
Classical Loop Nest Transformation Framework on
MLIR

Vinay M, Ranjith Kumar H,
Siddharth Tiwary, Prashantha NR

Compiler Tree Technologies

Existing Loop Transforms in MLIR
● Works on Affine dialect operations

● No generic Analysis framework yet

○ Dependence analysis are local to loop nests

● No unified driver for all loop transforms

● Most transformations works only if all the loops in a loop nest are

AffineForOp

● Custom Types may not be converted / “cast”ed to std.memrefs
○ Example: Array of structures

%3 = fc.allocate : !fc.ref<fc.array<10 x fc.struct_type<i32, f32>>>

○ Different loop nest transformations for different types?

● Memory Dependence analysis not just for Affine Ops
○ What happens to custom dialect operations inside Affine loops?

○ affine.store vs. std.store vs. vector.load vs. fc.load (or any custom dialect)

Not all Affine loops can be converted to Affine Ops

● In few cases, better to do loop transforms on higher level Dialects

○ Example: Fortran do loops with labels

● Restrictions on Affine Symbols and Dimensions

● All the loops in the loop nest may not be “affine.for”

● Lower conversion rate to Affine Ops

● AffineMap and AffineExpr can be freely used in custom Dialects

Not all Affine loops can be converted to Affine Ops

Heuristic Based Classic Loop Transformation Framework

● A proof-of-concept implementation of loop transformations along with a
cost aware driver.

● Built as wrapper around Affine Dialect data structures
● Different Loop Transformations:

○ Unimodular Transformations (Loop Permute and Loop Blocking)
○ Loop Fission, Loop Fusion

● A basic profitability model based on cache utilization.
● AliasAnalysis (basic-aa), Dependence Analysis, etc ported from LLVM

infrastructure
● Mem2reg, licm, etc as pre-processing steps
● Driver is currently written for Data Locality but it can be tuned for any

custom workloads/ hardware.
5

Pass Pipeline

Various inputs to the framework
● Focus on SPEC CPU 2017 benchmarks: Fortran / C++ / C

○ Fortran Dialect: FC compiler
■ Loop representations: do, do while , forall, parallel do
■ Array section operations: converted to affine.for
■ I/O operations
■ Various intrinsic functions

○ CIL Dialect : C/ C++ representation in MLIR
■ Low level IR (pointer type based)
■ Experimental path

● TODO: Tensorflow XLA
○ Affine loops generated from lhlo

FC and MLIR

8

FC
AST

std Dialect

FC Dialect

SCF Dialect

Affine Dialect

MLIR
Optimizations

Mem2reg, licm ...

Loop Nest Transforms

...

LLVM Lowering

LLVM
IR

MLIR Dialects

Fortran 90:
do i = 1, 10
 do j = 1, 20
 b(i+1, j+2) = c(i, j)
 enddo
enddo

9

Affine Dialect:
affine.for %arg0 = 1 to 11 {
 affine.for %arg1 = 1 to 21 {
 %4 = affine.load %1[%arg0, %arg1] : memref<10x20xi32, #map0>
 affine.store %4, %2[%arg0 + 1, %arg1 + 2] : memref<11x22xi32, #map0>
 }
 }

Loop Dialect: (sub-optimal IR)

scf.for %arg0 = %4 to %7 step %6 {
 %c1_i32_3 = constant 1 : i32
 %8 = index_cast %c1_i32_3 : i32 to index
 …...
 scf.for %arg1 = %8 to %11 step %10 {
 %12 = load %1[%arg0, %arg1] {name = "c"} : memref<10x20xi32, #map0>
 %c1_i32_5 = constant 1 : i32
 %13 = index_cast %c1_i32_5 : i32 to index
 %14 = addi %arg0, %13 : index
 %c2_i32 = constant 2 : i32
 %15 = index_cast %c2_i32 : i32 to index
 %16 = addi %arg1, %15 : index
 store %12, %2[%14, %16] {name = "b"} : memref<11x22xi32, #map0>
 }
 }

