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This tutorial is intended as an introduction to MLIR and does not require prior 
knowledge, we’ll sometimes compare to LLVM though so having experience with 
LLVM may make it easier to follow.
We will start with a high-level introduction to MLIR, before getting into some of the 
internals, and how these apply to an example use-case.

https://mlir.llvm.org/


Overview
Tour of MLIR (with many simplification) by way of implementing a basic toy language

● Defining a Toy language

● Core MLIR Concepts: operations, regions, dialects

● Representing Toy using MLIR
○ Introducing dialect, operations, ODS, verifications
○ Attaching semantics to custom operations

● High-level language specific optimizations

● Writing passes for structure rather than ops
○ Op interfaces for the win

● Lowering to lower-level dialects
○ The road to LLVM IR

The full tutorial online

Here is the overview of this tutorial session:

● We will make up a very simplified high level array-based DSL: this is a Toy 
language solely for the purpose of this tutorial.

● We then introduce some of the key core concepts in MLIR IR: operations, 
regions, and dialects.

● These concepts are then applied to design and build an IR that carry the 
language semantics.

● We illustrate other MLIR concepts like interfaces, and explain how the 
framework fits together to implement transformations.

● We will lower the code towards a representation more suitable for CodeGen. 
The dialect concept in MLIR allows to lower progressively and introduce 
domain-specific middle-end representations that are geared toward 
domain-specific optimizations. For CPU CodeGen, LLVM is king of course but 
one can also implement a different lowering in order to target custom 
accelerators or FPGAs.

https://mlir.llvm.org/docs/Tutorials/Toy/Ch-1/


What is MLIR?

● Framework to build a compiler IR: define your type system, operations, etc.

● Toolbox covering your compiler infrastructure needs
○ Diagnostics, pass infrastructure, multi-threading, testing tools, etc.

● Batteries-included:
○ Various code-generation / lowering strategies
○ Accelerator support (GPUs)

● Allow different levels of abstraction to freely co-exist
○ Abstractions can better target specific areas with less high-level information lost
○ Progressive lowering simplifies and enhances transformation pipelines
○ No arbitrary boundary of abstraction, e.g. host and device code in the same IR at the same time

What is MLIR? From a high level before getting into the nitty gritty.

MLIR is a toolbox for building and integrating compiler abstractions, but what does 
that mean? Essentially we aim to provide extensible and easy-to-use infrastructure for 
your compiler infrastructure needs. You are able to define your own set of operations 
(or instructions in LLVM), your own type system, and benefit from the pass 
management, diagnostics, multi-threading, serialization/deserialization, and all of the 
other boring bits of infra that you would likely have to build yourself.

The MLIR project is also “batteries-included”: on top of the generic infrastructure, 
multiple abstractions and code transformations are integrated. The project is still 
young but we aim to ship various codegen strategies that would allow to easily reuse 
end-to-end flow to include heterogeneous computing (targeting GPUs for example) 
into your DSL or your environment!

The “multi-level” aspect is very important in MLIR: adding new levels of abstraction is 
intended to be easy and common. Not only this makes it very convenient to model a 
specific domain, it also opens up a lot of creativity and brings a significant amount of 
freedom to play with various designs for your compiler: it is actually a lot of fun!

We try to generalize as much as we can up front, but we also stay pragmatic and only 
generalize the things that transfer well across different domains. This large amount of 
reuse also ensures that the core components get a lot of attention to make sure they 
are easy to use, and extremely efficient. We aim to support MLIR from mobile to 



datacenters, and everywhere in-between.



Examples:

● High-Level IR for general purpose languages: FIR (Flang IR)

● “ML Graphs”: TensorFlow/ONNX/XLA/…. 

● HW design: CIRCT project

● Runtimes: TFRT, IREE

● Research projects: Verona (concurrency), RISE (functional), ...

https://mlir.llvm.org/users/

MLIR allows for various abstractions to freely co-exist. This is a very important part of 
the mindset. This enables abstractions to better target specific areas; for example 
people have been using MLIR to build abstractions for Fortran, “ML Graphs” (Tensor 
level operations, Quantization, cross-hosts distribution), Hardware synthesis, runtimes 
abstractions, research projects (around concurrency for example).

We even have abstractions for optimizing DAG rewriting of MLIR with MLIR. So MLIR 
is used to optimize MLIR.

Some of these MLIR users are referenced on the website at this URL if you’re 
interested to learn more about them.

https://mlir.llvm.org/users/


Introducing MLIR by creating: a Toy 
Language

For this tutorial, we will introduce a toy language to highlight some of the important 
aspects of MLIR.



Let’s Build a Toy Language

● Mix of scalar and array computations, as well as I/O
● Array shape Inference
● Generic functions
● Very limited set of operators and features (it’s just a Toy language!)

def foo(a, b, c) {
  var c = a + b;
  print(transpose(c));
  var d<2, 4> = c * foo(c);
  return d;
}

Value-based semantics / SSA

Limited set of  builtin functions

Array reshape through explicit variable declaration

"template<typename A, typename B, typename C>
auto foo(A a, B b, C c) { ... }"

Only float 64s

This high-level language will illustrate how MLIR can provide facilities for high-level 
representation of a programming language. We’ll use a language because it is a 
familiar flow to many, but the concepts here apply to many domains outside of just 
languages (we just saw a few examples of actual use-case!)



Existing Successful Compilation Models

LLVM IR Machine IRClang AST
C, C++, ObjC, 
CUDA, Sycl, 
OpenCL, ...

Asm

LLVM IR Machine IRSwift ASTSwift AsmSIL

LLVM IR Machine IRRust ASTRust AsmHIR MIR

A traditional compilation model: AST -> LLVM
Recent compilers have added extra levels of language-specific IR, refining the AST 
model towards LLVM, gradually lowering between the different representation.
What do we pick for Toy? We want something modern and future-proof as much as 
possible



The Toy Compiler: the “Simpler” Approach of Clang

LLVM IR Machine IRToy ASTToy Asm

Shape Inference
Function Specialization

(“TreeTransform”)

Need to analyze and transform the AST
-> heavy infrastructure!

And is the AST really the most friendly 
representation we can get?

Should we follow the clang model? We have some some high-level tasks to perform 
before reaching LLVM.
Need a complex AST, heavy infrastructure for transformations and analysis, AST 
representations aren’t great for this.



The Toy Compiler: With Language Specific Optimizations

LLVM IR Machine IRToy ASTToy AsmTIR

Shape Inference
Function Specialization

(“TreeTransform”)

High-Level 
Language Specific

Optimizations

For more optimizations: we need a custom IR
Reimplement again all of LLVM’s infrastructure?

Need to analyze and transform the AST
-> heavy infrastructure!

And is the AST really the most friendly 
representation we can get?

For language specific optimization we can go with builtins and custom LLVM passes, 
but ultimately we may end up wanting our IR at the right level. This ensures that we 
have all the high level information of our language in a way that is convenient to 
analyze/transform, that may otherwise get when lowering to a different representation.



Compilers in a Heterogenous World

LLVM IR Machine IRToy ASTToy AsmTIR

Shape Inference
Function Specialization

(“TreeTransform”)

High-Level 
Language Specific

Optimizations

HW Accelerator 
(TPU, GPU, FPGA, ..)

Need to analyze and transform the AST
-> heavy infrastructure!

And is the AST really the most friendly 
representation we can get?

For more optimizations: a custom IR.
Reimplement again all the LLVM infrastructure?

New HW: are we extensible
and future-proof? 

"Moore’s Law Is Real!"

At some point we may even want to offload some part of the program to custom 
accelerators, requiring more concepts to represent in the IR



It Is All About The Dialects!

LLVM IR Machine IRToy ASTToy Asm

Shape Inference
Function Specialization

(“TreeTransform”)
HW Accelerator 

(TPU, GPU, FPGA, ..)

