
INSTRUMENTATION TO PREVENT
PROGRAMS FROM
BUFFER-OVERFLOW ATTACKS

VISHAL CHEBROLU

AGENDA

▸ Buffer-Overflow Attack

▸ Outline of AddressSanitizer(ASan)

▸ Instrumentation for Read and Write accesses

▸ Pointer Aliasing problem

▸ Optimization

▸ Conclusion

BUFFER-OVERFLOW ATTACK

A FB EDC HG ….

8 byte buffer

▸ Shell code execution

▸ Reordering execution of functions

▸ Application DoS

CC2A8EF9

Return Address

ADDRESS SANITIZER

▸ Tool to REPORT memory corruption errors

▸ Uses shadow memory

▸ Checks if memory is addressable in 8 byte chunks
(Sane Check)

▸ STOPS the execution of program in times of error

4

INSTRUMENTATION FOR READ ACCESS

▸ Proxy pointers for primitive data types

▸ i1/i8/i16/iN : 0

▸ Float/Double : 0.0

▸ Can be given as command line argument

INSTRUMENTATION FOR READ ACCESS

ENTRY

SANE
CHECK

NEXTREPORT ERROR

ENTRY

SANE
CHECK

ɸ((%A, SANE_CHECK), (%PROX_I8, REL_BLOCK))
NEXT

REL_BLOCK

EXIT

EXIT

YESNO
YESNO

INSTRUMENTATION FOR WRITE ACCESS

▸ Static buffers are moved to the heap by dynamic allocation

▸ Bounds are inferred for every dynamically allocated buffer through static
analysis

int *A = malloc(n*sizeof(int)); int *A = malloc(n*sizeof(int)));
unsigned int A_size = n;

INSTRUMENTATION FOR WRITE ACCESS

▸ Static buffers are moved to the heap by dynamic allocation

▸ Bounds are inferred for every dynamically allocated buffer through static
analysis

int *A = malloc(n*sizeof(int)); int *A = malloc(n*sizeof(int)));
unsigned int A_size = n;

%1 = load i64, 64* %n
%mul = mul i64 %1, 4

%call = call i8* @malloc(i64 %mul)
%2 = bitcast i8* %call to i32*

store i32* %2, i32** %A

%1 = load i64, 64* %n
%mul = mul i64 %1, 4

%call = call i8* @malloc(i64 %mul)
%2 = bitcast i8* %call to i32*

store i32* %2, i32** %A
store i64 %1, i64* A.size

INSTRUMENTATION FOR WRITE ACCESS

▸ Write A[i]. What if “i” is not initialized?

▸ A check which let us decide whether to expand the bounds or not

▸ SCALE_OF_RELOCATION (default value is 2)

A[i] = x;

INSTRUMENTATION FOR WRITE ACCESS

▸ Write A[i]. What if “i” is not initialized?

▸ A check which let us decide whether to expand the bounds or not

▸ SCALE_OF_RELOCATION (default value is 2)

A[i] = x;
 if(i <= SCALE_OF_RELOCATION*A_size) {
 A_size = A_size*SCALE_OF_RELOCATION;
 A = realloc(A, A_size);
 }
 A[i] = x;

INSTRUMENTATION FOR WRITE ACCESS

▸ Split a store statement into a separate basic block

store i32 0, i32* p
%1 = load i32, i32* p

….

store i32 0, i32* p
br %next

 next:
%1 = load i32, i32* p

….

INSTRUMENTATION FOR WRITE ACCESS

ENTRY

SANE
CHECK

NEXTREPORT ERROR

EXIT

YESNO

ENTRY

SANE
CHECK

WRITE

EXIT

YESNO

NEXT

REL
CHECK

RELOC BLOCK

YESNO

POINTER ALIASING PROBLEM

▸ In case of pointer aliasing and a relocation occurs, all the aliasing pointers
need to be updated

P

Q

POINTER ALIASING PROBLEM

▸ If case of pointer aliasing and a relocation occurs, all the aliasing pointers need
to be updated

P

Q

POINTER ALIASING PROBLEM

int *p,*q,*r,*s;
P

R

S

Q

0

0

0

0

POINTER ALIASING PROBLEM

P
8

▸ Allocation of memory

int *p = malloc(8*sizeof(int));

POINTER ALIASING PROBLEM

P

8

▸ Pointer Assignment

int* q = p;
Q

8

POINTER ALIASING PROBLEM

P

8

▸ Pointer Assignment

int* r = q;
Q

8

R

8

POINTER ALIASING PROBLEM

P

8

▸ Pointer Assignment

int* r = q;
Q

8

R

8

POINTER ALIASING PROBLEM

P
8

▸ Pointer Assignment

A
6

B

C

D
6 6

6

R
8

Q

T

S

8

8

8

POINTER ALIASING PROBLEM

▸ Write to memory

p[i]/q[i]/r[i]/s[i] = x;

P
16

S
8

Q

R

8

8

POINTER ALIASING PROBLEM

▸ Write to memory

p[i]/q[i]/r[i]/s[i] = x;

P
16

S
8

Q

R

16

8

POINTER ALIASING PROBLEM

▸ Write to memory

p[i]/q[i]/r[i]/s[i] = x;

P
16

S
8

Q

R

16

16

POINTER ALIASING PROBLEM

▸ Write to memory

p[i]/q[i]/r[i]/s[i] = x;

P
16

S
16

Q

R

16

16

POINTER ALIASING PROBLEM

P
0

▸ Free Memory

The call to free() function can just be skipped

POINTER ALIASING PROBLEM

▸ Free memory

free(p/q/r/s);

P
0

S
8

Q

R

8

8

POINTER ALIASING PROBLEM

▸ Free memory

free(p/q/r/s);

P
0

S
8

Q

R

0

8

POINTER ALIASING PROBLEM

▸ Free memory

free(p/q/r/s);

P
0

S
8

Q

R

0

0

POINTER ALIASING PROBLEM

▸ Free memory

free(p/q/r/s);

P
0

S
0

Q

R

0

0

POINTER ALIASING PROBLEM

▸ Free memory

free(p/q/r/s);

P
0

S
0

Q

R

0

0

OPTIMIZATIONS

▸ Live Variable Analysis

▸ Calculates variables which are live at each point

▸ Aids to reduce the number of pointers to deal with

▸ Substantial improvements in large monolithic function programs

CONCLUSION + FUTURE WORK

▸ Legacy code can be safely reused

▸ Buffer-overflow attacks can be eradicated by dynamically expanding memory
during run-time

▸ Can devise a mechanism for inter function memory communication

▸ Use-after-free, Invalid free, Double free errors can also be mitigated

Thank You!

