
�1

Michael C. Berg, Apple
LLVM Developers’ Meeting, Brussels, Belgium, April 2019

• LLVM Numerics Improvements

Agenda

•Handling Numerics via Flags
•Current LLVM Numerics Models
•How Unsafe Changes Behavior
•Mixed Mode
•Flag Guided Optimizations
•Conclusions

�2

!3

Language
Front Ends

Mid Level
Optimizer

SelectionDAG

Targeted Backends

SDNode

LLVM IR

 DAG Lowering

MachineInstr

Module and IR
Flags Introduced

IR Flags
Translated to

SDNode

IR Flags Translated
to MachineInstr

Handling Numerics via Flags

GlobalIsel

Agenda

•Handling Numerics via Flags
•Current LLVM Numerics Models
•How Unsafe Changes Behavior
•Mixed Mode
•Flag Guided Optimizations
•Conclusions

�4

Current LLVM Numerics Models

• Unsafe : module-wide scope overrides Fast Math Flags (FMF).

• Fast-Math: IR scope, FMFs all set.

• Precise-Math: IR scope, FMFs all unset, IEEE–754.

�5

Current LLVM Numerics Models

Models and
their Flags

Unsafe

Fast-Math

Precise-
Math

�6

Current LLVM Numerics Models

Models and
their Flags

Unsafe

Fast-Math

Precise-
Math

Nsz

Overrides

√

X

�6

Nsz: Allow optimizations to treat the sign of a zero
argument or result as insignificant.

Current LLVM Numerics Models

Models and
their Flags

Unsafe

Fast-Math

Precise-
Math

Nsz

Overrides

√

X

Nnan

Overrides

√

X

�6

Nsz: Allow optimizations to treat the sign of a zero
argument or result as insignificant.

Nnan: Allow optimizations to assume the arguments
and result are not NaN.

Current LLVM Numerics Models

Models and
their Flags

Unsafe

Fast-Math

Precise-
Math

Nsz

Overrides

√

X

Nnan

Overrides

√

X

Ninf

Overrides

√

X

�6

Nsz: Allow optimizations to treat the sign of a zero
argument or result as insignificant.

Nnan: Allow optimizations to assume the arguments
and result are not NaN.

Ninf: Allow optimizations to assume the arguments
and result are not +/-Inf.

Current LLVM Numerics Models

Models and
their Flags

Unsafe

Fast-Math

Precise-
Math

Nsz

Overrides

√

X

Nnan

Overrides

√

X

Ninf

Overrides

√

X

Arcp

Overrides

√

X

�6

Nsz: Allow optimizations to treat the sign of a zero
argument or result as insignificant.

Nnan: Allow optimizations to assume the arguments
and result are not NaN.

Ninf: Allow optimizations to assume the arguments
and result are not +/-Inf.

Arcp: Allow optimizations to use reciprocal
operations with approximate expressions.

Current LLVM Numerics Models

Models and
their Flags

Unsafe

Fast-Math

Precise-
Math

Nsz

Overrides

√

X

Nnan

Overrides

√

X

Ninf

Overrides

√

X

Arcp

Overrides

√

X

Contract

Overrides

√

X

�6

Nsz: Allow optimizations to treat the sign of a zero
argument or result as insignificant.

Nnan: Allow optimizations to assume the arguments
and result are not NaN.

Ninf: Allow optimizations to assume the arguments
and result are not +/-Inf.

Arcp: Allow optimizations to use reciprocal
operations with approximate expressions.

Contract: Allow floating-point contraction (e.g.
fusing a multiply add/sub).

Current LLVM Numerics Models

Models and
their Flags

Unsafe

Fast-Math

Precise-
Math

Nsz

Overrides

√

X

Nnan

Overrides

√

X

Ninf

Overrides

√

X

Arcp

Overrides

√

X

Contract

Overrides

√

X

Reassoc

Overrides

√

X

�6

Nsz: Allow optimizations to treat the sign of a zero
argument or result as insignificant.

