
_01

Building an Operating
System from Scratch
with LLVM

2021 LLVM Developers' Meeting November 19, 2021

phosek@google.com

_02

_03

I am Petr, Technical Lead of the Fuchsia toolchain team.

I joined Google and the Fuchsia project in 2015 and have
been responsible for Fuchsia's Clang toolchain since 2016.

I am presenting a work of a large group of people.

_04

_05

_06

We had to improve the linker script support in LLD to
support linking Zircon kernel and other low-level libraries.

We also implemented several new features to better
match GNU linkers and addressed a number of issues.

We had to build entirely new tools as replacements for
GNU counterparts such as llvm-objcopy and llvm-strip.

Initially, Clang toolchain was only used
for Fuchsia userspace.

_07

Fuchsia was
open sourced

Jun
2016

Clang Fuchsia
driver landed

Oct
2016

All GNU Binutils
replaced

Dec
2017

Clang became a
default compiler

Jun
2019

Fuchsia
public release

May
2021

LLD can link
Zircon kernel

Apr
2017

_08

GCC has been around for decades and developers have a
lot of trust in it, especially for embedded.

There was evidence that Clang is ready, but there were
other aspects like assembly and linker script support,
binary tools, compiler runtimes and so on.

We had to do a lot of work behind the scenes to convince
everyone that LLVM is really serious about embedded.

It wasn't just technical reasons,
LLVM had to prove itself.

_09

Agenda

Introduction
A short history of the project.

What is Fuchsia?
A brief overview of the new operating system.

How we built Fuchsia?
The role LLVM played in Fuchsia's development.

What's next?
Problems we want to tackle in the future.

_010

What is
Fuchsia?

Fuchsia is an open source operating system that prioritizes
security, updatability, and performance.

Fuchsia was built from the ground up and uses a completely
new system design which lets us explore ideas for a more
efficient and secure design.

_011

Fuchsia is an internet-first operating system
that's always up-to-date enabling very long
support horizons.

Fuchsia is focused on minimal resource usage,
but we aren't targeting embedded and provide
a full user experience targeting 64-bit CPUs
and Vulkan-capable GPUs.

After 5 years of development, we started
shipping Fuchsia to the public for the first time
on Google Nest Hub devices earlier this year.

Fuchsia in a nutshell.

_012

We are trying to address
challenges of the current
operating system paradigm. More connected, always-on devices in private settings

have greater need for security.

Security updates require ongoing investment reducing
the product lifespan.

Every form factor requires a fork of the operating system
which is costly to maintain.

_013

Principles Security

Updatability

Inclusivity

Pragmatism

_014

No ambient authority–components can interact only with
the objects to which they have been granted access.

Software isolation is enforced by the kernel so there's no
need for additional security systems.

Software has the least privilege it
needs to perform its job.

_015

Much like the web, software on Fuchsia is designed to
come and go as needed and be always up-to-date.

The system has mechanisms to ensure updatability
including hermetic packaging, versioning, evolution
affordances for protocols, etc.

Software components are
independently updatable.

_016

Fuchsia is runtime and language agnostic–developers can
use runtime and language that's best for their product.

Fuchsia is an open source project developed under
permissive license with a public governance model.

Inclusive throughout, from the
architecture to the community.

_017

Fuchsia is designed to power consumer devices and must
adhere to fundamentals, like performance.

Fuchsia's roadmap is driven by practical use cases arising
from partner and product needs.

Not a playground for experimental
operating system concepts.

_018

Architecture Zircon

FIDL

Components

Packages

_019

Zircon is Fuchsia's capability-based,
object-oriented kernel.

Zircon is a pragmatic, message-passing kernel—not a
microkernel.

No global namespace, capabilities and resources are
passed by handles rather than names.

Binary-stable driver interface allows kernel to be updated
independently from drivers.

_020

IPC User Permissions
Memory

Management Scheduler Process
Management

Networking Filesystems Device Drivers

_021

FIDL is an IPC protocol enabling loose
coupling between components.

