
Dominator Trees

and incremental updates that transcend time

Jakub (Kuba) Kuderski

kubakuderski@gmail.com

University of Waterloo

12017 US LLVM Developersô Meeting ïSan Jose

Introduction

2

CFG (Control Flow Graph)

Introduction

3

CFG (Control Flow Graph)

Dominance:

Introduction

4

CFG (Control Flow Graph)

Node X dominates node Y iff all paths from

the entry to Y go through X.

Dominance:

5

Dominators

Node X dominates node Y iff all paths from

the entry to Y go through X.

Dominance:

6

{ entry }

Dominators

Node X dominates node Y iff all paths from

the entry to Y go through X.

Dominance:

7

{ entry }

{ entry, A }

Dominators

Node X dominates node Y iff all paths from

the entry to Y go through X.

Dominance:

8

{ entry }

{ entry, A }

{ entry, A, C }

{ entry, A, C, E }{ entry, A, C, D }

{ entry, A, C, F }

Dominators

Node X dominates node Y iff all paths from

the entry to Y go through X.

Dominance:

9

{ entry }

{ entry, A }

{ entry, A, C }

{ entry, A, C, E }{ entry, A, C, D }

{ entry, A, C, F }{ entry, A, B }

{ entry, A, G }

{ entry, A, G, exit }

Dominators

Node X dominates node Y iff all paths from

the entry to Y go through X.

Dominance:

10

{ }

{ entry }

{ A }

{ C }{ C }

{ C }{ A }

{ A }

{ G }

Immediate dominators

Node X dominates node Y iff all paths from

the entry to Y go through X.

Dominance:

11

Dominator Tree:

{ }

{ entry }

{ A }

{ C }{ C }

{ C }{ A }

{ A }

{ G }

A

B C G

exit

entry

D E F

Immediate dominators

12

Tree T is the dominator tree if and only if

it has the parent and the sibling properties.
{ }

{ entry }

{ A }

{ C }{ C }

{ C }{ A }

{ A }

{ G }

A

B C G

exit

entry

D E F

Immediate dominators

13

Postdominator Tree:
{ A }

{ G }

{ F }

{ F }{ F }

{ G }{ G }

{ exit }

{ <virtual exit> }

Immediate postdominators

G

B FA

entry

exit

C D E

<virtual exit>

14

Postdominator Tree:

Multiple exits: D, G, H

C Fentry

A B D

<virtual exit>

E H

Virtual Root

Roots: D, G, H

15

Postdominator Tree:

Multiple exits: D, G, H

C Fentry

A B D

<virtual exit>

E H

Virtual Root

Roots: D, G, H

virtual exit

(nullptr)

16

Inorder Dominator Tree: DFSNumbersinvalid: 0 slow queries.
[1] %entry {4294967295,4294967295} [0]

[2] %switch {4294967295,4294967295} [1]
[3] %five {4294967295,4294967295} [2]
[3] %two {4294967295,4294967295} [2]

[4] %exit {4294967295,4294967295} [3]
[3] %four {4294967295,4294967295} [2]

Dominator Tree

switch

two five

exit

entry

four

Textual representation

(for debugging)

calculated level level stored in the tree node

17

Inorder Dominator Tree:
[1] %entry {1,12} [0]

[2] %switch {2,11} [1]
[3] %five {3,4} [2]
[3] %two {5,8} [2]

[4] %exit {6,7} [3]
[3] %four {9,10} [2]

Dominator Tree

switch

two five

exit

entry

four

Textual representation

(for debugging)

calculated level level stored in the tree node

DFS In/Out numbers ïcalculated lazily

Dominators are important in SSA

ǒ Every def must dominate its uses

ƺ ... in a valid piece of IR

ǒDominators are used to compute the optimal placement of PHI nodes

ƺ DominanceFrontier

18

Use of dominators in LLVM

ǒ Used with BasicBlocks

ƺ DominatorTree, PostDominatorTree

ƺ DominatorTreeWrapperPass, PostDominatorTreeWrapperPass

ƺ DominanceFrontier, IteratedDominanceFrontier

ǒAlso with MachineBasicBlocks and Clang's CFG

19

Use of dominators in LLVM

Å grep - r 'Dominator'

Å ?

