its RCN refer to a di�erent 
lass whi
h de�nes the value ofthe � O

urren
e.Finalize2 begins by setting ea
h � in the FRG that satis�es will_be_avail to be extraneous. Re
all thatthe save �ags for Real O

urren
es were initialized to false. Finalize2 then looks at ea
h Real O

urren
ethat has its reload �ag set. If it is to be reloaded, it must update its representative o

urren
e by 
allingSet_save(). Set_save() looks at the representative o

urren
e, and if it is a a Real O

urren
e the save �agfor that Real is set to true. Otherwise, if it is a � O

urren
e it will re
ursively 
all Set_save() in ea
hof its � Operand O

urren
es. Lastly, if the representative o

urren
e is a Real or Inserted O

urren
e, itwill de
lare ea
h � in its iterated dominan
e frontier to be extraneous. Finalize2 then needs to remove theextraneous � 's and update the FRG a

ordingly.The algorithm for Finalize2 did not work a

ording to the paper. When removing extraneous � 's in�niteloops were o

urring. This was due to the paper leaving out the detail that on
e a � has been removed andits FRG updated, it should not be pro
essed again.4.3.7 CodeMotionAn algorithm for CodeMotion wasn't given expli
itly in the paper. We 
ame up with the following algorithmbased on the des
ription given in [1℄. 7



for f 2 F in preorder traversal of the Dominator Tree doif f is a real o

urren
eif save(f)generate_save(f)else if reload(f)generate_reload(f)else if f is a �generate_ssa_phi(f)else if f is a � operandgenerate_reload(f)else if f is an inserted o

urren
egenerate_save(f)endAfter the Finalize phase is �nished, we have a set with Real O

urren
es, � nodes, � operand, andInserted O

urren
es.For Real O

urren
es, if they are to be �saved,� we generate a save of that expression to a temporary. InLLVM, this involves 
reating a 
ast of the Real O

urren
e's instru
tion and pla
ing it in the CFG after thatinstru
tion. This will a
t as this instru
tion's �
urrent temporary version.� If the Real O

urren
e shouldbe �reloaded,� then we generate a reload of the instru
tion. This is done by simply taking the o

urren
e'sde�ning instru
tion's 
urrent temporary version and repla
ing the instru
tion with that 
urrent temporary.For � nodes, we noti
e that these are the pla
es where two or more expressions are merged in the CFG.The expressions 
oming in are in registers (Value*s in LLVM). We 
reate an SSA � node to perform thismerging.For � operands, we want to reload the temporary value of its de�ning instru
tion. In our implementa-tion, this doesn't require any modi�
ations sin
e we will use the � operand's de�ning instru
tion's 
urrenttemporary instead of doing an a
tual insertion of 
ode at this point.For Inserted O

urren
es, we need to generate a save of the instru
tion into a temporary variable. Wetreat this in same way we treat a Real O

urren
e that is to be saved.4.4 Limitations & WeaknessesAfter mu
h dis
ussion, it was determined that the SSAPRE algorithm should only need to be run on
e onthe 
ode to gain the full bene�ts of PRE. However, it requires that the o

urren
e sets that are 
olle
tedfor ea
h expression type be topographi
ally sorted and run in order. That is, if an expression in set A usesthe result of an expression in set B, then set B should be run through the algorithm before set A. Ourimplementation doesn't keep this topographi
al ordering.Our algorithm 
urrently does not use the value numbering interfa
e to �nd expressions that produ
ethe same value, but are not lexi
ally equivalent. As a side e�e
t of this, we are unable to take advantageof the load-vn value numbering pass, whi
h would allow our algorithm to transparently handle partiallyredundant loads disambiguated by a user-sele
table alias analysis implementation. We 
onsider this to be astraight-forward extension of our 
urrent implementation, whi
h will be easy to implement on
e the otherde�
ien
ies of the underlying algorithm are �xed.Running our pass on 
ode twi
e results in 
ode whi
h is no longer 
orre
t; unfortunately, this fa
t seemsto be from a latent bug whi
h would require more time to �nd than we had.4.5 StatusThe implementation of SSAPRE is almost 
omplete. At the time of this report, our implementation issu

essfully removing partial redundan
ies properly from a good deal of input 
odes, although there are stillsome bugs present whi
h we did not have time to �x. In parti
ular, we ran into some falsi�ability issues withour input 
odes, in the sense that it was di�
ult to as
ertain whether or not the �-operand deadness invarianthad been maintained by preoptimization passes. As we see it, there are four primary a
tions whi
h must8



