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Quiz #1. Should these transformations be allowed?

1. CSE over acquiring a lock:

a = x ;
lock();
b = x ;

;
a = x ;
lock();
b = a;

2. Load hoisting:

if (c)
a = x ; ;

t = x ;
a = c ? t : a;

[x is a global variable; a, b, c are local; t is a fresh temporary.]
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Allowing both is clearly wrong!

Consider the transformation sequence:

if (c)
a = x ;

lock();
b = x ;

hoist;

t = x ;
a = c ? t : a;
lock();
b = x ;

CSE;

t = x ;
a = c ? t : a;
lock();
b = t;

When c is false, x is moved out of the critical region!

So we have to forbid one transfomation.
I C11 forbids load hoisting, allows CSE over lock().
I LLVM allows load hoisting, forbids CSE over lock().
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Formal model

Unambiguous specification
I Which are the possible outcomes of a program.
I Which optimizations may the compiler perform.

Typically called a weak memory model (WMM)
I Allows more behaviors than thread interleaving.

Amenable to formal reasoning
I Can prove theorems about the model.
I Objectively compare memory models.

But it is not easy to get right
I The Java memory model is flawed.
I The C/C++11 model is also flawed.
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Overview

Power ARMx86

WMM

WMM desiderata
1. Mathematically sane

(e.g., monotone)

2. Not too weak
(good for programmers)

3. Not too strong
(good for hardware)

4. Admits optimizations
(good for compilers :-)
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Overview

Power ARMx86

WMM

Outline
I How to define a weak
memory model?

I The C/C++ memory
model (a.k.a. C11)

I Unfortunate flaws in C11

I The OOTA problem

I A ‘promising’ solution
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Three approaches for defining WMMs

Operational
I Define program semantics with an abstract machine.

Transformational
I Define the model as a sequence of program
transformations over some basic model (e.g., SC).

Axiomatic
I Define the model as a set of consistency constraints on
program executions.
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Operational approach

Define program semantics with an abstract machine.
I Works well for most hardware models.
I Very low-level ; cumbersome to reason about.
I May require elaborate features for PL models.

x86-TSO model (2010)

CPU1
write

write-back

read

CPU n

. . .

. . .

Memory

ARMv8 model (2016)

Memory
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Transformational approach

Define the model as a sequence of program transformations
over some basic operational model, such as SC.

For example,

TSO = SC + WR-reordering + RaW-elimination

But:
I Applicable only in very few cases.
I Does not work for ARM.

ARM weak
a = x ; // 1
x = 1; y = x ; x = y ;
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Axiomatic approach

Define the model as a set of consistency constraints on
program executions.

Example: Load-buffering

a = x ; // 1
y = 1;

b = y ; // 1
x = b;

I Works well for hardware models.
I Followed by C11.
I Problematic for programming
languages because of OOTA
(“out of thin air”) values.

[x = y = 0]

R y , 1

W x , 1

R x , 1

W y , 1

program order
reads from
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The C11 memory model

I Introduced by the ISO C/C++ 2011 standards.
I Defines the semantics of concurrent memory accesses.
I Adopted by the LLVM IR with some changes.

(The differences are not relevant for this talk.)



The C11 memory model: Atomics

Two types of locations

Ordinary
(Non-Atomic) Atomic

Races are errors
Welcome to the
expert mode
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A spectrum of accesses

Non-atomic (na)
no fence, races are errors

Relaxed (rlx)
no fence

Release write (rel)
no fence (x86); lwsync (PPC)

Acquire read (acq)
no fence (x86); isync (PPC)

Seq. consistent (sc)
full memory fence

Explicit primitives for fences
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An execution in C11: actions and relations (and axioms)

Initially x = y = 0.

x = 5;
y .store(1, release);

while (y .load(acq) == 0);
print(x);

One possible execution

Wna x , 5

Wrel y , 1

Racq y , 0

Racq y , 1

Rna x , 5

Wna x , 0 Wna y , 0

po (program-order)
(sync.with)

sw

rf

rf (reads-from)

hb , (po ∪ sw)+
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Relaxed behavior: store buffering

Initially x = y = 0.

x .store(1, rlx);
a = y .load(rlx);

y .store(1, rlx);
b = x .load(rlx);

This can return a = b = 0.

Justification

[x = y = 0]

Wrlx x , 1

Rrlx y , 0

Wrlx y , 1

Rrlx x , 0

Behavior observed on
x86/Power/ARM
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Coherence

Programs with a single shared variable behave as under SC.

x .store(1, rlx);
x .store(2, rlx);

a = x .load(rlx);
b = x .load(rlx);

The outcome a = 2 ∧ b = 1 is forbidden.

