
Adventures with RISC-V
Vectors and LLVM

Robin Kruppe

Embedded Systems and Applications Group

Roger Espasa
Chief Architect

1

Background

• RISC-V is a new open-source ISA rapidly gaining momentum
• Definition controlled by the RISC-V Foundation

• No license fee to implement a processor using RISC-V

• Over 200 companies have joined the foundation

• Very simple and clean ISA, with focus on extensibility
• Supports RISC-V foundation sponsored extensions

• As well as your proprietary “secret sauce” extensions

• There's a backend in LLVM

2

RISC-V Vector Extension (RVV)

• Simple, high performance, high efficiency vector processing

• Scale up & down to large & small cores

• Also base for further domain-specific extensions

• https://github.com/riscv/riscv-v-spec/

• Status: WIP but stable draft, building SW+HW and evaluating

4

https://github.com/riscv/riscv-v-spec/

Feature Highlight Reel

• Programmability: lots of support for vectorization

• Mixed-width computations, widening operations

• Fixed-point and f16

• Precise exceptions (with caveats for embedded platforms)

• Base for further specialized extensions, e.g. for matrix math, complex
numbers, DSP, ML, graphics, …

• Wide variety of microarchitecture styles supported, yet portable code
• Yes, you can build SIMD

• Yes, you can also build temporal Vectors (Cray anyone?)

5

Support for Vectorization

• Strip-mined loops – no remainder handling needed

• Masking on (almost) every vector instruction

• Strided loads and stores, scatters, gathers

• Reduction instructions (sum, min/max, and/or, …)

• Orthogonal set of vector operations, parity with scalar ISA

• fault-only-first loads for loops with data dependent exits

6

Register State: 32 registers of VLEN bits

• 32 register names: v0 through v31

• Each register is VLEN-bits wide
• VLEN is chosen by implementation, must be power of 2

• See spec for additional restrictions in relation to ELEN and SLEN

• Some control registers
• VL = active vector length

• SEW = standard element width, hosted in vsew[2:0]

• LMUL = grouping multiplier

SEW determines number of elements per vector
• SEW = Standard Element Width

• Dynamically settable through ‘vsew[2:0]’

• Each vector register viewed as VLEN/SEW elements, each SEW-bits wide

• Polymorphic instruction
• vadd can be an i8/i16/i32/… add depending on SEW

• Set up along with VL (vsetvli t0, a0, e32)

v0
v1
…
v31

VLEN = 256b

32b 32b 32b 32b 32b 32b 32b 32b

Example: VLEN=256b, vsew=‘010, SEW=32b, elements = VLEN/SEW = 8

vfadd.vv v0, v1, v2

for (i = 0; i < VL; ++i)
v0[i] = v1[i] + v2[i];

v0[VL..VLMAX] = 0;

• Lanes past VL don‘t trap, raise
exceptions, access memory, etc.

9

Register Grouping: LMUL

• Groups registers to form “longer vector”
• Reduces number of valid register names

• Number of registers in each group is LMUL
• LMUL can be 1, 2, 4, 8

• Example: when LMUL=2
• vadd v2, v4, v6 really means (v2,v3) := (v4,v5) + (v6,v7)

• Also used for widening operators (32b x 32b → 64b result)

• Like SEW, set with VL (vsetvli t0, a0, e32, m4)

Strip-mining

Increase each array element (length in a0, pointer in a1) by the same amount (a2)

loop:

vsetvli t0, a0, e32 # t0 = VL = max(a0, VLMAX)

vlw.v v0, (a1)

vadd.vs v2, v0, a2

vsw.v v2, (a1)

sub a0, a0, t0

... ; advance ptr by VL elements

bnez a0, loop

11

Sets SEW
Polymorphic!

