A Unified Debug Server for Deeply Embedded Systems and LLDB

Simon Cook
gdb-remote 1111
...
print /x foo

LLDB

$p20#d2

$64010100#8c

$m124,2#62

$beef#92

debug-server
class ExampleTarget : public Target {
public:
 // Timers
 uint64_t getCycleCount() const;
 uint64_t getInstrCount() const;

 // Read-write memory and registers
 std::size_t readRegister(const int reg, uint_reg_t &value);
 std::size_t writeRegister(const int reg, const uint_reg_t value);
 std::size_t read(const uint_addr_t addr, uint8_t *buffer, const std::size_t size);
 std::size_t write(const uint_addr_t addr, const uint8_t *buffer, const std::size_t size);

 // Execution control
 bool prepare(const std::vector<ResumeType> &actions);
 bool resume(void) override;
 WaitRes wait(const std::vector<ResumeRes> &results);
 ...
};
std::size_t
LockstepTarget::readRegister(const int reg,
 uint_reg_t &value) {
 uint_reg_t vL;
 uint_reg_t vR;
 std::size_t rL = _l->readRegister(reg, vL);
 std::size_t rR = _r->readRegister(reg, vR);

 // Report inconsistency server side.
 if ((rL != rR) || (vL != vR))
 std::cerr << "Lockstep error: register" << " inconsistency."
 << std::endl;

 // TODO: Allow this to be configured.
 // For now we just choose the left value
 // since readRegister cannot fail.
 value = vL;
 return rL;
}
$ llldb
(lldb) gdb-remote 51000
Process 1 stopped
* thread #1, stop reason = signal SIGTRAP
frame #0: 0x0001015c
-> 0x1015c: addi a5, zero, 5
0x10160: mv t6, a5
0x10164: mv a5, zero
0x10168: mv a0, a5
(lldb) si
Process 1 stopped
* thread #1, stop reason = instruction step into
frame #0: 0x00010160
-> 0x10160: mv t6, a5
0x10164: mv a5, zero
0x10168: mv a0, a5
0x1016c: lw s0, 12(sp)
(lldb) si
Process 1 stopped
* thread #1, stop reason = signal SIGSYS
frame #0: 0x00010164
-> 0x10164: mv a5, zero
0x10168: mv a0, a5
0x1016c: lw s0, 12(sp)
0x10170: addi sp, sp, 16

(SIGSYS returned, indicating divergence

(lldb) register read --all
general:
x0 = 0x00000000
x1 = 0x000100d8
x2 = 0xffffffff
x3 = 0x000100da
< ... >
x28 = 0x00000000
x29 = 0x00000000
x30 = 0x00000000
pc = 0x00010164
1 registers were unavailable.

lockstep-left:
x31-left = 0x00000005
32 registers were unavailable.

lockstep-right:
x31-right = 0x00000004
32 registers were unavailable.

x31 not shown, since both targets disagree on value

both targets x31 shown, allowing investigation into divergence
Debugger 1
(e.g. RISC-V core)

Embedded Debug Server

Debugger 2
(e.g. AArch64 core)

SoC target
(One system, multiple architectures)
Questions?

www.embecosm.com