o

ur before our implementation is robust enough to be fully integrated into LLVM as a drop-in repla
ementfor GCSE and LICM:� More testing to expose latent bugs and �x the existing ones.� A solution to the �-operand deadness invariant that is 
ompile-time e�
ient and 
orre
t. This isprimarily to relax the stringent requirements imposed by the provided SSAPRE algorithm [1℄. Theauthors of [1℄ do dis
uss the possibility of relaxing this 
riteria, but do not go into detail.� Determine how value numbering information (parti
ularly for load instru
tions) 
an be used to in
reasethe e�
a
y of PRE.� Implement a topologi
ally-ordered expression visitation me
hanism so that our implementation SS-APRE 
an be more aggressive in dis
overing redundan
ies in the input 
ode.5 Issues with PaperWhile the algorithm presented in this paper takes advantage of the sparseness of SSA and 
an perform 
om-parable to LICM and GCSE, it unfortunately has a few drawba
ks. The biggest drawba
k is the requirementthat live ranges of SSA versions of the same variable 
an not overlap. While this is holds true immediatelyafter SSA 
onstru
tion, it is not guaranteed to hold true after several optimizations have been performedon a given program. To assume that PRE is to operate in a va
uum isn't valid. Most likely it will o

urnear the end of a long list of optimizations. Therefore, it is our belief that further resear
h is needed on thisalgorithm to avoid this requirement.The majority of the phases of the SSAPRE algorithm were presented in a fairly straightforward manner.However, there were signi�
ant, 
ru
ial gaps left for the reader to infer and some implementation detailsmissing from the algorithms presented in the �gures but stated in a few lines in the text. In parti
ular itseems as though the Worklist driven se
tion was not detailed. The status of parti
ular phases with respe
tto how useful the paper was is as follows:� Colle
t O

urren
es � No algorithm or details on how to do this.� Rename � No details on what it really means to 
opy a real o

urren
e (in parti
ular, how to set thedef edge properly for manufa
tured real o

urren
es).� Down Safety � No details on how to do initialization in the delayed renaming algorithm� Finalize � We witness an in�nite loop in set_repla
ement for the implementation given in the paper.We have �xed the problem and believe that we are 
orre
t, but there is a bit of un
ertainty present.Furthermore, no information is provided regarding the 
ontents of the inserted o

urren
es. In parti
-ular, the algorithm does not expli
itly state how to 
onstru
t the o

urren
e to insert at a �operandwhen insert is satis�ed.6 Experimental ResultsTable 1 shows how SSAPRE performs on some of the ben
hmarks that work under the LLVM infrastru
ture.Due to some problems with the Spar
 ba
k-end, we used the lli 
ommand line utility to interpret LLVMbyte
ode and 
ount the number of dynami
 instru
tions. In almost all 
ases, we see a marked redu
tion inthe number of dynami
 instru
tions generated, whi
h 
orresponds dire
tly to the elimination of redundant
omputations.The �Raw� 
on�g denotes appli
ation of PRE to raw, unoptimized byte
ode, and �Opt� refers to appli-
ation of PRE after many preoptimization passes4. We 
onsider the Opt version of Olden_perimeter to be4In parti
ular, fun
resolve, globald
e, deadtypeelim, 
onstantmerge, veri�er, deadinstelim, raiseallo
s, indvarsimplify, raise-pointerrefs, mem2reg, simplify
fg, s

p, inst
ombine, aggressived
e, simplify
fg9



Ben
hmark Con�g No PRE PRE % ImprovementmatTranspose Raw 761157 591739 28.63sumarray Raw 3848 3424 12.38Du�sDevi
e Raw 3750 3554 5.51pi Raw 95446 78008 22.35sumarray2d Raw 512250 452464 13.21sumarraymallo
 Raw 4697 4215 11.44test_indvars Raw 724987 583004 24.35Olden_tsp (512) Raw 9206950 8889874 3.57Olden_treeadd (10) Raw 4508523 4295345 4.96Olden_treeadd (10) Opt 1986671 1986671 0.0Olden_health Raw 215848 201590 7.07Olden_perimeter (5) Raw 2728844 2618785 4.20Olden_perimeter (5) Opt 1248856 1310623 -4.71Table 1: Dynami
 instru
tion redu
tion resulting from appli
ation of SSAPREan outlier 5, and presume that no redundan
ies existed in the Opt version Olden_treeadd.Table 2 
ompares the dynami
 instru
tion redu
tion indu
ed by PRE vs. appli
ation of LLVM's GCSEand LICM implementation. % ImprovementBen
hmark Con�g GCSE/LICM PRE (PRE vs LICM)Olden_tsp (512) Raw 7867153 8889874 -11.5Olden_treeadd (10) Raw 4170526 4295345 -2.91Olden_treeadd (10) Opt 1973272 1986671 -0.67Olden_health Raw 172438 201590 -14.46Olden_perimeter Raw 2378062 2618785 -9.19Olden_perimeter Opt 1189636 1310623 -9.23Table 2: Dynami
 instru
tion redu
tion in GCSE/LICM vs. SSAPREUnfortunately, our implementation of SSAPRE doesn't beat the LLVM implementation of GCSE andLICM. We believe this to be be
ause we are not using value numbering information to dis
over more redun-dan
ies than those available to the analysis by 
onsidering only lexi
ally identi�ed expressions. Furthermore,we weren't able to eliminate redundant loads be
ause value numbering information that simply yields equiv-alen
e of load instru
tions is insu�
ient to prove a load redundant and 
orre
tly eliminate the redundan
yin some 
ases. For example, if we were to employ (load) value-numbering analysis, two subsequent loadspre
eded by a related store in the body of a loop nest may be VN-equivalent and both be proven redundantby our implementation, sin
e it wouldn't expli
itly look for pre
eding related stores that ought to preventhoisting.It is our belief that the a proper worklist-driven implementation, wherein the expression equivalen
e
lasses are visited in the proper order would set SSAPRE 
loser to the results obtained via appli
ation ofGCSE and LICM. Additionally, the appli
ation of the inst
ombine pass after SSAPRE would be useful,sin
e SSAPRE introdu
es a lot of 
asts whi
h are able to be folded together (i.e. 
opy propagation). Wespe
ulate that this 
ould be why we witness an in
rease in the dynami
 instru
tion 
ount of Olden_perimeter.5We realize that PRE should never in
rease number of dynami
 instru
tions; unfortunately, we did not have time toinvestigate this issue 10