Wrlx x , 1

Wrlx x , 2

Rrlx x , 2

Rrlx x , 1

mox

rbx

I Modification order, mox , total order of writes to x .
I Reads-before : rbx , (rf−1; mox) ∩ (6=)
I Coherence : hb ∪ rfx ∪ mox ∪ rbx is acyclic for all x .
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Causality cycles with relaxed accesses

Initially x = y = 0.

if (x .load(rlx) == 1)
y .store(1, rlx);

if (y .load(rlx) == 1)
x .store(1, rlx);

C11 allows the outcome x = y = 1.

Justification
Rrlx x , 1

Wrlx y , 1

Rrlx y , 1

Wrlx x , 1

Relaxed accesses don’t
synchronize
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No causality cycles with non-atomics

Initially x = y = 0.

if (x == 1)
y = 1;

if (y == 1)
x = 1;

C11 forbids the outcome x = y = 1.

Justification
Non-atomic read axiom:

rf ∩ (_× NA) ⊆ hb
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Is the C11 memory model definition. . .

1. Mathematically sane?
I For example, it is monotone.

2. Not too weak?
I Provides useful reasoning principles.

3. Not too strong?
I Can be implemented efficiently.

4. Actually useful?
I Admits the intended program optimizations.
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Non-atomic reads of atomic variables are unsound!

Initially, x = 0.

x .store(1, rlx); if (x .load(rlx) == 1)
t = (int) x ;

The program can get stuck!

Wna x , 0

Wrlx x , 1 Rrlx x , 1

Rna x , ?
I Reading 0 contradicts coherence.
I Reading 1 contradicts the non-atomic read axiom.
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Sequentialization is invalid

Initially, a = x = y = 0.

a = 1;
if (x .load(rlx) == 1)
if (a == 1)
y .store(1, rlx);

if (y .load(rlx) == 1)
x .store(1, rlx);

The only possible output is:

a = 1, x = y = 0 .

Recall the non-atomic read axiom:

rf ∩ (_× NA) ⊆ hb
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Tentative fixes

Remove non-atomic read axiom.
I gives extremely weak guarantees, if any

In addition, forbid (po ∪ rf)-cycles.
I rules out causal loops
I forbids some reorderings
I more costly on ARM/Power

Related to the OOTA problem.. . .
I More in a couple of slides
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Monotonicity

“Adding synchronization should not introduce
new behaviors”

Examples:
I Reducing parallelism, C1‖C2 ; C1 ;C2

I Expression evaluation linearization:

x = a + b ; ; t1 = a ; t2 = b ; x = t1 + t2 ;

I Adding a memory fence
I Strengthening the access mode of an operation
I (Roach motel reorderings)
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C11 semantics for SC accesses is broken! (PLDI’17)

IRIW-acq-sc

xsc = 1; a = xacq; // 1
c = ysc; // 0

b = yacq; // 1
d = xsc; // 0

ysc = 1;

I C11 disallows the annotated behavior:
Wna x , 0 Wna y , 0

Wsc x , 1 Racq x , 1

Rsc y , 0

Racq y , 1

Rsc x , 0

Wsc y , 1

po

sw rf

I The behavior is, however, allowed on POWER/ARM
following the “trailing sync” compilation scheme.
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Other problems fixed (POPL’15, POPL’16)

The axiom of SC reads is too weak.
I Makes strengthening unsound.

The axioms of SC fences are too weak.
I They do not guarantee sequential consistency.

The definition of release sequences is too strong.
I Removing (po ∪ rf)-final events is unsound.
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The OOTA problem



The out-of-thin-air problem in C11

I Initially, x = y = 0.
I All accesses are “relaxed”.

Load-buffering

a = x ; // 1
y = 1; x = y ;

This behavior must be allowed:
Power/ARM allow it

[x = y = 0]

Rrlx y , 1

Wrlx x , 1

Rrlx x , 1

Wrlx y , 1

program order
reads from

26



The out-of-thin-air problem in C11

Load-buffering + data dependency

a = x ; // 1
y = a; x = y ;

The behavior should be forbidden:
Values appear out-of-thin-air!

Load-buffering + control dependencies

a = x ; // 1
if (a == 1)
y = 1;

if (y == 1)
x = 1;

The behavior should be forbidden:
DRF guarantee is broken!

