
EUROPEAN LLVM DEVELOPERS’ MEETING 2019

DOE PROXY APPS:
COMPILER PERFORMANCE
ANALYSIS AND OPTIMISTIC
ANNOTATION
EXPLORATION

erhtjhtyhy

BRIAN HOMERDING
ALCF
Argonne National Laboratory
ECP Proxy Apps

JOHANNES DOERFERT
ALCF
Argonne National Laboratory

April 9th, 2019
Brussels, Belguim

OUTLINE

§ Context (Proxy Applications)
§ HPC Performance Analysis & Compiler Comparison
§ Modelling Math Function Memory Access
§ Information and the Compiler
§ Optimistic Annotations
§ Optimistic Suggestions

Co-Design
§ Improve the quality of proxies
§ Maximize the benefit received from

their use

ECP PathForward

ECP PROXY APPLICATION PROJECT

Proxy Applications are used by
Application Teams,
Co-Design Centers,
Software Technology Projects
and Vendors

4

Co-Design
§ Improve the quality of proxies
§ Maximize the benefit received from

their use

ECP PathForward

ECP PROXY APPLICATION PROJECT

Proxy Applications are used by
Application Teams,
Co-Design Centers,
Software Technology Projects
and Vendors

PROXY APPLICATIONS
– Proxy applications are models for one or more features of a parent application

– Can model different parts
• Performance critical algorithm
• Communication patterns
• Programming models

– Come in different sizes
• Kernels
• Skeleton apps
• Mini apps

https://proxyapps.exascaleproject.org

ECP PROXY APPLICATION PROJECT

WHY LOOK AT PROXY APPS

§ Proxy applications aim to hit a balance of complexity and usability

§ Represent the performance critical sections of HPC code

§ Often have various versions (MPI, OpenMP, CUDA, OpenCL, Kokkos)

Issues

§ They are designed to be experimented with, they are not benchmarks until the
problem size is set

§ No common test runner

HPC PERFORMANCE ANALYSIS
& COMPILER COMPARISON

Quantifying Hardware Performance
§ Understand representative problem

sizes
– How to scale the problem to

Exascale?
§ What are the hardware

characteristics of different classes
of codes? (PIC, MD, CFD)

§ Why is the compiler unable to
optimize the code? Can we enable
it to?

PERFORMANCE ANALYSIS

COMPILER FOCUS METHODOLOGY

§ Get a performant version built with each compiler
§ Identify room for improvement
§ Collecting a wide array of hardware performance counters
§ Utilize these hardware counters alongside specific code segments to identify

areas where we are underperforming

RESULTS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

CoMD miniAMR miniFE XSBench RSBench

ICC GCC Clang

RSBENCH MOTIVATING EXAMPLE

GENERATED ASSEMBLY

Clang GCC

MODELING MATH FUNCTION
MEMORY ACCESS

DESIGN

§ Handle the special case

§ Model the memory access of the math functions

§ Expand Support in the backend

§ Expose the functionality to the developer

DESIGN

§ Handle the special case
– Combine sin() and cos() in SimplifyLibCalls

§ Model the memory access of the math functions

§ Expand Support in the backend

§ Expose the functionality to the developer

DESIGN

§ Handle the special case
– Combine sin() and cos() in SimplifyLibCalls

§ Model the memory access of the math functions
– Mark calls that only write errno as WriteOnly

§ Expand Support in the backend

§ Expose the functionality to the developer

DESIGN

§ Handle the special case
– Combine sin() and cos() in SimplifyLibCalls

§ Model the memory access of the math functions
– Mark calls that only write errno as WriteOnly

§ Expand Support in the backend
– Make use of the attribute – EarlyCSE with MSSA

§ Expose the functionality to the developer

DESIGN

§ Handle the special case
– Combine sin() and cos() in SimplifyLibCalls

§ Model the memory access of the math functions
– Mark calls that only write errno as WriteOnly

§ Expand Support in the backend
– Make use of the attribute – EarlyCSE with MSSA
– Gain coverage of the attribute – Infer the attribute in FunctionAttrs

§ Expose the functionality to the developer

DESIGN

§ Handle the special case
– Combine sin() and cos() in SimplifyLibCalls

§ Model the memory access of the math functions
– Mark calls that only write errno as WriteOnly

§ Expand Support in the backend
– Make use of the attribute – EarlyCSE with MSSA
– Gain coverage of the attribute – Infer the attribute in FunctionAttrs

§ Expose the functionality to the developer
– Create an attribute in clang FE

INFORMATION AND THE COMPILER

QUESTIONS

§ What information can we encode that we can’t infer?
§ Does this information improve performance?
§ If not, is it because the information is not useful or not used?
§ How do I know what information I should add?
§ How much performance is lost by information that is correct but that compiler

cannot prove?

