EXpressing high level
optimizations within LLVM

Artur Pilipenko

AZUL

SYSTEMS®

mailto:artur.pilipenko@azul.com

This presentation describes advanced
development work at Azul Systems and is for

informati
presented
by Azul Sys

onal purposes only. Any information
nere does not represent a commitment

tems to deliver any such material, code,

or functionality in current or future Azul products.

AZUL

2 SYSTEMS®

Azul Systems

e \We make Java virtual machines

 Known for scalable, low latency JVM
implementation

* We use LLVM to build high performance,
poroduction quality JIT compiler tor our Java VM

AZUL

3 SYSTEMS®

L LVM tor a JIT for Java

* There are certain challenges

 GC interaction [1]

* |nteraction with the runtime [2]

* EXpressing high-level optimizations

[1] http://

vm.org/devmtg/2014-10/Slides/Reames-GarbageCollection.pdf

[2] http://

vm.org/devmtg/2015-10/slides/DasReames-L L VMForAManagedl anguage.pdf

AZUL

4 SYSTEMS®

http://llvm.org/devmtg/2014-10/Slides/Reames-GarbageCollection.pdf
http://llvm.org/devmtg/2015-10/slides/DasReames-LLVMForAManagedLanguage.pdf

Why is it iImportant”

* High tier JIT
* Main goal is peak performance
 Compile time is less important

* Jo achieve good performance we need to make
use of high-level semantics of the language

AZUL
SYSTEMS®

Motivational Example

* Methods are virtual by default in Java
e \We need to devirtualize in order to inline

* Jo devirtualize we need to know possible types
of the receiver objects

* |t's not only about devirtualization

* lype check optimizations, aliasing, etc.

AZUL

6 SYSTEMS®

High-level Optimizations
and LLVM
» Originally targeted to C/C++
 Rather low-level IR

e Some bits of high-level information can be
provided using attributes/metadata, like TBAA

 Has been used for other languages recently

o Swift, Webkit, HHVM, Microsoft LLILC, ...

AZUL
SYSTEMS®

Split Optimizer

* High-level IR to perform high-level optimization

 Lower it to LLVM IR for mid-level optimizations and
code generation

Parse to BEIEEEVER Lower to LLVM Code -
source = » U |R' Jen > Native

Swift, HHVM, Webkit, ...

AZUL

8 SYSTEMS®

Split Optimizer

* High-level optimizer
* |R, analyses, transtormations, infrastructure
* Didn't really want to write everything from scratch

* This infrastructure already exists in LLVM

AZUL

9 SYSTEMS®

Embedded High-Level [R

* Express the required information in LLVM IR
* |Introduce missing optimizations

* Jeach existing parts of the optimizer to make use of
new information

Parse to LLVM Code | -
Bytecode g gen Native
AZUL

10 SYSTEMS®

Agenaa

* Abstractions
 Java lype Framework
* Exploiting Java Types
e Java Specific Optimizations

* Existing Optimizations

AZUL

11 SYSTEMS®

e Abstractions

Agenaa

12

Abstractions

e Functions with the semantics known by the optimizer
o Similar to intrinsics, but have an IR implementation
e [ate inlining mechanism

* Abstractions are inlined at specific points of the
pipeline

* Optimization phases separation

* GGradual lowering
AZUL

13 SYSTEMS®

Abstractions Example

define 132 @get class 1d(1i8 addrspace(l)* %object)
"late-inline"="2" {

define il @is subtype of(i32 %parent id, 132 %child id)
"late-inline"="1" {

AZUL

14 SYSTEMS®

Abstractions Example

define 132 @dget class 1d(i8 addrspace(l)* %object)
(?late—inline"="2£y{

define il @is subtype of(i32 %parent id, 132 %child id)
("late—inline"="liy{

Inlined after phase 2 and 1 accordingly

AZUL

15 SYSTEMS®

Abstractions Example

// Java code
static boolean isString(Object obj) {
return obj instanceof String;

