Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft

Julian Hammer [RRZE] <julian.hammer@fau.de>, Johannes Doerfert [UdS] <doerfert@cs.uni-saarland.de>, Georg Hager [RRZE], Gerhard Wellein [RRZE] and Sebastian Hack [UdS]

[RRZE] Regional Computing Center Erlangen
[UdS] Saarland University
Outline

1. Motivation
2. Background
 - Memory Hierarchy
 - Cache Blocking
 - Layer Conditions (and example)
 - Performance Modelling & Kerncraft
 - Polyhedral Representation
3. Implementation
 - Polly Layer Conditions
 - Kerncraft Export
4. Evaluation
5. Outlook & Conclusion
Motivation

Analytical models and compiler infrastructure a great match.

- Numeric kernels—in particular—stencils may profit from reduced memory and inter-cache traffic through spatial blocking
- Tedious implementation work for developer
- Block size selection requires insight into computer architecture and access pattern OR exhausting parameter studies

This is work-in-progress.
We show the theory, approach, unadorned results and current problems.
Background
Memory Hierarchy

Loads cause misses along all caches until they “hit” the required data.

Each level keeps all data of the next (smaller) cache and replaces least-recently-used (LRU) data.

HW prefetcher loads from Main Memory (Mem) to L3.
Offset access pattern, typically in 2D or 3D

3D 7-Point Stencil example:

- \(N \times M \times L \times 2 \times 8 \) byte memory requirement (dp)
- 7 load and 1 store stream total

How many misses?
Layer Conditions[0] – Idea

Model assumes inclusive LRU caches.

[0] Hammer et al, Kerncraft: A Tool for Analytic Performance Modeling of Loop Kernels
Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft
Layer Conditions

Analytically derived conditions for cache hit and misse from access offsets.

1. Compile list of access offsets:
 \[L = \{1, 1, N-1, N-1, (M-1)*N, (M-1)*N, \infty, \infty\} \]
 - 1 from green to pink offsets
 - N-1 from green to grey offsets
 - (M-1)*N from blue to grey offsets
 - \infty from last access to a[] and b[]

2. For each tail t in L, we get:
 If \(\text{cache} > (\sum \{ e \mid e \in L, e \leq t \} + | \{ e \mid e \in L, e > t \} | \cdot t)^s \) then we expect
 \[\begin{align*}
 | \{ e \mid e \in L, e \leq t \} | \text{ hits} \\
 | \{ e \mid e \in L, e > t \} | \text{ misses}
 \end{align*} \]
Layer Conditions

Model assumes inclusive LRU caches

<table>
<thead>
<tr>
<th>Cache Condition</th>
<th>Hits</th>
<th>Cache Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>No cache</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Reuse in 1D</td>
<td>2</td>
<td>cache > 728 B with tail = 1</td>
</tr>
<tr>
<td>Reuse in 2D</td>
<td>4</td>
<td>cache > (6N-4)*8 B with tail = N-1</td>
</tr>
<tr>
<td>Reuse in 3D</td>
<td>6</td>
<td>cache > (4NM-2N)*8 B with tail = (M-1)*N</td>
</tr>
<tr>
<td>Full caching</td>
<td>7+1</td>
<td>cache > 2NML*8 B</td>
</tr>
</tbody>
</table>
Layer Conditions – Setup

1. Collect (symbolic) accesses in loop nest (A)
2. Sort A
3. Compute access offsets (L)
4. For each array add one infinity (oo) to L
5. Sort L

ordered accesses from 3D-7pt
A = sorted([
 a+(k-1)*N*M+j*N+i,
 a+k*N*M+(j-1)*N+i, a+k*N*M+j*N+i-1,
 b+k*N*M+j*N+i, a+k*N*M+j*N+i+1,
 a+k*N*M+(j+1)*N+i, a+(k+1)*N*M+j*N+i])

L = [oo] # begin with one infty in list
for acs1, acs2 in zip(A[:-1], A[1:]):
 # offsets between “consecutive” accesses
 diff = acs2 - acs1
 if a in diff and b in diff:
 diff = oo
 L.append(diff)
L.sort()

L = [oo, oo, (N-1)*M, (N-1)*M, N-1, N-1, 1, 1]
Layer Conditions – Evaluation

A different cache hit/miss situation is expected for each non-infinity tail in L:

