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the entry to Y go through X.  
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{ entry }

{ entry, A }

{ entry, A, C }

{ entry, A, C, E }{ entry, A, C, D }

{ entry, A, C, F }{ entry, A, B }

{ entry, A, G }

{ entry, A, G, exit }

Dominators

Node X dominates node Y iff all paths from 

the entry to Y go through X.  

Dominance:
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{ }

{ entry }

{ A }

{ C }{ C }

{ C }{ A }

{ A }

{ G }

Immediate dominators

Node X dominates node Y iff all paths from 

the entry to Y go through X.  

Dominance:
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Dominator Tree:

{ }

{ entry }

{ A }

{ C }{ C }

{ C }{ A }

{ A }

{ G }

A

B C G

exit

entry

D E F

Immediate dominators
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Tree T is the dominator tree if and only if

it has the parent and the sibling properties.
{ }

{ entry }

{ A }

{ C }{ C }

{ C }{ A }

{ A }

{ G }

A

B C G

exit

entry

D E F

Immediate dominators
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Postdominator Tree:
{ A }

{ G }

{ F }

{ F }{ F }

{ G }{ G }

{ exit }

{ <virtual exit> }

Immediate postdominators

G

B FA

entry

exit

C D E

<virtual exit>
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Postdominator Tree:

Multiple exits: D, G, H

C Fentry

A B D

<virtual exit>

E H

Virtual Root

Roots: D, G, H
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Postdominator Tree:

Multiple exits: D, G, H

C Fentry

A B D

<virtual exit>

E H

Virtual Root

Roots: D, G, H

virtual exit

( nullptr )
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Inorder Dominator Tree: DFSNumbersinvalid: 0 slow queries.
[1] %entry {4294967295,4294967295} [0]

[2] %switch {4294967295,4294967295} [1]
[3] %five {4294967295,4294967295} [2]
[3] %two {4294967295,4294967295} [2]

[4] %exit {4294967295,4294967295} [3]
[3] %four {4294967295,4294967295} [2]

Dominator Tree

switch

two five

exit

entry

four

Textual representation

(for debugging)

calculated level level stored in the tree node
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Inorder Dominator Tree:
[1] %entry {1,12} [0]

[2] %switch {2,11} [1]
[3] %five {3,4} [2]
[3] %two {5,8} [2]

[4] %exit {6,7} [3]
[3] %four {9,10} [2]

Dominator Tree

switch

two five

exit

entry

four

Textual representation

(for debugging)

calculated level level stored in the tree node

DFS In/Out numbers ïcalculated lazily 



Dominators are important in SSA

ǒ Every def must dominate its uses

ƺ ... in a valid piece of IR

ǒDominators are used to compute the optimal placement of PHI nodes

ƺ DominanceFrontier
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Use of dominators in LLVM

ǒ Used with BasicBlocks

ƺ DominatorTree, PostDominatorTree

ƺ DominatorTreeWrapperPass, PostDominatorTreeWrapperPass

ƺ DominanceFrontier, IteratedDominanceFrontier

ǒAlso with MachineBasicBlocks and Clang's CFG
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Use of dominators in LLVM

Å grep - r 'Dominator'

Å ?

Å grep - r 'Dominance'

Å ?

Å grep - r 'dominates'

Å ?

Å grep - rE 'DT \ .|DT - >' DT. and DT- >

Å ?
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Use of dominators in LLVM

Å grep - r 'Dominator'

Å 2600

Å grep - r 'Dominance'

Å 320

Å grep - r 'dominates'

Å 660

Å grep - rE 'DT \ .|DT - >' DT. and DT- >

Å 1200
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Problems

ǒThere was no API for automatically updating the DominatorTree

ƺ Very low-level API for performing manual updates

ƺ Frequent DominatorTree recalculations

(1 million recalculations when optimizing clang fullLTO, ~3.2% of total optimization time)

ǒPostDominatorTree was virtually impossible to update manually

ƺ Too costly to maintain

ƺ Not used widely in practice
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Goals

ǒMake updating the DominatorTree easy

ƺ To get rid of numerous extremely subtle bugs scattered across the whole optimizer

ƺ Reduce the number of recalculations

ǒMake the PostDominatorTree more viable to use

ƺ By making it possible to update it without doing full recalculations
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Incremental dominator tree updater

24

ǒDepth Based Search algorithm

ƺ Uses Semi-NCA tree construction algorithm

ƺ Splits updates into 4 categories and tries to bound the search

of affected subtrees using tree level information

L. Georgiadis et al.

https://arxiv.org/pdf/1604.02711.pdf



Incremental dominator tree updater
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ǒDepth Based Search algorithm