7 Con
lusionThis wraps up our presentation of the SSAPRE algorithm. We've 
ompleted an initial implementation of thealgorithm presented in the paper. Eventhough it has some de�
ien
ies, we've learned a lot from the pro
essof implementation and have identi�ed several problems with the algorithm as presented in the paper.We've shown that PRE is very good at redu
ing the number of dynami
 instru
tions exe
uted and believePRE will be an importat part of an SSA based optimizer when the algorithm matures.Referen
es[1℄ Kennedy, R., Chan, S., Liu, S., Lo, R., Tu, P., and Chow, F. 1999. Partial Redundan
y Elim-ination in SSA Form. In ACM Transa
tions on Programming Languages and Systems, Vol. 21, No. 3.627-674.[2℄ Morel, E. and Renviose, C. 1979. Global optimization by suppression of partial redundan
ies. InCommuni
ations of the ACM. 96-103.[3℄ Knoop, J., Rüthing, O., Steffen, B. 1992. Lazy Code Motion. In ACM SIGPLAN '92. 224-234.[4℄ Cormen, T., Leiserson, C., Rivest, R, Stein, C. 2001. Introdu
tion to Algorithms, 2nd edition.MIT Press / M
Graw-Hill 2001.[5℄ Cytron, R., Ferrante, J., Rosen, B., Wegman, M., Zade
k, F. 1991. E�
iently ComputingStati
 Single Assignment Form and the Control Dependen
e Graph. In ACM Transa
tions on Program-ming Languages and Systems. Vol 3, 4. 451-490.
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APPENDIXA Lazy Code Motion ExampleWe took the CFG from the Lazy Code Motion paper ([3℄ Figure 1) and 
reated a program in LLVM whi
hhas the same CFG with 
omputations in the same basi
 blo
ks. Using this, we 
an determine if our pass ispla
ing 
omputations in the optimal pla
es predi
ted by [3℄. Though our pass works on all expressions inthe program, for the sake of brevity we will fo
us only on the �
ore� expressions � i.e., those of the form%foo = mul int %a, %b.A.1 Before SSAPRE Pass%.LCA = internal global [ 13 x sbyte ℄ 
"B%d: A = %d\0A\00" ; <[13 x sbyte*℄>%.LCB = internal global [ 13 x sbyte ℄ 
"B%d: B = %d\0A\00" ; <[13 x sbyte*℄>%.LCX = internal global [ 13 x sbyte ℄ 
"B%d: X = %d\0A\00" ; <[13 x sbyte*℄>%.LCY = internal global [ 13 x sbyte ℄ 
"B%d: Y = %d\0A\00" ; <[13 x sbyte*℄>%.LCZ = internal global [ 13 x sbyte ℄ 
"B%d: Z = %d\0A\00" ; <[13 x sbyte*℄>%.LCSUM = internal global [ 17 x sbyte ℄ 
"B%d: Y Sum = %d\0A\00" ; <[17 x sbyte*℄>implementation ; Fun
tions:de
lare int %printf(sbyte*, ...)int %main(int %arg
, sbyte** %argv) {B1: ; No prede
essors!%B1
ond = setge int %arg
, 2%LCA = getelementptr [13 x sbyte℄* %.LCA, long 0, long 0%LCB = getelementptr [13 x sbyte℄* %.LCB, long 0, long 0%LCX = getelementptr [13 x sbyte℄* %.LCX, long 0, long 0%LCY = getelementptr [13 x sbyte℄* %.LCY, long 0, long 0%LCZ = getelementptr [13 x sbyte℄* %.LCZ, long 0, long 0%LCSUM = getelementptr [17 x sbyte℄* %.LCSUM, long 0, long 0br bool %B1
ond, label %B2, label %B4B2:%a0 = 
ast int 1 to int%b0 = 
ast int 3 to intbr label %B3B3:%x0 = mul int %a0, %b0
all int (sbyte*, ...)* %printf( sbyte* %LCX, int 3, int %x0 )br label %B5B4:%a1 = 
ast int 1 to int%b1 = 
ast int 27 to int%x1 = 
ast int 0 to intbr label %B5B5:;; Expe
t Fa
tor node here for expr in B3%a2 = phi int [ %a0, %B3 ℄, [ %a1, %B4 ℄ 12