}

: LLVM IR
define il @isString(i8 addrspace(l)* %obj) {

%class id = call 132 @get class 1d(i8 addrspace(l)* %obj)
$result = call il @is subtype of(1i32 <StringID>, 132 %class 1id)
ret il %result

AZUL

16 SYSTEMS®

Optimization Over
Abstractions

* For example:
* Lock coarsening/elision
 Redundant GC barrier/polls elimination

* Allocation and initialization sinking

AZUL
17 SYSTEMS®

Upstream Late Inlining

* Does this mechanism makes sense upstream?

* Function attribute to specify the inlining phase
* “late-inlining”= “"phase”

* EnablelLatelnlining pass to do the Inlining

* PM.add(createEnablelLatelnliningPass(“phase”))

AZUL

18 SYSTEMS®

Agenaa

* Java Type Framework

19

Java Type Framework

* A mechanism to reason about properties of the
objects pointed to by reference values

e Specifically, Java classes of the objects

o0 ¥VsysTEMS®

Java Class Hierarchy

java.lang.Object

O

O O
ofelc
ofe

Java Class Hierarchy

java.lang.Object

)
O G
o 0 %

Java Class Hierarchy

java.lang.Object

O
ofole
ol

Javalype

// Defines a set of Java classes
struct JavaType {
// An ID of a Java class or interface
uint64 t ClassID;
// If set the class defined by ClassID is the only class
// in the set.
// Otherwise the set includes all the subclasses of that
// class.
bool IsExact;

AZUL

24 SYSTEMS®

Javalype Operations

Javalype union(Javalype, ...)
Optional<davaType> intersect(Javalype, ...)
bool isSubtypeOf(Javalype, Javalype)

bool canTypesintersect(Javalype, Javalype)

25

SSSSSSSS

Javalype Limitations

* Might not be the most precise type system for Java
code, but something we got away with thus far

 Can’t represent unions of types precisely

 Can’t represent multiple inheritance of interface
types

AZUL
SYSTEMS®

Java lype Analysis

Optional<JavaType> getJavaType(Value *V,
Instruction *CtxI = nullptr,
DominatorTree *DT nullptr)

e Currently a value-tracking style analysis
* Relatively expensive — it would be good to cache the results
o Context sensitive/insensitive queries

* Can conservatively return None
AZUL

27 SYSTEMS®

Java lype Base Facts

e Attached to IR Iin the form of attributes/metadata

* Emitted by the front-end based on types in Java
bytecode

* Inferred by the optimizer

8 WP sYsTEMmMS®

Base Facts examples

; Attributes on arguments and return values
define "java-type-class-id"="234" i8 addrspace(l)* @foo(
18 addrspace(1l)*
"java-type-exact”
“Java-type-class-1d"="193" %arg) {
; Metadata on loads
load i8 addrspace(l)*, 18 addrspace(l)* addrspace(l)* %p,
!l java-type-class-id !{i32 234}
; Attributes on call site return values
call "java-type-class-id"="234" "java-type-exact"”
i8 addrspace(l)* @new.instance(i32 234)

; Attributes on call site arguments

call void @foo(i8 addrspace(1l)*
"java-type-class-id"="234" %argqg)

29

AZUL

SYSTEMS®

Context-Insensitive
Analysis
* Look at the value to get context-insensitive result
* Base facts from metadata and attributes
* |f the value is a PHI node recursively queries the

types of the incoming values and calculates the
union of the incoming types

e Some of the Java methods with known semantics
(Object.clone)

AZUL

30 SYSTEMS®

Context-Sensitive
Sharpening

* |f context is provided perform context-sensitive
sharpening from dominating conditions

 Walk the dominators tree and look for type checks
on the object In question

AZUL

SYSTEMS®

31

Exact Type Checks

%cid = call 132 @get class 1d(i8 addrspace(l)* %object)
%cond = icmp eq 132 %cid, <SomeClassID>
br il %$cond, label %true, label $%$false