ƺ Uses Semi-NCA tree construction algorithm

ƺ Splits updates into 4 categories and tries to bound the search

of affected subtrees using tree level information

L. Georgiadis et al.

https://arxiv.org/pdf/1604.02711.pdf

ǒWhat we have done:

ƺ Cleaned up existing implementation of the DominatorTree

ƺ Switched from Simple Lengauer-Tarjan to Semi-NCA

ƺ Adapted the Depth Based Search algorithm to LLVM

ƺ Made improvements to the PostDominatorTree



Semi-NCA dominator tree construction algorithm

ǒ Simpler to implement than Simple Lengauer-Tarjan

ƺ Does not perform path compression

ƺ Stores levels (depth in tree) in nodes

ǒ Worse computational complexity, but faster in practice

ƺ Simple Lengauer-TarjanïO(n log(n))

ƺ Semi-NCA ïO(n2)
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Semi-NCA dominator tree construction algorithm

ǒ Simpler to implement than Simple Lengauer-Tarjan
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ƺ Stores levels (depth in tree) in nodes
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Incremental update API

ǒTwo new functions:

ƺ DT.insertEdge(From, To)

ƺ DT.deleteEdge(From, To)

ǒFollowing transforms taught to use the new API and preserve dominators:

ƺ Loop Deletion

ƺ Loop Rerolling

ƺ Loop Unswitching

ƺ Break Critical Edges

ƺ Aggressive Dead Code Elimination
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Depth Based Search confused

30

Dominator Tree

switch

two fivedefault

entry

four

0. [ADCE] final dead block:
%default, %two, %four, %five CFG

exit
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Dominator Tree

switch

two fivedefault

entry

four

0. [ADCE] final dead block:
%default, %two, %four, %five CFG

1. [ADCE] make %two the only
successor of %switch

exit
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Dominator Tree

switch

two fivedefault

entry

four

0. [ADCE] final dead block:
%default, %two, %four, %five CFG

1. [ADCE] make %two the only
successor of %switch

exit
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Dominator Tree

switch

two fivedefault

entry

four

0. [ADCE] final dead block:
%default, %two, %four, %five CFG

1. [ADCE] make %two the only
successor of %switch

2. [ADCE] DT.deleteEdge (%switch, %default)
[DT] NCD(%switch, IDom(%default)) is %switch
[DT] %default was only reachable from %switch
[DT] delete subtree %default

exit
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Dominator Tree

switch

two fivedefault

entry

four

0. [ADCE] final dead block:
%default, %two, %four, %five CFG

1. [ADCE] make %two the only
successor of %switch

2. [ADCE] DT.deleteEdge (%switch, %default)
[DT] NCD(%switch, IDom(%default)) is %switch
[DT] %default was only reachable from %switch
[DT] delete subtree %default

exit

[DT] attach %exit to its only
predecessor reachable from
%switch Ƶ to %two
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Dominator Tree

switch

two five

entry

four

0. [ADCE] final dead block:
%default, %two, %four, %five CFG

1. [ADCE] make %two the only
successor of %switch

2. [ADCE] DT.deleteEdge (%switch, %default)
[DT] NCD(%switch, IDom(%default)) is %switch
[DT] %default was only reachable from %switch
[DT] delete subtree %default

exit

[DT] attach %exit to its only
predecessor reachable from
%switch Ƶ to %two
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Dominator Tree

switch

two five

entry

four

0. [ADCE] final dead block:
%default, %two, %four, %five CFG

1. [ADCE] make %two the only
successor of %switch

2. [ADCE] DT.deleteEdge (%switch, %default)
[DT] NCD(%switch, IDom(%default)) is %switch
[DT] %default was only reachable from %switch
[DT] delete subtree %default

exit

[DT] attach %exit to its only
predecessor reachable from
%switch Ƶ to %two

3. [ADCE] DT.deleteEdge (%switch, %four)
[DT] NCD(%switch, IDom(%four)) is %switch
[DT] %four was only reachable from %switch
[DT] delete subtree %four
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Dominator Tree

switch

two five

entry

0. [ADCE] final dead block:
%default, %two, %four, %five CFG

1. [ADCE] make %two the only
successor of %switch

2. [ADCE] DT.deleteEdge (%switch, %default)
[DT] NCD(%switch, IDom(%default)) is %switch
[DT] %default was only reachable from %switch
[DT] delete subtree %default

exit
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predecessor reachable from
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Dominator Tree

switch

two five

entry

0. [ADCE] final dead block:
%default, %two, %four, %five CFG

1. [ADCE] make %two the only
successor of %switch

2. [ADCE] DT.deleteEdge (%switch, %default)
[DT] NCD(%switch, IDom(%default)) is %switch
[DT] %default was only reachable from %switch
[DT] delete subtree %default

exit

[DT] attach %exit to its only
predecessor reachable from
%switch Ƶ to %two

3. [ADCE] DT.deleteEdge (%switch, %four)
[DT] NCD(%switch, IDom(%four)) is %switch
[DT] %four was only reachable from %switch
[DT] delete subtree %four