FIDL allows language-agnostic interactions between
software components written in different languages.

FIDL bindings are available for many languages including
C++, Rust, Dart, and more.

Capabilities are expressed by FIDL protocols which
promotes interchangeability and reusability.

_022

fidlc and
fidl-format are

tools for processing
FIDL files.

library fuchsia.debugdata;

using zx;

const MAX_NAME uint64 = 1024;

protocol DebugDataVmoToken {};

@discoverable
protocol DebugData {
 /// Instrumentation runtime can publish VMO
 /// containing `data` identified by `data_sink`.
 Publish(resource struct {
 data_sink string:MAX_NAME;
 data zx.handle:VMO;
 vmo_token server_end:DebugDataVmoToken;
 });
 …
};

FIDL is the
Fuchsia
Interface
Definition
Language.

debugdata.fidl

_023

user space

kernel

C++ client process

C++ bindings

Client interface

FIDL messages

Rust server process

Rust bindings

Server interface

FIDL messages

Handle table Handle table

Object Object Object

Channel

_024

Components are fundamental units of
execution on Fuchsia.

Components are isolated containers for software which
must explicitly declare all used and exposed capabilities.

All user-space software is a component, from drivers and
system services to applications.

Components have the least privilege and access only to
the information they need to do their jobs.

_025

cmc is a tool for
processing CML

files.
program: {
 runner: "elf",
 binary: "bin/my_test",
 args: ["--gtest_filter=…"],
},
capabilities: [{
 protocol: "fuchsia.test.Suite",
}],
use: [{
 protocol: [
 "fuchsia.debugdata.DebugData",
 "fuchsia.logger.LogSink",
]
}],
expose: [{
 protocol: "fuchsia.test.Suite",
 from: "self",
}]

CML is the
Component
Manifest
Language.

my_test.cml

_026

Test Realm

test_manager

debug_data

expose:
fuchsia.debugdata.DebugData

offer:
fuchsia.debugdata.DebugData

test_wrapper

my_test archivist

use:
fuchsia.debugdata.DebugData
fuchsia.logger.LogSink

expose:
fuchsia.logger.LogSink

offer:
fuchsia.debugdata.DebugData
fuchsia.logger.LogSink

_027

Packages are units of distribution for
software on Fuchsia.

Packages are hermetically sealed bundles of components
and related asset files.

There's no global file system—each component only has
visibility into its own package.

Packages are identified by URLs and can be downloaded,
executed, and updated on demand as needed.

_028

pkg-cache blobfs

meta.far:
meta/package
 {"name": "my_test", …}
meta/contents
 bin/app = 5df8981…
 lib/ld.so = bf165e1…
 lib/libc++.so = 9c134a5…

Package
my_test

Package
another_test

Blob 5df8981…

Blob 3a7857d…

Blob 9c134a5…

Blob bf165e1…

Blob f9037a9…

meta.far:
meta/package
 {"name": "another_test", …}
meta/contents
 bin/app = 3a7857d…
 lib/ld.so = bf165e1…
 lib/libc++.so = f9037a9…

app

libc++.so

ld.so

app

libc++.so

_029

Visit fuchsia.dev to learn more.

Fuchsia Fundamentals section goes into far greater details including
practical examples.

You can follow the platform evolution by tracking Fuchsia RFCs which
inform the technical direction of the project.

Reach out via discuss@fuchsia.dev if you have questions.

https://groups.google.com/a/fuchsia.dev/g/discuss

_030

How we built
Fuchsia?

Developing an operating system from the ground up requires
a significant engineering effort.

We decided to develop Fuchsia in the open from the very
beginning, which meant we could not reuse a lot of the
internal infrastructure and tooling Google has and had to
build it ourselves.

_031

Most of the code lives in a single Git repository which has
115k+ commits and 700+ contributors to date totalling
5M+ LOC.