Strip-mining

Increase each array element (length in a0, pointer in a1) by the same amount (a2)

loop:

vsetvli t0, a0, e32 # t0 = VL = max(a0, VLMAX)

vlw.v v0, (a1)

vadd.vs v2, v0, a2

vsw.v v2, (a1)

sub a0, a0, t0

... ; advance ptr by VL elements

bnez a0, loop

12

Mixed-precision Calculations

• Usually, biggest data type limits
vector length
• Unless you want lots of shuffles

13

Mixed-precision Calculations

• Usually, biggest data type limits
vector length

• Alternative with RISC-V V:
• pack 16b elements tightly

• 32b elements span two registers

• Switch LMUL to work with both

• No need to shuffle in registers

• Tradeoff: not a win on all uarchs

14

LLVM Support

• Out-of-tree patches @ https://github.com/rkruppe/rvv-llvm

• Want to start upstreaming when spec frozen

• Mostly MC and CodeGen work so far

• Very interested in autovectorization, but needs groundwork

• Status: can manually write vector code in IR and CodeGen it

15

https://github.com/rkruppe/rvv-llvm

Strip-mined Loop in IR

loop:

%n = phi ...

%ptr = phi ...

%vl = call i32 @llvm.riscv.vsetvl(i32 %n)

%v1 = call <scalable 1 x i32> @llvm.riscv.vlw(%ptr, i32 %vl)

%v2 = call … @llvm.riscv.vadd.sv1i32(%v1, %splat, i32 %vl)

call void @llvm.riscv.vsw(%ptr, %v2, i32 %vl)

%n.new = sub i32 %n, %vl

%ptr.new = ...

%done = icmp eq i32 %n.new, 0

16

IR Vector Type

• <scalable k x T> type proposed by Arm for their Scalable Vector
Extension (SVE)

• Lots of common ground (even more than last year!)
• vector register size unkown at compile time, constant at runtime

• but: known constant factor, e.g., VLEN multiple of 64b

• Want to use whatever gets accepted upstream for SVE

• References
• https://llvm.org/D32530

17

https://llvm.org/D32530

IR Intrinsics

• @llvm.riscv.vadd.sv1i32(op1, op2, i32 vl, mask)
• Active vector length is just another argument

• Masking as part of every operation, not external select

• Essentially like Simon Moll‘s Vector Predication proposal

• Note: no mention of SEW/LMUL

• References
• https://llvm.org/D57504

• Simon Moll’s talk earlier today

18

https://llvm.org/D57504

CodeGen Perspective

• VL is just another (allocatable) integer register
• Copies to/from GPR supported

• Input to most vector instructions, output of vsetvl

• Need to figure out how to “spill” it

• vtype is reserved physical register
• Implicitly used by everything, defined by vsetvl

• Managed by backend, no IR representation

• SEW, LMUL dictated by vector types used in IR

19

Instruction Selection

• Straightforward mapping of intrinsics to (pseudo-)instructions
• Hardware instructions are polymorphic, but compiler needs static info

• Pseudos for each element width and LMUL

• Different LMUL also means different register classes (e.g., pairs for LMUL=2)

• e.g. <scalable 4 x i32> add → vadd_e32_m4

• VL modelled as normal integer value

• Don’t set up configuration (SEW, LMUL) yet

20

After ISel

• Place instruction that set up necessary SEW and LMUL
• Fold into existing vsetvl’s where possible

• MIR optimizations, e.g., removing redundant vl ↔ GPR copies

• Copying vector registers is a mess
• Need to copy whole register (vl = MAX) in general

• Should usually prove that elements past current vl won‘t be read

• Not yet sure how to best achieve this

21

Next Steps needed

• Fill in more backend features

• Automatic vectorization (cf. SVE)

• Software ecosystem: vendor-tuned libraries

• Evaluate & adjust ISA

• Implementations will start popping out soon

• Please come help!

22

Conclusion

• RISC-V has a great, flexible vector extension
• https://github.com/riscv/riscv-v-spec/

• LLVM backend for it already started
• https://github.com/rkruppe/rvv-llvm

• Lots of industrial activity around it (even if you don’t see it)

23

https://github.com/riscv/riscv-v-spec/
https://github.com/rkruppe/rvv-llvm

