
INTRODUCTION

TRACE OVERVIEW

WHERE CAN TRACES PLAY A ROLE BEYOND

Instruction Tracing and dynamic codegen analysis to
identify unique llvm performance issues.

Biplob Mishra

Performance analysis of the machine code generated by a 
compiler can be carried out in different ways and can also be 
based on application in question. Common methods use some 
form of profiling on a running program which generally provides 
the statistical information about certain data and events. While 
this method does give important insights to a performance 
problem, some of the issues are more clearly understood when 
the compiled applications is actually run and the dynamic 
instructions of hot code execution paths are traced and analyzed 
in a small execution window. 
Trace records contain instructions and data, memory addresses 
and other information which provide complete visibility into the 
workings of an application.

Instruction Traces

Cycle 
accurate 
Models

CPI and stats
Pipeline 

Visualizations

I
n

p
u
t

M
o

d
e
l
s

O
u
t
p

u
t

Workload

Trace Postprocessing

R
e
c
a
p
t
u

r
e
 
t
r
a
c
e

T
r
a

c
e
 
P

r
o

c
e
s
s

C
y
c
l
e
 
a
c
c
u
r
a

t
e
 

M
o

d
e
l

Model based HW Trace Linux traces

Post 
process/  
software 
Models

Compiler 
performance.

Trace collection

Instructions trace vs Static profile

Sample trace with data addresses

Trace

Workload

F1 HOT SEC1 F1 HOT SEC2 F2 LOOP

CYC 
MODEL

CYC 
MODEL

CYC 
MODEL

CPI and 
stats

CPI and 
stats

CPI and 
stats

Compiler optimizations

BRANCH ANALYSIS STACK ANALYSIS

LOOP ANALYSIS/CODE 
PLACEMENTS

MEMORY LAYOUT 
ANALYSIS

BRANCH  ANALYSIS

CODE ANALYSIS

QUICK SORT

DRIVER

CALL NO NUM_INSTR

1 X

2 0.92X

3 X

4 0.90X

5 0.97X

6 0.93X

7 3X

8 0.92X

9 X

10 0.93X

STACK ANALYSIS

-> Generally useful in comparing two different compiler register 
usage and stack accesses. 
-> Analyze what percentage of instructions and cycles are used as 
stack operations.
-> Stack usage in prologue/epilogue vs hot path.
-> Register spill analysis in critical paths. 

*as in above example it can be useful to determine if stack 
usage shoots up in a particular call to the function/or a different 
execution path is taken.

Enable cycle and other event analysis at lower code levels, particularly the hot loops or code sections
within a function.
So the above quicksort example cycle impact can be evaluated per function call level.
The traces can further be used to evaluate core pipeline visualizations and determine hardware
issues which cannot be explained by just disassembly analysis.

Generate core

visualizations

Determine hardware
pipeline issues.

-> Trace can be used to 
derive critical information 
on branch
intensive codes.

-> determine which 
branches are critical to 
performance.

-> for direct branches 
determine the % times it 
was taken vs non-taken.

-> above can be useful in 
optimal branch placements.

-> also evaluate the indirect 
branch call destination
distribution.

-> Sample quicksort
Program and the driver 
which calls it 10 times to 
sort an array.

-> Using statistical profiler it 
would be difficult to 
determine if a single 
iteration was slow.

-> Table derived from trace 
data tells us that call7 is the 
one of interest.

-> Events(Instruction) 
collected are as a ratio of 
event from 1st call.

->Trace is the dynamic sequence of  executed 
instructions as it occurred when the program 
was executed.

-> Trace provides complete history of what 
happens in a processor when the an 
application runs.

-> Multiple events as occurred on 
Instruction/code block execution can also be 
Superimposed on the
dynamic Execution sequence.

-> On right we have a “perf record”  Profile of 
the same which contains cycle event imposed 
on a static profile.

-> The static profile though useful does not 
give complete detail of running program.

->  the image shows a push to and 
pop from the stack.

-> In a trace keep a count of stack 
accesses at different code levels.

-> with help of the instruction 
addresses which map to a particular 
function total stack access for a 
function can be determined.

Disclaimer: This poster is intended to represent the opinion of the author and not on any organization that the author is/was associated or affiliated with..


