http://www.sambamba.org

Parallelized Mergesort: Comparison of parallelization schemes on different input
sizes.

1E+08

Sequential
Automatically Parallelized
B Manually Parallelized (Boundary 2048)
1E+06 Ml Automatically Parallelized (TND Dispatch)
Bl Automatically Parallelized (TND Dispatch + Prof. & Reass.)

1E+05

1E+07

1E+04

1E+03

1E+02

1E+01

(spuo2oasouoiw) awi} uoipNdax3y

1E+00

1E-01 /

1E-02 Input size (humber of elements)

00+3dl
LO+3d1
c0+dl
€ot+dl
vO+3dl
go+dl1
90+d1
L0+d}

Cilk Example Programs: Comparison of parallelization schemes on different Cilk
example programs. Experiments conducted on a quad-core with Hyperthreading.
+ TND Dispatch

B + Profiling and Reassessment
3,00
2,00
1,00 I | |
= = 2 =

PolyBench: Effect of dynamic polyhedral optimization with SPolly on programs from
PolyBench. Experiments have been conducted on an octa-core with Hyperthreading.

o
)
o

Automatically Parallelized

Aeuiq pajidwos - Huejo o)} annejas dnpaadsg

o
I

1940NQ
HOSH|I0
lesy
yoesdeuy
oibew
[nwiew
[nwijo8.
|nwaoeds
uassels
Josabiaw

(/2]
?3 12,00
2‘ M 2nd Run
E 1st Run
o
3 9,00
S
o
0
2 6,00
Q
Q
0
S 3,00 | ‘ ‘
D,
: I
o
O
2 1 el nnals N
* §i%iiigcEeiEgifizsogrigiiigt
2. 3 > 3 8 D ® 3 5 < 3 =T N < S a g- 2 & >
N z 3 = 35 ° 8% Q = 2 = 9 @
< o= o < & o 8 S 3
—r 5 D — — —
3 ! 2 g
i 2
UNIVERSITAT Compiler Software
DES Design ‘ Engineering
SAARLANDES Lab Chair

Runtime Adaptive Parallelization

Input
Sambamba takes as input a program in LLVM IR.
't is developed and tested for C and C++ applications.

Program Analysis

One of the most important analyses used in Sambamba so far is a modified
version of the DataStructureAnalysis (DSA). DSA is used to determine data
dependences for the construction of a block-level program dependence
graph (PDG) used for parallelization.

Candidate Selection
Currently, two parallelization methods are implemented:

One method to select and schedule parallelization candidates employs
an |ILP solver to find optimal parallel schedules with respect to the cost-
model. The resulting task-parallelism is not tied to loops, or even special
forms thereof.

Another approach tries to widen the applicability of program
optimization (and parallelization) in the polyhedral model. lts candidates
are code regions (sSCoPs) which are rejected by Polly due to the
imitations of the polyhedral representation.

(Re-)Compiletime Runtime
Speculation Support
(STMor TLS)
Program Parallelization —
o é o -
I.'LVM —_— Ana|y5|s and Candidate Execution
Bitcode :)
Preparation Preselection

Execution and Profiling

All statically gathered information is packed, together with the Sambamba
runtime system, into a fat binary, ready for standalone execution.

The runtime system allows to selectively enable branch- and executiontime
profiling for individual functions and even callsites.

Not only the original, but also newly installed versions are tracked.

Parallelization

Statically found parallelization candidates are combined to find the best
combination of parallelization decisions for the situation at hand. The executing
hardware as well as runtime profiles are taken into account.

Depending on the parallelization decisions, Intel TBB (for task parallelism) or
OpenMP (e.g. used by Polly) are used for parallel execution.

Sambamba: A Runtime System for Online Adaptive Parallelization K. Streit, C. Hammacher, A. Zeller, S. Hack. Conf. on Compiler Construction (CC), 2012
Sambamba: Runtime Adaptive Parallel Execution K. Streit, C. Hammacher, A. Zeller, S. Hack. WS on Adaptive Self-tuning Computing Systems (ADAPT), 2013.
SPolly: Speculative Optimizations in the Polyhedral Model J. Doerfert, C. Hammacher, K. Streit, S. Hack. WS. on Polyhedral Compilation Techniques (IMPACT), 2013.

and Profiling (\
K Parallelization e
Speculation

Sambamba currently implements protection of speculatively parallelized
code by a state-of-the-art software transactional memory (STM) with commit
orders. An implementation of thread-level-speculation (TLS) based on
process forking is currently being implemented.

Based on relevant profiling information like execution time, data size and
misspeculation rate of previous versions, the speculation mechanism of
Sambamba is able to automatically select the most efficient speculation
method (STM or TLS) and its corresponding parameters (size of transaction
log, method of conflict detection, ...).

These can be adjusted individually for each parallelized function.

(Re-)Compiletime

o
=
2
C
=
a'd

Clemens Hammacher <hammacher@cs.uni-saarland.de>

Kevin Streit <streit@cs.uni-saarland.de>
Sebastian Hack <hack@cs.uni-saarland.de>
Andreas Zeller <zeller@cs.uni-saarland.de>