MLIR

Implemented
as Dialect

Implemented
as Dialect

TIR

MLIR allows every level of abstraction 
to be modeled as a Dialect

High-Level 
Language Specific

Optimizations

In MLIR, the key component of abstraction is a Dialect.



Adjust Ambition to Our Budget (let’s fit the talk)

LLVM IR Machine IRToy 
AST

Toy AsmTIR (Toy IR)

Shape Inference
Function Specialization

(“TreeTransform”)

High-Level 
Language Specific

Optimizations

HW Accelerator 
(TPU, GPU, FPGA, ..)

MLIR

Implemented
as Dialect

Implemented
as Dialect

Limit ourselves to a single dialect for Toy IR: still flexible enough to perform shape 
inference and some high-level optimizations.

For the sake of simplicity, we’ll take many shortcuts and simplify as much as possible 
the flow to limit ourselves to the minimum needed to get an end-to-end example.
We’ll also leave the heterogeneous part for a future session.



MLIR Primer

Before getting into Toy, let me introduce first some of the key concepts in MLIR.



Operations, Not Instructions

 %res:2 = "mydialect.morph"(%input#3) { some.attribute = true, other_attribute = 1.5 }
             : (!mydialect<"custom_type">) -> (!mydialect<"other_type">, !mydialect<"other_type">)
                                                                    loc(callsite("foo" at "mysource.cc":10:8))

● No predefined set of instructions
● Operations are like “opaque functions” to MLIR

Name of the
results

Op Id
Number of 

value returned
Dialect
prefix Argument

Index in
the producer’s results

Dialect prefix 
for the type

Opaque string
/

Dialect specific 
type

List of attributes:
constant named arguments

Mandatory and 
Rich Location

https://mlir.llvm.org/docs/LangRef/#operations
https://github.com/llvm/llvm-project/blob/master/mlir/include/mlir/IR/Operation.h#L27

In MLIR, everything is about Operations, not Instructions: we put the emphasis to 
distinguish from the LLVM view. Operations can be coarse grain (perform a 
matrix-multiplication, or launch a remote RPC task) or can directly carry loop nest or 
other kind of nested “regions” (see later slides)

https://mlir.llvm.org/docs/LangRef/#operations
https://github.com/llvm/llvm-project/blob/master/mlir/include/mlir/IR/Operation.h#L27


%results:2 = "d.operation"(%arg0, %arg1) ({

    // Regions belong to Ops and can have multiple blocks.

    ^block(%argument: !d.type):

        %value = "nested.operation"() ({

            // Ops can contain nested regions.

            "d.op"() : () -> ()

        }) : () -> (!d.other_type)

        "consume.value"(%value) : (!d.other_type) -> ()

    ^other_block:

        "d.terminator"() [^block(%argument : !d.type)] : () 

-> ()

}) : () -> (!d.type, !d.other_type)

● Regions are list of basic blocks nested inside of an operation.
○ Basic blocks are a list of operations: the IR structure is recursively nested!

● Conceptually similar to function call, but can reference SSA values defined outside.

● SSA values defined inside don’t escape.

Recursive nesting: Operations -> Regions -> Blocks
Region

Block

Region

https://mlir.llvm.org/docs/Tutorials/UnderstandingTheIRStructure/
https://mlir.llvm.org/docs/LangRef/#high-level-structure

Another important property of an operation is that it can hold “regions”, which are 
arbitrary large nested section of code.
A region is a list of basic blocks, which themselves are a list of operations: the 
structure is recursively nested!

Operations->Regions->Blocks->Operations->... is the basis of the IR: everything fits in 
this nesting: even ModuleOp and FuncOp are regular operations!
A function body is the only region attached to a FuncOp for example.

We won’t makes heavy use of regions in this tutorial, but they are in general common 
in MLIR and very powerful to express the structure of the IR, we’ll come back to this 
with an example in a few slides.

https://mlir.llvm.org/docs/Tutorials/UnderstandingTheIRStructure/
https://mlir.llvm.org/docs/LangRef/#high-level-structure


Yes: this is also fully valid textual IR module!

It is not valid though! Broken on many aspects:

● The toy.print builtin is not a terminator,
● It should take an operand,
● It shouldn’t produce any results

The “Catch”

func @main() {
  %0 = "toy.print"() : () -> tensor<10xi1>
}

JSON of compiler IR ?!?

MLIR is flexible, it is only limited by the structure introduced in the previous slide!

However is this *too* flexible?
We can easily model an IR that does not make any sense like here.
Did we just create the JSON of compiler IR?



https://mlir.llvm.org/docs/LangRef/#dialects
https://github.com/llvm/llvm-project/blob/master/mlir/include/mlir/IR/Dialect.h#L37
https://mlir.llvm.org/docs/Tutorials/CreatingADialect/

Dialects: Defining Rules and Semantics for the IR

A MLIR dialect is a logical grouping including:

● A prefix (“namespace” reservation)

● A list of custom types, each its C++ class.

● A list of operations, each its name and C++ class implementation:

○ Verifier for operation invariants (e.g. toy.print must have a single operand)

○ Semantics (has-no-side-effects, constant-folding, CSE-allowed, ….)

● Passes: analysis, transformations, and dialect conversions.

● Possibly custom parser and assembly printer

The solution put forward by MLIR is Dialect.

You will hear a lot about “Dialects“ in the MLIR ecosystem. A Dialect is a bit like a C++ 
library: it is at minima a namespace, a set of types, a set of operations that operate on 
these types (or types defined by other dialects).

A dialect is loaded inside the MLIRContext and provides various hooks, like for 
example to the IR verifier: it will enforce invariants on the IR (just like the LLVM 
verifier).
Dialect authors can also customize the printing/parsing of Operations and Types to 
make the IR more readable.

Dialects are cheap abstraction: you create one like you create a new C++ library. 
There are 20 dialects that come bundled with MLIR, but many more have been 
defined by MLIR users: our internal users at Google have defined over 60 so far!

https://mlir.llvm.org/docs/LangRef/#dialects
https://github.com/llvm/llvm-project/blob/master/mlir/include/mlir/IR/Dialect.h#L37
https://mlir.llvm.org/docs/Tutorials/CreatingADialect/


Example: Affine Dialect
func @test() {
  affine.for %k = 0 to 10 {
    affine.for %l = 0 to 10 {
      affine.if (d0) : (8*d0 - 4 >= 0, -8*d0 + 7 >= 0)(%k) {
        // Dead code, because no multiple of 8 lies between 4 and 7.
        "foo"(%k) : (index) -> ()
      }
    }
  }
  return
}

With custom parsing/printing: affine.for operations 
with an attached region feels like a regular for!

Extra semantics constraints in this dialect: the if condition is 
an affine relationship on the enclosing loop indices.

#set0 = (d0) : (d0 * 8 - 4 >= 0, d0 * -8 + 7 >= 0)
func @test() {
  "affine.for"() {lower_bound: #map0, step: 1 : index, upper_bound: #map1} : () -> () {
  ^bb1(%i0: index):
    "affine.for"() {lower_bound: #map0, step: 1 : index, upper_bound: #map1} : () -> () 
{
    ^bb2(%i1: index):
      "affine.if"(%i0) {condition: #set0} : (index) -> () {
        "foo"(%i0) : (index) -> ()
        "affine.terminator"() : () -> ()
      } { // else block
      }
      "affine.terminator"() : () -> ()
    }
    ...

Same code without custom parsing/printing: 
isomorphic to the internal in-memory 
representation.

https://mlir.llvm.org/docs/Dialects/Affine/

Example of nice syntax *and* advanced semantics using regions attached to an 
operation

It is useful to keep in mind when working with MLIR that the custom parser/printer are 
“nice to read”, but you can always print the generic form of the IR (on the command 
line: --mlir-print-op-generic) which is actually isomorphic to the representation in 
memory. It can be helpful to debug or to understand how to manipulate the IR in C++.

