
COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.

CIRCT: Lifting hardware development
 out of the 20th century

Andrew Lenharth and Chris Lattner

LLVM Developer Meeting

November 17, 2021

This talk shares the work of
many amazing folks in the

CIRCT community!

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.222

Agenda

• Intro to Hardware Design
• Emerging Approaches
• Intro to CIRCT
• Hardware vs Software IRs
• Pushing the Boundaries of MLIR
• CIRCT in Production
• Future Directions

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.

Introduction to Classical Hardware Design

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.444

Making a chip is easy, right?

GDSII

FPGA Prototyping

Synthesis
+ SDF

P&R
HW Designer

�� Simulation

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.555

Hardware design is a team sport; not one thing

Verification
Engineers*

Formal
Methods

��

GDSII

FPGA Prototyping

𝛌
Analysis Tools

(e.g. clock, power domains, etc)

Emulation

Synthesis
+ SDF

P&R

DEF

HW Designer

��
Design is more than just RTL and testbenches these days

Verification is a whole set of sub-disciplines

Physical
Designer

��
Power

Engineer

�� ������������

* Approximately to scale

��������������
��������������
��������������
��������������

Simulation

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.666

None of the tools or
engineers can reason
about the full stack.

Hardware is inherently Hierarchical and Multi-Level

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.777

Huge language, with surprising gaps
● e.g. weak metaprogramming

Extremely Verbose

Supported subsets vary by tool

System Verilog acts as an IR between tools
● .. and it doesn't capture power, PD, SoC assembly ,

[System]Verilog at the center of things has “issues”

Keywords Pages of
Standard

(Lang-only)

System Verilog 250 (+ some) 1315

C++ 20 97 (+ some) 591

Python 3.7 35 170

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.888

Pervasive redundancy, no single source of truth, little consistency

Each aspect of the design has different (sub-)languages
● Many languages are vendor or tool-dependent
● Specs are not orthogonal: reuse abstractions (despite poor abstraction capability)
● Redundancy: multiple sources of truth

These IRs are loosely coupled to the original design intent
● Long turn around and lots of effort to make changes
● Fragile layering

Designs become a mess of scripts, TCL, vendor-specific files, and duct-tape

All aspects of a chip need specification

Lots of interacting tools and development flows!

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.999

Proprietary tools are very expensive and not hackable:
● Barrier to personal experimentation and learning

Open alternatives are rising up to fill the gap:
● Part of the larger "Open Hardware" movement!

Free/OSS tools are becoming available in this space!

nextpnr

Problem: none are tackling the representational issues!

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.

Emerging Approaches in Hardware Design

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.111111

Many approaches to raising design abstraction

𝛌
Research is producing new HW design models and abstraction approaches

Incorporating language + type system + compiler tech:

 … often directly inspired by software

Dahlia

Magma

See also: ASPLOS LATTE’21 Workshop

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.121212

Challenges with Verilog:

 "We need more metaprogramming (parameterization) to enable reuse of modules"

 "Verilog has a weak type system, I want to catch bugs at compile time"

 "I want to express complex parameterization in json or another file format"

 "I want to be able to build tooling for my designs without having to parse Verilog"

One typical approach: Verilog "Generators"

Solution: Don't write Verilog, write a program to generate Verilog!
● Everything from a Perl script up to a generator framework
● Compare to TableGen, PerfectShuffle, Bison, ...

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.131313

Scala API for generating SystemVerilog:
● Support high abstraction design, type checking to detect errors, application of SW techniques

SiFive uses Chisel pervasively:
● All SiFive RISC-V Cores and several SoC's built with Chisel
● We have many extensions and custom things built into and around it

"Chisel" Generator Framework (our running example)

.svHW Designer

��
.scala

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.141414

Chisel is a compiler built on the "FIRRTL" IR

"One Shot" Lowering to Verilog was too complicated, so FIRRTL was introduced:
● Progressive (multi-level) lowering of complex types and operations
● Analyses like "width inference", a form of dataflow-based type checking
● Correct generation of Verilog text is… more complicated than it should be

The "imperative code that builds a graph" model crosscuts domains:
● e.g. Imperative Keras Python API ⇒ TensorFlow graph
● Well designed IRs make it much easier to analyse and transform the design!

.sv.firHW Designer

��
.scala

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.151515

Building tools is fast and cheap using the FIRRTL IR:
● DFT/Scan chain insertion, time-multiplexing transformations, Host / Target clock decoupling for pause-able

models, module hierarchy transforms (e.g. for power domains), run-time fault injection, circuit obfuscation, etc

● Custom checks: clock domain crossing, clock/reset synchronization safety, width inference checks, ...
● Simulators: ESSENT Simulator, AWS F1 FPGA Accelerated System Simulator, ...

A compiler IR for hardware enabled many new tools!

.sv.fir

Custom
Transforms

Other Tools

HW Designer

��
.scala

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.161616

OSS tools are great, but not as great as they could be!

