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Motivation

− Many-Core HW is everywhere 
  − But cannot be programmed well
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− A DSL for ray traversal

− 11% faster than Embree 
 (on average, Core i7-4790)

− 17% faster than Aila et al. 
 (on average, GTX 970)

− 1/10th of coding time 
 (according to Halstead measures)
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Layered DSL Speci�cations

AnyDSL Uni�ed Program Representation

AnyDSL Compiler Framework (Thorin) 

Various HW Back Ends 
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− A DSL for stencil codes
−  Example: Gaussian blur �lter
  −  Reference: OpenCV 3.0
  −  Intel CPU: 40% faster
  −  Intel GPU: 25% faster
  −  AMD GPU: 50% faster
  − NVIDIA GPU: 45% faster
  − Up to 10x shorter code

Embedding of DSLs in Impala

− Separation of concerns through code re�nement
  − Higher-order functions
  − Partial evaluation
  − Triggered code generation

Application Developer
fn main() {
  let img = load(“dragon.png“);
  let blurred = gaussian_blur(img);
}

DSL Developer
fn gaussian_blur(field: Field) -> Field {
  let stencil: Stencil = { /* ... */ };
  let mut out: Field   = { /* ... */ };

  for x, y in @iterate(out) {
    out.data(x, y) = apply_stencil(x, y, field, stencil);
  }
  out
}

Machine Expert
fn iterate(field: Field, body: fn(int, int) -> ()) -> () {
  let grid  = (field.cols, field.rows, 1);
  let block = (128, 1, 1);

  with nvvm(grid, block) {
    let x = nvvm_tid_x() + nvvm_ntid_x() * nvvm_ctaid_x();
    let y = nvvm_tid_y() + nvvm_ntid_y() * nvvm_ctaid_y();
    body(x, y);
  }
}