[x = y = 0]

Rrlx y , 1

Wrlx x , 1

Rrlx x , 1

Wrlx y , 1

Same execution as before!
C11 allows these behaviors
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The hardware solution

Keep track of syntactic dependencies,
and forbid “dependency cycles”.

Load-buffering + data dependency

a = x ; // 1
y = a; x = y ;

Load-buffering + fake dependency

a = x ; // 1
y = a + 1− a; x = y ;

[x = y = 0]

Rrlx y , 1

Wrlx x , 1

Rrlx x , 1

Wrlx y , 1

dependency

This approach is not suitable for a programming language:
Compilers do not preserve syntactic dependencies.
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A ‘promising’ solution to OOTA

We propose a model that satisfies all WMM desiderata, and
covers nearly all features of C11.

I No “out-of-thin-air” values
I DRF guarantees

I Efficient h/w mappings
I Compiler optimizations

Key idea: Start with an operational interleaving semantics,
but allow threads to promise to write in the future.



Simple operational semantics for C11’s relaxed accesses

Store-buffering

x = y = 0

I

x = 1;

I

a = y ; // 0

I

I

y = 1;

I

b = x ; // 0

I

Memory
〈x : 0@0〉
〈y : 0@0〉

〈x : 1@1〉
〈y : 1@1〉

T1’s view
x y
0 0

1

T2’s view
x y
0 0

1
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x = 1;
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I
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I
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T1’s view
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0

1
2

T2’s view
x
0

2

30



Simple operational semantics for C11’s relaxed accesses

Store-buffering

x = y = 0

I

x = 1;

I

a = y ; // 0
I

I

y = 1;

I

b = x ; // 0
I

Memory
〈x : 0@0〉
〈y : 0@0〉
〈x : 1@1〉
〈y : 1@1〉

T1’s view
x y
�A0 0
1

T2’s view
x y
0 �A0

1

Coherence Test

x = 0
I x = 1;

I

a = x ; // 2

I

I x = 2;

I

b = x ; // 1

I

Memory
〈x : 0@0〉

〈x : 1@1〉
〈x : 2@2〉

T1’s view
x
0

1
2

T2’s view
x
0

2

30



Simple operational semantics for C11’s relaxed accesses

Store-buffering

x = y = 0

I

x = 1;

I

a = y ; // 0
I

I

y = 1;

I

b = x ; // 0
I

Memory
〈x : 0@0〉
〈y : 0@0〉
〈x : 1@1〉
〈y : 1@1〉

T1’s view
x y
�A0 0
1

T2’s view
x y
0 �A0

1

Coherence Test

x = 0

I

x = 1;
I a = x ; // 2

I

I x = 2;

I

b = x ; // 1

I

Memory
〈x : 0@0〉
〈x : 1@1〉

〈x : 2@2〉

T1’s view
x
�A0
1

2

T2’s view
x
0

2

30



Simple operational semantics for C11’s relaxed accesses

Store-buffering

x = y = 0

I

x = 1;

I

a = y ; // 0
I

I

y = 1;

I

b = x ; // 0
I

Memory
〈x : 0@0〉
〈y : 0@0〉
〈x : 1@1〉
〈y : 1@1〉

T1’s view
x y
�A0 0
1

T2’s view
x y
0 �A0

1

Coherence Test

x = 0

I

x = 1;
I a = x ; // 2

I

I

x = 2;
I b = x ; // 1

I

Memory
〈x : 0@0〉
〈x : 1@1〉
〈x : 2@2〉

T1’s view
x
�A0
1

2

T2’s view
x
�A0
2

30



Simple operational semantics for C11’s relaxed accesses

Store-buffering

x = y = 0

I

x = 1;

I

a = y ; // 0
I

I

y = 1;

I

b = x ; // 0
I

Memory
〈x : 0@0〉
〈y : 0@0〉
〈x : 1@1〉
〈y : 1@1〉

T1’s view
x y
�A0 0
1

T2’s view
x y
0 �A0

1

Coherence Test

x = 0

I

x = 1;

I

a = x ; // 2
I

I

x = 2;
I b = x ; // 1

I

Memory
〈x : 0@0〉
〈x : 1@1〉
〈x : 2@2〉

T1’s view
x
�A0
�A1
2

T2’s view
x
�A0
2

30



Simple operational semantics for C11’s relaxed accesses

Store-buffering

x = y = 0

I

x = 1;

I

a = y ; // 0
I

I

y = 1;