For example the affine.for loops are pretty and readable, but the generic form really 
show the actual implementation.

https://mlir.llvm.org/docs/Dialects/Affine/


%13 = llvm.alloca %arg0 x !llvm.double : (!llvm.i32) -> !llvm.ptr<double>

%14 = llvm.getelementptr %13[%arg0, %arg0]

          : (!llvm.ptr<double>, !llvm.i32, !llvm.i32) -> !llvm.ptr<double>

%15 = llvm.load %14 : !llvm.ptr<double>

llvm.store %15, %13 : !llvm.ptr<double>

%16 = llvm.bitcast %13 : !llvm.ptr<double> to !llvm.ptr<i64>

%17 = llvm.call @foo(%arg0) : (!llvm.i32) -> !llvm.struct<(i32, double, i32)>

%18 = llvm.extractvalue %17[0] : !llvm.struct<(i32, double, i32)>

%19 = llvm.insertvalue %18, %17[2] : !llvm.struct<(i32, double, i32)>

%20 = llvm.constant(@foo : (!llvm.i32) -> !llvm.struct<(i32, double, i32)>) :

        !llvm.ptr<func<struct<i32, double, i32> (i32)>>

%21 = llvm.call %20(%arg0) : (!llvm.i32) -> !llvm.struct<(i32, double, i32)>

LLVM as a dialect

The LLVM IR itself can be modeled as a dialect, and actually is implemented in MLIR!
You’ll find the LLVM instructions and types, prefixed with the `llvm.` dialect 
namespace.

The LLVM dialect isn’t feature-complete, but defines enough of LLVM to support the 
common need of DSL-oriented codegen.

There are also some minor deviation from LLVM IR: for example because of MLIR 
structure, constants aren’t special and are instead modeled as regular operations.



The Toy IR Dialect



A Toy Dialect: The Dialect

def Toy_Dialect : Dialect {

  let summary = "Toy IR Dialect";

  let description = [{

    This is a much longer description of the

    Toy dialect.

    ...

  }];

  // The namespace of our dialect.

  let name = "toy";

  // The C++ namespace that the dialect class 

  // definition resides in.

  let cppNamespace = "toy";

}

Declaratively specified in TableGen

Let’s start off with defining our dialect, and afterwards we will consider what to do 
about operations/etc.
Many aspects of MLIR are specified declaratively to reduce boilerplate, and lend 
themselves more easily to extension. For example, detailed documentation for the 
dialect is specified in-line with a built-in markdown generator available. Apologies for 
those not familiar with tablegen, the language used in the declarations here. This is a 
language specific to LLVM that is used in many cases to help facilitate generating 
C++ code in a declarative way.



A Toy Dialect: The Dialect

Declaratively specified in TableGen
def Toy_Dialect : Dialect {

  let summary = "Toy IR Dialect";

  let description = [{

    This is a much longer description of the

    Toy dialect.

    ...

  }];

  // The namespace of our dialect.

  let name = "toy";

  // The C++ namespace that the dialect class 

  // definition resides in.

  let cppNamespace = "toy";

}

class ToyDialect : public mlir::Dialect {

public:

  ToyDialect(mlir::MLIRContext *context)

    : mlir::Dialect("toy", context, 

        mlir::TypeID::get<ToyDialect>()) {

    initialize();

  }

  static llvm::StringRef getDialectNamespace() {

    return "toy";

  }

  void initialize();

};

Auto-generated C++ class

Let’s start off with defining our dialect, and afterwards we will consider what to do 
about operations/etc.
Many aspects of MLIR are specified declaratively to reduce boilerplate, and lend 
themselves more easily to extension. For example, detailed documentation for the 
dialect is specified in-line with a built-in markdown generator available. Apologies for 
those not familiar with tablegen, the language used in the declarations here. This is a 
language specific to LLVM that is used in many cases to help facilitate generating 
C++ code in a declarative way.



A Toy Dialect: The Operations

# User defined generic function that operates on unknown shaped arguments

def multiply_transpose(a, b) {

  return transpose(a) * transpose(b);

}

def main() {

  var a<2, 2> = [[1, 2], [3, 4]];

  var b<2, 2> = [1, 2, 3, 4];

  var c = multiply_transpose(a, b);

  print(c);

}

Now we need to decide how we want to map our Toy language into a high-level 
intermediate form that is amenable to the types of analysis and transformation that we 
want to perform. MLIR provides a lot of flexibility, but care should still be taken when 
defining abstraction such that it is useful but not unwieldy.



# User defined generic function that operates on unknown shaped arguments

def multiply_transpose(a, b) {

  return transpose(a) * transpose(b);

}

func @multiply_transpose(%arg0: tensor<*xf64>, %arg1: tensor<*xf64>)

   -> tensor<*xf64> {

  %0 = "toy.transpose"(%arg0) : (tensor<*xf64>) -> tensor<*xf64>

  %1 = "toy.transpose"(%arg1) : (tensor<*xf64>) -> tensor<*xf64>

  %2 = "toy.mul"(%0, %1) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64>

  "toy.return"(%2) : (tensor<*xf64>) -> ()

}

$ bin/toy-ch5 -emit=mlir example.toy

A Toy Dialect: The Operations

Let’s first look at the generic `multiply_transpose` function. Here we have a easily 
extractable operations: transpose, multiplication, and a return. For the types, we will 
simplify the tutorial by using the builtin tensor type to represent our multi-dimensional 
arrays. It supports all of the functionality we’ll need, so we can use it directly. The * 
represents an “unranked” tensor, where we don’t know what the dimensions are or 
how many there are. The f64 is the element type, which in this case is a 64-bit floating 
point or double type. 

(Note that the debug locations are elided in this snippet, because it would be much 
harder to display in one slide otherwise.)



A Toy Dialect: The Operations
def main() {

  var a<2, 2> = [[1, 2], [3, 4]];

  var b<2, 2> = [1, 2, 3, 4];

  var c = multiply_transpose(a, b);

  print(c);

}

func @main() {

  %0 = "toy.constant"() { value: dense<[[1., 2.], [3., 4.]]> : tensor<2x2xf64> }

                        : () -> tensor<2x2xf64>

  %1 = "toy.reshape"(%0) : (tensor<2x2xf64>) -> tensor<2x2xf64>

  %2 = "toy.constant"() { value: dense<tensor<4xf64>, [1., 2., 3., 4.]> }

                        : () -> tensor<4xf64>

  %3 = "toy.reshape"(%2) : (tensor<4xf64>) -> tensor<2x2xf64>

  %4 = "toy.generic_call"(%1, %3) {callee: @multiply_transpose}

                        : (tensor<2x2xf64>, tensor<2x2xf64>) -> tensor<*xf64>

  "toy.print"(%4) : (tensor<*xf64>) -> ()

  "toy.return"() : () -> ()

} $ bin/toy-ch5 -emit=mlir example.toy

Next is the `main` function. This function creates a few constants, invokes the generic 
multiply_transpose, and prints the result. When looking at how me might map this to 
an intermediate form, we can see that the shape of the constant data is reshaped to 
the shape specified on the variable. You may also note that the data for the constant 
is stored via a builtin dense elements attribute. This attribute efficiently supports 
dense storage for floating point elements, which is what we need.



A Toy Dialect: Constant Operation
def ConstantOp : Toy_Op<"constant"> {

  // Provide a summary and description for this operation. 

  let summary = "constant operation";

  let description = [{

    Constant operation turns a literal into an SSA value.

    The data is attached to the operation as an attribute.