%b2 = phi int [ %b0, %B3 ℄, [ %b1, %B4 ℄%x2 = phi int [ %x0, %B3 ℄, [ %x1, %B4 ℄
all int (sbyte*, ...)* %printf( sbyte* %LCA, int 5, int %a2 )
all int (sbyte*, ...)* %printf( sbyte* %LCB, int 5, int %b2 )
all int (sbyte*, ...)* %printf( sbyte* %LCX, int 5, int %x2 )%B5
ond = seteq int %b2, 3br bool %B5
ond, label %B6, label %B7B6:%B6
ond = seteq int %arg
, 3br bool %B6
ond, label %B8, label %B9B7:
all int (sbyte*, ...)* %printf( sbyte* %LCA, int 7, int %a2 )
all int (sbyte*, ...)* %printf( sbyte* %LCB, int 7, int %b2 )
all int (sbyte*, ...)* %printf( sbyte* %LCX, int 7, int %x2 )br label %B18B8:%y0 = 
ast int 0 to int%y_sum0 = 
ast int 0 to int%
ount0 = 
ast int %x2 to intbr label %B11B10:%y1 = mul int %a2, %b2 ;; This expression is inside of a loop and;; is invariant to that loop. It should be;; moved to basi
 blo
k B8.%y_sum1 = add int %y_sum2, %y1%
ount1 = sub int %
ount2, 1br label %B11B11:;; Expe
t Fa
tor node here for the expr in B10%y2 = phi int [ %y0, %B8 ℄, [ %y1, %B10 ℄%y_sum2 = phi int [ %y_sum0, %B8 ℄, [ %y_sum1, %B10 ℄%
ount2 = phi int [ %
ount0, %B8 ℄, [ %
ount1, %B10 ℄%B11
ond = setge int %
ount2, 0br bool %B11
ond, label %B10, label %B14B14:
all int (sbyte*, ...)* %printf( sbyte* %LCSUM, int 14, int %y_sum2 )br label %B16B9:br label %B12B12:%B12
ond = seteq int %arg
, 4br bool %B12
ond, label %B15, label %B17B15:%y3 = mul int %a2, %b2 ;; This expression won't be moved out of B1513



;; be
ause this is the earliest position for;; it with respe
t to those exprs and their;; uses in B15 and B16.
all int (sbyte*, ...)* %printf( sbyte* %LCY, int 15, int %y3 )br label %B16B16:;; Expe
t Fa
tor node here for exprs in B10 and B15%y4 = phi int [ %y3, %B15 ℄, [ %y2, %B14 ℄%z0 = mul int %a2, %b2 ;; This expression will be 
onverted into an;; assignment be
ause there are evaluations;; of this expression 
oming in from B8 and;; B15 after the pass is run.
all int (sbyte*, ...)* %printf( sbyte* %LCZ, int 16, int %z0 )br label %B18B17:%x3 = mul int %a2, %b2 ;; This expression will remain here be
ause;; there's no earlier pla
ement for this;; 
omputation that is optimal.
all int (sbyte*, ...)* %printf( sbyte* %LCX, int 17, int %x3 )br label %B18B18:;; Expe
t Fa
tor node here for exprs in B10, B15, B16, B17ret int 0}A.2 Expe
ted ResultsThe Lazy Code Motion paper [3℄ 
on
ludes that the above program should have a 
omputation of mul int%a, %b in basi
 blo
ks B3, B8, B15, and B17 with uses of those 
omputations in basi
 blo
ks B3, B10, B15,B16, and B17 ([3℄ Figure 7). As shown in the next se
tion, the result of running the SSAPRE pass on theabove 
ode does just this.A.3 After SSAPRE Pass%.LCA = internal global [13 x sbyte℄ 
"B%d: A = %d\0A\00" ; <[13 x sbyte℄*> [#uses=1℄%.LCB = internal global [13 x sbyte℄ 
"B%d: B = %d\0A\00" ; <[13 x sbyte℄*> [#uses=1℄%.LCX = internal global [13 x sbyte℄ 
"B%d: X = %d\0A\00" ; <[13 x sbyte℄*> [#uses=1℄%.LCY = internal global [13 x sbyte℄ 
"B%d: Y = %d\0A\00" ; <[13 x sbyte℄*> [#uses=1℄%.LCZ = internal global [13 x sbyte℄ 
"B%d: Z = %d\0A\00" ; <[13 x sbyte℄*> [#uses=1℄%.LCSUM = internal global [17 x sbyte℄ 
"B%d: Y Sum = %d\0A\00" ; <[17 x sbyte℄*> [#uses=1℄implementation ; Fun
tions:de
lare int %printf(sbyte*, ...)int %main(int %arg
, sbyte** %argv) {B1: ; No prede
essors!%B1
ond = setge int %arg
, 2 ; <bool> [#uses=1℄%LCA = getelementptr [13 x sbyte℄* %.LCA, long 0, long 0 ; <sbyte*> [#uses=2℄%LCB = getelementptr [13 x sbyte℄* %.LCB, long 0, long 0 ; <sbyte*> [#uses=2℄%LCX = getelementptr [13 x sbyte℄* %.LCX, long 0, long 0 ; <sbyte*> [#uses=4℄14