Å grep - r 'Dominance'

Å ?

Å grep - r 'dominates'

Å ?

Å grep - rE 'DT \ .|DT - >' DT. and DT- >

Å ?

20

Use of dominators in LLVM

Å grep - r 'Dominator'

Å 2600

Å grep - r 'Dominance'

Å 320

Å grep - r 'dominates'

Å 660

Å grep - rE 'DT \ .|DT - >' DT. and DT- >

Å 1200

21

Problems

ǒThere was no API for automatically updating the DominatorTree

ƺ Very low-level API for performing manual updates

ƺ Frequent DominatorTree recalculations

(1 million recalculations when optimizing clang fullLTO, ~3.2% of total optimization time)

ǒPostDominatorTree was virtually impossible to update manually

ƺ Too costly to maintain

ƺ Not used widely in practice

22

Goals

ǒMake updating the DominatorTree easy

ƺ To get rid of numerous extremely subtle bugs scattered across the whole optimizer

ƺ Reduce the number of recalculations

ǒMake the PostDominatorTree more viable to use

ƺ By making it possible to update it without doing full recalculations

23

Incremental dominator tree updater

24

ǒDepth Based Search algorithm

ƺ Uses Semi-NCA tree construction algorithm

ƺ Splits updates into 4 categories and tries to bound the search

of affected subtrees using tree level information

L. Georgiadis et al.

https://arxiv.org/pdf/1604.02711.pdf

Incremental dominator tree updater

25

ǒDepth Based Search algorithm

ƺ Uses Semi-NCA tree construction algorithm

ƺ Splits updates into 4 categories and tries to bound the search

of affected subtrees using tree level information

L. Georgiadis et al.

https://arxiv.org/pdf/1604.02711.pdf

ǒWhat we have done:

ƺ Cleaned up existing implementation of the DominatorTree

ƺ Switched from Simple Lengauer-Tarjan to Semi-NCA

ƺ Adapted the Depth Based Search algorithm to LLVM

ƺ Made improvements to the PostDominatorTree

Semi-NCA dominator tree construction algorithm

ǒ Simpler to implement than Simple Lengauer-Tarjan

ƺ Does not perform path compression

ƺ Stores levels (depth in tree) in nodes

ǒ Worse computational complexity, but faster in practice

ƺ Simple Lengauer-TarjanïO(n log(n))

ƺ Semi-NCA ïO(n2)

26

Semi-NCA dominator tree construction algorithm

ǒ Simpler to implement than Simple Lengauer-Tarjan

ƺ Does not perform path compression

ƺ Stores levels (depth in tree) in nodes

ǒ Worse computational complexity, but faster in practice

ƺ Simple Lengauer-TarjanïO(n log(n))

ƺ Semi-NCA ïO(n2)

27

Delta (%)

Incremental update API

ǒTwo new functions:

ƺ DT.insertEdge(From, To)

ƺ DT.deleteEdge(From, To)

ǒFollowing transforms taught to use the new API and preserve dominators:

ƺ Loop Deletion

ƺ Loop Rerolling

ƺ Loop Unswitching

ƺ Break Critical Edges

ƺ Aggressive Dead Code Elimination

28

Incremental update API

ǒTwo new functions:

ƺ DT.insertEdge(From, To)

ƺ DT.deleteEdge(From, To)

ǒFollowing transforms taught to use the new API and preserve dominators:

ƺ Loop Deletion

ƺ Loop Rerolling

ƺ Loop Unswitching

ƺ Break Critical Edges

ƺ Aggressive Dead Code Elimination

29

Depth Based Search confused

30

Dominator Tree

switch

two fivedefault

entry

four

0. [ADCE] final dead block:
%default, %two, %four, %five CFG

exit

Depth Based Search confused

31

Dominator Tree

switch

two fivedefault

entry

four

0. [ADCE] final dead block:
%default, %two, %four, %five CFG

1. [ADCE] make %two the only
successor of %switch

exit

Depth Based Search confused

32

Dominator Tree

switch

two fivedefault

entry

four

0. [ADCE] final dead block:
%default, %two, %four, %five CFG

1. [ADCE] make %two the only
successor of %switch

exit

Depth Based Search confused

33

Dominator Tree

switch

two fivedefault

entry

four

0. [ADCE] final dead block:
%default, %two, %four, %five CFG

1. [ADCE] make %two the only
successor of %switch

2. [ADCE] DT.deleteEdge (%switch, %default)
[DT] NCD(%switch, IDom(%default)) is %switch
[DT] %default was only reachable from %switch
[DT] delete subtree %default