    %0 = "toy.constant"() {

      value = dense<[1.0, 2.0]> : tensor<2xf64>

    } : () -> tensor<2x3xf64>

  }];

  // The constant operation takes an attribute as the only 

  // input. `F64ElementsAttr` corresponds to a 64-bit 

  // floating-point ElementsAttr.

  let arguments = (ins F64ElementsAttr:$value);

  // The constant operation returns a single value of type

  // F64Tensor: it is a 64-bit floating-point TensorType.

  let results = (outs F64Tensor);

  // Additional verification logic: here we invoke a static

  // `verify` method in a C++ source file. This codeblock is

  // executed inside of ConstantOp::verify, so we can use

  // `this` to refer to the current operation instance.

  let verifier = [{ return ::verify(*this); }];

}

● Provide a summary and description for this 
operation. 

○ This can be used to auto-generate 
documentation of the operations within 
our dialect.

● Arguments and results specified with 
“constraints” on the type

○ Argument is attribute/operand 

● Additional verification not covered by 
constraints/traits/etc.
 



A Toy Dialect: Constant Operation
def ConstantOp : Toy_Op<"constant"> {

  // Provide a summary and description for this operation. 

  let summary = "constant operation";

  let description = [{

    Constant operation turns a literal into an SSA value.

    The data is attached to the operation as an attribute.

    %0 = "toy.constant"() {

      value = dense<[1.0, 2.0]> : tensor<2xf64>

    } : () -> tensor<2x3xf64>

  }];

  // The constant operation takes an attribute as the only 

  // input. `F64ElementsAttr` corresponds to a 64-bit 

  // floating-point ElementsAttr.

  let arguments = (ins F64ElementsAttr:$value);

  // The constant operation returns a single value of type

  // F64Tensor: it is a 64-bit floating-point TensorType.

  let results = (outs F64Tensor);

  // Additional verification logic: here we invoke a static

  // `verify` method in a C++ source file. This codeblock is

  // executed inside of ConstantOp::verify, so we can use

  // `this` to refer to the current operation instance.

  let verifier = [{ return ::verify(*this); }];

}

● Provide a summary and description for this 
operation. 

○ This can be used to auto-generate 
documentation of the operations within 
our dialect.

● Arguments and results specified with 
“constraints” on the type

○ Argument is attribute/operand 

● Additional verification not covered by 
constraints/traits/etc.
 



A Toy Dialect: Constant Operation
def ConstantOp : Toy_Op<"constant"> {

  // Provide a summary and description for this operation. 

  let summary = "constant operation";

  let description = [{

    Constant operation turns a literal into an SSA value.

    The data is attached to the operation as an attribute.

    %0 = "toy.constant"() {

      value = dense<[1.0, 2.0]> : tensor<2xf64>

    } : () -> tensor<2x3xf64>

  }];

  // The constant operation takes an attribute as the only 

  // input. `F64ElementsAttr` corresponds to a 64-bit 

  // floating-point ElementsAttr.

  let arguments = (ins F64ElementsAttr:$value);

  // The constant operation returns a single value of type

  // F64Tensor: it is a 64-bit floating-point TensorType.

  let results = (outs F64Tensor);

  // Additional verification logic: here we invoke a static

  // `verify` method in a C++ source file. This codeblock is

  // executed inside of ConstantOp::verify, so we can use

  // `this` to refer to the current operation instance.

  let verifier = [{ return ::verify(*this); }];

}

● Provide a summary and description for this 
operation. 

○ This can be used to auto-generate 
documentation of the operations within 
our dialect.

● Arguments and results specified with 
“constraints” on the type

○ Argument is attribute/operand 

● Additional verification not covered by 
constraints/traits/etc.
 



A Toy Dialect: Constant Operation
def ConstantOp : Toy_Op<"constant"> {

  // Provide a summary and description for this operation. 

  let summary = "constant operation";

  let description = [{

    Constant operation turns a literal into an SSA value.

    The data is attached to the operation as an attribute.

    %0 = "toy.constant"() {

      value = dense<[1.0, 2.0]> : tensor<2xf64>

    } : () -> tensor<2x3xf64>

  }];

  // The constant operation takes an attribute as the only 

  // input. `F64ElementsAttr` corresponds to a 64-bit 

  // floating-point ElementsAttr.

  let arguments = (ins F64ElementsAttr:$value);

  // The constant operation returns a single value of type

  // F64Tensor: it is a 64-bit floating-point TensorType.

  let results = (outs F64Tensor);

  // Additional verification logic: here we invoke a static

  // `verify` method in a C++ source file. This codeblock is

  // executed inside of ConstantOp::verify, so we can use

  // `this` to refer to the current operation instance.

  let verifier = [{ return ::verify(*this); }];

}

class ConstantOp

  : public mlir::Op<ConstantOp, mlir::OpTrait::ZeroOperands,

                    mlir::OpTrait::OneResult> {

 public:

  using Op::Op;

  static llvm::StringRef getOperationName() {

    return "toy.constant";

  }

  mlir::DenseElementsAttr value();

  mlir::LogicalResult verify();

  static void build(mlir::OpBuilder &builder,   

                    mlir::OperationState &state,

                    mlir::Type result, 

                    mlir::DenseElementsAttr value);

};

C++ Generated Code from TableGen:



A (Robust) Toy Dialect

$ cat test/Examples/Toy/Ch3/invalid.mlir 

func @main() {

  "toy.print"()  : () -> ()

}

$ build/bin/toyc-ch3 test/Examples/Toy/Ch3/invalid.mlir -emit=mlir

loc("test/invalid.mlir":2:8): error: 'toy.print' op requires a single operand

After registration, operations are now fully verified.



Toy High-Level Transformations



Traits

● Mixins that define additional functionality, properties, and verification on an 
Attribute/Operation/Type

● Presence is checked opaquely by analyses/transformations

● Examples (for operations):
○ Commutative
○ Terminator: if the operation terminates a block
○ ZeroOperand/SingleOperand/HasNOperands

https://mlir.llvm.org/docs/Traits/

Traits are essentially mixins that provide some additional properties and functionality 
to the entity that they are attached to, whether that be an attribute, operation, or type. 
The presence of a trait can also be checked opaquely. So if there are simply “binary” 
properties, a trait is a useful modeling mechanism. Some examples include 
mathematical properties like commutative, as well as structural properties like if the 
operation is a terminator. We even use traits for describing the most basic properties 
of the operation, such as the number of operands. These traits provide the useful 
accessor for operands on your operation classes.

https://mlir.llvm.org/docs/Traits/


Interfaces

● Abstract classes to manipulate MLIR entities opaquely
○ Group of methods with an implementation provided by an attribute/dialect/operation/type
○ Do not rely on C++ inheritance, similar to interfaces in C#

● Cornerstone of MLIR extensibility and pass reusability
○ Interfaces frequently initially defined to satisfy the need of transformations
○ Dialects implement interfaces to enable and reuse generic transformations

● Examples (for operations):
○ CallOp/CallableOp (callgraph modeling)
○ LoopLike
○ Side Effects

https://mlir.llvm.org/docs/Interfaces/

Traits are useful for attaching new properties to an entity, but do not provide much in 
the way of opaquely inspecting properties attached to one, or transform it. Thus 
defines the purpose of interfaces. These are essentially abstract classes that do not 
rely on C++ inheritance. They allow for opaquely invoking methods defined by an 
entity in a type-erased context. Given the view-like nature of classes such as 
operations in MLIR, we can’t rely on an instance of the object existing. As such, 
interfaces in MLIR are somewhat similar in scope to interfaces in C#. A few examples 
of how interfaces are used for operations are: modeling the callgraph, loops, and the 
side effects of an operation.

https://mlir.llvm.org/docs/Interfaces/


Example Problem: Shape Inference

● Ensure all dynamic toy arrays become statically shaped
○ CodeGen/Optimization become a bit easier
○ Tutorial friendly

func @multiply_transpose(%arg0: tensor<*xf64>, %arg1: tensor<*xf64>)
   -> tensor<*xf64> {
  %0 = "toy.transpose"(%arg0) : (tensor<*xf64>) -> tensor<*xf64>
  %1 = "toy.transpose"(%arg1) : (tensor<*xf64>) -> tensor<*xf64>
  %2 = "toy.mul"(%0, %1) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64>
  "toy.return"(%2) : (tensor<*xf64>) -> ()
}

So, let’s look at an example problem we face in our toy language. Shape inference. 
All of our toy arrays outside of main are currently dynamic, because the functions are 
generic. We’d like to have static shapes to make codegen/optimization a bit easier, 
and this tutorial more time friendly. So what should we do?