[DT] %exit is %four's successor and
Level(%exit) == Level(%four) + 1,
so it must be in %four's subtree
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Dominator Tree

switch

two five

entry

0. [ADCE] final dead block:
%default, %two, %four, %five CFG

1. [ADCE] make %two the only
successor of %switch

2. [ADCE] DT.deleteEdge (%switch, %default)
[DT] NCD(%switch, IDom(%default)) is %switch
[DT] %default was only reachable from %switch
[DT] delete subtree %default

[DT] attach %exit to its only
predecessor reachable from
%switch Ƶ to %two

3. [ADCE] DT.deleteEdge (%switch, %four)
[DT] NCD(%switch, IDom(%four)) is %switch
[DT] %four was only reachable from %switch
[DT] delete subtree %four

[DT] %exit is %four's successor and
Level(%exit) == Level(%four) + 1,
so it must be in %four's subtree

[DT] delete %exit



Batch updates

ǒDepth Based Search needs to see a snapshot of the CFG just after each 

update

ǒWe do not want to store different versions of the same CFG in DominatorTree
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ǒDepth Based Search needs to see a snapshot of the CFG just after each 

update

ǒWe do not want to store different versions of the same CFG in DominatorTree

ǒWe need to have a way to ódiffô CFG between batch updates
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Batch updates

ǒDepth Based Search needs to see a snapshot of the CFG just after each 

update

ǒWe do not want to store different versions of the same CFG in DominatorTree

ǒWe need to have a way to ódiffô CFG between batch updates

ǒThe list of updates to perform is also the full list of changes to the CFG
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Batch update algorithm

ǒReverse-apply updates to the CFG from the future to get the 

snapshots of the CFG in the past
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ǒReverse-apply updates to the CFG from the future to get the 

snapshots of the CFG in the past
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Current CFG



ǒReverse-apply updates to the CFG from the future to get the 

snapshots of the CFG in the past

45

Current CFG

Updates = {{Insert, C, D},

{Insert, E, D},

{Delete, E, C},

{Insert, F, G}}



ǒReverse-apply updates to the CFG from the future to get the 

snapshots of the CFG in the past

46

Current CFG

CFG'    = CFG \ Updates[3:4]

CFG''   = CFG \ Updates[2:4]

CFG'''  = CFG \ Updates[1:4]

CFG'''' = CFG \ Updates[0:4] 

Updates = {{Insert, C, D},

{Insert, E, D},

{Delete, E, C},

{Insert, F, G}}



ǒReverse-apply updates to the CFG from the future to get the 

snapshots of the CFG in the past
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Current CFG

CFG'    = CFG \ Updates[3:4]

CFG''   = CFG \ Updates[2:4]

CFG'''  = CFG \ Updates[1:4]

CFG'''' = CFG \ Updates[0:4] 

Updates = {{Insert, C, D},

{Insert, E, D},

{Delete, E, C},

{Insert, F, G}}

CFGôôôô



ǒReverse-apply updates to the CFG from the future to get the 

snapshots of the CFG in the past
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Current CFG

CFG'    = CFG \ Updates[3:4]

CFG''   = CFG \ Updates[2:4]

CFG'''  = CFG \ Updates[1:4]

CFG'''' = CFG \ Updates[0:4] 

Updates = {{Insert, C, D},

{Insert, E, D},

{Delete, E, C},

{Insert, F, G}}

CFGôôôô

Because every permutation of a sequence 

of updates yields the same DominatorTree,

we are free to reorder them internally.



Batch update API

ǒDT.applyUpdates(Updates)

ǒIn action:

49

0.  SmallVector<DominatorTree::UpdateType, 3> Updates;

1.  Updates.push_back({DT::Insert, Start , A   });

2.  Updates.push_back({ DT::Insert, A,     End });

3.  Updates.push_back({D T::Delete, Start , Body});

4.  DT.applyUpdates(Updates);

Start

Body

Body2 Body3

End

A

1.

