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1 Introduction and Background

The LLVM compiler infrastructure [11] employs an intermediate representation
which is similar to a typed assembly language. LLVM’s representation is fully
typed, RISC-like, has data-flow information in Static Single-Assignment form
built-in, and is powerful enough to express any C or C++ program, type-safe or
otherwise. It is superior to typical bytecode and machine-code formats because
it retains sophisticated control-flow and type information about the values used
in each and every instruction of every function, thus making useful compiler
analyses and optimizations cheaper to perform. The LLVM system includes
static and dynamic (just-in-time) compilers, as well as a small and growing
suite of program analysis tools and optimizations.

Traditional architectures use the hardware instruction set for dual purposes:
first, as a language in which to express the semantics of software programs,
and second, as a means for controlling the hardware. The thesis of the Low-
Level Virtual Architecture (LLVA) [1] project is to decouple these two uses from
one another, allowing software to be expressed in a semantically richer, more
easily-manipulated format, and allowing for more powerful optimizations and
whole-program analyses directly on compiled code.

The semantically rich format we use in LLVA, which is based on the LLVM
compiler infrastructure’s intermediate representation, can best be understood
as a “virtual instruction set”. This means that while its instructions are closely
matched to those available in the underlying hardware, they may not correspond
exactly to the instructions understood by the underlying hardware. These un-
derlying instructions we call the “implementation instruction set.” Between the
two layers lives the translation layer, typically implemented in software. The
structure of this two-layer architecture can be seen in Figure 1.

In this project, we have taken our next logical steps in this effort by (1)
porting the entire Linux kernel to LLVA, and (2) engineering an environment in
which a kernel can be run directly from its LLVM bytecode representation —
essentially, a minimal, but complete, emulated computer system with LLVA as
its native instruction set.1 The emulator we have invented, llva-emu, executes

1We use “LLVA instruction set” and “LLVM bytecode” interchangeably in this paper; there
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Figure 1: The LLVA execution manager with the virtual and implementation
ISAs.

kernel code by translating programs “just-in-time” from the LLVM bytecode
format to the processor’s native instruction set. In Figure 1, you can conceive
of llva-emu as representing the “Processor-specific translator” and “Hardware
Processor” layers combined.

Previous work has addressed some of the same issues — that is, of transpar-
ently running programs compiled to LLVA; however, those efforts, including the
Jello JIT, which evolved into the standard LLVM JIT, and thence into LLEE,
have been defined to work only on user-level programs [1, 12]. The current
project has extended this work to apply to arbitrary kernel code or standalone
(e.g., embedded-system) code.

1.1 Details

1.1.1 OS Functionality

Operating-system kernels necessarily involve machine-dependent code, for ma-
nipulating hardware structures involved in process and memory management,
for doing I/O in device drivers, etc. These machine-dependent functions re-
quire special handling in the LLVM representation, which is largely machine-
independent. The structure of the LLVM bytecode permits the addition of
so-called “intrinsic functions”, each of which corresponds to a piece of func-
tionality that must be handled idiosyncratically for each supported processor
architecture. One of the outcomes of this project is the relatively small set of
intrinsic functions that we needed in order to boot Linux to a point where it
can handle interrupts and process I/O.

1.1.2 Environment

The environment in which we run our ported OS kernel, called llva-emu, can be
understood as a simple whole-machine simulator similar to Virtutech’s Simics or

do exist minor differences, but they are not relevant to this project.
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Stanford’s SimOS [14]. We built it by extending our existing execution engine
for LLVA bytecode, based on a just-in-time compiler and bytecode loader, with
simple emulated devices and facilities for supporting operating-system kernel
code. By leveraging our existing user-level execution engine, we are able to
use the host operating system’s ordinary process mechanisms and APIs to pro-
vide the emulated LLVA machine with memory, emulated I/O devices, timer
interrupts, and the like.

This implementation scheme is superficially similar to the User-Mode Linux
project, but with some important differences: 1) the LLVA Linux kernel does
not depend on the existence of a host operating system – only our current
implementation of LLVA-emu does; 2) the LLVA Linux kernel is compiled to a
different ISA (namely, the LLVA virtual ISA) than the host operating system
kernel.