%LCY = getelementptr [13 x sbyte℄* %.LCY, long 0, long 0 ; <sbyte*> [#uses=1℄%LCZ = getelementptr [13 x sbyte℄* %.LCZ, long 0, long 0 ; <sbyte*> [#uses=1℄%LCSUM = getelementptr [17 x sbyte℄* %.LCSUM, long 0, long 0 ; <sbyte*> [#uses=1℄br bool %B1
ond, label %B2, label %B4B2: ; preds = %B1%a0 = 
ast int 1 to int ; <int> [#uses=2℄%b0 = 
ast int 3 to int ; <int> [#uses=2℄br label %B3B3: ; preds = %B2%x0 = mul int %a0, %b0 ; <int> [#uses=2℄
all int (sbyte*, ...)* %printf( sbyte* %LCX, int 3, int %x0 ) ; <int>:0 [#uses=0℄br label %B5B4: ; preds = %B1%a1 = 
ast int 1 to int ; <int> [#uses=1℄%b1 = 
ast int 27 to int ; <int> [#uses=1℄%x1 = 
ast int 0 to int ; <int> [#uses=1℄br label %B5B5: ; preds = %B4, %B3%a2 = phi int [ %a0, %B3 ℄, [ %a1, %B4 ℄ ; <int> [#uses=5℄%b2 = phi int [ %b0, %B3 ℄, [ %b1, %B4 ℄ ; <int> [#uses=6℄%x2 = phi int [ %x0, %B3 ℄, [ %x1, %B4 ℄ ; <int> [#uses=3℄
all int (sbyte*, ...)* %printf( sbyte* %LCA, int 5, int %a2 ) ; <int>:1 [#uses=0℄
all int (sbyte*, ...)* %printf( sbyte* %LCB, int 5, int %b2 ) ; <int>:2 [#uses=0℄
all int (sbyte*, ...)* %printf( sbyte* %LCX, int 5, int %x2 ) ; <int>:3 [#uses=0℄%B5
ond = seteq int %b2, 3 ; <bool> [#uses=1℄br bool %B5
ond, label %B6, label %B7B6: ; preds = %B5%B6
ond = seteq int %arg
, 3 ; <bool> [#uses=1℄br bool %B6
ond, label %B8, label %B9B7: ; preds = %B5
all int (sbyte*, ...)* %printf( sbyte* %LCA, int 7, int %a2 ) ; <int>:4 [#uses=0℄
all int (sbyte*, ...)* %printf( sbyte* %LCB, int 7, int %b2 ) ; <int>:5 [#uses=0℄
all int (sbyte*, ...)* %printf( sbyte* %LCX, int 7, int %x2 ) ; <int>:6 [#uses=0℄br label %B18B8: ; preds = %B6%y0 = 
ast int 0 to int ; <int> [#uses=2℄%T_3 = 
ast int %y0 to int ; <int> [#uses=1℄%
ount0 = 
ast int %x2 to int ; <int> [#uses=1℄%y1_
lone = mul int %a2, %b2 ; <int> [#uses=1℄%T_0 = 
ast int %y1_
lone to int ; <int> [#uses=3℄br label %B11B10: ; preds = %B11%y_sum1 = add int %y_sum2, %T_0 ; <int> [#uses=1℄%
ount1 = sub int %
ount2, 1 ; <int> [#uses=1℄br label %B11 15