Fuchsia gets close to 500 commits from 150 contributors
per week.

We rely on a number of third party dependencies, and the
full checkout has over 100 Git repositories.

Fuchsia in numbers.

_032

C++ is used for bootloader, kernel, and drivers.

Rust is used for most of the user-space components.

Dart is used primarily for UI (through Flutter).

Infrastructure uses primarily Go and Python.

Fuchsia SDK supports C++ and Dart.

Fuchsia uses a number of languages.

_033

Fuchsia uses Gerrit for code reviews with a set of plugins
to aid the development.

We use both pre-submit and post-submit testing running
a combination of unit, integration and end-to-end tests.

We perform a number of automated static checks upon
change upload, including linting and formatting.

Every Fuchsia change has to be
reviewed by a code owner.

_034

_035

We use -Werror -Wall -Wextra and we try adopt all
new warnings as they are being introduced to Clang.

We use Clang-Tidy and have built a number of checks to
enforce Fuchsia-specific C/C++ coding guidelines.

We have implemented a new Clang Static Analyzer
checker to detect handle leaks/double closes.

Fuchsia makes use of static analysis.

_036

_037

_038

We collect source-based code coverage for C++ and Rust
in both pre-submit and post-submit testing.

We make incremental and absolute coverage available to
developers directly in Gerrit and in code search.

We warn developers when the coverage of their changes
is too low.

Fuchsia uses source-based code
coverage.

_039

_040

We sanitize everything including the kernel and low-level
parts like the C library, and even our host tools.

All pre-submit and post-submit tests include (K)ASan,
LSan and UBSan; we're bringing up HWASan now.

We encourage the use of coverage-guided fuzz testing
and we continuously fuzz the kernel using syzkaller.

Fuchsia 🖤 sanitizers.

_041

We default to PIE and use (K)ASLR everywhere.

We use automatic variable initialization for all C/C++ to
prevent the of use undefined memory.

We use SafeStack (on x86-64) and ShadowCallStack (on
AArch64) to protect against return address overwrites.

We use Scudo as the default system allocator to protect
against heap based vulnerabilities.

Fuchsia eagerly adopts new security
hardening features.

_042

Behind the
scenes

_043

We aim to provide a modern, permissively licensed,
self-contained toolchain with a complete set of tools.

We want to support a broad range of host and target
platforms within a single toolchain.

We want to leverage the ecosystem of tooling like static
analysis, linting, formating, code coverage, sanitizers, etc.

We chose LLVM because it matches
our goals.

_044

We want to provide the same exact experience on every
supported host platform.

We follow the "live at HEAD" model and release new
toolchains on a ~weekly cadence.

We don't carry any downstream patches, we develop new
features in upstream and adopt them once available.

We maintain our own Clang and Rust
toolchains for Fuchsia.

_045

A complete C/C++ toolchain distribution that includes a
number of LLVM tools and runtime libraries.

We use it to build all of Fuchsia—everything from
bootloader to kernel, system libraries, user applications
and even host tools—as well as other related projects
such as Pigweed, Dart and Flutter.

It is used by hundreds of developers—both inside and
outside of Google—and thousands of automated builders.

Fuchsia Clang Toolchain

See "Fuchsia Clang Toolchain" by
Petr Hosek

https://github.com/ClangBuiltLinux/llvm-distributors-conf-2021/issues/14

_046

LLVM wasn't a complete
toolchain when Fuchsia
started. There are tools and runtimes developers take for granted

but we had to build those, sometimes from scratch.

From the beginning, we were co-developing the OS and
the toolchain, and often adapting the platform to the
toolchain.

This made it easier for us to adopt LLVM components
even before they were ready for broader adoption.

_047

We needed a way to build runtimes in the right order with
the just-built Clang and LLVM tools.

We needed a way to install runtimes for all supported
targets side-by-side.