- If cache is larger then
 ‘sum over all l in L with l <= tail plus tail times the number of l > tail’,
 than we expect to observe
- ‘number of l <= tail’ cache hits
- ‘number of l > tail’ cache misses

```python
layer_conditions = []
for tail in set(L):
    if tail == oo: continue
    lc = {
        'cache_requirement': (
            # cached elements / hits
            sum([ l for l in L if l <= tail ]) +
            # uncached elements / misses
            len([ l for l in L if l > tail ])*tail
        ) * element_size,
        'cache_hits': len([ l for l in L if l <= tail ])
        'cache_misses': len([ l for l in L if l > tail ])
    }
    print("For caches >= {cache_requirement} bytes, expect {cache_hits} hits and {cache_misses} misses\n")
    layer_conditions.append(lc)
```

https://rrze-hpc.github.io/layer-condition/
Cache Blocking

Strategy to reduce memory and inter-cache traffic, by traversing the data in blocks (or tiles), reuse is increased.

From layer conditions:
3D: 2 misses if $32*N*M - 16*N < \text{cache}$
2D: 4 misses if $48*N - 32 < \text{cache}$

Choose NB and MB accordingly, while maximizing N (to avoid short inner-loop overheads).

3d7pt: 4 misses in 32KB L1, 2 misses in 20MB L3

$\text{NB} < 682 \& \& \text{NB*MB} < 655360$
Performance Modelling

Prediction of the actual performance requires more than predictions of data transfers. Performance models combine memory models (e.g., layer conditions) with execution models (e.g., peak flops or IACA analysis) to an overall runtime.

Execution-Cache-Memory and Roofline models allows classification into memory and compute bound, to avoid tiling overheads.

-> Future work / to be implemented
Kerncraft\[1\]

Automatic performance model toolkit, based on static analysis and cache simulation.

Predicts loop runtime based on Roofline and ECM model.

Cache-aware Scheduling and Performance Modeling with LLVM-Polly and Kerncraft
Polyhedral Representation

```c
for (int i = 0; i <= N; i++)
    for (int j = 0; j <= N; j++) {
        S: A[i][j] = /* ... */;
        if (j <= i)
            P: A[i][j] += A[j][i];
    }
```

\[\mathcal{I}_S = \{(S, (i, j)) \mid 0 \leq i \leq N \land 0 \leq j \leq N\} \]

\[\mathcal{I}_P = \{(P, (i, j)) \mid 0 \leq i \leq N \land 0 \leq j \leq i\} \]
Polyhedral Representation

\[\mathcal{F}_S = \{(S, (i, j)) \rightarrow (i, j)\} \]
Polyhedral Representation

for (int i = 0; i <= N; i++)
 for (int j = 0; j <= N; j++) {
 S: A[i][j] = /* ... */;
 if (j <= i)
 P: A[i][j] += A[j][i];
 }

\[F_{P_1} = \{(P, (i, j)) \rightarrow (i, j)\} \]
\[F_{P_2} = \{(P, (i, j)) \rightarrow (j, i)\} \]
Implementation
Polly Kerncraft Exporter

Use Polly to automatically detect and extract kernel descriptions in large source bases.

Starting point for manual analysis and modelling.
Polly Layer Conditions

- Replacement for Polly’s “fixed tiling strategy”
 - 32 is not always the best option

- Tiling can improve but also regress performance
 - Versioning for in-cache and in-memory tile size selection

- “Delinearization” severely limits polyhedral recognition
 - Manual inspection tedious and hard
Tile Size Selection Algorithm – In-Cache

Goal: **Minimize misses** in fastest cache and **maximize** inner loop **iterations**

For each *cache* evaluate layer conditions with maximum *tail*, until LC and a minimum-iterations-requirement is fulfilled.