exit

Depth Based Search confused

34

Dominator Tree

switch

two fivedefault

entry

four

0. [ADCE] final dead block:
%default, %two, %four, %five CFG

1. [ADCE] make %two the only
successor of %switch

2. [ADCE] DT.deleteEdge (%switch, %default)
[DT] NCD(%switch, IDom(%default)) is %switch
[DT] %default was only reachable from %switch
[DT] delete subtree %default

exit

[DT] attach %exit to its only
predecessor reachable from
%switch Ƶ to %two

Depth Based Search confused

35

Dominator Tree

switch

two five

entry

four

0. [ADCE] final dead block:
%default, %two, %four, %five CFG

1. [ADCE] make %two the only
successor of %switch

2. [ADCE] DT.deleteEdge (%switch, %default)
[DT] NCD(%switch, IDom(%default)) is %switch
[DT] %default was only reachable from %switch
[DT] delete subtree %default

exit

[DT] attach %exit to its only
predecessor reachable from
%switch Ƶ to %two

Depth Based Search confused

36

Dominator Tree

switch

two five

entry

four

0. [ADCE] final dead block:
%default, %two, %four, %five CFG

1. [ADCE] make %two the only
successor of %switch

2. [ADCE] DT.deleteEdge (%switch, %default)
[DT] NCD(%switch, IDom(%default)) is %switch
[DT] %default was only reachable from %switch
[DT] delete subtree %default

exit

[DT] attach %exit to its only
predecessor reachable from
%switch Ƶ to %two

3. [ADCE] DT.deleteEdge (%switch, %four)
[DT] NCD(%switch, IDom(%four)) is %switch
[DT] %four was only reachable from %switch
[DT] delete subtree %four

Depth Based Search confused

37

Dominator Tree

switch

two five

entry

0. [ADCE] final dead block:
%default, %two, %four, %five CFG

1. [ADCE] make %two the only
successor of %switch

2. [ADCE] DT.deleteEdge (%switch, %default)
[DT] NCD(%switch, IDom(%default)) is %switch
[DT] %default was only reachable from %switch
[DT] delete subtree %default

exit

[DT] attach %exit to its only
predecessor reachable from
%switch Ƶ to %two

3. [ADCE] DT.deleteEdge (%switch, %four)
[DT] NCD(%switch, IDom(%four)) is %switch
[DT] %four was only reachable from %switch
[DT] delete subtree %four

Depth Based Search confused

38

Dominator Tree

switch

two five

entry

0. [ADCE] final dead block:
%default, %two, %four, %five CFG

1. [ADCE] make %two the only
successor of %switch

2. [ADCE] DT.deleteEdge (%switch, %default)
[DT] NCD(%switch, IDom(%default)) is %switch
[DT] %default was only reachable from %switch
[DT] delete subtree %default

exit

[DT] attach %exit to its only
predecessor reachable from
%switch Ƶ to %two

3. [ADCE] DT.deleteEdge (%switch, %four)
[DT] NCD(%switch, IDom(%four)) is %switch
[DT] %four was only reachable from %switch
[DT] delete subtree %four

[DT] %exit is %four's successor and
Level(%exit) == Level(%four) + 1,
so it must be in %four's subtree

Depth Based Search confused

39

Dominator Tree

switch

two five

entry

0. [ADCE] final dead block:
%default, %two, %four, %five CFG

1. [ADCE] make %two the only
successor of %switch

2. [ADCE] DT.deleteEdge (%switch, %default)
[DT] NCD(%switch, IDom(%default)) is %switch
[DT] %default was only reachable from %switch
[DT] delete subtree %default

[DT] attach %exit to its only
predecessor reachable from
%switch Ƶ to %two

3. [ADCE] DT.deleteEdge (%switch, %four)
[DT] NCD(%switch, IDom(%four)) is %switch
[DT] %four was only reachable from %switch
[DT] delete subtree %four