B11: ; preds = %B10, %B8%y2 = phi int [ %y0, %B8 ℄, [ %T_0, %B10 ℄ ; <int> [#uses=1℄%y_sum2 = phi int [ %T_3, %B8 ℄, [ %y_sum1, %B10 ℄ ; <int> [#uses=2℄%
ount2 = phi int [ %
ount0, %B8 ℄, [ %
ount1, %B10 ℄ ; <int> [#uses=2℄%B11
ond = setge int %
ount2, 0 ; <bool> [#uses=1℄br bool %B11
ond, label %B10, label %B14B14: ; preds = %B11
all int (sbyte*, ...)* %printf( sbyte* %LCSUM, int 14, int %y_sum2 ) ; <int>:7 [#uses=0℄br label %B16B9: ; preds = %B6br label %B12B12: ; preds = %B9%B12
ond = seteq int %arg
, 4 ; <bool> [#uses=1℄br bool %B12
ond, label %B15, label %B17B15: ; preds = %B12%y3 = mul int %a2, %b2 ; <int> [#uses=3℄%T_2 = 
ast int %y3 to int ; <int> [#uses=1℄
all int (sbyte*, ...)* %printf( sbyte* %LCY, int 15, int %y3 ) ; <int>:8 [#uses=0℄br label %B16B16: ; preds = %B15, %B14%y4 = phi int [ %y3, %B15 ℄, [ %y2, %B14 ℄ ; <int> [#uses=0℄%T_1 = phi int [ %T_2, %B15 ℄, [ %T_0, %B14 ℄ ; <int> [#uses=1℄
all int (sbyte*, ...)* %printf( sbyte* %LCZ, int 16, int %T_1 ) ; <int>:9 [#uses=0℄br label %B18B17: ; preds = %B12%x3 = mul int %a2, %b2 ; <int> [#uses=1℄
all int (sbyte*, ...)* %printf( sbyte* %LCX, int 17, int %x3 ) ; <int>:10 [#uses=0℄br label %B18B18: ; preds = %B17, %B16, %B7ret int 0}
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B Multiply Nested LoopsIn one pass of the algorithm, SSAPRE 
an �hoist� 
ode whi
h is loop invariant out of the innermost loop ofa loop nest to its proper pla
e. Our example is a program that has a triply nested loop whi
h has two loopinvariant instru
tions in it.B.1 Before SSAPRE Pass%.LCASUM = internal global [ 17 x sbyte ℄ 
"B%d: A Sum = %d\0A\00" ; <[17 x sbyte*℄>%.LCBSUM = internal global [ 17 x sbyte ℄ 
"B%d: B Sum = %d\0A\00" ; <[17 x sbyte*℄>%.LCCSUM = internal global [ 17 x sbyte ℄ 
"B%d: C Sum = %d\0A\00" ; <[17 x sbyte*℄>implementation ; Fun
tions:de
lare int %printf(sbyte*, ...)int %main(int %arg
, sbyte** %argv) {B1: ; No prede
essors!%x = 
ast int 27 to float%y = 
ast int 3 to float%r = 
ast int 927 to float%i0 = 
ast int 10 to int%asum0 = 
ast int 0 to int%bsum0 = 
ast int 0 to int%
sum0 = 
ast int 0 to int%LCASUM = getelementptr [17 x sbyte℄* %.LCASUM, long 0, long 0%LCBSUM = getelementptr [17 x sbyte℄* %.LCBSUM, long 0, long 0%LCCSUM = getelementptr [17 x sbyte℄* %.LCCSUM, long 0, long 0br label %B2B2:%i2 = phi int [ %i0, %B1 ℄, [ %i1, %B2_end ℄%asum2 = phi int [ %asum0, %B1 ℄, [ %asum1, %B2_end ℄%bsum2 = phi int [ %bsum0, %B1 ℄, [ %bsum1, %B2_end ℄%
sum2 = phi int [ %
sum0, %B1 ℄, [ %
sum1, %B2_end ℄%j0 = 
ast int 10 to int%a = mul int %i2, 10%asum1 = add int %asum2, %abr label %B3B3:%j2 = phi int [ %j0, %B2 ℄, [ %j1, %B3_end ℄%bsum3 = phi int [ %bsum2, %B2 ℄, [ %bsum1, %B3_end ℄%
sum3 = phi int [ %
sum2, %B2 ℄, [ %
sum1, %B3_end ℄%k0 = 
ast int 10 to int%b = mul int %j2, 10%bsum1 = add int %bsum3, %bbr label %B4B4:%k2 = phi int [ %k0, %B3 ℄, [ %k1, %B4 ℄%
sum4 = phi int [ %
sum3, %B3 ℄, [ %
sum1, %B4 ℄%z = div float %x, %y ;; Loop invariant 
omputation: This should be;; moved to before the outer-most loop.17



;;%q = mul float %r, %z ;; Loop invariant 
omputation: This should;; also be moved to before the outer-most;; loop, but this doesn't o

ur be
ause we;; do not keep a topologi
al sort of the;; o

urren
e sets.%
 = mul int %k2, 10%
sum1 = add int %
sum4, %
%k1 = sub int %k2, 1%b4
ond = setgt int %k1, 0br bool %b4
ond, label %B4, label %B3_endB3_end:%j1 = sub int %j2, 1%b3
ond = setgt int %j1, 0br bool %b3
ond, label %B3, label %B2_endB2_end:%i1 = sub int %i2, 1%b2
ond = setgt int %i1, 0br bool %b2
ond, label %B2, label %B_exitB_exit:%q2 = mul float %q, %q
all int (sbyte*, ...)* %printf( sbyte* %LCASUM, int 8, int %asum1 )
all int (sbyte*, ...)* %printf( sbyte* %LCBSUM, int 8, int %bsum1 )
all int (sbyte*, ...)* %printf( sbyte* %LCCSUM, int 8, int %
sum1 )ret int 0}B.2 Expe
ted ResultsWe expe
t both loop invariant instru
tions %z = div float %x, %y and %q = mul float %r, %z to bepla
ed in basi
 blo
k B1. However, as mentioned in the paper, this requires an ordering on the o