Example Problem: Shape Inference

● Ensure all dynamic toy arrays become statically shaped
○ CodeGen/Optimization become a bit easier
○ Tutorial friendly

● Interprocedural shape propagation analysis?

func @multiply_transpose(%arg0: tensor<*xf64>, %arg1: tensor<*xf64>)
   -> tensor<*xf64> {
  %0 = "toy.transpose"(%arg0) : (tensor<*xf64>) -> tensor<*xf64>
  %1 = "toy.transpose"(%arg1) : (tensor<*xf64>) -> tensor<*xf64>
  %2 = "toy.mul"(%0, %1) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64>
  "toy.return"(%2) : (tensor<*xf64>) -> ()
}

We could write an interprocedural shape propagation analysis.



Example Problem: Shape Inference

● Ensure all dynamic toy arrays become statically shaped
○ CodeGen/Optimization become a bit easier
○ Tutorial friendly

● Interprocedural shape propagation analysis?
● Function specialization?

func @multiply_transpose(%arg0: tensor<*xf64>, %arg1: tensor<*xf64>)
   -> tensor<*xf64> {
  %0 = "toy.transpose"(%arg0) : (tensor<*xf64>) -> tensor<*xf64>
  %1 = "toy.transpose"(%arg1) : (tensor<*xf64>) -> tensor<*xf64>
  %2 = "toy.mul"(%0, %1) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64>
  "toy.return"(%2) : (tensor<*xf64>) -> ()
}

We could also generate specializations of each of the generic functions per callsite.



Example Problem: Shape Inference

● Ensure all dynamic toy arrays become statically shaped
○ CodeGen/Optimization become a bit easier
○ Tutorial friendly

● Interprocedural shape propagation analysis?
● Function specialization?
● Inline everything!

func @multiply_transpose(%arg0: tensor<*xf64>, %arg1: tensor<*xf64>)
   -> tensor<*xf64> {
  %0 = "toy.transpose"(%arg0) : (tensor<*xf64>) -> tensor<*xf64>
  %1 = "toy.transpose"(%arg1) : (tensor<*xf64>) -> tensor<*xf64>
  %2 = "toy.mul"(%0, %1) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64>
  "toy.return"(%2) : (tensor<*xf64>) -> ()
}

Let’s make it easy on us and just inline everything, because that’s always the best 
strategy.



MLIR provides an inlining pass which defines an interface, Toy dialect just needs to 
implement the inliner interface:

● Define the legality of inlining Toy operations

● Expose “toy.generic_call” to the callgraph

Example Problem: Inlining Literally Everything

https://mlir.llvm.org/docs/Tutorials/Toy/Ch-4/#inlining

MLIR provides a general inlining pass that dialects can immediately use. For Toy, we 
need to provide the right interfaces such that: generic_call is recognized as part of the 
callgraph, toy operations are legal for inlining.

https://mlir.llvm.org/docs/Tutorials/Toy/Ch-4/#inlining


This class defines the interface for handling inlining with 
Toy operations. We simplify inherit from the base interface 
class and override the necessary methods.

struct ToyInlinerInterface : public DialectInlinerInterface {

  using DialectInlinerInterface::DialectInlinerInterface;

  bool isLegalToInline(Operation *, Region *,

                       BlockAndValueMapping &) const final {

    return true;

  }

  void handleTerminator(

      Operation *op, ArrayRef<Value> valuesToRepl) const final {

    // Only "toy.return" needs to be handled here.

    ReturnOp returnOp = cast<ReturnOp>(op);

    for (auto it : llvm::enumerate(returnOp.getOperands()))        

      valuesToRepl[it.index()].replaceAllUsesWith(it.value());

  }

  Operation *materializeCallConversion(

      OpBuilder &builder, Value input, Type resultType,

      Location conversionLoc) const final {

    return builder.create<CastOp>(conversionLoc,

                                  resultType, input);

  }

};

Example Problem: Inlining Literally Everything

https://mlir.llvm.org/docs/Tutorials/Toy/Ch-4/#inlining

https://mlir.llvm.org/docs/Tutorials/Toy/Ch-4/#inlining


This class defines the interface for handling inlining with 
Toy operations. We simplify inherit from the base interface 
class and override the necessary methods.

struct ToyInlinerInterface : public DialectInlinerInterface {

  using DialectInlinerInterface::DialectInlinerInterface;

  bool isLegalToInline(Operation *, Region *,

                       BlockAndValueMapping &) const final {

    return true;

  }

  void handleTerminator(

      Operation *op, ArrayRef<Value> valuesToRepl) const final {

    // Only "toy.return" needs to be handled here.

    ReturnOp returnOp = cast<ReturnOp>(op);

    for (auto it : llvm::enumerate(returnOp.getOperands()))        

      valuesToRepl[it.index()].replaceAllUsesWith(it.value());

  }

  Operation *materializeCallConversion(

      OpBuilder &builder, Value input, Type resultType,

      Location conversionLoc) const final {

    return builder.create<CastOp>(conversionLoc,

                                  resultType, input);

  }

};

Example Problem: Inlining Literally Everything

This hook checks to see if the given operation is legal to 
inline into the given region. For Toy this hook can simply 
return true, as all Toy operations are inlinable.

https://mlir.llvm.org/docs/Tutorials/Toy/Ch-4/#inlining
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This class defines the interface for handling inlining with 
Toy operations. We simplify inherit from the base interface 
class and override the necessary methods.

struct ToyInlinerInterface : public DialectInlinerInterface {

  using DialectInlinerInterface::DialectInlinerInterface;

  bool isLegalToInline(Operation *, Region *,

                       BlockAndValueMapping &) const final {

    return true;

  }

  void handleTerminator(

      Operation *op, ArrayRef<Value> valuesToRepl) const final {

    // Only "toy.return" needs to be handled here.

    ReturnOp returnOp = cast<ReturnOp>(op);

    for (auto it : llvm::enumerate(returnOp.getOperands()))        

      valuesToRepl[it.index()].replaceAllUsesWith(it.value());

  }

  Operation *materializeCallConversion(

      OpBuilder &builder, Value input, Type resultType,

      Location conversionLoc) const final {

    return builder.create<CastOp>(conversionLoc,

                                  resultType, input);

  }

};

Example Problem: Inlining Literally Everything

This hook checks to see if the given operation is legal to 
inline into the given region. For Toy this hook can simply 
return true, as all Toy operations are inlinable.

This hook is called when a terminator operation has been 
inlined. The only terminator that we have in the Toy dialect is 
the return operation(toy.return). We handle the return by 
replacing the values previously returned by the call operation 
with the operands of the return.

https://mlir.llvm.org/docs/Tutorials/Toy/Ch-4/#inlining

https://mlir.llvm.org/docs/Tutorials/Toy/Ch-4/#inlining


This class defines the interface for handling inlining with 
Toy operations. We simplify inherit from the base interface 
class and override the necessary methods.

struct ToyInlinerInterface : public DialectInlinerInterface {

  using DialectInlinerInterface::DialectInlinerInterface;

  bool isLegalToInline(Operation *, Region *,

                       BlockAndValueMapping &) const final {

    return true;

  }

  void handleTerminator(

      Operation *op, ArrayRef<Value> valuesToRepl) const final {

    // Only "toy.return" needs to be handled here.

