
Code Size Optimisations for ARM

James Molloy, Sjoerd Meijer, Pablo Barrio, Kristof Beyls

EuroLLVM’17

March 2017

© ARM 2017 2

Code size…

“…is good, until it isn’t anymore

(all of a sudden)”

© ARM 2017 3

Code size matters

 Not uncommon for a micro-controller to have:

 64 Kbytes of Flash

 8 Kbytes of RAM

 Show stopper for many embedded systems and applications!

© ARM 2017 4

Problem statement

 Very costly when images don’t fit in RAM or ROM

 Bigger memories,

 More power hungry,

 HW redesign,

 And more…

 Code size optimisations are crucial

 We found that LLVM’s code generation not good enough when

optimising for size.

© ARM 2017 5

Idioms in embedded code

 Dominated by a lot of control flow decisions based on peripheral

register states:

 control code (if-statements, switches),

 magic constants,

 bitwise operations:

 Filling in data structures:

if ((((StructA*) (((uint32_t)0x40000000) + 0x6400))->M1

 & ((uint32_t)0x00000002)) != 0U) {

 …

ptr->structarr[idx].field3 &= ~((uint32_t)0x0000000F);

Confidential © ARM 2015 6

Implemented improvements

© ARM 2017 7

Summary of improvements

 About 200 patches and contributions last year (all upstream)

 Touched many different parts in both the middle-end and backend.

 Categorise them in these 4 areas:

1. turn off specific optimisations when optimising for size

2. tuning optimisations,

3. constants,

4. bit twiddling.

 Target independent: 1- 3, target dependent: 4

 Target Thumb code (and not e.g. AArch64)

 Provides 32-bit and 16-bit instruction encodings

© ARM 2017 8

Category 1: turn off specific optimisations

 Code size more valuable than execution time in this market

 Patch 1:

 Patch 2:

case LibFunc::fputs:

 if (optForSize())

 return nullptr;

 return optimizeFPuts(CI, Builder);

// when optimising for size, we don't want to

// expand a div to a mul and a shift.

if (ForCodeSize)

 return SDValue();

T
u
rn

 o
ff
 s

p
e
ci

fi
c

o
p
ti
m

is
at

io
n
s

© ARM 2017 9

Category 1: turn off specific optimisations

 Some other commits:

 do not inline memcpy if expansion is bigger than the lib call.

 Machine Block Placement: do not reorder and move up loop latch block to avoid extra

branching

 Do not expand UDIV/SDIV to multiplication sequence.

 In summary:

 Bunch of simple patches to turn off performance optimisations that increase code size

 Optimisations/transformations focus on performance

 It wasn’t really bad; a lot of passes do check the optimisation level,

 But clearly not enough!

T
u
rn

 o
ff
 s

p
e
ci

fi
c

o
p
ti
m

is
at

io
n
s

© ARM 2017 10

Category 2: tuning optimisations

 SimplifyCFG:

 Performs dead code elimination,

 basic block merging (chain of blocks with 1 predecessor/successor)

 adjusts branches to branches

 Eliminate blocks with just one unconditional branch

 And also “one stop shop for all your CFG peephole optimisations”:

 Hoist conditional stores

 Merge conditional stores

 Range reduce switches

 Sink common instructions down to the end block

T
u
n
in

g
o
p
ti
m

is
at

io
n
s

© ARM 2017 11

Category 2: tuning transformations - SimplifyCFG

 Rewrite sparse switches to dense switches:

 Real life example: switching over memory addresses

 Dense switches can be lowered better (not our contribution):

 E.g. transformed into lookup tables

 Good for code size & performance

switch (i) {

case 5: ...

case 9: ...

 case 13: ...

 case 17: ...

 }

if ((i - 5) % 4) goto default;

switch ((i - 5) / 4) {

 case 0: ...

 case 1: ...

 case 2: ...

 case 3: ... }

T
u
n
in

g
o
p
ti
m

is
at

io
n
s

© ARM 2017 12

Category 2: tuning transformations

 if (a)

 return *b += 3;

 else

 return *b += 4;

return:

%retval.0 = phi[%add, %if.then],[%add2,%if.else]

ret %retval.0

%strmerge.v = select %tobool, 4, 3

%storemerge = add %0, %strmerge.v

store %strmerge, %b

ret %strmerge

if.else:

 %add2 = add %0, 4

 store %add2, %b

 br %return

if.then:

 %add = add %0, 3

 store %add, %b,

 br %return

Our contribution:

• Also sink loads/stores

• Good for code size & performance

• (and all targets)

T
u
n
in

g
o
p
ti
m

is
at

io
n
s

conditional select idiom:

*b += (a ? 3 : 4)

© ARM 2017 13

Category 2: tuning transformations

 Some other commits:

