
From Implicit Pass Dependencies to
Effectiveness Prediction

Hideto Ueno University of Tokyo
Johannes Doerfert Argonne National Laboratory
Giorgis Georgakoudis Lawrence Livermore National Laboratory
EJ Park Los Alamos National Laboratory
Tarindu Jayatilaka University of Moratuwa

1

Background : How often do optimizations work?

Pass Kind

Number of runs which change something / Number of runs

(CTMark, New PM,
O3 pipeline, Function and Module Pass)

25%

2

Motivation : Skip passes to save compile time

P
A
S
S
1

Program

P
A
S
S
2

P
A
S
S
3

P
A
S
S
4

P
A
S
S
5

3

P
A
S
S
1

Program

P
A
S
S
2

P
A
S
S
3

P
A
S
S
4

P
A
S
S
5

No Change

4

Motivation : Skip passes to save compile time

P
A
S
S
1

Program

P
A
S
S
2

P
A
S
S
3

P
A
S
S
4

P
A
S
S
5

Change

5

Motivation : Skip passes to save compile time

P
A
S
S
1

Program

P
A
S
S
2

P
A
S
S
3

P
A
S
S
4

P
A
S
S
5

6

Motivation : Skip passes to save compile time

Change Change

P
A
S
S
1

Program

P
A
S
S
2

P
A
S
S
3

P
A
S
S
4

P
A
S
S
5

P1, P3, and P4 won’t optimize the code

7

Motivation : Skip passes to save compile time

Code Feature

define i32 @fact(i32) {
 %2 = icmp slt i32 %0, 2
 br i1 %2, label %7, label %3

bb1:
 %4 = add nsw i32 %0, -1
 %5 = tail call i32 @fact(i32 %4)
 %6 = mul nsw i32 %5, %0
 ret i32 %6

bb2:
 ret i32 %0
}

{
 “InstructionCount”: 7,
 “BasicBlockCount”:3,
 “CallCount”:1,
 “RetCount”:2,
 …
}

8

Pass Dependencies
● Most recent pass results have strong dependencies

LoopUnroll SROA

9

Eliminate small arrays

Pass Dependencies
● Most recent pass results have strong dependencies

LoopUnroll SROA

No change

10

Pass Dependencies
● Most recent pass results have strong dependencies

LoopUnroll SROA

No change

11

Prediction Model
● Recent Pass Results × Code Feature Vector → Predictions

{ “InstructionCount”: ..,
 “BasicBlockCount”: .. ,
 etc .. }

Should run only 4th pass1, 4, and 6th pass
changed IR

12

Embedding into pipeline
● We embed a predictor into specific points in the pipeline

(4 points in buildFunctionSimplificationPipeline)

Predictor1

IR

Pipeline

13

Predictor2

Embedding into pipeline
● We embed a predictor into specific points in the pipeline

(4 points in buildFunctionSimplificationPipeline)

Predictor1

IR

Pipeline

14

Predictor2

Embedding into pipeline
● We embed a predictor into specific points in the pipeline

(4 points in buildFunctionSimplificationPipeline)

Predictor1

IR

Pipeline

skip 1, 2, 3, 5

15

Predictor2

threshold compile time execution time

prob = 0.5 -2.74% +0.1%

prob = 0.9 -4.93% +0.51%

Current Result
● Relative changes(Instruction counts) to baseline, CTMark

(Trained with test-suite/MultiSource + SingleSource expect for CTMark)

O3

● If threshold is set higher, we skip passes more aggresively

bool should_run = model->modification_probability() > threshold;
16

aggresive

threshold compile time execution time

prob = 0.5 -2.74% +0.1%

prob = 0.9 -4.93% +0.51%

Current Result
● Relative changes(Instruction counts) to baseline, CTMark

(Trained with test-suite/MultiSource + SingleSource expect for CTMark)

O3

● If threshold is set higher, we skip passes more aggresively

bool should_run = model->modification_probability() > threshold;
17

aggresive

Thank you for listening!

18

Hideto Ueno (uenoku.tokotoko [at] gmail.com)