    ReturnOp returnOp = cast<ReturnOp>(op);

    for (auto it : llvm::enumerate(returnOp.getOperands()))        

      valuesToRepl[it.index()].replaceAllUsesWith(it.value());

  }

  Operation *materializeCallConversion(

      OpBuilder &builder, Value input, Type resultType,

      Location conversionLoc) const final {

    return builder.create<CastOp>(conversionLoc,

                                  resultType, input);

  }

};

Example Problem: Inlining Literally Everything

This hook checks to see if the given operation is legal to 
inline into the given region. For Toy this hook can simply 
return true, as all Toy operations are inlinable.

This hook is called when a terminator operation has been 
inlined. The only terminator that we have in the Toy dialect is 
the return operation(toy.return). We handle the return by 
replacing the values previously returned by the call operation 
with the operands of the return.

Attempts to materialize a conversion for a type mismatch 
between a call from this dialect, and a callable region. This 
method should generate an operation that takes 'input' as the 
only operand, and produces a single result of 'resultType'. If a 
conversion can not be generated, nullptr should be returned.

https://mlir.llvm.org/docs/Tutorials/Toy/Ch-4/#inlining

https://mlir.llvm.org/docs/Tutorials/Toy/Ch-4/#inlining


● Operation interface for callgraph
○ Traits and Interfaces are added right after 

the mnemonic
○ `DeclareOpInterfaceMethods` implicitly 

adds interface method declarations to the 
op class

def GenericCallOp : Toy_Op<"generic_call",

    [DeclareOpInterfaceMethods<CallOpInterface>]> {

  // The generic call operation takes a symbol reference 

  // attribute as the callee, and inputs for the call.

  let arguments = (ins

     FlatSymbolRefAttr:$callee,

     Variadic<F64Tensor>:$inputs

  );

  // The generic call operation returns a single value of 

  // TensorType.

  let results = (outs F64Tensor);

}

Example Problem: Inlining Literally Everything

https://mlir.llvm.org/docs/Tutorials/Toy/Ch-4/#inlining

https://mlir.llvm.org/docs/Tutorials/Toy/Ch-4/#inlining


/// Return the callee of the generic call operation, this is 

/// required by the call interface.

CallInterfaceCallable GenericCallOp::getCallableForCallee() 

{

  // `calleeAttr` is an auto-generated method that returns

  // the attribute for `callee` defined in ODS.

  return calleeAttr();

}

/// Get the argument operands to the called function, this 

/// is required by the call interface.

Operation::operand_range GenericCallOp::getArgOperands() {

  // `inputs` is an auto-generated method that returns the

  // operands corresponding to the `inputs` argument in ODS.

  return inputs();

}

def GenericCallOp : Toy_Op<"generic_call",

    [DeclareOpInterfaceMethods<CallOpInterface>]> {

  // The generic call operation takes a symbol reference 

  // attribute as the callee, and inputs for the call.

  let arguments = (ins

     FlatSymbolRefAttr:$callee,

     Variadic<F64Tensor>:$inputs

  );

  // The generic call operation returns a single value of 

  // TensorType.

  let results = (outs F64Tensor);

}

Example Problem: Inlining Literally Everything

https://mlir.llvm.org/docs/Tutorials/Toy/Ch-4/#inlining
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Example: Inlining Literally Everything
func @multiply_transpose(%arg0: tensor<*xf64>, %arg1: tensor<*xf64>)
   -> tensor<*xf64> {
  %0 = "toy.transpose"(%arg0) : (tensor<*xf64>) -> tensor<*xf64>
  %1 = "toy.transpose"(%arg1) : (tensor<*xf64>) -> tensor<*xf64>
  %2 = "toy.mul"(%0, %1) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64>
  "toy.return"(%2) : (tensor<*xf64>) -> ()
}
func @main() {
  %0 = "toy.constant"() { value: dense<[[1., 2.], [3., 4.]]> : tensor<2x2xf64> }
                        : () -> tensor<2x2xf64>
  %1 = "toy.reshape"(%0) : (tensor<2x2xf64>) -> tensor<2x2xf64>
  %2 = "toy.constant"() { value: dense<tensor<4xf64>, [1., 2., 3., 4.]> }
                        : () -> tensor<4xf64>
  %3 = "toy.reshape"(%2) : (tensor<4xf64>) -> tensor<2x2xf64>
  %4 = "toy.generic_call"(%1, %3) {callee: @multiply_transpose}
                        : (tensor<2x2xf64>, tensor<2x2xf64>) -> tensor<*xf64>
  "toy.print"(%4) : (tensor<*xf64>) -> ()
  “toy.return"() : () -> ()
}



Example: Inlining Literally Everything
func @main() {
  %0 = "toy.constant"() { value: dense<[[1., 2.], [3., 4.]]> : tensor<2x2xf64> }
                        : () -> tensor<2x2xf64>
  %1 = "toy.reshape"(%0) : (tensor<2x2xf64>) -> tensor<2x2xf64>
  %2 = "toy.constant"() { value: dense<tensor<4xf64>, [1., 2., 3., 4.]> }
                        : () -> tensor<4xf64>
  %3 = "toy.reshape"(%2) : (tensor<4xf64>) -> tensor<2x2xf64>

  %4 = "toy.cast"(%3) : (tensor<2x2xf64>) -> tensor<*xf64>
  %5 = "toy.cast"(%1) : (tensor<2x2xf64>) -> tensor<*xf64>
  %6 = "toy.transpose"(%4) : (tensor<*xf64>) -> tensor<*xf64>
  %7 = "toy.transpose"(%5) : (tensor<*xf64>) -> tensor<*xf64>
  %8 = "toy.mul"(%6, %7) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64>

  "toy.print"(%8) : (tensor<*xf64>) -> ()
  “toy.return"() : () -> ()
}



Example: Intraprocedural Shape Inference

1. Build a worklist containing all the operations that return a dynamically shaped 
tensor

2. Iterate on the worklist:
○ Find an operation to process: the next ready operation in the worklist has all of its arguments 

non-generic
○ If no operation is found, break out of the loop
○ Remove the operation from the worklist
○ Infer the shape of its output from the argument types

=> Using an interface to make the pass independent of the dialects and reusable.

3. If the worklist is empty, the algorithm succeeded

https://mlir.llvm.org/docs/Tutorials/Toy/Ch-4/#intraprocedural-shape-inference
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Example: Shape Inference Interface

● Operation Interface
○ Description

def ShapeInferenceOpInterface : OpInterface<"ShapeInference"> {

  let description = [{

    Interface to access a registered method to infer the

    return types for an operation that can be used during

    type inference.

  }];

}

https://mlir.llvm.org/docs/Tutorials/Toy/Ch-4/#intraprocedural-shape-inference
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Example: Shape Inference Interface

● Operation Interface
○ Description
○ Methods

■ Summary
■ Return Type
■ Name
■ Arguments
■ Default Implementation

def ShapeInferenceOpInterface : OpInterface<"ShapeInference"> {

  let description = [{

    Interface to access a registered method to infer the

    return types for an operation that can be used during

    type inference.

  }];

  let methods = [

    InterfaceMethod<"Infer and set the output shape for the"

                    "current operation.",

                    "void", "inferShapes">

  ];

}

https://mlir.llvm.org/docs/Tutorials/Toy/Ch-4/#intraprocedural-shape-inference
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Example: Shape Inference Interface

def MulOp : Toy_Op<"mul",

    [DeclareOpInterfaceMethods<ShapeInferenceOpInterface>]> {

  let arguments = (ins F64Tensor:$lhs, F64Tensor:$rhs);

  let results = (outs F64Tensor);

}

/// Infer the output shape of the MulOp, this is required by 

/// the shape inference interface.

void MulOp::inferShapes() {

  getResult().setType(lhs().getType());

}

def ShapeInferenceOpInterface : OpInterface<"ShapeInference"> {

  let description = [{

    Interface to access a registered method to infer the

    return types for an operation that can be used during

    type inference.

