
PAGE 1 Open Source Open Possibilities

Open Source Open Possibilities

Porting LLVM to a Next
Generation DSP
Presented by: L . Taylor Simpson
LLVM Developers’ Meeting: 11/18/2011

PAGE 2 Open Source Open Possibilities

Agenda

 Hexagon DSP

 Initial porting

 Performance improvement

 Future plans

PAGE 3

Open Source Open Possibilities

Hexagon DSP

PAGE 4 Open Source Open Possibilities

Hexagon – Typical DSP Features

Wide computation engine

 8-MAC design, dual 64-bit loads or stores

 Performance meets or exceeds highest-performance industry DSPs

 Native numerical support

 Fractionals, complex

 Saturation, scaling, rounding

 Exploits parallelism at 3 levels

 Unique multi-threaded architecture

 VLIW (up to 4 instructions in parallel)

 SIMD

PAGE 5 Open Source Open Possibilities

Hexagon – Typical CPU features

 Not your grandfather’s DSP!

 Capable of supporting RTOS or high-level OS

 Can run all of SPEC on target

 Supports C/C++ modern programming environment

 High-quality compilers and tools

 Reduces development cost of extensive assembly programming

 Cache-based, hardware-managed memory

 Simplifies programming model and reduces power

 Advanced system architecture

 Precise exceptions

 MMU with address translation and protection

 HW support for virtual machines

 Excellent control code performance

 Can offload work from main CPU

PAGE 6 Open Source Open Possibilities

Hexagon Instruction Example

 Single packet from inner loop of FFT

 Performs 29 “RISC ops” in 1 cycle

 All threads can all be doing this (or something else) in parallel

{ R17:16 = MEMD(R0++M1)

 MEMD(R6++M1) = R25:24

 R20 = CMPY(R20, R8):<<1:rnd:sat

 R11:10 = VADDH(R11:10, R13:12)

 }:endloop0

+ + + +

Complex Multiply

Vector 4x16-bit Add

64-bit Load and

64-bit Store with post-update addressing

HW-loop end
•Dec count

•Compare

•Jump top

Rs

Add

I R

Rt

*

32

<<0-1

*

32

<<0-1

Rd

I R

Add

I R

*

32

<<0-1

*

32

<<0-1

I R

Rs

Rt

-
0x80000x8000

Sat_32 Sat_32

High 16bitsHigh 16bits

I R

PAGE 7

Open Source Open Possibilities

Initial Porting

PAGE 8 Open Source Open Possibilities

LLVM for Hexagon – Initial Porting Effort

 It took 2 engineers 23 days to get Hexagon back end working

 Passing DSP benchmark suite

 It took 107 calendar days to get to 87% performance of GCC

 Leveraged existing assembler, linker, test suite

 Points of efficacy for LLVM

 Robust and easy to port

 Very well designed and documented

 Carefully engineered for compiler construction

 Excellent infrastructure for writing mid-level compiler optimizations

PAGE 9 Open Source Open Possibilities

0

10

20

30

40

50

60

70

80

90
Q

M
a

rk
 S

c
o

re

CFG

optimizations

Add addasl

Improve

predicate spills

Scheduler improvements

LLVM Project Starts

First port to Hexagon complete

Dependence

pruning

Base+offset, super-

regs improvements

Min-Max recognition

Sign-extension

optimizations

Hexagon front-end
Align returns

Packetization

Timeline: LLVM-Hexagon Improvements
Normalized; gcc at -O3 = 100.00

Higher numbers indicate better performance

Dot-new jumps

LTO

Enable and Tune

Post-increment

Improve

Jump

Scheduling

Eliminate sign-
extensions

LTO on

libraries

.new transfers

Remat.

zero extends

Packetizer

lookahead

Days Since Project

PAGE 10 Open Source Open Possibilities

Transition Time

 Simultaneously to LLVM work, GCC moved forward

 New version of GCC for Hexagon released

 Version 4 of Hexagon core released with significant support in GCC

 LLVM only 72% performance of GCC

Quickly improved pass rate to 98%

 Leverage existing compiler test suite

 Initial pass rate for –O0: 49%

 Initial pass rate for –O3: 63%

 Most of the remaining issues are corner cases in C++ front end

 Current status

 LLVM achieves 89% performance of GCC for Hexagon

PAGE 11

Open Source Open Possibilities

Performance Improvement

PAGE 12 Open Source Open Possibilities

Performance Improvement – Instruction Scheduling

Optimal performance for VLIW requires precise scheduling

 Hexagon packetizer

 Originally a post-pass to form packets from scheduled code

 Alias information in scheduler

 Use machine resource constraints during scheduling

PAGE 13 Open Source Open Possibilities

Performance Improvement – Loop Unroller

 Enable loops with runtime trip counts

We have seen both large improvements and losses

 We will likely need some target-specific information

 Patch currently under review

PAGE 14 Open Source Open Possibilities

Performance Improvement - Miscellaneous

 Hardware loop support

 Post-increment

 Loop strength reduction

 Addressing modes: base+offset, post-increment, base+index

 New version of core released

 Numerous new instruction combinations

 More relaxed packet forming rules

 Enhanced predication support

PAGE 15 Open Source Open Possibilities

What is a hardware loop

 Execute loops with zero overhead

 Hexagon has two special instructions

 Hexagon sets up two registers

 Loop start address, SA0/SA1

 Loop count, LC0/LC1

for (i =0; i < n; i++) {
 a += b[i];
}

.L1: {
 r3 = memw(r1++#4)
 r0 = add(r0, #-1)
 }
 {
 p0 = cmp.eq(r0, #0)
 r2 = add(r3, r2)
 if (!p0.new) jump:t .L1
 }

 loop0(.L1, r0)
.L1: {
 r3 = memw(r1++#4)
 }
 {
 r2 = add(r3, r2)
 }:endloop0

Here’s a loop The generated code With hardware loop

PAGE 16

Open Source Open Possibilities

Next Steps

PAGE 17 Open Source Open Possibilities

Next Steps

 Upstreaming our changes

 Code size reduction

 Represent VLIW packets in back end

Multi-basic-block scheduling

 Enable loop unrolling for loops with multiple exits

 Improve alias analysis

 Very important for VLIW scheduling

 Have seen issues with type-based disambiguation

 Expose machine-dependent information to optimizer

 Which addressing modes are supported?

 Which loop unrolling factor is best for target?

 Software pipelining

PAGE 18

Open Source Open Possibilities

Questions?