2 Design & implementation

Our work on this project can be broken down into several tasks:

1. Porting Linux to LLVA

2. Compiling and linking the entire Linux kernel using the LLVM C front-end
and compilation system

3. Implementing operating-system support “intrinsics” in LLVA-emu

4. Implementing virtual emulated devices in LLVA-emu

2.1 Porting Linux to LLVA

This task involved implementing all the architecture-specific hooks and header
files which are common to all architectures. These are the files kept in the
subdirectories linux/arch/asm-llvm and linux/arch/llvm of the Linux source
tree. We accomplished this task by following two general strategies:

1. We removed architecture-specific and processor-specific inline assembly
code from the kernel, and replaced it, only wherever it was necessary to
do so, with LLVA intrinsic functions.

2. We replaced architecture-specific inline assembly code with C equivalents
in some cases. We typically accomplished this by adapting portions of
Linux’s existing Intel x86, IBM S/390, and MIPS implementations of
architecture-specific hooks.

It is important to understand that LLVA’s intrinsic functions are external to
the Linux kernel and are implemented by our emulator for the LLVA. Because we
have a just-in-time compilation framework, and because these intrinsic functions
are specially identified as such to the framework, they can be implemented using
actual function calls, or expanded directly into sequences of instructions by the
code generator.
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2.2 Compiling Linux to LLVM bytecode

Initially, the majority of our work went into compiling the Linux kernel with
the LLVM C front-end while simultaneously porting architecture-specific code in
Linux to use LLVA intrinsic functions. One of the setbacks, but also benefits for
our LLVM compiler infrastructure was the fact that Linux source code exercised
our compiler in ways we hadn’t yet tested, and so we discovered bugs in our C
front-end and in our optimizers that prevented compilation. As a side benefit
from this project, we now have a more robust compiler infrastructure and are
now able to compile, link, run interprocedural optimizations, and generate code
for the entire Linux kernel under the LLVM system, preserving full type and
data-flow information in the final output.

Our implementation of LLVA-emu uses an execution engine based on the
just-in-time compilation model in LLVM, using the X86 code generator for na-
tive execution. We used the standard LLVM just-in-time bytecode loader to
load the kernel, which allows us to load from disk and generate code only for
those portions of the kernel which are actually executed, and not before they
are actually needed.

2.3 Intrinsic functions

As we stated above, our architecture’s virtual instruction set is closely related to
the LLVM compiler’s intermediate representation. Although that representation
is sufficient to represent arbitrary user-level code, it does not specify how system-
level code can interface directly with the hardware.

Our solution to porting system code is to define a set of intrinsic functions
which encapsulate the functionality that an OS kernel would expect from the
architecture that it is running on, but expressed in such a way that makes them
easy to implement on a variety of architectures. Put another way, we found
that a clean way to add functionality to our LLVA definition was as follows:
rather than adding new instructions to read or write architecture-specific state,
we added intrinsic functions. These look like ordinary function calls in the
LLVM bytecode, but their names contain a special “llvm.” tag, and they can
be intercepted by the runtime code generator and translated into real function
calls, or sequences of arbitrary machine code, as necessary.

The intrinsic functions we added are of two sorts: a higher-level sort, which
tries harder to abstract away details of the hardware which are not very interest-
ing even to the operating system, such as the details of how low-level interrupt
handlers are structured, and a lower-level sort, which preserves architecture-
specific device I/O functionality, at the expense of abstraction.

Examples of the higher-level sort include:

1. registerInterruptHandler(func) - This intrinsic function changes the
processor’s current interrupt handling mechanism so that future interrupts
will be handled by a call to func. func is passed an integer ID number
which discriminates among the different possible types of interrupts that
the hardware understands; this ID number is implementation-specific.
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2. timerInit() - This intrinsic function enables the on-board timer chip and
causes timer interrupts to be generated at the default frequency; they will
be delivered to the currently-registered interrupt handler if one exists.

An example of the lower-level sort is byteOutput(port, byte). This intrinsic
function causes byte to be output to I/O port number port. The result of doing
so, and the assignment of port numbers to devices, are both implementation-
specific. Input can be accomplished by a similar byteInput() intrinsic function.

