
Custom Hardware State-Machines

and Datapaths ï

Using LLVM to Generate FPGA

Accelerators

Alan Baker

Altera Corporation

FPGAs are Awesome

Â Fully Configurable Architecture

Â Low-Power

Â Customizable I/O

2

FPGA Design Hurdles

Â Traditional FPGA design entry done in hardware

description languages (HDL)
- e.g. Verilog or VHDL

- HDL describe the register transfer level (RTL)

- Programmer is responsible for describing all the hardware and its behaviour
in every clock cycle

- The hardware to describe a relatively small program can take months to
implement

- Testing is difficult

Â Far fewer hardware designers than software designers

3

Simpler Design Entry

Â Use a higher level of abstraction
- Easier to describe an algorithm in C than Verilog

- Increases productivity

- Simpler to test and verify

- Increases the size of the developer pool

Â Sounds promising, but how can we map a higher level

language to an FPGA?

4

Our Vision

Â Leverage the software communityôs resources

Â LLVM is a great compiler framework
-Mature

- Robust

-Well architected

- Easy to modify and extend

- Same IR for different input languages

Â We modify LLVM to generate Verilog
- Implemented a custom backend target

5

OpenCL

Â Our higher level language

Â Hardware agnostic compute language
- Invented by Apple

- 2008 Specification Donated to Khronos Group and Khronos
Compute Working Group was formed

6

Â What does OpenCL give us?
- Industry standard programming model
-Aimed at heterogeneous compute

acceleration
-Functional portability across platforms

OpenCL Conformance

Â You must pass conformance to claim OpenCL support
-Over 8000 tests
-Only one FPGA vendor has passed conformance

7

The BIG Idea behind OpenCL

Â OpenCL execution model é
- Define N-dimensional computation domain

- Execute a kernel at each point in computation domain

void

trad_mul (int n,

 const float *a,

 const float *b,

 float *c)

{

 int i;

 for (i=0; i<n; i++)

 c[i] = a[i] * b[i];

}

Traditional loops
kernel void

dp_mul (global const float *a,

 global const float *b,

 global float *c)

{

 int id = get_global_id (0);

 c[id] = a[id] * b[id];

} // execute over ñnò work- items

Data Parallel OpenCL

FPGAs vs CPUs

Â FPGAs are dramatically different than CPUs

Â Massive fine-grained parallelism

Â Complete configurability

Â Huge internal bandwidth

Â No callstack

Â No dynamic memory allocation

Â Very different instruction costs

Â No fixed number of program registers

Â No fixed memory system

9

Targeting an Architecture

Â In a CPU, the program is mapped to a fixed architecture

Â In an FPGA, there is NO fixed architecture

Â The program defines the architecture

Â Instead of the architecture constraining the program,

the program is constrained by the available resources

10

Datapath Architecture

FPGA datapath ~ Unrolled CPU hardware

11

B

A

A
ALU

A simple 3-address CPU

12

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

B

A

A
ALU

Load immediate value into register

13

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

B

A

A
ALU

Load memory value into register

14

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

B

A

A
ALU

Store register value into memory

15

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

B

A

A
ALU

Add two registers, store result in register

16

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

B

A

A
ALU

Multiply two registers, store result in register

17

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

A simple program

Â Mem[100] += 42 * Mem[101]

Â CPU instructions:

18

R0 ă Load Mem[100]

R1 ă Load Mem[101]

R2 ă Load #42

R2 ă Mul R1, R2

R0 ă Add R2, R0

Store R0 Ą Mem[100]

CPU activity, step by step

19

A

A

A

A

A

R0 ă Load Mem[100]

R1 ă Load Mem[101]

R2 ă Load #42

R2 ă Mul R1, R2

R0 ă Add R2, R0

Store R0 Ą Mem[100]
A

Time