Nnan: Allow optimizations to assume the arguments
and result are not NaN.

Ninf: Allow optimizations to assume the arguments
and result are not +/-Inf.

Arcp: Allow optimizations to use reciprocal
operations with approximate expressions.

Contract: Allow floating-point contraction (e.g.
fusing a multiply add/sub).

Reassoc: Allow reassociation transformations on
floating-point instructions.

Current LLVM Numerics Models

Models and
their Flags

Unsafe

Fast-Math

Precise-
Math

Nsz

Overrides

√

X

Nnan

Overrides

√

X

Ninf

Overrides

√

X

Arcp

Overrides

√

X

Contract

Overrides

√

X

Reassoc

Overrides

√

X

Afn

Overrides

√

X

�6

Nsz: Allow optimizations to treat the sign of a zero
argument or result as insignificant.

Nnan: Allow optimizations to assume the arguments
and result are not NaN.

Ninf: Allow optimizations to assume the arguments
and result are not +/-Inf.

Arcp: Allow optimizations to use reciprocal
operations with approximate expressions.

Contract: Allow floating-point contraction (e.g.
fusing a multiply add/sub).

Afn: Allow substitution of approximate calculations
for functions (sin, log, cos, etc).

Reassoc: Allow reassociation transformations on
floating-point instructions.

Current LLVM Numerics Models

FMF
Precision and

Behavior

Math
operation

order
changed

IEEE behavior
changed

IEEE
precision
changed

�7

Notes: The above FMF on IR maps to the same optimizations as Unsafe

Current LLVM Numerics Models

FMF
Precision and

Behavior

Math
operation

order
changed

IEEE behavior
changed

IEEE
precision
changed

Nsz

√

√

√

�7

Notes: The above FMF on IR maps to the same optimizations as Unsafe

Current LLVM Numerics Models

FMF
Precision and

Behavior

Math
operation

order
changed

IEEE behavior
changed

IEEE
precision
changed

Nsz

√

√

√

Nnan

√

√

√

�7

Notes: The above FMF on IR maps to the same optimizations as Unsafe

Current LLVM Numerics Models

FMF
Precision and

Behavior

Math
operation

order
changed

IEEE behavior
changed

IEEE
precision
changed

Nsz

√

√

√

Nnan

√

√

√

Ninf

X

√

√

�7

Notes: The above FMF on IR maps to the same optimizations as Unsafe

Current LLVM Numerics Models

FMF
Precision and

Behavior

Math
operation

order
changed

IEEE behavior
changed

IEEE
precision
changed

Nsz

√

√

√

Nnan

√

√

√

Ninf

X

√

√

Arcp

NA

√

√

�7

Notes: The above FMF on IR maps to the same optimizations as Unsafe

Current LLVM Numerics Models

FMF
Precision and

Behavior

Math
operation

order
changed

IEEE behavior
changed

IEEE
precision
changed

Nsz

√

√

√

Nnan

√

√

√

Ninf

X

√

√

Arcp

NA

√

√

Contract

√

√

√

�7

Notes: The above FMF on IR maps to the same optimizations as Unsafe

Current LLVM Numerics Models

FMF
Precision and

Behavior

Math
operation

order
changed

IEEE behavior
changed

IEEE
precision
changed

Nsz

√

√

√

Nnan

√

√

√

Ninf

X

√

√

Arcp

NA

√

√

Contract

√

√

√

Reassoc

√

√

√

�7

Notes: The above FMF on IR maps to the same optimizations as Unsafe

Current LLVM Numerics Models

FMF
Precision and

Behavior

Math
operation

order
changed

IEEE behavior
changed

IEEE
precision
changed

Nsz

√

√

√

Nnan

√

√

√

Ninf

X

√

√

Arcp

NA

√

√

Contract

√

√

√

Reassoc

√

√

√

Changing order of
operations may cause

rounding differences, NaN
and Inf instances may

materialize in new ways or
even disappear, generalizing

the intended values
expected in user code.

