
Expressing high level
optimizations within LLVM

Artur Pilipenko
artur.pilipenko@azul.com

mailto:artur.pilipenko@azul.com

2

 This presentation describes advanced
development work at Azul Systems and is for
informational purposes only. Any information

presented here does not represent a commitment
by Azul Systems to deliver any such material, code,

or functionality in current or future Azul products.

Azul Systems

• We make Java virtual machines

• Known for scalable, low latency JVM
implementation

• We use LLVM to build high performance,
production quality JIT compiler for our Java VM

3

LLVM for a JIT for Java
• There are certain challenges

• GC interaction [1]

• Interaction with the runtime [2]

• Expressing high-level optimizations

[1] http://llvm.org/devmtg/2014-10/Slides/Reames-GarbageCollection.pdf
[2] http://llvm.org/devmtg/2015-10/slides/DasReames-LLVMForAManagedLanguage.pdf

4

http://llvm.org/devmtg/2014-10/Slides/Reames-GarbageCollection.pdf
http://llvm.org/devmtg/2015-10/slides/DasReames-LLVMForAManagedLanguage.pdf

Why is it important?

• High tier JIT

• Main goal is peak performance

• Compile time is less important

• To achieve good performance we need to make
use of high-level semantics of the language

5

Motivational Example
• Methods are virtual by default in Java

• We need to devirtualize in order to inline

• To devirtualize we need to know possible types
of the receiver objects

• It's not only about devirtualization

• Type check optimizations, aliasing, etc.

6

High-level Optimizations
and LLVM

• Originally targeted to C/C++

• Rather low-level IR

• Some bits of high-level information can be
provided using attributes/metadata, like TBAA

• Has been used for other languages recently

• Swift, Webkit, HHVM, Microsoft LLILC, …

7

Split Optimizer
• High-level IR to perform high-level optimization

• Lower it to LLVM IR for mid-level optimizations and
code generation

Source High-level
optimizer

LLVM
optimizer

Lower to
LLVM IR

Parse to
HIR

Code
gen Native

Swift, HHVM, Webkit, …
8

Split Optimizer

• High-level optimizer

• IR, analyses, transformations, infrastructure

• Didn’t really want to write everything from scratch

• This infrastructure already exists in LLVM

9

Embedded High-Level IR

• Express the required information in LLVM IR

• Introduce missing optimizations

• Teach existing parts of the optimizer to make use of
new information

Bytecode LLVM
optimizer

Parse to
LLVM IR

Code
gen Native

10

Agenda
• Abstractions

• Java Type Framework

• Exploiting Java Types

• Java Specific Optimizations

• Existing Optimizations

11

Agenda
• Abstractions

• Java Type Framework

• Exploiting Java Types

• Java Specific Optimizations

• Existing Optimizations

12

Abstractions
• Functions with the semantics known by the optimizer

• Similar to intrinsics, but have an IR implementation

• Late inlining mechanism

• Abstractions are inlined at specific points of the
pipeline

• Optimization phases separation

• Gradual lowering

13

Abstractions Example

define i32 @get_class_id(i8 addrspace(1)* %object)
 "late-inline"="2" {
...
}

define i1 @is_subtype_of(i32 %parent_id, i32 %child_id)
 "late-inline"="1" {
...
}

14

Abstractions Example

define i32 @get_class_id(i8 addrspace(1)* %object)
 "late-inline"="2" {
...
}

define i1 @is_subtype_of(i32 %parent_id, i32 %child_id)
 "late-inline"="1" {
...
}

15

Inlined after phase 2 and 1 accordingly

Abstractions Example

// Java code
static boolean isString(Object obj) {
 return obj instanceof String;
}

; LLVM IR
define i1 @isString(i8 addrspace(1)* %obj) {
 ...
 %class_id = call i32 @get_class_id(i8 addrspace(1)* %obj)
 %result = call i1 @is_subtype_of(i32 <StringID>, i32 %class_id)
 ret i1 %result
}

16

Optimization Over
Abstractions

• For example:

• Lock coarsening/elision

• Redundant GC barrier/polls elimination

• Allocation and initialization sinking

17

Upstream Late Inlining
• Does this mechanism makes sense upstream?

• Function attribute to specify the inlining phase

• “late-inlining”= “phase”

• EnableLateInlining pass to do the inlining

• PM.add(createEnableLateInliningPass(“phase”))

18

Agenda
• Abstractions

• Java Type Framework

• Exploiting Java Types

• Java Specific Optimizations

• Existing Optimizations

19

Java Type Framework

• A mechanism to reason about properties of the
objects pointed to by reference values

• Specifically, Java classes of the objects

20

Java Class Hierarchy
java.lang.Object

21

Java Class Hierarchy

C

java.lang.Object

22

C c = ...