[DT] %exit is %four's successor and
Level(%exit) == Level(%four) + 1,
so it must be in %four's subtree

[DT] delete %exit

Batch updates

ǒDepth Based Search needs to see a snapshot of the CFG just after each

update

ǒWe do not want to store different versions of the same CFG in DominatorTree

40

Batch updates

ǒDepth Based Search needs to see a snapshot of the CFG just after each

update

ǒWe do not want to store different versions of the same CFG in DominatorTree

ǒWe need to have a way to ódiffô CFG between batch updates

41

Batch updates

ǒDepth Based Search needs to see a snapshot of the CFG just after each

update

ǒWe do not want to store different versions of the same CFG in DominatorTree

ǒWe need to have a way to ódiffô CFG between batch updates

ǒThe list of updates to perform is also the full list of changes to the CFG

42

Batch update algorithm

ǒReverse-apply updates to the CFG from the future to get the

snapshots of the CFG in the past

43

ǒReverse-apply updates to the CFG from the future to get the

snapshots of the CFG in the past

44

Current CFG

ǒReverse-apply updates to the CFG from the future to get the

snapshots of the CFG in the past

45

Current CFG

Updates = {{Insert, C, D},

{Insert, E, D},

{Delete, E, C},

{Insert, F, G}}

ǒReverse-apply updates to the CFG from the future to get the

snapshots of the CFG in the past

46

Current CFG

CFG' = CFG \ Updates[3:4]

CFG'' = CFG \ Updates[2:4]

CFG''' = CFG \ Updates[1:4]

CFG'''' = CFG \ Updates[0:4]

Updates = {{Insert, C, D},

{Insert, E, D},

{Delete, E, C},

{Insert, F, G}}

ǒReverse-apply updates to the CFG from the future to get the

snapshots of the CFG in the past

47

Current CFG

CFG' = CFG \ Updates[3:4]

CFG'' = CFG \ Updates[2:4]

CFG''' = CFG \ Updates[1:4]

CFG'''' = CFG \ Updates[0:4]

Updates = {{Insert, C, D},

{Insert, E, D},

{Delete, E, C},

{Insert, F, G}}

CFGôôôô

ǒReverse-apply updates to the CFG from the future to get the

snapshots of the CFG in the past

48

Current CFG

CFG' = CFG \ Updates[3:4]

CFG'' = CFG \ Updates[2:4]

CFG''' = CFG \ Updates[1:4]

CFG'''' = CFG \ Updates[0:4]

Updates = {{Insert, C, D},

{Insert, E, D},

{Delete, E, C},

{Insert, F, G}}

CFGôôôô

Because every permutation of a sequence

of updates yields the same DominatorTree,

we are free to reorder them internally.

Batch update API

ǒDT.applyUpdates(Updates)

ǒIn action:

49

0. SmallVector<DominatorTree::UpdateType, 3> Updates;

1. Updates.push_back({DT::Insert, Start , A });

2. Updates.push_back({ DT::Insert, A, End });

3. Updates.push_back({D T::Delete, Start , Body});

4. DT.applyUpdates(Updates);

Start

Body

Body2 Body3

End

A

1.

2.

3.

Batch update API

ǒUsed to preserve dominators in:

ƺ LoopRerolling

ƺ LoopUnswitching

ƺ BreakCriticalEdges

ƺ AggressiveDeadCodeElimination

ƺ JumpThreading (by Samsung Research)

50

Verifiers

ǒOld validation: builds a new DominatorTree and checks if it compares equal

ƺ DT.verifyDominatorTree ()

- Not able validate the PostDominatorTree

- Does not check correctness of a freshly calculated tree

+ Relatively cheap

51

Verifiers

ǒOld validation: builds a new DominatorTree and checks if it compares equal

ƺ DT.verifyDominatorTree ()

- Not able validate the PostDominatorTree

- Does not check correctness of a freshly calculated tree

+ Relatively cheap

52

ǒNew validation: validates every bit of information in the DominatorTree!

