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Current LLVM Numerics Models

• Unsafe : module-wide scope overrides Fast Math Flags (FMF). 

• Fast-Math: IR scope, FMFs all set. 

• Precise-Math: IR scope, FMFs all unset, IEEE–754.
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Nsz: Allow optimizations to treat the sign of a zero 
argument or result as insignificant.

Nnan: Allow optimizations to assume the arguments 
and result are not NaN.

Ninf: Allow optimizations to assume the arguments 
and result are not +/-Inf.

Arcp: Allow optimizations to use reciprocal 
operations with approximate expressions.

Contract: Allow floating-point contraction (e.g. 
fusing a multiply add/sub).

Afn: Allow substitution of approximate calculations 
for functions (sin, log, cos, etc). 

Reassoc: Allow reassociation transformations on 
floating-point instructions.
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• Code emitted as precise can be modified by Unsafe. 

• Math functions like acos, cos, sin, asin, etc created by 
another model can have modified behavior and 
precision. 

• Reassociation globally/locally removes constraints.
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How Unsafe Changes Behavior
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Mixed Mode

• Interleave IR with mixture of flags at some granularity (lib, function, expression). 

• Incompatible with Unsafe 

• Fast-Math, Precise-Math and other models can coexist. 

• Fine granularity of optimization control 

• No loss of generality from expressed model 

• More design options to manage optimizations
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For the following f32 input: 

  %x ~= 3.4028234664E+38 (largest positive number in f32) 
  c1 = 1.0, c2 = -1.0 

We convert this IR: 

  %t1 = fadd float %x,  0x3FF0000000000000               ; t1 = x + 1.0 
  %t2 = fadd nsz reassoc float %t1,  0xBFF0000000000000  ; t2 = t1 + -1.0 

To this with Unsafe or IR flags: 

  %t3 = fadd nsz reassoc %x, 0.0 

  The result of %t3 is %x 

Whereas the precise version yields: 

%t1 results in Infinity, which propagates to %t2
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Fadd Combine

fadd nsz reassoc (fadd x,c1), c2 -> fadd nsz reassoc x, c1 + c2



For the following f32 input: 

    %x = 10, %t1 = 0.3 
    0x36A0000000000000 ~= 1.4012984643E−45 (smallest positive number) 

We convert this IR: 

    %t1 = fdiv float 3.0, 10.0 
  %t2 = fmul reassoc float %x, 0x36A0000000000000  ; t2 = x * 1.4012984643E−45 
  %t3 = fmul reassoc float %t2, %t1                ; t3 = t2 * 0.3 

To this with Unsafe or IR flags: 

    %t4 = fmul reassoc float %t2, 0 
    1.4012984643E−45 * 0.3, which is correctly rounded to zero. 

Whereas the precise version yields: 

    1.4012984643E−44 * 0.3, which is non zero.
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Fmul Combine

fmul reassoc (fmul x, c1), c2 -> fmul reassoc x, c1 * c2



This IR: 
  
  %div = fdiv arcp half %x, 10.0 
  %z = fpext half %div to float 

Produces (Unsafe/Fast) x86_64 with avx: 

.LCPI4_0: 
        .long   1036828672              # float 0.0999755859 
… 
  vmulss  .LCPI4_0(%rip), %xmm0, %xmm0  # z = x * 0.0999755859 

This IR: 
  
  %div = fdiv half %x, 10.0              
  %z = fpext half %div to float 

Produces (Precise) x86_64 with avx: 

.LCPI4_0: 
        .long   1092616192              # float 10 
… 
  vdivss  .LCPI4_0(%rip), %xmm0, %xmm0  # z = x / 10
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Fdiv Code Generation
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• Emit flags on IR and exclude Unsafe to get desired 
model behavior. 

• Mixed mode facilitates fine grained control, while 
promoting versatility in implementing optimizations. 

• Compiler implementers can use the current 
infrastructure to implement Mixed mode today for 
their targets.
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Conclusions



• FMF function specialization along a call edge 

• Inlining with FMF applied from caller instance of call 

• Pragma controls 

• Per function controls for replacing math lib calls 

• New Math Models, new FMF and combinatorics
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Future Work Ideas

Note: See llvm-dev EuroLLVM Numerics issues email thread for continuing discussion
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