EXAMPLE

int *globalPtr;

void external(int*, std::pair<int>&);

int bar(uint8_t LB, uint8_t UB) {

int sum = 0;

std::pair<int> locP = {5, 11};

external(&sum, locP);

for (uint8_t u = LB; u != UB; u++)

sum += *globalPtr + locP.first;

return sum;

}

>> clang -O3

EXAMPLE

int *globalPtr;
void external(int*, std::pair<int>&)
__attribute__((pure));

int bar(uint8_t LB, uint8_t UB) {
int sum = 0;
std::pair<int> locP = {5, 11};
external(&sum, locP);
__builtin_assume(LB <= UB);
for (uint8_t u = LB; u != UB; u++)

sum += *globalPtr + locP.first; return
sum;

}

>> clang -O3

EXAMPLE

int *globalPtr;
void external(int*, std::pair<int>&);

int bar(uint8_t LB, uint8_t UB) {
int sum = 0;
std::pair<int> locP = {5, 11};
external(&sum, locP);

return (UB - LB) * (*globalPtr + 5);
}

>> clang -O3

OPTIMISTIC ANNOTATIONS

void baz(int *A);

>> clang -O3 ...
>> verify.sh --> Success

IN A NUTSHELL

IN A NUTSHELL

void baz(__attribute__((readnone)) int *A);

>> clang -O3 ...
>> verify.sh --> Failure

void baz(__attribute__((readonly)) int *A);

>> clang -O3 ...
>> verify.sh --> Success

IN A NUTSHELL

OPTIMISTIC OPPORTUNITIES

MARK THEM ALL OPTIMISTIC

SEARCH FOR VALID

SEARCH

OPTIMISTIC CHOICES

13.
12.
11.
10.
9.
8.
7.
6.
5.
4.
3.
2.
1.
0.

speculatable (and readnone)
readnone
readonly and inaccessiblememonly
readonly and argmemonly
readonly and inaccessiblemem_or_argmemonly
readonly
writeonly and inaccessiblememonly
writeonly and argmemonly
writeonly and inaccessiblemem_or_argmemonly
writeonly

inaccessiblememonly
argmemonly
inaccessiblemem_or_argmemonly

no annotation, original code

OPPORTUNITY EXAMPLE – FUNCTION SIDE-EFFECTS

§ Potentially aliasing pointers
§ Potentially escaping pointers
§ Potentially overflowing computations
§ Potential runtime exceptions in

functions
§ Potentially parallel loops
§ Externally visible functions
§ Potentially non-dereferenceable

pointers

§ Unknown pointer alignment
§ Unknown control flow choices
§ Potentially invariant memory locations
§ Unknown function return values
§ Unknown pointer usage
§ Potential undefined behavior in

functions
§ Unknown function side-effects

ANNOTATION OPPORTUNITIES

OPTIMISTIC TUNER RESULTS
Proxy
Application

Problem Size /
Run
Configuration

Successful
Compilations

New
Versions

Optimistic
Opportunities

Taken
RSBench -p 300000 32 9 (28.1%) 225/240 (93.8%)
XSBench -p 500000 47 5 (10.6%) 129/141 (91.5%)
PathFinder -x 4kx750.adj_list 62 22 (35.5%) 264/299 (88.3%)
CoMD -x 40 –y 40 –z 40 49 13 (26.5%) 179/194 (92.3%)
Pennant leblancbig.pnt 69 12 (17.4%) 610/689 (88.5%)
MiniGMG 6 2 2 2 1 1 1 16 4 (25.0%) 479/479 (100%)

� �� �� �� �� �� �� �� �� ���
����
���

����
���

_a"2M+?

*QKTBH�iBQMb

aT
22

/m
T

Ј
φЈЈ
ϵЈЈ
ϯЈЈ
ΚЈЈ
ΘЈЈ

hmMBM;
hBK

2
UbV

bT22/mT M2r ǳ+Q``2+iǴ p2`bBQM 2tBbiBM; ǳ+Q``2+iǴ p2`bBQM imMBM; iBK2

RfR

φЈ ϵЈ ϯЈ ΚЈ ΘЈ ϩЈ ϨЈ ΅Ј νЈ
φ

φӳЈΘ
φӳφ

φӳφΘ
φӳϵ

sa"2M+?

