
Cheap function entry
instrumentation
Aditya Kumar

Ian Levesque

Sam Todd

1. Motivation

2. Functionality

3. Infrastructure

4. Benefit

Agenda

Finding dead code in a large codebase

• Static analysis does not work

• Externally visible functions can’t be stripped by the linker

Motivation

• One array for each module.

• Module hash to identify the module

• Some bits can be used to encode instrumentation scheme (#futurework)

• Each function has 1 byte of storage

• Each function can use their byte for fun and profit!

• Dead code detection

• Null pointer check for function arguments

• Cheap value profiling

Instrumenting Function Entry

Each array has the following format:

|—-——64bit————-|———32bit——-—|—-Entry for each function ————|

|--Module hash———|---#of functions-|—-Byte array, with 0 or 1 ---------|

Compiler adds code that stores 0x1 whenever the function is called

1 byte per function is cheap

Lock free 

Instrumenting for dead code detection

Each array has the following format:

|—-——64bit————-|———32bit——-—|—-Entry for each function ————|

|--Module hash———|---#of functions-|—-Byte array, with 0 or 1 ---------|

$ cat test.ll

target triple = "arm64-apple-ios"

; Function Attrs: norecurse nounwind readnone

define i32 @foo(i32 %a) {

 %a.sroa.0.0.trunc = trunc i32 %a to i8

 %a.sroa.5.0.shift = lshr i32 %a, 8

 %bf.clear = and i8 %a.sroa.0.0.trunc, 1

 %bf.cast = zext i8 %bf.clear to i32

 %bf.lshr = lshr i8 %a.sroa.0.0.trunc, 1

 ret i32 %a

}

define i32 @bar(i32 %a) {

 %a.sroa.0.0.trunc = trunc i32 %a to i8

 %a.sroa.5.0.shift = lshr i32 %a, 8

 %bf.clear = and i8 %a.sroa.0.0.trunc, 1

 %bf.cast = zext i8 %bf.clear to i32

 %bf.lshr = lshr i8 %a.sroa.0.0.trunc, 1

 ret i32 %a

}

$ opt -instrfuncentry -S test.ll -o -

@_llvm_funcentry_array_5977508082728489289 = linkonce hidden global [14 x i8] c"I\D1\0EY\EE_\F4R\02\00\00\00\FF\FF", section "__DATA,__llvm_funcentry"

define i32 @foo(i32 %a) {

funcentry_set:

 store i8 0, i8* getelementptr inbounds ([14 x i8], [14 x i8]* @_llvm_funcentry_array_5977508082728489289, i32 0, i32 12)

 br label %0

; <label>:0:

 %a.sroa.0.0.trunc = trunc i32 %a to i8

 %a.sroa.5.0.shift = lshr i32 %a, 8

 %bf.clear = and i8 %a.sroa.0.0.trunc, 1

 %bf.cast = zext i8 %bf.clear to i32

 %bf.lshr = lshr i8 %a.sroa.0.0.trunc, 1

 ret i32 %a

}

define i32 @bar(i32 %a) {

funcentry_set:

 store i8 0, i8* getelementptr inbounds ([14 x i8], [14 x i8]* @_llvm_funcentry_array_5977508082728489289, i32 0, i32 13)

 br label %0

; <label>:0:

 %a.sroa.0.0.trunc = trunc i32 %a to i8

 %a.sroa.5.0.shift = lshr i32 %a, 8

 %bf.clear = and i8 %a.sroa.0.0.trunc, 1

 %bf.cast = zext i8 %bf.clear to i32

 %bf.lshr = lshr i8 %a.sroa.0.0.trunc, 1

 ret i32 %a

}

• Skip standard library functions

• Skip functions smaller than a certain size

• Skip functions specified in a blacklist

Cost models

• Skip standard library functions

• Skip functions smaller than a certain size

• Skip functions specified in a blacklist

Extensible

• Dump list of global buffers in a file

• Dump Hashing, and function indices

Data for post processing

cat mapping/func-entry-write-mapping.txt

MD5 5cf8c24cdb18bdac,foo,12

MD5 e413754a191db537,bar,13

cat mapping/func-entry-global-buffer.txt

_llvm_funcentry_array_5977508082728489289

_llvm_funcentry_array_7867504356345634132

• Collect data from the application and store it somewhere

• Use the mapping file (version specific) to index functions that were called

• Aggregate all the data for sufficiently long duration

• List functions which were called

Infrastructure to support dead code detection

• Instrument each function and get data from the field.

• If a function hasn’t been called in a while, it’s probably dead

• Manual inspection required

Collecting data from production

• New functions may have been written

• Some functions which were detected have been deleted already

• Or moved to another location (refactoring…)

• Functions which are rarely called may add to noise

• Error reporting, exception handling functions

Caveats

- Patch: https://reviews.llvm.org/D74362

- LLVM Xray https://llvm.org/docs/XRay.html

- Order File Instrumentation: https://reviews.llvm.org/D58751

- https://en.wikipedia.org/wiki/Profile-guided_optimization

References

https://llvm.org/docs/XRay.html
https://reviews.llvm.org/D58751