�7

Notes: The above FMF on IR maps to the same optimizations as Unsafe

Current LLVM Numerics Models

FMF
Precision and

Behavior

Math
operation

order
changed

IEEE behavior
changed

IEEE
precision
changed

Nsz

√

√

√

Nnan

√

√

√

Ninf

X

√

√

Arcp

NA

√

√

Contract

√

√

√

Reassoc

√

√

√

Afn

NA

√

√

Changing order of
operations may cause

rounding differences, NaN
and Inf instances may

materialize in new ways or
even disappear, generalizing

the intended values
expected in user code.

�7

Notes: The above FMF on IR maps to the same optimizations as Unsafe

Current LLVM Numerics Models

FMF
Precision and

Behavior

Math
operation

order
changed

IEEE behavior
changed

IEEE
precision
changed

Nsz

√

√

√

Nnan

√

√

√

Ninf

X

√

√

Arcp

NA

√

√

Contract

√

√

√

Reassoc

√

√

√

Afn

NA

√

√

Fast

√

√

√

Changing order of
operations may cause

rounding differences, NaN
and Inf instances may

materialize in new ways or
even disappear, generalizing

the intended values
expected in user code.

�7

Notes: The above FMF on IR maps to the same optimizations as Unsafe

Current LLVM Numerics Models

!8

Model Attributes

Fine Grain
Control

IR annotated with
flags

NaNs and Infs
Preserved

Best Performance
and Size

IEEE Compliant

Current LLVM Numerics Models

!8

Model Attributes

Fine Grain
Control

IR annotated with
flags

NaNs and Infs
Preserved

Best Performance
and Size

IEEE Compliant

Unsafe

X

NA

X

√

X

Current LLVM Numerics Models

!8

Model Attributes

Fine Grain
Control

IR annotated with
flags

NaNs and Infs
Preserved

Best Performance
and Size

IEEE Compliant

Unsafe

X

NA

X

√

X

Fast-math

√

√

X

√

X

Current LLVM Numerics Models

!8

Model Attributes

Fine Grain
Control

IR annotated with
flags

NaNs and Infs
Preserved

Best Performance
and Size

IEEE Compliant

Unsafe

X

NA

X

√

X

Fast-math

√

√

X

√

X

Precise-math

√

None or arcp

√

X

√

Current LLVM Numerics Models

!8

Model Attributes

Fine Grain
Control

IR annotated with
flags

NaNs and Infs
Preserved

Best Performance
and Size

IEEE Compliant

Unsafe

X

NA

X

√

X

Fast-math

√

√

X

√

X

Precise-math

√

None or arcp

√

X

√

Unsafe with
Precise-math

X

NA

X

X

X

Current LLVM Numerics Models

!8

Agenda

•Handling Numerics via Flags
•Current LLVM Numerics Models
•How Unsafe Changes Behavior
•Mixed Mode
•Flag Guided Optimizations
•Conclusions

�9

• Code emitted as precise can be modified by Unsafe.

• Math functions like acos, cos, sin, asin, etc created by
another model can have modified behavior and
precision.

• Reassociation globally/locally removes constraints.

!10

How Unsafe Changes Behavior

Agenda

•Handling Numerics via Flags
•Current LLVM Numerics Models
•How Unsafe Changes Behavior
•Mixed Mode
•Flag Guided Optimizations
•Conclusions

�11

Mixed Mode

• Interleave IR with mixture of flags at some granularity (lib, function, expression).

• Incompatible with Unsafe

• Fast-Math, Precise-Math and other models can coexist.