Solving this required a large a number of changes to the
CMake build and Clang driver to support cross-compiling
runtimes for multiple targets (and multilibs).

Support for building the complete
cross-compiling toolchain

See "LLVM Runtimes Build" by
Petr Hosek

https://github.com/ClangBuiltLinux/llvm-distributors-conf-2021/issues/13

_048

Many runtimes
make assumptions

about the operating
system, like always
having a filesystem
as a way to export

collected data.

OutFile = fopen(OutName, "ab"); // returns NULL
if (!OutFile) return -1;
…
for (I = 0; I < NumIOVecs; I++)
 …
 fwrite(IOVecs[I].Data,
 IOVecs[I].ElmSize,
 IOVecs[I].NumElm,
 OutFile);
…
fclose(OutFile);

Fuchsia is unlike existing operating systems.

$ clang … -lfdio # use fuchsia.io implementation
This may not work

for programs like
filesystems.

InstrProfilingFile.c

_049

This is a simple
protocol used solely

for collecting
runtime data.

This protocol is used
by the profile,

sanitizer coverage
and XRay runtimes
(and likely more in

the future).

library fuchsia.debugdata;

using zx;

const MAX_NAME uint64 = 1024;

protocol DebugDataVmoToken {};

@discoverable
protocol DebugData {
 /// Instrumentation runtime can publish VMO
 /// containing `data` identified by `data_sink`.
 Publish(resource struct {
 data_sink string:MAX_NAME;
 data zx.handle:VMO;
 vmo_token server_end:DebugDataVmoToken;
 });
 …
};

Fuchsia's
debugdata
protocol as
the native
solution.

debugdata.fidl

_050

We had to factor out the filesystem related code to allow
the use of mechanisms like fuchsia.debugdata.

In addition to implementing the OS abstractions, we also
had to do a number of refactorings.

We had to refactor the sanitizer runtime to implement
support for offline symbolization.

Porting the existing compiler-rt
runtimes to Fuchsia.

_051

We provided internal API which simplified the sanitizer
implementation and obviated the need for interceptors.

This allows instrumenting of the C library itself as well as
other runtime libraries like libc++.

The SafeStack and ShadowCallStack is supported directly
by Fuchsia's C library.

Implementing sanitizer support in
Fuchsia's C library.

_052

We have been involved in the LLVM libc proposal and
have been working closely with the LLVM libc team.

We are evolving our C library and incrementally replacing
existing parts with LLVM libc counterparts.

We are adopting LLVM libc for Fuchsia.

_053

We use –-icf=all and –-gc-sections and we
addressed a number of related issues in LLVM and LLD.

We have adopted RELR relocation packing shortly after it
became supported in LLVM. We also use REL relocations
(instead of RELA) on all architectures.

We are experimenting with the ML inliner, using a model
trained on the Fuchsia codebase to further reduce size.

We care about resource usage,
primarily binary size and memory.

_054

We replaced the 64-bit function pointers in vtables with
32-bit PC-relative offsets to these function pointers.

This allows vtables to be moved into read-only data
sections, which allows them to be shared between
processes.

This became the default C++ ABI on Fuchsia but it can be
used on any system that supports Itanium C++ ABI.

Relative VTables C++ ABI

See "Relative VTables in C++" by
Leonard Chan

_055

The LLVM IFS tool produces textual description of a
shared library ABI and a linkable ELF shared object stubs.

The textual description makes ABI breaking changes
easier to spot and review.

The use of ELF stubs reduces the incremental build time
as we can avoid relinking binaries if the ABI of their
dependents has not changed.

LLVM IFS

See "Introduction to LLVM IFS and its usages
in Fuchsia build system" by Haowei Wu

_056

There's a lot more…

llvm-objcopy and llvm-strip
drop-in replacement for GNU objcopy and strip

address_space and noderef attributes
support for Sparse checker warnings in Clang

crtbegin.o and crtend.o
compiler-rt replacements for libgcc counterparts

clang-tidy
Fuchsia-specific checks, some of which were later generalized

_057

…with more coming.