urren
esets whi
h our implementation doesn't enfor
e. So, as shown in the next se
tion, only one instru
tion ismoved to basi
 blo
k B1.B.3 After SSAPRE Pass%.LCASUM = internal global [17 x sbyte℄ 
"B%d: A Sum = %d\0A\00" ; <[17 x sbyte℄*> [#uses=1℄%.LCBSUM = internal global [17 x sbyte℄ 
"B%d: B Sum = %d\0A\00" ; <[17 x sbyte℄*> [#uses=1℄%.LCCSUM = internal global [17 x sbyte℄ 
"B%d: C Sum = %d\0A\00" ; <[17 x sbyte℄*> [#uses=1℄implementation ; Fun
tions:de
lare int %printf(sbyte*, ...)int %main(int %arg
, sbyte** %argv) {B1: ; No prede
essors!%x = 
ast int 27 to float ; <float> [#uses=1℄%y = 
ast int 3 to float ; <float> [#uses=1℄%r = 
ast int 927 to float ; <float> [#uses=1℄%i0 = 
ast int 10 to int ; <int> [#uses=2℄%T_1 = 
ast int %i0 to int ; <int> [#uses=2℄18



%asum0 = 
ast int 0 to int ; <int> [#uses=2℄%T_2 = 
ast int %asum0 to int ; <int> [#uses=2℄%LCASUM = getelementptr [17 x sbyte℄* %.LCASUM, long 0, long 0 ; <sbyte*> [#uses=1℄%LCBSUM = getelementptr [17 x sbyte℄* %.LCBSUM, long 0, long 0 ; <sbyte*> [#uses=1℄%LCCSUM = getelementptr [17 x sbyte℄* %.LCCSUM, long 0, long 0 ; <sbyte*> [#uses=1℄%z_
lone_
lone_
lone = div float %x, %y ; <float> [#uses=1℄%T_0 = 
ast float %z_
lone_
lone_
lone to float ; <float> [#uses=1℄br label %B2B2: ; preds = %B2_end.B2_
rit_edge, %B1%i2 = phi int [ %i0, %B1 ℄, [ %i1, %B2_end.B2_
rit_edge ℄ ; <int> [#uses=2℄%asum2 = phi int [ %asum0, %B1 ℄, [ %asum1, %B2_end.B2_
rit_edge ℄ ; <int> [#uses=1℄%bsum2 = phi int [ %T_2, %B1 ℄, [ %bsum1, %B2_end.B2_
rit_edge ℄ ; <int> [#uses=1℄%
sum2 = phi int [ %T_2, %B1 ℄, [ %
sum1, %B2_end.B2_
rit_edge ℄ ; <int> [#uses=1℄%a = mul int %i2, 10 ; <int> [#uses=1℄%asum1 = add int %asum2, %a ; <int> [#uses=2℄br label %B3B3: ; preds = %B3_end.B3_
rit_edge, %B2%j2 = phi int [ %T_1, %B2 ℄, [ %j1, %B3_end.B3_
rit_edge ℄ ; <int> [#uses=2℄%bsum3 = phi int [ %bsum2, %B2 ℄, [ %bsum1, %B3_end.B3_
rit_edge ℄ ; <int> [#uses=1℄%
sum3 = phi int [ %
sum2, %B2 ℄, [ %
sum1, %B3_end.B3_
rit_edge ℄ ; <int> [#uses=1℄%b = mul int %j2, 10 ; <int> [#uses=1℄%bsum1 = add int %bsum3, %b ; <int> [#uses=3℄br label %B4B4: ; preds = %B4.B4_
rit_edge, %B3%k2 = phi int [ %T_1, %B3 ℄, [ %k1, %B4.B4_
rit_edge ℄ ; <int> [#uses=2℄%
sum4 = phi int [ %
sum3, %B3 ℄, [ %
sum1, %B4.B4_
rit_edge ℄ ; <int> [#uses=1℄%q = mul float %r, %T_0 ; <float> [#uses=2℄%
 = mul int %k2, 10 ; <int> [#uses=1℄%
sum1 = add int %
sum4, %
 ; <int> [#uses=4℄%k1 = sub int %k2, 1 ; <int> [#uses=2℄%b4
ond = setgt int %k1, 0 ; <bool> [#uses=1℄br bool %b4
ond, label %B4.B4_
rit_edge, label %B3_endB4.B4_
rit_edge: ; preds = %B4br label %B4B3_end: ; preds = %B4%j1 = sub int %j2, 1 ; <int> [#uses=2℄%b3
ond = setgt int %j1, 0 ; <bool> [#uses=1℄br bool %b3
ond, label %B3_end.B3_
rit_edge, label %B2_endB3_end.B3_
rit_edge: ; preds = %B3_endbr label %B3B2_end: ; preds = %B3_end%i1 = sub int %i2, 1 ; <int> [#uses=2℄%b2
ond = setgt int %i1, 0 ; <bool> [#uses=1℄br bool %b2
ond, label %B2_end.B2_
rit_edge, label %B_exitB2_end.B2_
rit_edge: ; preds = %B2_end 19



br label %B2B_exit: ; preds = %B2_end%q2 = mul float %q, %q ; <float> [#uses=0℄
all int (sbyte*, ...)* %printf( sbyte* %LCASUM, int 8, int %asum1 ) ; <int>:0 [#uses=0℄
all int (sbyte*, ...)* %printf( sbyte* %LCBSUM, int 8, int %bsum1 ) ; <int>:1 [#uses=0℄
all int (sbyte*, ...)* %printf( sbyte* %LCCSUM, int 8, int %
sum1 ) ; <int>:2 [#uses=0℄ret int 0}