• Fine granularity of optimization control

• No loss of generality from expressed model

• More design options to manage optimizations

�12

Model
Attributes Unsafe Fast-math Precise-math Mixed Mode Unsafe with

Precise-math

Fine
Grain

Control
X √ √ √ X

IR annotated
with flags NA √ None or arcp In context NA

NaNs and Infs
Preserved X X √ In context X

Best
Performance

and Size
√ √ X In context X

IEEE Compliant X X √ In context X

Mixed Mode

!13

Model
Attributes Unsafe Fast-math Precise-math Mixed Mode Unsafe with

Precise-math

Fine
Grain

Control
X √ √ √ X

IR annotated
with flags NA √ None or arcp In context NA

NaNs and Infs
Preserved X X √ In context X

Best
Performance

and Size
√ √ X In context X

IEEE Compliant X X √ In context X

Mixed Mode

Mixed Mode is
available in LLVM 8.0

!13

Agenda

•Handling Numerics via Flags
•Current Models in LLVM
•How Unsafe Changes Behavior
•Mixed Mode
•Flag Guided Optimizations
•Conclusions

�14

For the following f32 input:

 %x ~= 3.4028234664E+38 (largest positive number in f32)
 c1 = 1.0, c2 = -1.0

We convert this IR:

 %t1 = fadd float %x, 0x3FF0000000000000 ; t1 = x + 1.0
 %t2 = fadd nsz reassoc float %t1, 0xBFF0000000000000 ; t2 = t1 + -1.0

To this with Unsafe or IR flags:

 %t3 = fadd nsz reassoc %x, 0.0

 The result of %t3 is %x

Whereas the precise version yields:

%t1 results in Infinity, which propagates to %t2

!15

Fadd Combine

fadd nsz reassoc (fadd x,c1), c2 -> fadd nsz reassoc x, c1 + c2

For the following f32 input:

 %x = 10, %t1 = 0.3
 0x36A0000000000000 ~= 1.4012984643E−45 (smallest positive number)

We convert this IR:

 %t1 = fdiv float 3.0, 10.0
 %t2 = fmul reassoc float %x, 0x36A0000000000000 ; t2 = x * 1.4012984643E−45
 %t3 = fmul reassoc float %t2, %t1 ; t3 = t2 * 0.3

To this with Unsafe or IR flags:

 %t4 = fmul reassoc float %t2, 0
 1.4012984643E−45 * 0.3, which is correctly rounded to zero.

Whereas the precise version yields:

 1.4012984643E−44 * 0.3, which is non zero.

!16

Fmul Combine

fmul reassoc (fmul x, c1), c2 -> fmul reassoc x, c1 * c2

This IR:

 %div = fdiv arcp half %x, 10.0
 %z = fpext half %div to float

Produces (Unsafe/Fast) x86_64 with avx:

.LCPI4_0:
 .long 1036828672 # float 0.0999755859
…
 vmulss .LCPI4_0(%rip), %xmm0, %xmm0 # z = x * 0.0999755859

This IR:

 %div = fdiv half %x, 10.0
 %z = fpext half %div to float

Produces (Precise) x86_64 with avx:

.LCPI4_0:
 .long 1092616192 # float 10
…
 vdivss .LCPI4_0(%rip), %xmm0, %xmm0 # z = x / 10

!17

Fdiv Code Generation

Agenda

•Handling Numerics via Flags
•Current Models in LLVM
•How Unsafe Changes Behavior
•Mixed Mode
•Flag Guided Optimizations
•Conclusions

�18

• Emit flags on IR and exclude Unsafe to get desired
model behavior.

• Mixed mode facilitates fine grained control, while
promoting versatility in implementing optimizations.

• Compiler implementers can use the current
infrastructure to implement Mixed mode today for
their targets.

!19

Conclusions

• FMF function specialization along a call edge

• Inlining with FMF applied from caller instance of call

• Pragma controls

• Per function controls for replacing math lib calls

• New Math Models, new FMF and combinatorics

!20

Future Work Ideas

Note: See llvm-dev EuroLLVM Numerics issues email thread for continuing discussion

LLVM Numerics Improvements 
Michael C. Berg, LLVM Developers’ Meeting, Brussels, Belgium, April 2019

• Questions?

�21