Java Class Hierarchy

C

java.lang.Object

23

C c = new C();

JavaType

// Defines a set of Java classes
struct JavaType {
 // An ID of a Java class or interface
 uint64_t ClassID;
 // If set the class defined by ClassID is the only class
 // in the set.
 // Otherwise the set includes all the subclasses of that
 // class.
 bool IsExact;
};

24

JavaType Operations

• JavaType union(JavaType, …)

• Optional<JavaType> intersect(JavaType, …)

• bool isSubtypeOf(JavaType, JavaType)

• bool canTypesIntersect(JavaType, JavaType)

25

JavaType Limitations

• Might not be the most precise type system for Java
code, but something we got away with thus far

• Can’t represent unions of types precisely

• Can’t represent multiple inheritance of interface
types

Java Type Analysis

• Currently a value-tracking style analysis

• Relatively expensive — it would be good to cache the results

• Context sensitive/insensitive queries

• Can conservatively return None

Optional<JavaType> getJavaType(Value *V,
 Instruction *CtxI = nullptr,
 DominatorTree *DT = nullptr)

27

Java Type Base Facts

• Attached to IR in the form of attributes/metadata

• Emitted by the front-end based on types in Java
bytecode

• Inferred by the optimizer

28

Base Facts Examples
; Attributes on arguments and return values
define "java-type-class-id"="234" i8 addrspace(1)* @foo(
 i8 addrspace(1)*
 "java-type-exact"
 “java-type-class-id"="193" %arg) {
 ; Metadata on loads
 load i8 addrspace(1)*, i8 addrspace(1)* addrspace(1)* %p,
 !java-type-class-id !{i32 234}

 ; Attributes on call site return values
 call "java-type-class-id"="234" "java-type-exact"
 i8 addrspace(1)* @new.instance(i32 234)

 ; Attributes on call site arguments
 call void @foo(i8 addrspace(1)*
 "java-type-class-id"="234" %arg)
}

29

Context-Insensitive
Analysis

• Look at the value to get context-insensitive result

• Base facts from metadata and attributes

• If the value is a PHI node recursively queries the
types of the incoming values and calculates the
union of the incoming types

• Some of the Java methods with known semantics
(Object.clone)

30

Context-Sensitive
Sharpening

• If context is provided perform context-sensitive
sharpening from dominating conditions

• Walk the dominators tree and look for type checks
on the object in question

31

Exact Type Checks

%cid = call i32 @get_class_id(i8 addrspace(1)* %object)
%cond = icmp eq i32 %cid, <SomeClassID>
br i1 %cond, label %true, label %false

true:
; JavaType {<SomeClassID>, exact} is implied

32

Non-Exact Type Checks

%cid = call i32 @get_class_id(i8 addrspace(1)* %object)
%cond = call i32 @is_subtype_of(i32 <SomeClassID>,
 i32 %cid)
br i1 %cond, label %true, label %false

true:
; JavaType {<SomeClassID>, non-exact} is implied

33

Java Type Analysis Result

• The final result is an intersection of

• Context-insensitive result

• Types from all the dominating type checks

34

Metadata Healing

• We use metadata to represent type information

• Metadata can be dropped

• Sometimes it inhibits optimizations

• We can heal metadata on loads using JavaTypes of
the accessed objects

35

Metadata Healing
• InstCombine rule for loads and stores

• Get the underlying object for the memory access

• Get JavaType of the underlying object value

• Ask the VM about the layout of the object

• Update the metadata accordingly

36

Agenda
• Abstractions

• Java Type Framework

• Exploiting Java Types

• Java Specific Optimizations

• Existing Optimizations

37

Devirtualization
• Indirect call sites come in different shapes and

forms

• Depending on the profile information the front-end
may generate

• Explicit lookup

• Profile guided call sites: guarded direct calls for
predicted targets

38

Explicit Lookup

• Explicit lookup

%target = call i8* @resolve_virtual(i8 addrspace(1)* %object,
 i32 <vtable_index>)
%target.casted = bitcast i8* %target to void (i8 addrspace(1)*)*
call void %target.casted(i8 addrspace(1)* %object)

39

Explicit Lookup

• Explicit lookup

%target = call i8* @resolve_virtual(i8 addrspace(1)* %object,
 i32 <vtable_index>)
%target.casted = bitcast i8* %target to void (i8 addrspace(1)*)*
call void %target.casted(i8 addrspace(1)* %object)

40

Devirtualization via constant folding of resolve_virtual
abstractions for known receiver JavaTypes

Profile Guided Call Sites

• Monomorphic call site with deoptimize fallback

if (get_class_id(%receiver) == expected_class_id)
 call expected_target
else
 call deoptimize

41

Profile Guided Call Sites

if (get_class_id(%receiver) == expected_class_id)
 call expected_target
else
 call deoptimize

