
An alternative
OpenMP Backend for Polly
Michael Halkenhäuser, Lukas Sommer
Embedded Systems and Applications Group (ESA), Technische Universität Darmstadt, Germany
michael.halkenhaeuser@stud.tu-darmstadt.de, sommer@esa.tu-darmstadt.de

Overview

• Polly supports OpenMP auto-parallelization.

• Single user option: thread count.

• Its current backend creates runtime sched-
uled loops only, using an environment var.

• Mandatory support of GNU’s OpenMP lib.

Hence, we want to present our extension:

• Extra switches: scheduling & chunk size

• Utilizing LLVM’s OpenMP library

// "matvect" -- Sequential

// Used as sample input for Polly.

// (Simplified dependencies.)

for (i = 0; i <= n; i++) {

for (j = 0; j <= n; j++)

s[i] = s[i] + a[i][j] * x[j];

}

Figure 1: matvect Kernel Figure 2: Polly workflow schematic [1].

// "matvect" -- OpenMP parallelized

// Equivalent to the LLVM-IR

// output of Polly's OpenMP backend.

#pragma omp parallel for [...] \

schedule (dynamic, 1) num_threads(N)

for (i = 0; i <= n; i++) {

for (j = 0; j <= n; j++)

s[i] = s[i] + a[i][j] * x[j];

}

Figure 3: matvect Kernel (OpenMP)

static Scheduling

• Even distribution of work among OpenMP threads.

• Work-shares are predetermined.

• Minimal organization overhead.

• Well suited for problems, where each iteration takes simi-
lar amounts of time to complete.

dynamic Scheduling

• Work-shares (of chunk size) are assigned dynamically.

• After completion of a chunk, the respective worker will
request another chunk (if available).

• Potentially high organization overhead.

• Advantageous when load imbalances may occur.

guided Scheduling

• Chunk size starts off large and decreases over time.

• Provided chunk size is actually a minimum chunk size.

• Lower organization overhead (than dynamic).

• Advantageous when load imbalances may occur and dy-
namic work distribution turns out to be an issue.

Experimental results

Chunk size

ad
i

ata
x

bic
g

cho
les

ky

cor
rel

ati
on

cov
ari

an
ce

de
ric

he

do
itg

en

ge
mve

r

ge
sum

mv

g-s
chm

idt lu

lud
cm

p
mvt

sym
m

syr
2k syr

k
trm

m

PolyBench-Benchmark

0.0

2.0

4.0

Ac
hi

ev
ed

 S
pe

ed
up

LLVM OpenMP Chunk Size Comparison
Large dataset · No Vectorization · Dynamic Scheduling · 12 Threads · Baseline: Chunk Size 1

Chunk Size 2
Chunk Size 3
Chunk Size 4
Chunk Size 6

Figure 4: Impact of different chunk sizes.

• Variation of the chunk size may improve performance.

• But: An optimal value is problem-dependent.

Scheduling type

ad
i

ata
x

bic
g

cho
les

ky

cor
rel

ati
on

cov
ari

an
ce

de
ric

he

do
itg

en

ge
mve

r

ge
sum

mv

g-s
chm

idt lu

lud
cm

p
mvt

sym
m

syr
2k syr

k
trm

m

PolyBench-Benchmark

0.0

2.0

4.0

6.0

8.0

10.0

Ac
hi

ev
ed

 S
pe

ed
up

LLVM OpenMP Scheduling Comparison
No Vectorization · 12 Threads · Baseline: Dynamic Scheduling

Guided scheduling · Large dataset
 Static scheduling · Large dataset

Figure 5: Impact of different scheduling types.

• Choosing an appropriate scheduling type may yield high
speedups.

Thread count

ad
i

ata
x

bic
g

cho
les

ky

cor
rel

ati
on

cov
ari

an
ce

de
ric

he

do
itg

en

ge
mve

r

ge
sum

mv

g-s
chm

idt lu

lud
cm

p
mvt

sym
m

syr
2k syr

k
trm

m

PolyBench-Benchmark

0.0

2.0

Ac
hi

ev
ed

 S
pe

ed
up

LLVM OpenMP Thread Count Comparison
Dynamic Scheduling · No Vectorization · Chunk Size 1 · Baseline: 4 Threads

 8 Threads · Large Dataset
12 Threads · Large Dataset

Figure 6: Evaluation of different thread counts.

• Higher thread counts may offer more processing power.

• However, the setup of threads has to be amortized.

OpenMP library comparison

ad
i

ata
x

bic
g

cho
les

ky

cor
rel

ati
on

cov
ari

an
ce

de
ric

he

do
itg

en

ge
mve

r

ge
sum

mv

g-s
chm

idt lu

lud
cm

p
mvt

sym
m

syr
2k syr

k
trm

m

PolyBench-Benchmark

0.0

0.5

1.0

1.5

2.0

Ac
hi

ev
ed

 S
pe

ed
up

GNU & LLVM Backend Comparison
Large Dataset · No Vectorization · 12 Threads · Baseline: GNU Backend

LLVM OpenMP · Best Result

Figure 7: Comparison of both OpenMP backends.

• The LLVM OpenMP library achieves comparable results.

• Additionally, there are several cases where our backend
achieves up to 1.6× relative speedup.

General comparison

ad
i

ata
x

bic
g

cho
les

ky

cor
rel

ati
on

cov
ari

an
ce

de
ric

he

do
itg

en

ge
mve

r

ge
sum

mv

g-s
chm

idt lu

lud
cm

p
mvt

sym
m

syr
2k syr

k
trm

m

PolyBench-Benchmark

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

Ac
hi

ev
ed

 S
pe

ed
up

clang Comparison
Large Dataset · With Vectorization · Baseline: clang-8 -O3

LLVM OpenMP · Best Result · 12 Threads

Figure 8: Clang versus our LLVM OpenMP backend.

• Large problem sizes benefit from thread level parallelism.

• Our alternative backend remains competitive overall.

Conclusion

• Introduced switches carry no clear drawback:
– Only in three considered cases, the GNU backend is able

to achieve a lead of at least three percent.

• Not every benchmark will be parallelized w.r.t. the mea-
sured section (but the initialization).

• Chunk size offers problem-dependent customization but will
decrease performance in unfavorable settings.

• Scheduling types may also be used to account for pecu-
liarities of a computation and our results emphasize the
advantage of a corresponding switch.

• In seven cases our backend gains significant speedups, when
compared to the existing GNU-based backend.

References

[1] T. Grosser, H. Zheng, R. Aloor, A. Simbürger, A. Größlinger, and L.-N. Pouchet, “Polly
- polyhedral optimization in llvm,” in Proceedings of the First International Workshop
on Polyhedral Compilation Techniques (IMPACT), vol. 2011, 2011, p. 1.

Polly – LLVM OpenMP Backend Source

The LLVM OpenMP backend extension was committed to Polly:
https://github.com/llvm/llvm-project/commit/89251ed

https://github.com/llvm/llvm-project/commit/89251ed
https://github.com/llvm/llvm-project/commit/89251ed