2.

3.



Batch update API

ǒUsed to preserve dominators in:

ƺ LoopRerolling

ƺ LoopUnswitching

ƺ BreakCriticalEdges

ƺ AggressiveDeadCodeElimination

ƺ JumpThreading (by Samsung Research)

50



Verifiers

ǒOld validation: builds a new DominatorTree and checks if it compares equal

ƺ DT.verifyDominatorTree ()

- Not able validate the PostDominatorTree

- Does not check correctness of a freshly calculated tree

+ Relatively cheap
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Verifiers

ǒOld validation: builds a new DominatorTree and checks if it compares equal

ƺ DT.verifyDominatorTree ()

- Not able validate the PostDominatorTree

- Does not check correctness of a freshly calculated tree

+ Relatively cheap

52

ǒNew validation: validates every bit of information in the DominatorTree!

ƺ DT.verify ()

+ Able to check both dominators and postdominators

+ Able to validate freshly calculated trees

- Expensive ïO(n3)



New validation

ǒverifyRoots ïchecks if roots correspond to the CFG

ǒverifyReachablility ïchecks if the same nodes are in the CFG and in the DT

ǒverifyParentProperty ïensures the parent property holds ïO(n2)

ǒverifySiblingProperty ïensures the sibling property holds ïO(n3)

ǒverifyLevels ïchecks if the tree levels stored in tree nodes are consistent

ǒverifyDFSNumbers ïensures that (not invalidated) DFS numbers are correct
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verifyDFSNumbersïbugs possible to find
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Postdominators and infinite loops
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Postdominator Tree

A

entry

B

<virtual exit>

Roots: B
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Postdominator Tree

A

entry

B

<virtual exit>
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B
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Roots: B
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Postdominator Tree
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entry
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Postdominator Tree

A

entry

B

<virtual exit>

Roots: B
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Postdominator Tree

A

entry

B

<virtual exit>

Roots: B , G
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Postdominator Tree

A

entry

B

<virtual exit>

Roots: B , G, F
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Postdominator Tree
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B
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Postdominator Tree

A

entry

B

<virtual exit>

Roots: B , F



Postdominators and infinite loops

67

Postdominator Tree

Roots: B , F

entry

A B

<virtual exit>

F

D

C G

E



Recalculations ïcurrently, with the incremental API

68

Optimizing a fullLTO clang bitcode with -O3, assertions enabled.          (Experiments run on 2x E5-2670 CPU)

October 16 2017 ïwith incremental batch updates

DomTree recalculations:               1,040,000

DomTree updates:                               163,500

DomTree: CFG nodes visited: 49,500,000

Nodes visited per second:             1,718,750

Recalculation time:  28.8s / 18m 52s Ÿ 2.54%

Update time:                 0.6s / 18m 52s Ÿ 0.05%

PostDomTree recalculations:          50,000

PostDomTree: CFG nodes visited: 5,800,000

Nodes visited per second:       2,761,905

Optimization time:    2.1s / 18m 52s Ÿ 0.19%

June 27 2017 ïbefore switching to Semi-NCA 

DomTree recalculations:                  1,020,000

DomTree: CFG nodes visited: 48,100,000

Nodes visited per second:                1,705,673

Recalculation time:  28.2s / 15m 15s Ÿ 3.1% 

PostDomTree recalculations:        50,000

PostDomTree: CFG nodes visited:  2,800,000

Nodes visited per second:            1,818,181

Recalculation time: 1.54s / 15m 15s Ÿ 0.16%



TL;DR
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ǒ Use the incremental API DT.applyUpdates () instead of 

DT.changeImmediateDominator (é)

ƺ May be slower, but works for both dominators and postdominators

ƺ Is guaranteed to be correct

ƺ If it's too slow, let me know!

ƺ When in doubt, add assert( DT.verify ()) when working on your pass



Remaining problems

ǒ Interface for incremental updates CFG-level, not IR-level

ƺ Operates on changed edges

ƺ Each transform has to collect affected edges on its own

ƺ Not easily expressible common idioms, e.g. ReplaceAllUsesWith

ǒ After performing incremental updates, next pass may invalidate the

Dominator Tree

ƺ It will be recalculated anyway
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Future work

ǒConverting remainig passes to use the incremental updater

ǒSimpler interface ïa single updater object able to update both the

DominatorTree and PostDominatorTree

ǒDeferred batch updates ïapplied lazily when actually needed

ǒProperly profile and optimize the batch updater
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Thank you

Questions?
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Jakub (Kuba) Kuderski 

kubakuderski@gmail.com