To “devirtualize” the call site we need to fold the
comparison away

• Monomorphic call site with deoptimize fallback

42

Profile Guided Call Sites
• Trimorphic call site with explicit lookup fallback

switch (get_class_id(%receiver)) {
case expected_receiver_1: call expected_target_1; break;
case expected_receiver_2: call expected_target_2; break;
case expected_receiver_3: call expected_target_3; break;
default:
 %target = resolve_virtual(%receiver, i32 <vtable_index>)
 call %target
}

43

Profile Guided Call Sites

switch (get_class_id(%receiver)) {
case expected_receiver_1: call expected_target_1; break;
case expected_receiver_2: call expected_target_2; break;
case expected_receiver_3: call expected_target_3; break;
default:
 %target = resolve_virtual(%receiver, i32 <vtable_index>)
 call %target
}

To “devirtualize” the call site we need to prune switch
cases

• Trimorphic call site with explicit lookup fallback

44

Control Flow Simplification

• Let T be JavaType of %object, P be JavaType
{SomeClassID, exact}

• If T.IsExact => fold get_class_id to a constant

• If !canTypesIntersect(T, P) => fold the comparison to false

• Use the same idea to prune switch cases

%cid = call i32 @get_class_id(i8 addrspace(1)* %object)
%cond = icmp eq i32 %cid, <SomeClassID>

45

Type Check Optimizations

• Let T be JavaType of %object, P be JavaType {parent, non-exact}

• isSubtypeOf(P, T) => true

• !canTypesIntersect(P, T) => false

• If <parent> doesn’t have subclasses => replace with an exact
class ID check

%cid = call i32 @get_class_id(i8 addrspace(1)* %object)
%cond = call i32 @is_subtype_of(i32 <parent>, i32 %cid)

46

Agenda
• Abstractions

• Java Type Framework

• Exploiting Java Types

• Java Specific Optimizations

• Existing Optimizations

47

Alias Analysis
• LLVM’s Type Based Alias Analysis

• Optimizations like inlining, CFG simplification don’t
make TBAA more accurate

• Dropped like any other metadata

• JavaType framework has the same information

• Benefits from more sophisticated analysis and healing

• JavaTypes are refined during optimizations

48

JavaType Based AA

Pointers don’t alias if base object types can’t intersect

49

Context-Sensitive AA
• Want to make use of context-sensitive type

sharpening

• Can't make context sensitive queries in AA

• Introduced a new metadata -
base_object_java_type

• Updated by InstCombine

50

Base Object Java Type
Example

 %cid = call i32 @get_klass_id(i8 addrspace(1)* %object)
 %cond = icmp eq i32 %cid, 42
 br i1 %cond, label %match, label %mismatch

match:
 %addr = getelementptr i8, i8 addrspace(1)* %object, i64 20
 %addr.typed = bitcast i8 addrspace(1)* %addr to i64 addrspace(1)*
 %field = load i64, i64 addrspace(1)* %addr.typed

Base Object Java Type
Example

 %cid = call i32 @get_klass_id(i8 addrspace(1)* %object)
 %cond = icmp eq i32 %cid, 42
 br i1 %cond, label %match, label %mismatch

match:
 %addr = getelementptr i8, i8 addrspace(1)* %object, i64 20
 %addr.typed = bitcast i8 addrspace(1)* %addr to i64 addrspace(1)*
 %field = load i64, i64 addrspace(1)* %addr.typed,
 !base-object-java-type !{i32 42, i1 true}

Attached by InstCombine

Dereferenceability
• Expressed using dereferenceable/

derferenceable_or_null attributes and metadata

• JavaTypes is a more accurate way to derive
dereferenceability information

• It benefits from more sophisticated analysis and
metadata healing

• Handles control flow merges

• Type sharpening

53

Inline Cost

• InlineCost is taught about JavaType based
optimizations

• InstCombine maintains JavaTypes for the
arguments on call sites

• InlineCost uses argument types to estimate the
effect of potential optimizations

54

Inline Cost
• Constant folding of get_class_id for known

argument types

if (get_class_id(%arg) == expected_class_id)
 inlined_target_1
else if (get_class_id(%arg) == expected_class_id_2)
 inlined_target_2

• Bonus for call sites devirtualizable after inlining

%target = resolve_virtual(%arg, i32 <vtable_index>)
call %target

55

Future Work
• JavaType analysis pass

• Caching the results

• Improve the type system

• Multiple inheritance of interfaces, array types

• Upstream generalised type framework?

• Do you need a similar functionality for your
language?

56

Conclusion
• Express Java-specific semantics using high-level

embedded IR

• Very flexible and low-cost representation

• Introduced few Java specific optimizations

• Heavily rely on the existing LLVM optimizations

• Made existing optimizations benefit from new
information

57

Questions?