 Inlining heuristics have been adapted

 Jump threading: unfold selects that depend on the same condition

 tailcall optimization: relax restriction on variadic functions

 Instruction selection:

 Lower UDIV+UREM more efficiently (not use libcalls)

 Lower pattern of certain selects to SSAT

T
u
n
in

g
o
p
ti
m

is
at

io
n
s

© ARM 2017 14

Category 3: constants

 Strategy is to use narrower

instructions

 More constrained

 Accurate analysis required

Instruction Imm. offset

32-bit encoding, word,

halfword, or byte

–255 to 4095

32-bit encoding, doubleword –1020 to 1020

16-bit encoding, word 0 to 124

16-bit encoding, halfword 0 to 62

16-bit encoding, byte 0 to 31

16-bit encoding, word,

Rn is SP

0 to 1020

https://developer.arm.com/docs/dui0801/f/a32-and-t32-instructions/str-immediate-offset

Immediate offsets available on store instructions:

C
o

n
st

an
ts

https://developer.arm.com/docs/dui0801/f/a32-and-t32-instructions/str-immediate-offset
https://developer.arm.com/docs/dui0801/f/a32-and-t32-instructions/str-immediate-offset
https://developer.arm.com/docs/dui0801/f/a32-and-t32-instructions/str-immediate-offset
https://developer.arm.com/docs/dui0801/f/a32-and-t32-instructions/str-immediate-offset
https://developer.arm.com/docs/dui0801/f/a32-and-t32-instructions/str-immediate-offset
https://developer.arm.com/docs/dui0801/f/a32-and-t32-instructions/str-immediate-offset
https://developer.arm.com/docs/dui0801/f/a32-and-t32-instructions/str-immediate-offset
https://developer.arm.com/docs/dui0801/f/a32-and-t32-instructions/str-immediate-offset
https://developer.arm.com/docs/dui0801/f/a32-and-t32-instructions/str-immediate-offset
https://developer.arm.com/docs/dui0801/f/a32-and-t32-instructions/str-immediate-offset
https://developer.arm.com/docs/dui0801/f/a32-and-t32-instructions/str-immediate-offset
https://developer.arm.com/docs/dui0801/f/a32-and-t32-instructions/str-immediate-offset

© ARM 2017 15

Category 3: constant hoisting

 From a set of constants in a function:

 pick constant with most uses,

 Other constants become an offset to that selected base constant.

 Selecting 12 as the base constant:

 12 stores with 4 byte encoding, 8 stores with 2 byte encoding

 (when the range is 0..31)

Constants 2 4 12 44

NumUses 3 2 8 7

Imm Offset -10 -8 0 32

C
o

n
st

an
ts

© ARM 2017 16

Category 3: constant hoisting

 Objective: maximise the constants in range:

 Now we select 2 as the base constant:

 7 stores with 4-byte encoding, 13 stores with 2-byte encoding

 Code size reduction of (13 – 8) * 2 = 10 bytes.

Imm. Offset 0 2 10 42

NumUses 3 2 8 7

C
o

n
st

an
ts

Constants 2 4 12 44

NumUses 3 2 8 7

© ARM 2017 17

Category 3: constants

 For transformations, it’s crucial to use and have accurate cost models

 For constants, this is provided by TargetTransformInfo

 Query properties, sizes, costs of immediates

 Some other commits tweaked/added:

 TTI::getIntImmCodeSizeCost();

 TTI::getIntImmCost()

 And another commit:

 Promotes small global constants to constant pools

C
o

n
st

an
ts

© ARM 2017 18

Category 4: bit twiddling

 A branch on a compare with zero:

 (CMPZ (AND x, #bitmask), #0)

 CMPZ is a compare that sets only Z flag in LLVM

 Can be replaced with 1 instruction (most of the time). But how?

AND r0, r0, #3 4 bytes

CMP r0, #0 2 bytes

BEQ .LBB0_2 2 bytes

8 bytes

B
it
 T

w
id

d
lin

g

© ARM 2017 19

Category 4: bit twiddling, cont’d

 The ALU status flags:

 N: set when the result of the operation was Negative.

 Z: set when the result of the operation was Zero.

 C: set when the operation resulted in a Carry.

 V: Set when the operation caused oVerflow.

Flag setting ANDS:

Don’t need the CMP:

ANDS r0, #3 4 bytes

BEQ .LBB0_2 2 bytes

LSLS r0, r0, #30 2 bytes

BEQ .LBB0_2 2 bytes

6 bytes 4 bytes

If bitmask is consecutive seq. of bits,

And if it touches the LSB,

Remove all upper bits:

B
it
 T

w
id

d
lin

g

© ARM 2017 20

Category 4: bit twiddling, cont’d

 Some more commits:

 Remove CMPs when we care only about the N and Z flags

 A CMP with -1 can be done by adding 1 and comparing against 0

 Summary:

 There are many, many tricks (see also Hacker’s Delight)

 Although mostly small rewrites, they can give good savings if there are lot of them.