  }];

  let methods = [

    InterfaceMethod<"Infer and set the output shape for the"

                    "current operation.",

                    "void", "inferShapes">

  ];

}

https://mlir.llvm.org/docs/Tutorials/Toy/Ch-4/#intraprocedural-shape-inference
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Example: Shape Inference Pass
func @main() {
  %0 = "toy.constant"() { value: dense<[[1., 2.], [3., 4.]]> : tensor<2x2xf64> }
                        : () -> tensor<2x2xf64>
  %1 = "toy.reshape"(%0) : (tensor<2x2xf64>) -> tensor<2x2xf64>
  %2 = "toy.constant"() { value: dense<tensor<4xf64>, [1., 2., 3., 4.]> }
                        : () -> tensor<4xf64>
  %3 = "toy.reshape"(%2) : (tensor<4xf64>) -> tensor<2x2xf64>

  %4 = "toy.transpose"(%3) : (tensor<2x2xf64>) -> tensor<2x2xf64>
  %5 = "toy.transpose"(%1) : (tensor<2x2xf64>) -> tensor<2x2xf64>
  %6 = "toy.mul"(%4, %5) : (tensor<2x2xf64>, tensor<2x2xf64>) -> tensor<2x2xf64>

  "toy.print"(%6) : (tensor<2x2xf64>) -> ()
  “toy.return"() : () -> ()
}



Dialect Lowering
All the way to LLVM!



Towards CodeGen

Let’s make Toy executable!

MLIR does not have a code generator for target assembly...

Luckily, LLVM does!  And we have an LLVM dialect in MLIR.

Now that we have seen how to perform high- (AST-) level transformations directly on 
Toy’s representation in MLIR, let’s try and make it executable.  MLIR does not strive to 
redo all the work put into LLVM backends.  Instead, it has an LLVM IR dialect, 
convertible to the LLVM IR proper, which we can target.



General Outline of Dialects, Lowerings, Transformations

Toy AST

Toy LangI / O

Here is the whole end to end picture of the system we are building in this tutorial. 
The blue boxes and arrows are the pieces we have concretely built.
The green boxes and arrows already existed in MLIR and we just connected to them.



General Outline of Dialects, Lowerings, Transformations

Toy AST

Toy Lang

ToyIR

I / O

Inlining, Shape Inference

Toy Specific

Provided by MLIR

Here is the whole end to end picture of the system we are building in this tutorial. 
The blue boxes and arrows are the pieces we have concretely built.
The green boxes and arrows already existed in MLIR and we just connected to them.



General Outline of Dialects, Lowerings, Transformations

Toy AST

Toy Lang

ToyIR

LLVM LLVM

I / O

Provided by MLIR

Toy Specific

Inlining, Shape Inference

Here is the whole end to end picture of the system we are building in this tutorial. 
The blue boxes and arrows are the pieces we have concretely built.
The green boxes and arrows already existed in MLIR and we just connected to them.
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Lowering with Dialect Conversion

● Converting a set of source dialects into one or more “legal” target dialects
○ The target dialects may be a subset of the source dialects

● Three main components:
○ Conversion Target:

■ Specification of what operations are legal and under what circumstances
○ Operation Conversion:

■ Dag-Dag patterns specifying how to transform illegal operations to legal ones
○ Type Conversion:

■ Specification of how to transform illegal types to legal ones

● Two Modes:
○ Partial: Not all input operations have to be legalized to the target
○ Full: All input operations have to be legalized to the target

https://mlir.llvm.org/docs/DialectConversion/

https://mlir.llvm.org/docs/DialectConversion/


Dialect Conversion: ConversionTarget

  // The first thing to define is the conversion target. This 

  // will define the final target for this lowering.

  mlir::ConversionTarget target(getContext());

https://mlir.llvm.org/docs/Tutorials/Toy/Ch-5/#conversion-target
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Dialect Conversion: ConversionTarget

● Define the dialects or operations that 
are legal for the conversion.

○ Legality can be dynamic

  // The first thing to define is the conversion target. This 

  // will define the final target for this lowering.

  mlir::ConversionTarget target(getContext());

  // We define the specific operations, or dialects, that are 

  // legal targets for this lowering. In our case, we are 

  // lowering to a combination of the `Affine` and `Standard` 

  // dialects.

  target.addLegalDialect<mlir::AffineDialect, 

                         mlir::StandardOpsDialect>();

https://mlir.llvm.org/docs/Tutorials/Toy/Ch-5/#conversion-target

https://mlir.llvm.org/docs/Tutorials/Toy/Ch-5/#conversion-target


Dialect Conversion: ConversionTarget

● Define the dialects or operations that 
are legal for the conversion

○ Legality can be dynamic

● Define dialects or operations that are 
illegal, i.e. required to be converted

  // The first thing to define is the conversion target. This 

  // will define the final target for this lowering.

  mlir::ConversionTarget target(getContext());

  // We define the specific operations, or dialects, that are 

  // legal targets for this lowering. In our case, we are 

  // lowering to a combination of the `Affine` and `Standard` 

  // dialects.

  target.addLegalDialect<mlir::AffineDialect, 

                         mlir::StandardOpsDialect>();

  // We also define the Toy dialect as Illegal so that the 

  // conversion will fail  if any of these operations are *not* 

  // converted. Given that we actually want

  // a partial lowering, we explicitly mark the Toy operations 

  // that don't want to lower, `toy.print`, as *legal*.

  target.addIllegalDialect<ToyDialect>();

  target.addLegalOp<PrintOp>();

https://mlir.llvm.org/docs/Tutorials/Toy/Ch-5/#conversion-target

https://mlir.llvm.org/docs/Tutorials/Toy/Ch-5/#conversion-target


Dialect Conversion: Operation Conversion

● Convert illegal ops into legal ops using Dag->Dag rewrite patterns
○ Patterns are highly composable with high reuse between different 

conversions
● Transitive conversion:  [bar.add -> baz.add, baz.add -> foo.add]

○ Patterns don’t need to generate strictly legal IR, can rely on other patterns



Dialect Conversion: Operation Conversion

● Specified via 
ConversionPattern/RewritePattern

○ Root operation type (Optional)
○ Benefit of applying the pattern

/// Lower the `toy.transpose` operation to an affine loop nest.

struct TransposeOpLowering : public mlir::ConversionPattern {

  TransposeOpLowering(mlir::MLIRContext *ctx)

      : mlir::ConversionPattern(TransposeOp::getOperationName(), 

                                /*benefit=*/1, ctx) {}

};



Dialect Conversion: Operation Conversion

● Specified via ConversionPattern, or 
RewritePattern depending on context

○ Root operation type (Optional)
○ Benefit of applying the pattern

● Provide a method to match and 
rewrite a given root operation

struct TransposeOpLowering : public mlir::ConversionPattern {

  /// Match and rewrite the given `toy.transpose` operation,

  /// with the given operands that have been remapped from 

  /// `tensor<...>` to `memref<...>`.

  mlir::LogicalResult

  matchAndRewrite(mlir::Operation *op,

                  llvm::ArrayRef<mlir::Value> operands,

                  mlir::ConversionPatternRewriter &rewriter) 

    const final {

    // Returns `mlir::success()` if a match was successful

    // and the pattern was applied, `mlir::failure()`

    // otherwise.