Wonderful ecosystem of Open Source tools, but:
● Not always using best practices in software / compiler engineering

● Monolithic designs connected by unfortunate standards like Verilog

● Each framework / tool / tech stack is its own technology island

Each has a small developer community:
● Little shared code slows progress, each tool is missing features

● Features, quality of results, and user experience trails proprietary tools

● Poor SystemVerilog compatibility harms interoperation

Problem: no one is tackling the IR / representational issues!

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.1717

"Library based design" in LLVM
enabled a technology explosion!

OpenCL, CUDA, HLS, JIT'd database query engines, new languages like Swift, Rust, Julia, ….

We need this for
hardware design!

Clipart by Pedro Neves

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.

Introduction to the
LLVM CIRCT Project

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.191919

MLIR-based tech for HW Design and Verification
• Composable toolchain for hardware design / EDA processes

• Focuses: High quality, usability, performance

Modular library based design to power next-gen ecosystem:
• Drive an innovation explosion for HW (like LLVM did for SW)

LLVM Incubator Project:

CIRCT: Circuit IR for Compilers and Tools

https://circt.llvm.org

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.202020

Fostering collaboration in HW tools community

Weekly Open Design Meeting:
● Topic: Broad discussions about hardware design tools, challenges, and technologies

● Flexible format: spontaneous discussions, invited talks, discussions about patches, etc

Public Zoom meeting, recorded:
● Meeting notes include videos

● History goes back to May 2020

Both industrial and academic attendees:
● ~20-40 people/week

Everyone is welcome to attend, lurk, or present

● Use / knowledge of CIRCT is not required!

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.212121

CIRCT has useful libraries and tech!

CIRCT dialects + implementations:
● Full FIRRTL implementation

● Active work on Calyx, LLHD, ESI, Handshake

● Excellent SystemVerilog generation pipeline

Users of CIRCT Libraries:

● Firtool / Chisel at SiFive

● In progress: Magma and Moore projects

Currently focused on "frontend" issues:

● Tools that want to generate [System]Verilog

● Not (yet!) simulation, synthesis, P&R, etc

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.222222

Hardware is implicitly parallel and turns into physical devices:
● Hardware IRs have some different needs than Software IRs

CIRCT clients are pushing huge designs:
● Great opportunity to improve MLIR compile time

Verilog is a human readable text file:
● Generating source code has different concerns than generating a .o file

Extending MLIR is fun, let's talk about it!

CIRCT is pushing the limits of MLIR!

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.

Hardware vs Software IR Challenges

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.242424

Circuits can have feedback - DAGs are not enough

● Often hidden in abstractions

Convergence (one hopes) semantics v.s. interleaved sequences

Problem: Logic loops

and

and

not

not or

not or

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.252525

Solution: MLIR now supports Graph Regions

Ops can allow non-dominating uses in regions:

This minor extension opens many use-cases!
● General graphs are common in many domains

hw.module @FF(%clk : i1, %D: i1)

 -> (Q: i1, Qn: i1) {

 %c1 = hw.constant 1 : i1

 %Dn = comb.xor %D, %c1 : i1

 %t1 = comb.and %Dn, %clk : i1

 %t2 = comb.and %D, %clk : i1

 %u1 = comb.or %t1, %o2 : i1

 %u2 = comb.or %t2, %o1 : i1

 %o1 = comb.xor %u1, %c1 : i1

 %o2 = comb.xor %u2, %c1 : i1

 hw.output %o1, %o2 : i1, i1

}

module FF(input clk, D,
 output Q, Qn);

 wire _T;

 wire _T_0 = ~D & clk | ~_T;
 assign _T = D & clk | ~_T_0;
 assign Q = ~_T_0;
 assign Qn = ~_T;
endmodule

Input MLIR Output Verilog

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.262626

More info: see Stephen Neuendorffer's Quick Talk

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.272727

Instance graph is an abstraction, used to reduce memory usage / compile time
● Physical design and many other things need to break this abstraction

Problem: Instance graph doesn’t represent hardware
Actual HardwareInstance Graph

How to operate on this sub-instance?

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.282828

Context-sensitivity encapsulated in a path specification

Paths are passed to context-aware ops

Solution: first-class path specification

firrtl.nla @nla [@FooNL::baz, @BazNL::bar, @BarNL::w]

firrtl.module @FooNL() {
 firrtl.instance baz {circt.nonlocal = @nla} @BazNL()
 firrtl.instance baz2 @BazNL
}
firrtl.module @BazNL() {
 firrtl.instance bar {circt.nonlocal = @nla} @BarNL()
 firrtl.instance bar2 @BarNL()
}
firrtl.module @BarNL() {
 %w = firrtl.wire {circt.nonlocal = @nla} : !firrtl.uint<1>
}

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.292929

Verification needs to be run on the unmodified code being used for synthesis
● Verification code needs to be “on the side”