B
it
 T

w
id

d
lin

g

Confidential © ARM 2015 21

Experimental results

© ARM 2017 22

Results CSiBE-v2.1.1

 CSiBE: code size benchmark

 http://szeged.github.io/csibe/

 Jpeg, flex, lwip, OpenTCP, replaypc

 Libpng, libmspack, zlib,

 Setup:

 -Oz -mcpu=cortex-m4 -mthumb

 Includes our contributions,

 but everyone else’s too!

 Improvements: 337, Unchanged: 154, Regressions: 127

19957 bytes

-1.01%

1975652

1955695

1945000

1950000

1955000

1960000

1965000

1970000

1975000

1980000

July 2016 Jan 2017

c
o

d
e
 s

iz
e
 i

n
 b

y
te

s

CSiBE Cortex-M4 –Oz
(lower is better)

http://szeged.github.io/csibe/
http://szeged.github.io/csibe/
http://szeged.github.io/csibe/

© ARM 2017 23

CSiBE: Cortex-M4, -Oz

http://szeged.github.io/csibe/compiler-monitor.html

PR31729: [GVNHoist]

Don't hoist unsafe

scalars at –Oz

lower

is

better

26-09-2016 20-03-2017

http://szeged.github.io/csibe/compiler-monitor.html
http://szeged.github.io/csibe/compiler-monitor.html
http://szeged.github.io/csibe/compiler-monitor.html
http://szeged.github.io/csibe/compiler-monitor.html

© ARM 2017 24

More results

 ARM Compiler 6 toolchain

 LLVM based compiler

 Proprietary linker, and libraries*

 Code generation is only part of the puzzle:

 Library selection:

 Different library variants with e.g. different IEEE math lib compliance

 Linker can e.g.:

 Remove unused sections,

 Partially include libraries.

* ARM would welcome lld picking up the challenge of producing really good,

compact code, and ARM would help.

© ARM 2017 25

ARM Compiler 6 Results

1 1 1 1

0.96

0.99

0.95

1

0.76

0.98

0.88

0.94

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

App1 App2 App3 App4

c
o

d
e
 s

iz
e

Thumb –Oz code size (lower is better)

ac6 baseline

ac6 excl linker gains

ac6 incl linker gains

Confidential © ARM 2015 26

Further potential improvements

© ARM 2017 27

Future work

 Avoid wide branches

 Spilling of small constants

 balance materialization and register pressure

 Constant hoisting too aggressive

© ARM 2017 28

Future work: Machine Block Placement

int foo(int *p, int *q)

{

 if (!p) return ERR;

 if (!q) return ERR;

 ..

 if (..) return ERR;

 ..

 // lot of code here

 ..

 return SUCC;

}

BB0:

 ..

 cbz r0, .LBB0_3

BB1:

 ..

 cbz r4, .LBB0_3

BB342:

// lot of code here

.LBB0_3:

 mov.w r0, #-1

 pop

 Wide branches

to exit block(s)

 MPB: should take

into account

branch distances

(for code size)

© ARM 2017 29

Future work: Constant Hoisting

Entry:

 movs r2, #1

 lsls r3, r2, #15

 lsls r0, r2, #19

 str r0, [sp, #8] @ 4-byte Spill

 lsls r0, r2, #20

 str r0, [sp, #12] @ 4-byte Spill

 lsls r0, r2, #21

 str r0, [sp, #16] @ 4-byte Spill

 lsls r0, r2, #22

 str r0, [sp] @ 4-byte Spill

 lsls r6, r2, #25

 movs r0, #3

 ...

 Constant hoisting is really

aggressive

 Does not take into account

register pressure

© ARM 2017 30

Future work:
Balance materialization and register pressure

 movs r6,#2

 mov r0,r6

 blx r1

 cmp r0,#0

 bne {pc}+0xfa

 str r6,[sp,#0x10]

 Rematerialization: clone of an

instruction where it is used

 Cannot have have any sideeffects

 In thumb-1, MOVS always sets the flags

 Hoist constants to avoid the

materialization vs. trying to sink them to

reduce register pressure

Save #2 into a stack slot:

© ARM 2017 31

Conclusions

 Good code size improvements:

 Open Source LLVM: CSiBE-v2.1.1 improved by1.01%

 ARM Compiler:

 From 1% to 6% across a range of microcontroller applications (code generation)

 From 2% to 24% fully using the ARM Compiler toolchain (armlink)

 widely applicable to a lot of code

 Achieved a lot in relatively short amount of time.

 Shows LLVM is not in a bad place!

 There’s (always) more to do:

 Focussed on 4 realistic microcontroller application examples

 Picked a lot (most?) of low hanging fruit, and also did a few big tasks

 But we have left a few big tasks on the table.