; JavaType {<SomeClassID>, exact} 1s implied

AZUL

32 SYSTEMS®

Non-Exact Type Checks

%cid = call i32 @get class id(i8 addrspace(l)* %object)
3cond = call i32 @is subtype of (132 <SomeClassID>,

i32 %cid)
br il %cond, label $%$true, label %false

; JavaType {<SomeClassID>, non-exact} is implied

AZUL

33 SYSTEMS®

Java Type Analysis Result

e The final result Is an intersection of
e Context-insensitive result

* Types from all the dominating type checks

AZUL
34 SYSTEMS®

Metadata Healing

We use metadata to represent type information
Metadata can be dropped

Sometimes it inhibits optimizations

We can heal metadata on loads using Javalypes of

the accessed objects

35

AZUL

SYSTEMS®

Metadata Healing

* InstCombine rule for loads and stores
* (Get the underlying object for the memory access
* Get Javalype of the underlying object value
* Ask the VM about the layout of the object

* Update the metadata accordingly

AZUL

36 SYSTEMS®

Agenaa

* Exploiting Java Types

e Java Specific Optimizations

37

Devirtualization

* |ndirect call sites come In different shapes and
forms

* Depending on the profile information the front-end
may generate

* Explicit lookup

* Profile guided call sites: guarded direct calls for
predicted targets

AZUL

38 SYSTEMS®

EXplicit Lookup

o EXxplicit lookup

%target = call i8* (@resolve virtual(i8 addrspace(l)* %object,

i32 <vtable index>)
$target.casted = bitcast i8* %$target to void (18 addrspace(l)*)*
call void %target.casted(18 addrspace(l)* %object)

AZUL

39 SYSTEMS®

EXplicit Lookup

o EXxplicit lookup

%target = call i8* (@resolve virtual(i8 addrspace(l)* %object,

i32 <vtable index>)
$target.casted = bitcast i8* %$target to void (18 addrspace(l)*)*
call void %target.casted(18 addrspace(l)* %object)

Devirtualization via constant folding of resolve_virtual
abstractions for known receiver Javalypes

AZUL

40 SYSTEMS®

Profile Guided Call Sites

Monomorphic call site with deoptimize falloack

if (get class id(%receiver) == expected class 1d)
call expected target
else

call deoptimize

AZUL

41 SYSTEMS®

Profile Guided Call Sites

 Monomorphic call site with deoptimize fallback

if (get class id(%receiver) == expected class 1d)
call expected target

else
call deoptimize

To “devirtualize” the call site we need to fold the
comparison away

AZUL

49 SYSTEMS®

Profile Guided Call Sites

* [rimorphic call site with explicit lookup fallback

switch (get class id(%receiver)) {

case expected receiver 1: call expected target 1; break;
case expected receiver 2: call expected target 2; break;
case expected receiver 3: call expected target 3; break;

default:
$target = resolve virtual(%receiver, 132 <vtable index>)

call %target
}

AZUL

43 SYSTEMS®

Profile Guided Call Sites

* [rimorphic call site with explicit lookup fallback

switch (get class id(%receiver)) {

case expected receiver 1: call expected target 1; break;
case expected receiver 2: call expected target 2; break;
case expected receiver 3: call expected target 3; break;

default:
$target = resolve virtual(%receiver, 132 <vtable index>)

call %target
}

To “devirtualize” the call site we need to prune switch
Cases

AZUL

44 SYSTEMS®

Control Flow Simplification

%cid = call i32 @get class id(i8 addrspace(l)* %object)
%cond = icmp eq i32 %cid, <SomeClassID>

e Let T be Javalype of %object, P be Javalype
{ISomeClasslID, exact}
* |t T.Iskxact => fold get_class_id to a constant
e |f lcanTypesintersect(T, P) => fold the comparison to false

