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Background : How often do optimizations work?

Pass Kind

Number of runs which change something / Number of runs

(CTMark, New PM, 
O3 pipeline, Function and Module Pass)

25%
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Motivation : Skip passes to save compile time
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Motivation : Skip passes to save compile time
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Motivation : Skip passes to save compile time

Change Change
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Motivation : Skip passes to save compile time



Code Feature

define i32 @fact(i32)  {
  %2 = icmp slt i32 %0, 2
  br i1 %2, label %7, label %3

bb1:
  %4 = add nsw i32 %0, -1
  %5 = tail call i32 @fact(i32 %4)
  %6 = mul nsw i32 %5, %0
  ret i32 %6

bb2:
  ret i32 %0
}

{
  “InstructionCount”: 7, 
  “BasicBlockCount”:3, 
  “CallCount”:1,
  “RetCount”:2, 
  … 
}
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Pass Dependencies
●  Most recent pass results have strong dependencies

LoopUnroll SROA
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Eliminate small arrays
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Prediction Model
● Recent Pass Results × Code Feature Vector → Predictions

{ “InstructionCount”: .., 
   “BasicBlockCount”: .. , 
  etc ..  }

Should run only 4th pass1, 4, and 6th pass 
changed IR
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Embedding into pipeline 
● We embed a predictor into specific points in the pipeline

(4 points in buildFunctionSimplificationPipeline)

Predictor1

IR

Pipeline
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Embedding into pipeline 
● We embed a predictor into specific points in the pipeline

(4 points in buildFunctionSimplificationPipeline)
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skip 1, 2, 3, 5 
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Predictor2



threshold compile time execution time

prob = 0.5 -2.74% +0.1%

prob = 0.9 -4.93% +0.51%

Current Result
● Relative changes(Instruction counts) to baseline, CTMark

(Trained with test-suite/MultiSource + SingleSource expect for CTMark)

O3

● If threshold is set higher, we skip passes more aggresively

 

bool should_run = model->modification_probability() > threshold;
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aggresive
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Thank you for listening!
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