FC MLIR codegen

Affine dialect

converter

FC: Affine Dialect Conversion and Canonicalization of
Loop Nests

Analysis Passes

Alias and Dependence Analysis
● Alias Analysis

○ Generic Infrastructure for existing / custom Dialect memory operations
○ Invoked using AliasSetTracker (ported from LLVM)
○ Implemented by BasicAA and Dependence Analysis

11

Alias and Dependence Analysis
● Alias Analysis

○ Generic Infrastructure for existing / custom Dialect memory operations
○ Invoked using AliasSetTracker (ported from LLVM)
○ Implemented by BasicAA and Dependence Analysis

● Dependence Analysis:
○ Ported from LLVM
○ Works on Affine data structures (mlir::AffineExpr)
○ Uses Alias Analysis

12

Alias and Dependence Analysis
● Alias Analysis

○ Generic Infrastructure for existing / custom Dialect memory operations
○ Invoked using AliasSetTracker (ported from LLVM)
○ Implemented by BasicAA and Dependence Analysis

● Dependence Analysis:
○ Ported from LLVM
○ Works on Affine data structures (mlir::AffineExpr)
○ Uses Alias Analysis

● Dependence Matrix
○ Wrapper on top of Dependence Analysis
○ Contains all the dependencies in the given loop nest.
○ Contains m x n dependence matrix, where ‘m’ is number of dependences and ‘n’ is

number of loops in the nest

13

Dependency Matrix
for (int i = 0; i < n; ++i) {

 for (int j = 1; j < m; ++j) {

 for (int k = 1; k < l; ++k) {

 a[i+1][j+1][k] = a[i][j][k] + a[i][j+ 1][k+1];

 }

 }

}

< < =

< = >

Legality of transformation

< < =

< = >

< = <

= > <

Loop Cost Analysis
● Gives out a cost for each loop in its nest based on cache misses.

○ Permute, Split, Fuse, Blocking, Prefetching and other cache related opts can use this data.

● Loop Cost for each loop is calculated as follows:
○ A penalty is assigned to the loop based on the amount of cache misses it will cause to the

references in the loop nest.
○ Group the references that belong to the same cache line and assign penalty,

■ If the reference is a “scalar” value with respect loop then penalty us 1.
■ If the reference is a “strided” access w.r.t. the loop, then the penalty is TripCount /

CacheLineSize
■ If the reference is a “non-strided” access w.r.t. the loop, then penalty is TripCount

○ Total Cost = Cost due to penalties x number of times the loop executes due to outer loops.

● Concerns:
○ Need to get CacheLineSize from Target to accurately calculate cost for a given processor.

16

Loop Cost

17

for (int i = 1; i < n; ++i) {
 for (int j = 1; j < n; ++j) {
 B[i][j+10] += C[j][i] + D[i][j];
 }
}

Contiguous access for j
loop

Strided access for j
loop

Non-contiguous access
for j loop

B[i][j+10] n / L

C[j][i] n

D[i][j] n/L

Total Cost n (n + 2n/L)

Loop Cost

18

for (int j = 1; j < n; ++j) {
 for (int i = 1; i < n; ++i) {
 B[i][j+10] += C[j][i] + D[i][j];
 }
}

Non-contiguous access
for i loop

Non-contiguous access
for loop i Contiguous access for i

B[i][j+10] n

C[j][i] n/L

D[i][j] n

Total Cost n (2n + n / L)

Pre-processing of Loop Nests

Pre-processing passes
● Helps in creating Perfect Loop Nests

● Promote Memory to Register (mem2reg):
○ Works similar to LLVM’s mem2reg
○ Works on memrefs
○ No restriction on Alloca / Memory access operations (can be from affine / std, etc)

