
[Faculty of Science
Information and Computing Sciences]

1

The Helium Haskell compiler

and its new LLVM backend

Ivo Gabe de Wolff - ivogabe@ivogabe.nl

[Faculty of Science
Information and Computing Sciences]

2

Haskell

I Functional

I Pure

I Lambda (function expression)

I Pattern matching

I Polymorphism

I Type classes (Traits in Rust, protocols in Swift)

I Lazy evaluation

I Partial application (currying)

[Faculty of Science
Information and Computing Sciences]

3

Partial application

divides :: Int -> Int -> Bool

divides a b = mod b a == 0

isEven :: Int -> Bool

isEven = divides 2

[Faculty of Science
Information and Computing Sciences]

4

Desugared

divides :: Int -> (Int -> Bool)

divides = \a -> (\b -> (mod b a) == 0)

isEven :: Int -> Bool

isEven = divides 2

[Faculty of Science
Information and Computing Sciences]

5

Error messages: type graph

I Construct a graph containing type constraints

I Which constraints must be removed to make the graph consistent?

checks :: [Bool]

checks =

[divides 2

, divides 3 5]

expression : divides 2

term : divides

type : Int -> Int -> Bool

does not match : Int -> Bool

because : not enough arguments are given

[Faculty of Science
Information and Computing Sciences]

6

Lazy evaluation

I Call-by-need semantics

I Thunk: object representing a computation

I Weak head normal form

[Faculty of Science
Information and Computing Sciences]

7

Lazy evaluation

Sieve of Eratosthenes:

primes :: [Int]

primes = filterPrime [2..]

where

filterPrime (p:xs) =

p : filterPrime (filter (\x -> not (divides p x)) xs)

[Faculty of Science
Information and Computing Sciences]

8

Old backend: LVM

I Lazy Virtual Machine

I Stack-based instruction set

I Interpreted

[Faculty of Science
Information and Computing Sciences]

9

Pipeline

I Haskell

I Core

I LVM

[Faculty of Science
Information and Computing Sciences]

10

New backend: Iridium

I Strict, imperative language

I SSA

I Functional type system

I Pattern matching

I Laziness is explicit

I Multi-parameter functions

[Faculty of Science
Information and Computing Sciences]

11

New backend: Iridium

export_as @null define @Prelude#null: { (forall a. ![a] -> Bool) }

$ (forall v$2285, %u$0.434: ![v$2285]): Bool [trampoline] {

entry:

case %u$0.434: ![v$2285] constructor (

@"[]": (forall a. [a]) to case_nil,

@":": (forall a. a -> [a] -> [a]) to case_cons)

case_nil:

letalloc %.10378 = constructor @True: Bool $ ()

return %.10378: !Bool

case_cons:

letalloc %.10380 = constructor @False: Bool $ ()

return %.10380: !Bool

}

[Faculty of Science
Information and Computing Sciences]

12

Thunk

Object representing a computation or a partial application, containing:

I Pointer to a function or a thunk

I Number of given arguments

I Number of remaining arguments or a magic number

I Arguments

[Faculty of Science
Information and Computing Sciences]

13

Evaluating a thunk

I Check if remaining is zero.

I Mark that the thunk is being evaluated by writing a magic number to
remaining.

I Call the function pointer.

I Replace the function pointer by a pointer to the computed value.

I Write a magic number to remaining, indicating that the thunk is evaluated.

[Faculty of Science
Information and Computing Sciences]

14

Pipeline

Core

1. Rename

2. Saturate

3. LetSort

4. LetInline

5. Normalize

6. Strictness

7. RemoveAliases

8. ReduceThunks

9. Lift

Iridium

1. ThunkArity

2. DeadCode

3. TailRecursion

[Faculty of Science
Information and Computing Sciences]

15

Saturate - Correctness

Constructor applications should provide all arguments.

data Foo = Foo Int Bool String

x = Foo 1 True

x = \y -> Foo 1 True y

[Faculty of Science
Information and Computing Sciences]

16

Let sorting - Optimization

Three kinds of let declarations: recursive, non-recursive and strict

let

a = h b c

b = f c

c = g b

in [a, b, c]

let

b = f c

c = g b

in

let a = h b c

in [a, b, c]

[Faculty of Science
Information and Computing Sciences]

17

LetInline - Optimization

Can we inline lazy let bindings?

let x = f 1

in g x x

g (f 1) (f 1)

I A thunk is evaluated at most once

I This may prevent inlining

I But some thunks are only used once

[Faculty of Science
Information and Computing Sciences]

18

LetInline - Optimization

Inlines lazy non-recursive let bindings if one of the following holds:

I The definition of the variable is an unsaturated call

I The result of the thunk is not shared

I The variable is not used

[Faculty of Science
Information and Computing Sciences]

19

Normalize - Correctness

Transform the program into a form where “most” subexpressions are variables.

x = f (g y)

x = let z = g y in f z

[Faculty of Science
Information and Computing Sciences]

20

Strictness - Optimization

I Laziness is expensive and prevents other optimizations

I Analyze which expressions will always be used

x = let z = g y in f z

x = let! z = g y in f z

[Faculty of Science
Information and Computing Sciences]

21

Strictness - Optimization

I Execution order unspecified

I Can change behavior when multiple expressions diverge

error :: String -> a

x = error "A" + error "B"

[Faculty of Science
Information and Computing Sciences]

22

RemoveAliases - Optimization

Removes aliasing of variables.

a = let x = y in f x

a = f y

b = let! x = y in

let! z = x in f z

b = let! x = y in f x

[Faculty of Science
Information and Computing Sciences]

23

ReduceThunks - Optimization

let a = 0 in f a

let! a = 0 in f a

[Faculty of Science
Information and Computing Sciences]

24

Lift - Correctness

Transforms the program such that all lazy expressions are function or constructor
applications.

Function expressions are lifted to toplevel declarations.

a = \x -> let y = expr in \z -> y + z

a = \x -> let y = b x in c x y

b = \x -> expr

c = \x -> \y -> \z -> y + z

[Faculty of Science
Information and Computing Sciences]

25

Pipeline

Core

1. Rename

2. Saturate

3. LetSort

4. LetInline

5. Normalize

6. Strictness

7. RemoveAliases

8. ReduceThunks

9. Lift

Iridium

1. ThunkArity

2. DeadCode

3. TailRecursion

[Faculty of Science
Information and Computing Sciences]

26

Iridium instructions

I Let - expressions such as call, phi, eval, literals

I LetAlloc - allocates thunks or constructors

I Jump

I Match - Extracts fields from an object

I Case - Conditional jump

I Return

I Unreachable

[Faculty of Science
Information and Computing Sciences]

27

Iridium pipeline

I ThunkArity - Correctness

I DeadCode - Optimization

I TailRecursion - Optimization / correctness

I Memory management

[Faculty of Science
Information and Computing Sciences]

28

Pipeline

Core

1. Rename

2. Saturate

3. LetSort

4. LetInline

5. Normalize

6. Strictness

7. RemoveAliases

8. ReduceThunks

9. Lift

Iridium

1. ThunkArity

2. DeadCode

3. TailRecursion

[Faculty of Science
Information and Computing Sciences]

29

The Helium Haskell compiler

and its new LLVM backend

Ivo Gabe de Wolff - ivogabe@ivogabe.nl