*QKTBH�iBQMb

aT
22

/m
T

Ј
φЈЈ
ϵЈЈ
ϯЈЈ
ΚЈЈ

hmMBM;
hBK

2
UbV

bT22/mT M2r ǳ+Q``2+iǴ p2`bBQM 2tBbiBM; ǳ+Q``2+iǴ p2`bBQM imMBM; iBK2

RfR

Ј ϵЈ ΚЈ ϩЈ ΅Ј φЈЈ φϵЈ φΚЈ φϩЈ φ΅Ј ϵЈЈ ϵϵЈ ϵΚЈЈӳνΘ
φ

φӳЈΘ
φӳφ

φӳφΘ
φӳϵ

S�i?6BM/2`

*QKTBH�iBQMb

aT
22

/m
T

Ј
φӴЈЈЈ
ϵӴЈЈЈ
ϯӴЈЈЈ
ΚӴЈЈЈ

hmMBM;
hBK

2
UbV

bT22/mT M2r ǳ+Q``2+iǴ p2`bBQM 2tBbiBM; ǳ+Q``2+iǴ p2`bBQM imMBM; iBK2

RfR

Ј φЈ ϵЈ ϯЈ ΚЈ ΘЈ ϩЈ ϨЈ ΅Ј νЈ φЈЈ φφЈ φϵЈ
ЈӳνΚЈӳνϩЈӳνφ̈́φӳЈϵφӳЈΚφӳЈϩ

*QJ.

*QKTBH�iBQMb

aT
22

/m
T

Ј
ΘЈЈ
φӴЈЈЈ
φӴΘЈЈ
ϵӴЈЈЈ
ϵӴΘЈЈ

hmMBM;
hBK

2
UbV

bT22/mT M2r ǳ+Q``2+iǴ p2`bBQM 2tBbiBM; ǳ+Q``2+iǴ p2`bBQM imMBM; iBK2

RfR

φЈɱ φЈȯ φЈɞ
Јӳϵ
ЈӳΚ
Јӳϩ
Јӳ΅

φ

S2MM�Mi

*QKTBH�iBQMb UHQ; b+�H2V

aT
22

/m
T

Ј
φЈӴЈЈЈ
ϵЈӴЈЈЈ
ϯЈӴЈЈЈ
ΚЈӴЈЈЈ

8yy

hmMBM;
hBK

2
UbV

bT22/mT M2r ǳ+Q``2+iǴ p2`bBQM 2tBbiBM; ǳ+Q``2+iǴ p2`bBQM imMBM; iBK2

RfR

Ј φ ϵ ϯ Κ Θ ϩ Ϩ ΅ ν φЈ φφ φϵ φϯ φΚ φΘ φϩ
ЈӳνΘ

φ
φӳЈΘ

φӳφ

JBMB:J:

*QKTBH�iBQMb

aT
22

/m
T

Ј
ϵЈЈ
ΚЈЈ
ϩЈЈ

hmMBM;
hBK

2
UbV

bT22/mT M2r ǳ+Q``2+iǴ p2`bBQM 2tBbiBM; ǳ+Q``2+iǴ p2`bBQM imMBM; iBK2

RfR

COMPARISON TO LTO

Proxy Application LTO thin-LTO
RSBench 2.86% 5.68%
XSBench 14.03% 41.23%
PathFinder 3.67% 4.79%
CoMD 4.75% 4.48%
Pennant -1.13% -1.14%
MiniGMG 0.73% 0.79%

Performance Gap with LTO as Baseline

OPTIMISTIC SUGGESTIONS

OPTIMISTIC OPPORTUNITIES WITH CHOICES MADE
RSBench

1 1
1 1 1 1 2
2 2
2 2
2 1 1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 1 3 1 3 0 7 0 7 7

PERFORMANCE CRITICAL OPTIMISTIC CHOICES
RSBench

0 0 0 0 0 1 0 0 1 1 1 0 1
0 0
0 0
0 0
0 0
0 1 3 0 0 0 0 0

SUGGESTION EXAMPLES

xs_kernel.c:6:1: remark: internalize the function,
e.g., through 'static' or 'namespace { ... }'.

double complex fast_nuclear_W(double complex Z) {
^

In file included from xs_kernel.c:1:
rsbench.h:94:16: remark: provide better information on function memory

effects, e.g., through '__attribute__((pure))' or
'__attribute__((const))'

complex double fast_cexp(double complex z);

FUTURE WORK

§ Improvements to the tool (suggestions and search)
§ Additional results
§ Identify information that causes regressions

§ Understand if information was not useful or not used
§ Collect statistics on addition information that does/does not change the binary

ACKNOWLEDGEMENTS

This research was supported by the Exascale Computing Project (17-SC-20-SC),
a collaborative effort of two U.S. Department of Energy organizations (Office of
Science and the National Nuclear Security Administration) responsible for the
planning and preparation of a capable exascale ecosystem, including software,
applications, hardware, advanced system engineering, and early testbed
platforms, in support of the nation’s exascale computing imperative.

THANK YOU