* Use the same idea to prune switch cases

AZUL

45 SYSTEMS®

Type Check Optimizations

%cid = call i32 @get class id(i8 addrspace(l)* %object)
%cond = call i32 @is subtype o0f(1i32 <parent>, 132 %cid)
* Let T be Javalype of %object, P be Javalype {parent, non-exact}
* isSubtypeOf(P, T) => true
e lcanTypeslintersect(P, T) => false

* It <parent> doesn’t have subclasses => replace with an exact
class ID check

AZUL

46 SYSTEMS®

Agenaa

* Exploiting Java Types

* Existing Optimizations

47

Allas Analysis

 LLVM's Type Based Alias Analysis

e Optimizations like inlining, CFG simplification don't
make TBAA more accurate

* Dropped like any other metadata
e Javalype framework has the same information
* Benefits from more sophisticated analysis and healing

e Javalypes are refined during optimizations

AZUL

48 SYSTEMS®

Javalype Based AA

Pointers don't alias if base object types can't intersect

49 WP sYsTEMmMSs®

Context-Sensitive AA

Want to make use of context-sensitive type
sharpening

Can't make context sensitive queries in AA

* [ntroduced a new metadata -
base_object_java_type

* Updated by InstCombine

AZUL
50 SYSTEMS®

Base Object Java Type
Example

%cid = call i32 @get klass i1d(i8 addrspace(l)* %object)
$cond = icmp eq i32 %cid, 42
br 11 %cond, label %$match, label %$mismatch

$%addr = getelementptr i8, i8 addrspace(l)* %object, i64 20
%addr.typed = bitcast i8 addrspace(l)* %addr to i64 addrspace(l)*
$field = load i64, i64 addrspace(l)* %addr.typed

AZUL

SYSTEMS®

Base Object Java Type
Example

%cid = call i32 @get klass i1d(i8 addrspace(l)* %object)
$cond = icmp eq i32 %cid, 42
br 11 %cond, label %$match, label %$mismatch

$%addr = getelementptr i8, i8 addrspace(l)* %object, i64 20

%addr.typed = bitcast i8 addrspace(l)* %addr to i64 addrspace(l)*

$field = load i64, i64 addrspace(l)* %addr.typed,
(Ebase—object—java—type 1{i32 42, il trueE)

Attached by InstCombine

AZUL

SYSTEMS®

Dereferenceabillity

e Expressed using dereferenceable/
derferenceable_or_null attributes and metadata

e Javalypes is a more accurate way to derive
dereferenceability information

* |t benetfits from more sophisticated analysis and
metadata healing

 Handles control flow merges

* [ype sharpening
AZUL

53 SYSTEMS®

INnline Cost

* InlineCost is taught about JavaType based
optimizations

* InstCombine maintains JavaTlypes for the
arguments on call sites

* |InlineCost uses argument types to estimate the
effect of potential optimizations

AZUL

54 SYSTEMS®

INnline Cost

* Constant folding of get_class_id for known
argument types

if (get class id(%arg) == expected class 1id)
inlined target 1
else if (get class id(%arg) == expected class id 2)

inlined target 2

* Bonus for call sites devirtualizable after inlining

$target = resolve virtual(%arg, 132 <vtable index>)
call %target

AZUL

55 SYSTEMS®

Future Work

e Javalype analysis pass

* Caching the results
* |mprove the type system

 Multiple inheritance of interfaces, array types
» Upstream generalised type framework?

Do you need a similar functionality for your

language?
AZUL

56 SYSTEMS®

Conclusion

Express Java-specitic semantics using high-level
embedded IR

* Very flexible and low-cost representation
Introduced few Java specific optimizations
Heavily rely on the existing LLVM optimizations

* Made existing optimizations benetfit from new
iInformation

S/

AZUL

SYSTEMS®

Questions?

