Cheap function entry
Instrumentation

Aditya Kumar
lan Levesque
Sam Todd

Agenda 1. Motivation
2. Functionality

3. Infrastructure

4. Benefit

Motivation

Finding dead code in a large codebase
- Static analysis does not work
- Externally visible functions can’t be stripped by the linker

Instrumenting Function Entry

One array for each module.

Module hash to identify the module

- Some bits can be used to encode instrumentation scheme (#futurework)
Each function has 1 byte of storage

Each function can use their byte for fun and profit!

- Dead code detection

« Null pointer check for function arguments

- Cheap value profiling

Each array has the following format:
| ————64bit————- | ———32bit——-—|—-Entry for each function ————]
|--Module hash———|---#of functions-|—-Byte array, withOor 1 --------- |

Instrumenting for dead code detection

Compiler adds code that stores Ox1 whenever the function is called
1 byte per function is cheap
Lock free

Each array has the following format:
| —-——64bit————- |———32bit——-—|—-Entry for each function ————|
|--Module hash———|---#of functions-|—-Byte array, withO or 1 --------- |

$ cat test.ll
target triple = "arm64-apple-ios"

; Function Attrs: norecurse nounwind readnone

define 132 @foo(i32 %a) {
%a.5roa.0.0.trunc trunc 132 %a to 1i8
%a.Sroa.5.0.shift lshr 132 %a, 8
%bf.clear = and 18 %a.sroa.0.0.trunc, 1
%bf.cast = zext 18 %bf.clear to i32
%bf.lshr = lshr 18 %a.sroa.0.0.trunc, 1
ret 132 %a

}

define i32 @bar(i32 %a) {
%a.5roa.0.0.trunc trunc 132 %a to 18
%a.Sroa.5.0.shift lshr 132 %a, 8
%bf.clear = and 18 %a.sroa.0.0.trunc, 1
%bf.cast = zext 18 %bf.clear to i32
%bf.lshr = 1lshr 18 %a.sro0a.0.0.trunc, 1
ret 132 %a

}

$ opt —instrfuncentry -S test.ll -0 -

@_1llvm_funcentry_array_5977508082728489289 = linkonce hidden global [14 x i8] c"I\D1\QEY\EE_\F4R\02\00\00\00\FF\FF", section "__DATA,__1lvm_funcentry"

define i32 @foo(i32 %a) {
funcentry_set:

store i8 0, i8x getelementptr inbounds ([14 x i8], [14 x i8]x @_llvm_funcentry_array_5977508082728489289, i32 0, i32 12)
br label %0

; <label>:0:
%a.5roa.0.0.trunc trunc 132 %a to 1i8
%a.Sroa.5.0.shift lshr 132 %a, 8
%bf.clear = and 18 %a.sroa.0.0.trunc, 1
%bf.cast zext 18 %bf.clear to 132
%bf.lshr lshr 18 %a.sroa.0.0.trunc, 1
ret 132 %a

}

define 132 @bar(i32 %a) {
funcentry_set:

store i8 @, i8x getelementptr inbounds ([14 x i8], [14 x i81x @_llvm_funcentry_array_5977508082728489289, i32 0, i32 13)
br label %0

; <label>:0:
%a.5roa.0.0.trunc trunc 132 %a to 1i8
%a.Sroa.5.0.shift lshr 132 %a, 8
%bf.clear = and 18 %a.sroa.0.0.trunc, 1
%bf.cast zext 18 %bf.clear to 132
%bf.lshr lshr 18 %a.sroa.0.0.trunc, 1
ret 132 %a

}

Cost models

« SKip standard library functions
« SKip functions smaller than a certain size
« Skip functions specified in a blacklist

Extensible

« SKip standard library functions
« SKip functions smaller than a certain size
« Skip functions specified in a blacklist

Data for post processing

« Dump list of global buffers in a file
« Dump Hashing, and function indices

cat mapping/func—-entry—-write—-mapping.txt cat mapping/func—-entry—-global-buffer.txt
MD5 5c¢f8c24cdb18bdac, foo,12 _Llvm_funcentry_array_5977508082728489289
MD5 e413754a191db537,bar,13 _Llvm_funcentry_array_7867504356345634132

Infrastructure to support dead code detection

« Collect data from the application and store it somewhere

- Use the mapping file (version specific) to index functions that were called
- Aggregate all the data for sufficiently long duration

 List functions which were called

Collecting data from production

- Instrument each function and get data from the field.
. |If a function hasn’t been called in a while, it’s probably dead
 Manual inspection required

Caveats

« New functions may have been written

- Some functions which were detected have been deleted already
« Or moved to another location (refactoring...)

« Functions which are rarely called may add to noise
« Error reporting, exception handling functions

References

- Patch: https://reviews.llvm.org/D74362

- LLVM Xray https:/llvm.org/docs/XRay.html
- Order File Instrumentation: https:/reviews.llvm.org/D58751

- https://en.wikipedia.org/wiki/Profile-guided_optimization

https://llvm.org/docs/XRay.html
https://reviews.llvm.org/D58751