20



C The Role of LaterIn the paper, they dis
uss the role of the later predi
ate on a � node. In essen
e, a � node 
an satisfydown_safe and 
an_be_avail but if it also satis�es later, then we won't use that � to insert expressions.Doing so would not eliminate any redundan
ies and would unne
essarily extend the live range of the tem-porary variable.[1℄ The example given here models the CFG given in the paper ([1℄ Fig. 9).C.1 Before SSAPRE Passimplementation ; Fun
tions:int %main(int %arg
, sbyte** %argv) {BBegin:%a1 = 
ast int 37 to int%b1 = 
ast int 27 to int%
ond = setle int %arg
, 2br bool %
ond, label %B1, label %B0B0:%bb0
ond = setle int %arg
, 3br bool %bb0
ond, label %B3, label %B2B1:%x0 = add int %a1, %b1br label %B3B2:;; If later were false for the PHI node in B5, we would expe
t an;; inserted 
omputation of a + b here.%a2 = 
ast int 927 to intbr label %B5B3:;; Expe
t PHI node here for the expr in B1%bb3
ond = seteq int %arg
, 2br bool %bb3
ond, label %BExit, label %B4B4:;; If later were false for the PHI node in B5, we would expe
t an;; inserted 
omputation of a + b here.br label %B5B5:;; Expe
t PHI node here for the expr in B1%a3 = phi int [ %a1, %B4 ℄, [ %a2, %B2 ℄, [ %a3, %B5 ℄%bb4
ond = seteq int %arg
, 0br bool %bb4
ond, label %B6, label %B5B6:%x1 = add int %a3, %b1br label %BExitBExit:ret int 0 21



}C.2 Expe
ted ResultsWe expe
t none of the the add int %a, %b expressions to be moved sin
e the � in B3 isn't down_safe andthe � in B5 satis�es later. As shown in the next se
tion, that is what o

urs.C.3 After SSAPRE Passimplementation ; Fun
tions:int %main(int %arg
, sbyte** %argv) {BBegin: ; No prede
essors!%a1 = 
ast int 37 to int ; <int> [#uses=2℄%b1 = 
ast int 27 to int ; <int> [#uses=2℄%
ond = setle int %arg
, 2 ; <bool> [#uses=1℄br bool %
ond, label %B1, label %B0B0: ; preds = %BBegin%bb0
ond = setle int %arg
, 3 ; <bool> [#uses=1℄br bool %bb0
ond, label %B0.B3_
rit_edge, label %B2B0.B3_
rit_edge: ; preds = %B0br label %B3B1: ; preds = %BBegin%x0 = add int %a1, %b1 ; <int> [#uses=0℄br label %B3B2: ; preds = %B0%a2 = 
ast int 927 to int ; <int> [#uses=1℄%bb4
ond_
lone1 = seteq int %arg
, 0 ; <bool> [#uses=1℄%T_2 = 
ast bool %bb4
ond_
lone1 to bool ; <bool> [#uses=1℄br label %B5B3: ; preds = %B1, %B0.B3_
rit_edge%bb3
ond = seteq int %arg
, 2 ; <bool> [#uses=1℄br bool %bb3
ond, label %B3.BExit_
rit_edge, label %B4B3.BExit_
rit_edge: ; preds = %B3br label %BExitB4: ; preds = %B3%bb4
ond_
lone = seteq int %arg
, 0 ; <bool> [#uses=1℄%T_0 = 
ast bool %bb4
ond_
lone to bool ; <bool> [#uses=1℄br label %B5B5: ; preds = %B5.B5_
rit_edge, %B4, %B2%a3 = phi int [ %a1, %B4 ℄, [ %a2, %B2 ℄, [ %a3, %B5.B5_
rit_edge ℄ ; <int> [#uses=2℄%T_1 = phi bool [ %T_0, %B4 ℄, [ %T_2, %B2 ℄, [ %T_1, %B5.B5_
rit_edge ℄ ; <bool> [#uses=2℄br bool %T_1, label %B6, label %B5.B5_
rit_edgeB5.B5_
rit_edge: ; preds = %B5br label %B5 22



B6: ; preds = %B5%x1 = add int %a3, %b1 ; <int> [#uses=0℄br label %BExitBExit: ; preds = %B6, %B3.BExit_
rit_edgeret int 0}
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