Fixed-Point Arithmetic C99 extension
support for precise decimal calculations

clang-doc
C and C++ documentation generator

llvm-debuginfod
LLVM based implementation of the debuginfod protocol

clang-misexpect
verifying __builtin_expect annotations

_058

What's next?
We have shipped the first version of Fuchsia to millions of
devices but we are not nearly done yet.

In the future, we want to evolve Fuchsia into a more generally
usable operating system.

_059

We do not yet support running the existing LLVM tests on
Fuchsia and rely solely on end-to-end testing.

We exercise the code generated by LLVM and we check
binaries that include LLVM runtime libraries when testing
Fuchsia.

This requires building the entire system and running all
our tests which increases cycle time.

Support for running LLVM runtime tests
on Fuchsia.

_060

We need a way to support executing tests on targets
other than the host in lit to start running tests on Fuchsia.

Some of the runtimes support remotely executing tests,
but it is implemented in an ad-hoc way, it is inefficient
and difficult to generalize.

Support for cross-target testing in lit.

_061

%run substitution
can be used to
offload test to
another target.

// RUN: %clangxx_asan -O0 %s -o %t
// RUN: not %run %t 2>&1 | \
// RUN: FileCheck --check-prefix=CHECK-CRASH %s

// RUN: echo "interceptor_name:strlen" > %t.supp
// RUN: %env_asan_opts=suppressions='"%t.supp"' \
// RUN: %run %t 2>&1 | \
// RUN: FileCheck --check-prefix=CHECK-IGNORE %s

#include <stdlib.h>
#include <string.h>

int main() {
 char *a = (char *)malloc(6);
 free(a);
 return strlen(a); // BOOM
}

Many lit tests
use complex
logic.

suppressions-interceptor.cpp

_062

LLVM libraries support UNIX and Windows, but Fuchsia is
neither of those and emulation may not be the most
optimal solution.

Some interfaces make assumption about the underlying
system, most commonly the use of file descriptors and
sockets.

Make Fuchsia an officially supported
LLVM platform.

_063

We want to eventually support software development on
Fuchsia, including compilation and linking.

This may require changes to the compiler organization in
order to achieve optimal performance on Fuchsia.

Building software on Fuchsia.

See "Optimizing builds on Windows: some
practical considerations" by Alexandre Ganea

https://www.youtube.com/watch?v=usPL_DROn4k
https://www.youtube.com/watch?v=usPL_DROn4k

_064

The traditional UNIX model for building software is not the
best fit for Fuchsia which prefers a service architecture.

Using a service architecture will be a better fit for Fuchsia,
but it may also improve performance on other platforms.

This may require significant refactoring throughout LLVM
and introduction of new abstractions. We may also need a
new generation of build systems.

Designing a new architecture for
building software.

See "A New Architecture for
Building Software" by Daniel Dunbar

https://www.youtube.com/watch?v=b_T-eCToX1I
https://www.youtube.com/watch?v=b_T-eCToX1I

_065

Using Clang as a
service through a
FIDL protocol as a

Fuchsia native
solution.

using llvm.clang;

type CompileInput = struct { … };
type CompileOutput = struct { … };

@discoverable
protocol Compiler {
 Compile(struct {
 input CompileInput;
 }) -> (struct {
 output CompileOutput;
 });
};

Compiler as a
service

clang.fidl

_066

Q&A

Thanks to everyone who contributed to this effort over
the years, we wouldn't have made it without your help!

Aaron Green, Annie Cherkaev, Farah Hariri, Farid Molazem Tabrizi, Gulfem
Savrun Yeniceri, Gábor Horváth, Haowei Wu, Jake Ehrlich, Jayson Yan, Julie
Hockett, Kareem Khazem, Leonard Chan, Marco Vanotti, Noah Shutty, Paul
Kirth, Roland McGrath, and many others…