  }

};



Dialect Conversion: Operation Conversion

● Specified via ConversionPattern, or 
RewritePattern depending on context

○ Root operation type (Optional)
○ Benefit of applying the pattern

● Provide a method to match and 
rewrite a given root operation

○ Rewrite functionality is driven by a 
PatternRewriter to notify the pattern driver 
of IR changes

// Call to a helper function that will lower the current 

// operation to a set of affine loops. We provide a functor

// that operates on the  remapped operands, as well as the loop 

// induction variables for the inner most loop body.

lowerOpToLoops(op, operands, rewriter,

  [loc](mlir::PatternRewriter &rewriter,

        llvm::ArrayRef<mlir::Value> memRefOperands,

        llvm::ArrayRef<mlir::Value> loopIvs) {

    // Generate an adaptor for the remapped operands of the 

    // TransposeOp. This allows for using the nice named 

    // accessors that are generated by the ODS. This adaptor is 

    // automatically provided by the ODS framework.

    TransposeOpAdaptor transposeAdaptor(memRefOperands);

    mlir::Value input = transposeAdaptor.input();

    // Transpose the elements by generating a load from the 

    // reverse indices.

    SmallVector<mlir::Value, 2> revIVs(llvm::reverse(loopIvs));

    return rewriter.create<mlir::AffineLoadOp>(loc, input, 

                                               revIVs);

});



Dialect Conversion: Operation Conversion

● Patterns are collected via 
OwningRewritePatternList

  // Now that the conversion target has been defined, we just 

  // need to provide the set of patterns that will lower the

  // Toy operations.

  mlir::OwningRewritePatternList patterns;

  patterns.insert<..., TransposeOpLowering>(&getContext());



Dialect Conversion: Partial Conversion

● Existing operations can fail 
legalization if not explicitly illegal

● Allows for converting a subset of 
known illegal operations, without 
knowing the entire IR 

void ToyToAffineLoweringPass::runOnFunction() {

  ...

  // With the target and rewrite patterns defined, we can now 

  // attempt the conversion. The conversion will signal

  // failure if any of our *illegal*  operations were not 

  // converted successfully.

  FuncOp function = getFunction();

  if (mlir::failed(mlir::applyPartialConversion(

                                  function, target, patterns)))

    signalPassFailure();

}

https://mlir.llvm.org/docs/Tutorials/Toy/Ch-5/#partial-lowering

https://mlir.llvm.org/docs/Tutorials/Toy/Ch-5/#partial-lowering


Dialect Conversion: Partial Conversion

func @main() {
  %0 = "toy.constant"() { value: dense<tensor<4xf64>, [1., 2., 3., 4.]> }
                        : () -> tensor<4xf64>
  %1 = "toy.transpose"(%0) : (tensor<2x2xf64>) -> tensor<2x2xf64>
  %2 = "toy.mul"(%1, %1) : (tensor<2x2xf64>, tensor<2x2xf64>) -> tensor<2x2xf64>
  "toy.print"(%0) : (tensor<2x2xf64>) -> ()
  “toy.return"() : () -> ()
}

https://mlir.llvm.org/docs/Tutorials/Toy/Ch-5/#partial-lowering

https://mlir.llvm.org/docs/Tutorials/Toy/Ch-5/#partial-lowering


Partial Lowering and Affine Optimizations
func @main() {
  %cst = constant 1.000000e+00 : f64
  %cst_0 = constant 2.000000e+00 : f64
  %cst_1 = constant 3.000000e+00 : f64
  %cst_2 = constant 4.000000e+00 : f64
  %0 = alloc() : memref<2x2xf64>
  %1 = alloc() : memref<2x2xf64>
  affine.store %cst, %1[0, 0] : memref<2x2xf64>
  affine.store %cst_0, %1[0, 1] : memref<2x2xf64>
  affine.store %cst_1, %1[1, 0] : memref<2x2xf64>
  affine.store %cst_2, %1[1, 1] : memref<2x2xf64>
  affine.for %arg0 = 0 to 2 {
    affine.for %arg1 = 0 to 2 {
      %2 = affine.load %1[%arg1, %arg0] : memref<2x2xf64>
      %3 = mulf %2, %2 : f64
      affine.store %3, %0[%arg0, %arg1] : memref<2x2xf64>
    }
  }
  toy.print %0 : memref<2x2xf64>
  dealloc %1 : memref<2x2xf64>
  dealloc %0 : memref<2x2xf64>
  return
}

Affine / Polyhedral representation to 
enable relevant optimizations.

Toy dialect operations cohabit with 
affine and others in the same function

https://mlir.llvm.org/docs/Tutorials/Toy/Ch-5/#taking-advantage-of-affine-optimization

https://mlir.llvm.org/docs/Tutorials/Toy/Ch-5/#taking-advantage-of-affine-optimization


Dialect Conversion: Full Conversion to LLVM

● Only one conversion necessary, the 
rest are already provided.   

  mlir::ConversionTarget target(getContext());

  target.addLegalDialect<mlir::LLVMDialect>();

  target.addLegalOp<mlir::ModuleOp, mlir::ModuleTerminatorOp>();

  LLVMTypeConverter typeConverter(&getContext());

  mlir::OwningRewritePatternList patterns;

  mlir::populateAffineToStdConversionPatterns(patterns, ctx);

  mlir::populateLoopToStdConversionPatterns(patterns, ctx);

  mlir::populateStdToLLVMConversionPatterns(typeConverter, 

                                            patterns);

  // The only remaining operation to lower from the `toy`

  // dialect is PrintOp.

  patterns.insert<PrintOpLowering>(ctx);

  mlir::ModuleOp module = getOperation();

  if (mlir::failed(mlir::applyFullConversion(module, target, 

                                             patterns)))

    signalPassFailure();

https://mlir.llvm.org/docs/Tutorials/Toy/Ch-6/

https://mlir.llvm.org/docs/Tutorials/Toy/Ch-6/


Exporting MLIR LLVM dialect to LLVM IR

Mapping from LLVM Dialect to LLVM IR:
auto llvmModule = mlir::translateModuleToLLVMIR(module);

LLVM Dialect:
%223 = llvm.mlir.constant(2 : index) : !llvm.i64
%224 = llvm.mul %214, %223 : !llvm.i64

LLVM IR:
%104 = mul i64 %96, 2



Conclusion



Not shown today

● Pass Management, 
○ MLIR is multi-threaded!
○ Passes, and pass options.

● Diagnostics Infrastructure

● Adding new Attributes/Types

● Declarative assembly format

● Specifying operation canonicalizations

● Symbols and Symbol Tables

● Heterogeneous compilation
○ In particular GPU (CUDA, RocM, and SPIR-V)

https://mlir.llvm.org/docs/PassManagement/
https://mlir.llvm.org/docs/Diagnostics/
https://mlir.llvm.org/docs/Tutorials/DefiningAttributesAndTypes/
https://mlir.llvm.org/docs/OpDefinitions/#declarative-assembly-format
https://mlir.llvm.org/docs/Canonicalization/
https://mlir.llvm.org/docs/SymbolsAndSymbolTables/


MLIR : Reusable Compiler Abstraction Toolbox

No forced IR impedance 
mismatch

Fresh look at problems

MLIR provides all the infrastructure to build IR and transformations:
● Same infra at each abstraction level
● Investment in toolings has compounding effects

IR design involves multiple tradeoffs
● Iterative process, constant learning experience
● MLIR makes compiler design “agile” (and fun!)

MLIR allows mixing levels of abstraction with non-obvious compounding benefits
● Dialect-to-dialect lowering is easy
● Ops from different dialects can mix in same IR

○ Lowering from “A” to “D” may skip “B” and “C” 
● Avoid lowering too early and losing information

○ Help define hard analyses away
‘

With the benefit of hindsight here are some takeaways.
Impedance mismatch between LLVMIR and programmers gave rise to *many* 
systems and countless rewrites of similar infrastructure, with varying quality.
MLIR makes this impedance mismatch go away.



Thank you!

Questions?https://mlir.llvm.org/

Join the community:

Discourse Forums
Discord Chat

Weekly open meeting
Biweekly newsletter

https://mlir.llvm.org/
https://llvm.discourse.group/c/mlir/31
https://discord.com/invite/xS7Z362

