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Computing tradeoffs

• Different kinds of computational problems

• Different kind of architecture solutions
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Introduction to High-
Level Synthesis



Hardware description languages
• Complex digital systems are made of basic 

logic elements (AND, NOT, FF, etc.)

• Designers use Hardware Description 
Languages to describe logic blocks

• Use C-like syntax to express hardware 
module toplevel(clock,reset,out);

input clock;
input reset;
output reg out;
reg flop1;
reg flop2;
always @ (posedge reset or posedge clock)
If (reset) begin

flop1 <= 0;
flop2 <= 1;

end else begin
flop1 <= flop2;
flop2 <= flop1; 
out <= flop2 ^ flop1;

end
endmodule



The problem with HDL

• Need to 'think' hardware
• All parts of the circuit operate at the same time

• Explicit notion of time (clock, synchronization)

• Explicit notion of space  (size and connectivity of 
components)

• Extremely long compilation cycle

• Difficult to develop and verify

• Details, Details, Details …



High-level synthesis

• HLS: Compilation of high-level languages, such 
as C, to Hardware Description Languages. 

• Easier to write and test code in C

• Use a subset of C

– No IO, recursion, jump by value, etc.

– Standard hardware/software interface

while(true) {
out = val1 ^ val2;
...

}

module toplevel(clock,reset,out);
input clock;
input reset;
output reg out;
reg flop1;
reg flop2;
always @ (posedge reset or 

posedge clock)
If (reset) begin
flop1 <= 0; flop2 <= 1;

end else begin
flop1 <= flop2; flop2 <= flop1; 
out <= flop2 ^ flop1;

end
endmodule



C-to-Verilog.com

• LLVM-based high-level synthesis system

• Developed as a graduate research project

• Website is web-interface for the synthesis 
system

• Free, Open, etc.



High-Level Synthesis using LLVM



HLS using LLVM

– Use Clang and LLVM to parse and optimize the 
code

– Special LLVM passes optimize the code at IR level

– HLS backend synthesize the code to Verilog
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HLS backend for LLVM



Simple High-Level Synthesis

– It is trivial to compile sequential C-like code to HDL

– A state-machine can represent the original code

– We can create a state for each 'opcode‘

– Example:
case (state)

ST0: begin
A <= B + 5;
state <= ST1;

end
ST1: begin

C <= (A  == 0)
state <= ST2;

end
ST2: begin

if (C)
state <= ST9;

else
state <= ST0;

end
...

endcase

entry:
%A = add i32 %B, 5
%C = icmp eq i32 %A, 0  
%br i1 %C, label %next, label %entry
…



High-Level synthesis challenges

• The simple state-machine translation is 
inefficient

• We want to optimize:
– Fast designs (few clock cycles to complete)

– High-frequency (low clock latency)

– Size and resource efficient (few gates, memory 
ports)

– Low-power



Scheduling pipelined resources

– Generally, in HLS resources can be synthesized

• Unlimited registers, arithmetic ops, etc.

– Some resources are limited, and need to be 
shared.

• External memory ports

• ASIC Multipliers (for FPGA synthesis)

– Often, hardware resources are 'pipelined', to gain 
high frequencies.

• Multiplier – 5 stages, Memory – 2 stages, etc.



List Scheduling

– Schedule a single basic block

– Convert a DDG into a [Time x Resource] table

– Requirements:
• Preserve DDG dependencies

• Expose parallelism

• Conserve resources, use pipelined resources

– After scheduling, HDL syntax generation is simple



Example (bad)

• Multiplier – 3 cycles

• Load/Store – 2 cycles

• Other – 1 cycle
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IR Optimizations for hardware



Reduce-bitwidth-opt

• CPUs have fixed execution units

• In hardware synthesis, arithmetic operations 
are synthesized into circuits

• Fewer bit width arithmetic operations 
translate to smaller circuits which operate at 
higher frequencies



Reduce-bitwidth-opt

• Reduce bit width in several cases:

1. Detect local bit reducing patterns (masks)

2. Reduce constant integers to lowest bit-width

3. Use smallest possible arithmetic operation based 
on input width

• Simple LLVM Pass

Y = X & 0xFF i32  0x5
i8 + i8 = i9
i4 * i4 = i8

1 2 3



Arithmetic tree height reduction
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Arithmetic tree height reduction

• Simple LLVM pass

• Collect long chains of arithmetic operations 
and balance them

• Only for commutative arithmetic and logic 
operations

• Not suitable for software where number of 
registers is unlimited



HLS flow example



Pop-count example

// count the number of 1’s in a word
unsigned popCnt(unsigned input) { 

unsigned sum = 0; 
for (unsigned i = 0; i < 32; i++) {

sum  += (input) & 1; 
input = input/2; 

} 
return sum; 

}



Pop-count

• Runtime: 
– The program has a loop, which executes 32 times.

• Size:
– Has several 32-bit registers. 

– Has control-flow logic.

• Frequency:
– Has 32bit-adders, long carry-chains.

• IR-level optimizations  can be very beneficial



Pop - count

• First, we let LLVM unroll and optimize the 
loop 

// count the number of 1’s in a word
unsigned popCnt(unsigned input) {

unsigned sum = 0;
sum += (input>>0) & 1; 
sum += (input>>1) & 1; 
sum += (input>>2) & 1; 
…
…
return sum; 

}



Pop - count

• Next, we balance the long-chain of adders to 
become a tree of 31-additions
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Pop - count

// count the number of 1’s in a word
unsigned popCnt(unsigned input) {

unsigned sum0,sum1, sum2, sum3 … t0,… 
t0 = (input>>0) & 1; 
t1 = (input>>1) & 1; 
t2 = (input>>2) & 1; 
…
…
sum0 = t0 + t1;
sum1 = t2 + t3;
…
sum30 = sum29 + sum 28; 
return sum; 

}



Pop - count

• Finally, we’ll reduce the bit-width of each 
operation
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Pop - count

// count the number of 1’s in a word
unsigned popCnt(unsigned input) {

uint1_t t0, t1 … 
uint2_t sum0,sum1, sum2, sum3 … 
uint3_t sum17,sum18, sum19, sum20 … 
…
uint6_t sum31;
…
t0 = (input>>0) & 1; 
…
sum0 = t0 + t1;
…
sum31 = sum29 + sum 30; 
return sum; 

}



Pop – count

• Finally, we pass the hw-optimized IR to the 
backend for scheduling and syntax generation

+

+ +

+

+

+ +

& & & & & && &Cycle 0

Cycle 1

Cycle 2

Small operations can 

be scheduled into a 

single clock cycle

Only a wire



Pop - count

• IR-level optimizations are very beneficial

– Size: fewer and smaller registers, no control flow

– Frequency: smaller arithmetic ops (32bit -> 6 bits)

– Cycles: Fewer cycles (32 -> 4)



Conclusion

• High-level synthesis automates circuit design

• LLVM is an invaluable tool when developing a 
HLS compiler

• HLS compiler is made of IR-level optimization 
passes and a scheduling backend



Questions ?
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