● Hoisting invariants (LICM):
○ Similar to LLVM’s licm pass: Hoists invariants out of Loops
○ Uses Alias Analysis

● Sinking operations:
○ Tries to sink operations to innermost loop
○ Uses Alias Analysis

● Affine Normalization
○ Create one Affine map for the loop nest

Example

Example

Loop Transformation Driver

Loop Transformation Driver
● Generic framework

○ Works on affine / scf /user-defined dialect by writing converter

● Algorithm:
○ Aggressively split the loop nest across Statements and Sibling loops
○ Run pre-processing on the loop nests (if needed)
○ Run the unimodular transformations on the single perfect loop nest
○ Aggressively fuse the loops whenever feasible

● Loop Fusion and Unimodular Transformations are driven using
profitability models

Creation of Perfect Loop Nests: Loop Splitting
● Recursively split the loop nests based on Dependence Analysis to generate Perfect

Loop Nests
● Input to Unimodular Transforms

Example

Unimodular transformations
● Represented by a unimodular transformation matrix (determinant 1 or -1)

● Composition of loop permutation, skewing, reverse

● T * i = i’, T is the transformation matrix, i and i’ are dependence
matrices

● Transformation is legal if the transformed dependence matrix is
lexicographically positive

● Eg: for permute of (2-d loop nest), T = 0 1
1 0

Unimodular transformations
● Input: Perfect Loop Nests
● Analysis

○ Legality
○ Uses dependence analysis and then cost analysis on loop nest to output the

optimal transformation matrix for the given loop nest
● Transformation

○ Generate loop bounds in transformed space
○ Perform Fourier-motzkin elimination to simplify the transformed bounds
○ Validate and update the loop bounds for all loops in the nest
○ Update all memory accesses

i. Crate a map of old indvars -> new indvars
ii. Rewrite the accesses using the new indvars information

Example : Matrix Multiplication (for vectorization)

29

for (int i = 1; i < n; ++i) {
 for (int j = 1; j < n; ++j) {
 A[i][j] = 0;
 for (int k = 1; k < n; ++k) {
 A[i][j] += B[i][k] * C[k][j];
 }
 }
}

for (int i = 1; i < n; ++i)
 for (int j = 1; j < n; ++j)
 A[i][j] = 0;

for (int i = 1; i < n; ++i) {
 for (int j = 1; j < n; ++j) {
 for (int k = 1; k < n; ++k) {
 A[i][j] += B[i][k] * C[k][j];
 }
 }
}

for (int i = 1; i < n; ++i)
 for (int j = 1; j < n; ++j)
 A[i][j] = 0;

for (int i = 1; i < n; ++i) {
 for (int k = 1; k < n; ++k) {
 for (int j = 1; j < n; ++j) {
 A[i][j] += B[i][k] * C[k][j];
 }
 }
}

Split

Unimodular
Transforms
(Permute)

Loop Cost
aids it.

for (int i = 1; i < n; ++i) {
 for (int j = 1; j < n; ++j)
 A[i][j] = 0;
 for (int k = 1; k < n; ++k) {
 for (int j = 1; j < n; ++j) {
 A[i][j] += B[i][k] * C[k][j];
 }
 }
}

Fuse

1 0 0

0 0 1

0 1 0

T =

Aggressively apply splitting →
unimodular transformations →
fusion

Loop Permutation
for (int i = 1; i < n; ++i)
 for (int j = 1; j < n; ++j)
 A[i][j] = 0;

for (int i = 1; i < n; ++i) {
 for (int j = 1; j < n; ++j) {
 for (int k = 1; k < n; ++k) {
 A[i][j] += B[i][k] * C[k][j];
 }
 }
}

Innermost
Loop (i is

outermost)

A[i][j] B[i][k] C[k][j] Total

j n3/b n2 n3/b 2n3/b + n2

k n2 n3/b n3 n3(1+1/b) +n2

b is the cache line size for the target

Loop Permutation

Innermost
Loop (i is

outermost)

