
Contact: membarth@intel-vci.uni-saarland.de
Website: http://anydsl.github.io

ANYDSL:
A COMPILER-FRAMEWORK FOR DOMAIN-SPECIFIC LIBRARIES (DSLS)

Richard Membarth, Arsène Pérard-Gayot, Martin Weier, Philipp Slusallek
Roland Leißa, Klaas Boesche, Sebastian Hack

Motivation

− Many-Core HW is everywhere
 − But cannot be programmed well

Gra�kprozessor (GMA HD4000)

Zwischenspeicher (L3)

Speichercontroller (Eingabe/Ausgabe)

GPU

1. Kern 2. Kern 3. Kern 4. Kern System-
überwa-
chung,
Speicher-
und
Display-
controller

Intel Haswell Architecture (1.4B Transistors)

Nvidia Kepler
(~7B Transistors)

CPU

GPU

CPU

CPU/GPU

Intel KnightsFerry
(~5B Transistors)

CPU/GPU

Intel Knights Landing

GPU

AMD Brazos

Traditional Programs run
only on a single core

RaTrace

− A DSL for ray traversal

− 11% faster than Embree
 (on average, Core i7-4790)

− 17% faster than Aila et al.
 (on average, GTX 970)

− 1/10th of coding time
 (according to Halstead measures)

AnyDSL Architecture

Computer
Vision

DSL

Physics
DSL

Ray
Tracing

DSL

Parallel
Runtime

DSL
...

Layered DSL Speci�cations

AnyDSL Uni�ed Program Representation

AnyDSL Compiler Framework (Thorin)

Various HW Back Ends

Impala Thorin

Vectorizer

LLVM

CUDA
OpenCL

SPIR

Native
Code

NVVM

Stincilla

− A DSL for stencil codes
− Example: Gaussian blur �lter
 − Reference: OpenCV 3.0
 − Intel CPU: 40% faster
 − Intel GPU: 25% faster
 − AMD GPU: 50% faster
 − NVIDIA GPU: 45% faster
 − Up to 10x shorter code

Embedding of DSLs in Impala

− Separation of concerns through code re�nement
 − Higher-order functions
 − Partial evaluation
 − Triggered code generation

Application Developer
fn main() {
 let img = load(“dragon.png“);
 let blurred = gaussian_blur(img);
}

DSL Developer
fn gaussian_blur(field: Field) -> Field {
 let stencil: Stencil = { /* ... */ };
 let mut out: Field = { /* ... */ };

 for x, y in @iterate(out) {
 out.data(x, y) = apply_stencil(x, y, field, stencil);
 }
 out
}

Machine Expert
fn iterate(field: Field, body: fn(int, int) -> ()) -> () {
 let grid = (field.cols, field.rows, 1);
 let block = (128, 1, 1);

 with nvvm(grid, block) {
 let x = nvvm_tid_x() + nvvm_ntid_x() * nvvm_ctaid_x();
 let y = nvvm_tid_y() + nvvm_ntid_y() * nvvm_ctaid_y();
 body(x, y);
 }
}