One of the ways in which these intrinsic functions can be considered as
multiple levels of hardware abstraction is as follows: if you assigned a port
number to the timer chip, and defined how this timer chip should operate in
terms of byte input and output operations, it would be possible to implement
timerInit() in terms of byteInput and byteOutput instructions. Different
kernels may find different levels of abstraction more appropriate. In Linux,
for example, the higher-level intrinsics have been completely sufficient, but the
lower-level ones may be more useful for back-porting device drivers.

Thus, an OS running on LLVA can be ported to another LLVA-compatible
machine without having to change instruction sets. This also preserves the
semantics of the functionality of reading and writing architected state: it is
correct to conservatively assume that a call to an external function (such as
one that is only available in the JIT compiler) to have arbitrary side-effects
and hence not optimize code across the boundaries of that call, thus making it
atomic.

It is important to point out that we have not attempted to build a system
where Linux can be compiled once and run on any arbitrary machine. LLVA
does not abstract away all possible combinations of device configurations that
may be present in a machine. This is to say that if you compile Linux for an
LLVA machine with a PCI bus, and you try to load it on a machine with a VME
bus, the LLVA layer will not solve the problem of not having the right driver
for you.

2.4 Virtual emulated devices

The virtual emulated hardware provided by LLVA-emu is relatively minimal but
just complete enough to run Linux on. That is, it provides a CPU (with the
LLVA instruction set), memory, a serial console, and a timer chip that generates
periodic timer interrupts.

A virtual disk device is planned, but not yet implemented. It should be
possible to boot all the way to user-level by using a RAM disk instead of a hard
disk, so the virtual disk device is not crucial even for our long-term plans.

3 Evaluation & results

Our goal was to boot Linux to the point that it calculates the BogoMIPS value
for the current system, which is a calibration of the delay loop and a rough
estimate of the speed of the processor on which Linux is running.
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We have achieved that goal. Here’s an example session using LLVA-emu
with Linux compiled to bytecode:

% llva-emu vmlinux

Linux version 2.4.22 (brukman@zion.cs.uiuc.edu) (gcc version 3.4-llvm

20030827 (experimental)) #46 Wed Dec 10 17:56:53 CST 2003

LLVA-emu command line: ""

Kernel command line:

WARNING: trap init() not yet implemented for llvm

Calibrating delay loop... 6173.49 BogoMIPS

4 Related Work

Virtual machines of different kinds have been widely used in many software
systems, including operating systems (OS), language implementations, and OS
and hardware emulators. These uses do not define a Virtual ISA at the hardware
level, and therefore do not directly benefit processor design (though they may
influence it).

We know of four previous examples of virtual instruction set computer
(VISC) architectures: the IBM System/38 and AS/400 family [4], the DAISY
project at IBM Research [7], Smith et al.’s proposal for Codesigned Virtual
Machines in the Strata project [15], and Transmeta’s Crusoe family of proces-
sors [10, 5]. All of these distinguish the virtual and physical ISAs as a funda-
mental processor design technique. To our knowledge, however, none except the
IBM S/38 and AS/400 have designed a virtual instruction set for use in such
architectures.

The IBM AS/400, building on early ideas in the S/38, defined a Machine
Interface (MI) that was very high-level, abstract and hardware-independent
(e.g., it had no registers or storage locations). It was the sole interface for
all application software and for much of OS/400. Their MI was targeted at a
particular operating system (the OS/400), it was designed to be implemented
using complex operating system and database services and not just a translator,
and was designed to best support a particular workload class, e.g., commercial
database-driven workloads. It also had a far more complex instruction set than
ours (or any CISC processors), including string manipulation operations, and
“object” manipulation operations for 15 classes of objects (e.g., programs and
files).

In contrast, our V-ISA is philosophically closer to modern processor in-
struction sets in being a minimal, orthogonal, load/store architecture; it is
OS-independent and requires no software other than a translator; and it is
designed to support modern static and dynamic optimization techniques for
general-purpose software.

DAISY [7] developed a dynamic translation scheme for emulating multi-
ple existing hardware instruction sets (PowerPC, Intel IA-32, and S/390) on a
VLIW processor. They developed a novel translation scheme with global VLIW
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scheduling fast enough for online use, and hardware extensions to assist the
translation. Their translator operated on a page granularity. Both the DAISY
and Transmeta translators are stored entirely in ROM on-chip.