I

b = x ; // 0
I

Memory
〈x : 0@0〉
〈y : 0@0〉
〈x : 1@1〉
〈y : 1@1〉

T1’s view
x y
�A0 0
1

T2’s view
x y
0 �A0

1

Coherence Test

x = 0

I

x = 1;

I

a = x ; // 2
I

I

x = 2;

I

b = x ; // 1
I

Memory
〈x : 0@0〉
〈x : 1@1〉
〈x : 2@2〉

T1’s view
x
�A0
�A1
2

T2’s view
x
�A0
2

30



Promises

Load-buffering

x = y = 0

I

a = x ; // 1

I

y = 1;

I

I

x = y ;

I

Memory
〈x : 0@0〉
〈y : 0@0〉

〈y : 1@1〉
〈x : 1@1〉

T1’s view
x y
0 0

1 1

T2’s view
x y
0 0

1 1

I To model load-store reordering, we allow “promises”.
I At any point, a thread may promise to write a message in
the future, allowing other threads to read from the
promised message.
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I

I

x = y ;
I
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〈y : 1@1〉
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x y
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x y
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T1’s view
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I To model load-store reordering, we allow “promises”.
I At any point, a thread may promise to write a message in
the future, allowing other threads to read from the
promised message.
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Promises

Load-buffering

x = y = 0

I

a = x ; // 1

I

y = 1;
I

I

x = y ;
I

Memory
〈x : 0@0〉
〈y : 0@0〉
〈y : 1@1〉
〈x : 1@1〉

T1’s view
x y
�A0 �A0
1 1

T2’s view
x y
�A0 �A0
1 1

Load-buffering + dependency

a = x ; // 1
y = a; x = y ;

Must not admit the same
execution!
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Promises

Load-buffering

x = y = 0

I

a = x ; // 1

I

y = 1;
I

I

x = y ;
I

Memory
〈x : 0@0〉
〈y : 0@0〉
〈y : 1@1〉
〈x : 1@1〉

T1’s view
x y
�A0 �A0
1 1

T2’s view
x y
�A0 �A0
1 1

Load-buffering + dependency

a = x ; // 1
y = a; x = y ;
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Key Idea
A thread can only promise if it can
perform the write anyway (even
without having made the promise)



Certified promises

Thread-local certification
A thread can promise to write a message, if it can
thread-locally certify that its promise will be fulfilled.

Load-buffering

a = x ; // 1
y = 1; x = y ;

Load buffering + fake dependency

a = x ; // 1
y = a + 1− a; x = y ;

T1 may promise y = 1, since it is able to write y = 1 by itself.

Load buffering + dependency

a = x ; // 1
y = a; x = y ;

T1 may NOT promise y = 1, since
it is not able to write y = 1 by itself.
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Certified promises

Thread-local certification
A thread can promise to write a message, if it can
thread-locally certify that its promise will be fulfilled.

Load-buffering

a = x ; // 1
y = 1; x = y ;

Load buffering + fake dependency

a = x ; // 1
y = a + 1− a; x = y ;

T1 may promise y = 1, since it is able to write y = 1 by itself.

Load buffering + dependency

a = x ; // 1
y = a; x = y ;

T1 may NOT promise y = 1, since
it is not able to write y = 1 by itself.
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Quiz #2

Is this behavior possible?

a = x ; // 1
x = 1;

No.
Suppose the thread promises x = 1. Then, once a = x reads 1,

the thread view is increased and so the promise cannot be fulfilled.
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Quiz #3

Is this behavior possible?

a = x ; // 1
x = 1; y = x ; x = y ;

Yes. And the ARM model allows it!

This behavior can be also explained by sequentialization:

a = x ; // 1
x = 1; y = x ; x = y ; ;

a = x ; // 1
x = 1;
y = x ;

x = y ;
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The full model (POPL’17)

We have extended this basic idea to handle:
I Atomic updates (e.g., CAS, fetch-and-add)
I Release/acquire fences and accesses
I Release sequences
I SC fences
I Plain accesses (C11’s non-atomics & Java’s normal accesses)

Results
I No “out-of-thin-air” values
I DRF guarantees
I Efficient h/w mappings (x86-TSO, Power, ARM)
I Compiler optimizations (incl. reorderings, eliminations)
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Summary

Power ARMx86

WMM

Summary
I The need for a WMM.

I C11 is very broken.

I Many of the problems
are locally fixable.

I But ruling out OOTA
requires an entirely
different approach.

I The promising model
may be the solution.
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