A[i][j] B[i][k] C[k][j] Total

j n3/b n2 n3/b 2n3/b + n2

k n2 n3/b n3 n3(1+1/b) +n2

j as innermost loop
gives lesser cost!

for (int i = 1; i < n; ++i)
 for (int j = 1; j < n; ++j)
 A[i][j] = 0;

for (int i = 1; i < n; ++i) {
 for (int k = 1; k < n; ++k) {
 for (int j = 1; j < n; ++j) {
 A[i][j] += B[i][k] * C[k][j];
 }
 }
}

Loop Blocking
● Access data in blocks to exploit temporal and spatial locality
● Transform a loop at a depth into two loops:

○ One loop for iterating inside each block
○ One loop for iterating over the blocks

● Block size
○ fixed at compile time (each depth can have a different one)
○ depends on cache size and cache line size
○ determined by tuning

● Strip-mining and interchange

for (int i = 0; i < n; ++i)
 for (int j = 0; j < n; ++j)
 A[i] = A[i] + B[j];

for (int i = 0; i < n; ++i)
 for (int j = 0; j < n; j+=B)
 for (int jj = j; jj < min(n, j+B-1); jj++)
 A[i] = A[i] + B[jj];

for (int j = 0; j < n; j+=B)
 for (int i = 0; i < n; ++i)
 for (int jj = j; jj < min(n, j+B-1); jj++)
 A[i] = A[i] + B[jj];

Strip-mining

Interchange

Loop Blocking - matrix multiplication
for (int i = 0; i < n; ++i)
 for (int j = 0; j < n; ++j)
 for (int k = 0; k < n; ++k)
 A[i][j] += B[i][k] * C[k][j];

for (int ii = 0; ii < n; ii+=B)
 for (int jj = 0; jj < n; jj+=B)
 for (int kk = 0; kk < n; kk+=B)
 for (int i = ii; i < ii+B; ++i)
 for (int j = jj; j < jj+B; ++j)
 for (int k = kk; k < kk+B; ++k)
 A[i][j] += B[i][k] * C[k][j];

Cache misses for array B: n3/b
Cache misses for array C: n3

Cache misses for array B: B2/b*n3/B3

= n3/(Bb)
Cache misses for array C: B2/b*n3/B3

= n2/(Bb)

 for (int kk = 0; kk < n; kk+=B)
 for (int i = 0; i < n; ++i)
 for (int j = 0; j < n; ++j)
 for (int k = kk; k < kk+B; ++k)
 A[i][j] += B[i][k] * C[k][j];

 for (int jj = 0; jj < n; jj+=B)
 for (int kk = 0; kk < n; kk+=B)
 for (int i = 0; i < n; ++i)
 for (int j = jj; j < jj+B; ++j)
 for (int k = kk; k < kk+B; ++k)
 A[i][j] += B[i][k] * C[k][j];

● Transformation: given a Loop-Nest L0,...Lk
○ Strip-mine each Li in consideration into Li’ and Li’’
○ Move all Li’ to outside

● Strip-mining is always legal
● Loop interchange not always legal

○ All loops in consideration must be safe to be moved outside
○ Each such loop must have only “=” or “<” in all the dependence vectors

● Profitability
○ Look for good reuse candidate in outer-loop iterations

■ should carry small-threshold dependencies of any type carried by the loop
■ loop index occurs with small stride in contiguous dimension, and in no other

dimension
○ Need to account for misses because of the outer-strip loops (for the dependencies carried

by the innermost loop)

Loop Blocking

Results

● We could transform the hot loop nest in bwaves_r SPEC CPU 2017
benchmark see decent gain.

● We see around 70% gain in matmul() kernel, etc

Next steps
● Add more Unimodular transformations
● Open source
● Integrate the Framework with TensorFlow XLA compiler
● Run more benchmarks

Thank You