ƺ DT.verify ()

+ Able to check both dominators and postdominators

+ Able to validate freshly calculated trees

- Expensive ïO(n3)

New validation

ǒverifyRoots ïchecks if roots correspond to the CFG

ǒverifyReachablility ïchecks if the same nodes are in the CFG and in the DT

ǒverifyParentProperty ïensures the parent property holds ïO(n2)

ǒverifySiblingProperty ïensures the sibling property holds ïO(n3)

ǒverifyLevels ïchecks if the tree levels stored in tree nodes are consistent

ǒverifyDFSNumbers ïensures that (not invalidated) DFS numbers are correct

53

verifyDFSNumbersïbugs possible to find

54

Postdominators and infinite loops

55

Postdominator Tree

A

entry

B

<virtual exit>

Roots: B

Postdominators and infinite loops

56

Postdominator Tree

A

entry

B

<virtual exit>

Postdominators and infinite loops

57

Postdominator Tree

A

entry

B

<virtual exit>

Roots: B

Postdominators and infinite loops

58

Postdominator Tree

A

entry

B

<virtual exit>

Roots: B

Postdominators and infinite loops

59

Postdominator Tree

A

entry

B

<virtual exit>

Roots: B

Postdominators and infinite loops

60

Postdominator Tree

A

entry

B

<virtual exit>

Roots: B , G

Postdominators and infinite loops

61

Postdominator Tree

A

entry

B

<virtual exit>

Roots: B , G

Postdominators and infinite loops

62

Postdominator Tree

A

entry

B

<virtual exit>

Roots: B , G, F

Postdominators and infinite loops

63

Postdominator Tree

A

entry

B

<virtual exit>

Roots: B , G, F

Postdominators and infinite loops

64

Postdominator Tree

A

entry

B

<virtual exit>

Roots: B , G, F

Postdominators and infinite loops

65

Postdominator Tree

A

entry

B

<virtual exit>

Roots: B , F

Postdominators and infinite loops

66

Postdominator Tree

A

entry

B

<virtual exit>

Roots: B , F

Postdominators and infinite loops

67

Postdominator Tree

Roots: B , F

entry

A B

<virtual exit>

F

D

C G

E

Recalculations ïcurrently, with the incremental API

68

Optimizing a fullLTO clang bitcode with -O3, assertions enabled. (Experiments run on 2x E5-2670 CPU)

October 16 2017 ïwith incremental batch updates

DomTree recalculations: 1,040,000

DomTree updates: 163,500

DomTree: CFG nodes visited: 49,500,000

Nodes visited per second: 1,718,750

Recalculation time: 28.8s / 18m 52s Ÿ 2.54%

Update time: 0.6s / 18m 52s Ÿ 0.05%

PostDomTree recalculations: 50,000

PostDomTree: CFG nodes visited: 5,800,000

Nodes visited per second: 2,761,905

Optimization time: 2.1s / 18m 52s Ÿ 0.19%

June 27 2017 ïbefore switching to Semi-NCA

DomTree recalculations: 1,020,000

DomTree: CFG nodes visited: 48,100,000

Nodes visited per second: 1,705,673

Recalculation time: 28.2s / 15m 15s Ÿ 3.1%

PostDomTree recalculations: 50,000

PostDomTree: CFG nodes visited: 2,800,000

Nodes visited per second: 1,818,181

Recalculation time: 1.54s / 15m 15s Ÿ 0.16%

TL;DR

69

ǒ Use the incremental API DT.applyUpdates () instead of

DT.changeImmediateDominator (é)

ƺ May be slower, but works for both dominators and postdominators

ƺ Is guaranteed to be correct

ƺ If it's too slow, let me know!

ƺ When in doubt, add assert(DT.verify ()) when working on your pass

Remaining problems

ǒ Interface for incremental updates CFG-level, not IR-level

ƺ Operates on changed edges

ƺ Each transform has to collect affected edges on its own

ƺ Not easily expressible common idioms, e.g. ReplaceAllUsesWith

ǒ After performing incremental updates, next pass may invalidate the

Dominator Tree

ƺ It will be recalculated anyway

70

Future work

ǒConverting remainig passes to use the incremental updater

ǒSimpler interface ïa single updater object able to update both the

DominatorTree and PostDominatorTree

ǒDeferred batch updates ïapplied lazily when actually needed

ǒProperly profile and optimize the batch updater

71

Thank you

Questions?

72

Jakub (Kuba) Kuderski

kubakuderski@gmail.com