Transmeta’s Crusoe uses a dynamic translation scheme to emulate Intel IA-
32 instructions on a VLIW hardware processor [10]. The hardware includes
important supporting mechanisms such as shadowed registers and a gated store
buffer for speculation and rollback recovery on exceptions, and alias detection
hardware in the load/store pipeline. Their translator, called Code Morphing
Software (CMS), exploits these hardware mechanisms to reorder instructions
aggressively in the presence of precise exceptions, memory dependences, and self-
modifying code (as well as memory-mapped I/O) [5]. They use a trace-driven
reoptimization scheme to optimize frequently executed dynamic sequences of
code.

Smith et al. in the Strata project have recently but perhaps most clearly ar-
ticulated the potential benefits of VISC processor designs, particularly the bene-
fits of co-designing the translator and a hardware processor with an implementation-
dependent ISA [15]. They describe a number of examples illustrating the flex-
ibility hardware designers could derive from this strategy. They have also de-
veloped several hardware mechanisms that could be valuable for implementing
such architectures, including relational profiling [8], a microarchitecture with
a hierarchical register file for instruction-level distributed processing [9], and
hardware support for working set analysis [6]. They do not propose a specific
choice of V-ISA, but suggest that one choice would be to use Java VM as the
V-ISA.

Previous authors have developed Typed Assembly Languages [13, 2] with
goals that generally differ significantly from ours. Their goals are to enable com-
pilation from strongly typed high-level languages to typed assembly language,
enabling sound (type-preserving) program transformations, and to support pro-
gram safety checking. Their type systems are higher-level than ours, because
they attempt to propagate significant type information from source programs.
In comparison, our V-ISA uses a much simpler, low-level type system aimed at
capturing the common low-level representations and operations used to imple-
ment computations from high-level languages. It is also designed to to support
arbitrary non-type-safe code efficiently, including operating system and kernel
code.

Binary translation has been widely used to provide binary compatibility
for legacy code. For example, the FX!32 tool uses a combination of online
interpretation and offline profile-guided translation to execute Intel IA-32 code
on Alpha processors [3]. Unlike such systems, a VISC architecture makes binary
translation an essential part of the design strategy, using it for all codes, not
just legacy codes.

4.1 Separation of Work

We split the coding of the LLVA emulator evenly amongst ourselves, and paral-
lellized our work on finely-grained chunks that were independent of each other
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– timing and console driver. We employed pair-programming and eXtreme Pro-
gramming techniques on the initial part of getting the Linux kernel compiled
under the LLVM C front-end, replacing X86/MIPS assembly sequences with C
code and LLVM-specific intrinsic functions.

5 Conclusions

Our proof of concept shows that it is possible to run an operating system (at
least to some extent) on a virtual architecture via dynamic run-time translation.
This is due to our abstraction of architecture-specific services with our intrinsic
functions.

This is a good starting point for our continued work for a complete definition
and design of our virtual architecture and porting the entire operating system
Linux (and possibly, others) to our virtual architecture.

Clearly, we were able to do this because of the fact that Linux has been
ported to so many different platforms that the authors took the time to separate
the platform-specific code into appropriate places in the source distribution to
make it easier to port to new architectures, such as our LLVA.

5.1 Limitations and Future Work

We have not performed a complete port of Linux to LLVA. A lot of work remains
to completely boot Linux to the point where it can run user-level applications.
Many design issues loom ahead, such as abstraction of the memory management
features of the processor, and porting additional device drivers to work with
LLVA intrinsics. However, our initial experience suggests that the problems of
porting drivers to the new interface will be relatively easily solved; the key is
to define the right intrinsics to use, and the right layer of abstraction, for each
new bit of functionality.

Once we have successfully abstracted the memory-management hardware
and implemented a few additional device drivers, we should be able to boot
Linux all the way to multi-user mode. This having been done, we will then
attempt to “transplant” the LLVA execution environment onto bare hardware,
replacing our virtual emulated devices with real devices implemented in hard-
ware. The remaining bits of LLVA-emu in this situation would correspond to the
just-in-time translator and the support for operating-system intrinsic functions.
This is our long-term project.
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