Minimum iterations are defined as 100 for inner loop and 10 for all other.
Tile Size Selection Algorithm – In-Cache (Example)

3D LC: 2 misses if $32N*M - 16N < \text{cache}_{\text{size}}$
2D LC: 4 misses if $48N - 32 < \text{cache}_{\text{size}}$
1D LC: 6 misses if $112 < \text{cache}_{\text{size}}$

32 KB L1: $2^N*M-N < 2048$ N < 682 fulfilled
256 KB L2: $2^N*M-N < 16384$ N < 5460 fulfilled
20MB L3: $2^N*M-N < 1311360$ N < 436906 fulfilled

NB = 681
MB = 2
NB = 100
MB = 9
MB = 11
Tile Size Selection Algorithm – In-Memory

Minimize cache misses for half of L3 and maximize inner blocking factor

Add outer loop blocking with constant factor of 16

Outer loop blocking reduces interface area

Reduced cacheline & prefetcher impact

Assuming smaller cache, to accommodate overhead
Evaluation
Used Benchmarks and System

- 3D 7pt and 3D “well conditioned”
- polybench\(^2\) stencils v2.4.1
- OptEWE\(^3\)
- Harris [PolyMage benchmarks]\(^4\)
- 172.mgrid [SPEC CPU2000]

Environment:
Intel Xeon CPU E5-2660 v2 @ 2.20GHz (fixed, no turbo)
(patched) LLVM 6.0, clang, flang, (patched) Polly
LIKWID instrumentation for L2, L3 and Memory volumes
Pinned all processes

\(^3\) [3] https://github.com/mohamso/optewe
\(^4\) Mullapudi et al., PolyMage: Automatic Optimization for Image Processing Pipelines
3D 7pt

Performance gain for large N

Reduced data volume in cache and memory

Data volume is not everything...
3D “well conditioned”

Performance gains overall measured N

Slightly reduced L3 volume

Speedup comes also from polly-enabled vectorization, but plain polly kills it again with tiny blocks
Polybench Stencils

- heat-3d
- heat-3d_nmk
- fdtd-2d
- jacobi-1d
- jacobi-2d
- seidel-2d

Speed up, without regression!
OptEWE

Only few kernels have reuse and could benefit from tiling.

Speed downs, in particular `compute_vx`, need to be investigated.
As described in [6], spatial block will not yield performance gains.

PolyMage Image Processing Pipelines

Harris corner detection
- 12 arrays, 11 loop nests (each 2D), 65 memory accesses

<table>
<thead>
<tr>
<th></th>
<th>Sequential (arith. avg/median)</th>
<th>Parallel (arith. avg/median)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular (no tiling)</td>
<td>168.7ms / 170.5ms</td>
<td>77.6ms / 76.8 ms</td>
</tr>
<tr>
<td>Polly tiling</td>
<td>249.8ms / 252.7ms</td>
<td>94.6ms / 92.9ms</td>
</tr>
<tr>
<td>Polly-LC tiling</td>
<td>167.6ms / 165.3ms</td>
<td>78.0ms / 77.2ms</td>
</tr>
<tr>
<td>Polly-LC (in-memory)</td>
<td>169.9ms / 170.8ms</td>
<td>82.1ms / 80.5ms</td>
</tr>
<tr>
<td>Polly-LC (in-cache)</td>
<td>169.3ms / 168.9ms</td>
<td>118.0ms / 116.3ms</td>
</tr>
</tbody>
</table>

51 runs, default input, Intel(R) Core(TM) i7-4800MQ
172.mgrid [SPEC CPU2000]

20% reduced L3 volume and slightly reduced main memory volume, but no performance increase. Possibly computation bound.

<table>
<thead>
<tr>
<th></th>
<th>Runtime</th>
<th>Mem. volume</th>
<th>L3 volume</th>
<th>L2 volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular (no tiling)</td>
<td>61 s</td>
<td>252 GB</td>
<td>418 GB</td>
<td>446 GB</td>
</tr>
<tr>
<td>Polly tiling</td>
<td>73 s</td>
<td>257 GB</td>
<td>690 GB</td>
<td>632 GB</td>
</tr>
<tr>
<td>Polly-LC tiling</td>
<td>61 s</td>
<td>248 GB</td>
<td>346 GB</td>
<td>472 GB</td>
</tr>
</tbody>
</table>
Outlook & Conclusion
Outlook

- OpenMP shared cache support
- Tweak heuristics parameters
- Support for strided accesses (cache lines!)
- Runtime tile size variation
- Predict if kernel is memory/cache or compute bound
Conclusion

- Approached trade-off between minimal loop length and cache usage
- For suited codes, speedups over regular LLVM and Polly are significant
- Generally, fewer and less regressions compared to Polly
- Basis for further analytical model-driven optimization

Thanks

Questions?
Discussion!