This has big implications throughout the language and compilers

Problem: Verification of production code

module synchcounter(
 input clk,reset,
 output [3:0] count);
 reg [3:0] icount;
 always @(posedge clk)
 begin
 if (reset)
 icount <= 4'b0000;
 else
 count <= count + 1;
 end
 assign count = icount;
endmodule

// This might not even be seen
// when compiling the other code.
module testbench();
assert property(Design.m1.icount
 == Design.m2.icount);
…
force Design.m2.clk = `0;
endmodule

module Design(
 input clk,reset;
 output [3:0] count;
);
 wire [3:0] out1, out2;
 synccounter m1 (.count(out1), ...);
 synccounter m2 (.count(out2), ...);
 assign count = out1 + out2;
endmodule

Design

Tests

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.303030

Verification needs to be run on the unmodified code being used for synthesis
● Verification code needs to be “on the side”

This has big implications throughout the language and compilers

Problem: Verification of production code

module synchcounter(
 input clk,reset,
 output [3:0] count);
 reg [3:0] icount;
 always @(posedge clk)
 begin
 if (reset)
 icount <= 4'b0000;
 else
 count <= count + 1;
 end
 assign count = icount;
endmodule

// This might not even be seen
// when compiling the other code.
module testbench();
assert property(Design.m1.icount
 == Design.m2.icount);
…
force Design.m2.clk = `0;
endmodule

module Design(
 input clk,reset;
 output [3:0] count;
);
 wire [3:0] out1, out2;
 synccounter m1 (.count(out1), ...);
 synccounter m2 (.count(out2), ...);
 assign count = out1 + out2;
endmodule

Design

Tests

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.313131

Inner symbol tables on each module, optional symbol on many things

● Ports complicate everything (not operation results)

Binds transform an instance to an instance-at-a-distance

● May be in other files or modules

Solution: Naming and “invisible” instances

sv.bind #hw.innerNameRef<@AB::@b1>

hw.module.extern @EMod(%a: i1, %b: i2)

hw.module @AB(%a: i1, %b: i2) {

 hw.instance "yo" sym @b1 @EMod(a: %a: i1, b: %b: i2) -> () {bind=1}

}

module AB(
 input a,
 input [1:0] b);
endmodule

bind AB EMod yo (
 .a (a),
 .b (b)
);

MLIR Bind

Verilog Verilog

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.323232

Problem: Need to emit many custom text files

SiFive's builds generates many text files (json, xml, yaml, etc) with design metadata

● … and this is generated from high level FIRRTL IR half way through the pipeline

Metadata file needs to refer to modules, instances, memories etc

● … whose names will change as the compiler lowers the IR!

[{
 "module_name": "FIRRTLMem_1_1_0_59_512_1_1_1_0_1_a",
 … //metadata
 "hierarchy": "TOPMod.system.something.another.whatnot.SiFive_magic_ram"
 },
 {
 "module_name": "FIRRTLMem_1_1_0_54_256_1_1_2_0_1_a",
 … //metadata
 "hierarchy": "TOPMod.system.something.different.thingy.frontend.SiFive_nifty_array"
 }]

These are emitted
instance and module
names

“useful” json

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.333333

Solution: Verbatims with explicit output files

sv.verbatim "[\“{{0}\”, \”{{1}}\”]” {
 output_file = #hw.output_file<"../foo.json">,symbols = [@Mod1, @Mod2]
}

Just allow passes to store the output in the IR

Verbatim nodes, with text substitution, including of MLIR symbols

● late binding of names
● "emit to this filename" attribute on any top-level thing

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.343434

Need single source of truth in face of external generation and transformation
● Avoid lots of brittle duct-tape
● Remove sources of errors

Common approaches are less than ideal
● encode large portions of the design in the build system 😟
● run manually and check in generated output 😠

Better language support for meta-programming might reduce need?

Problem: Pervasive code generators

Frontend

Generator

verilog

verilog

alternate
verilog + cpp

encrypted
blob

Generator Tool

Tool

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.353535

CIRCT

Invoking arbitrary code for "generated modules"

Encode resolvable external components
Looks build system-like. Compiler is forking processes!
● Callout to resolve or refine when needed

hw.generator.schema @MEMORY, "Simple-Memory", ["ports", "write_latency", "read_latency"]

hw.module.generated @genmod1, @MEMORY() -> (data: i32, addr: i8, enable: i1) attributes
{write_latency=1, read_latency=1, ports=["read","write"]}

Work-in-progress!

Generator

Exec Query Link/update

Frontend

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.

Pushing the Boundaries of MLIR

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.373737

// RANDOM may be set to an expression that produces
// a 32-bit random unsigned value.
`ifndef RANDOM
 `define RANDOM {$random}
`endif
...
module TileLinkMonitor_2(
 input clk, rst, io_in_a_ready, io_in_a_valid,
 input [2:0] io_in_a_bits_opcode,
 input [5:0] io_in_a_bits_source,
 ...

 `ifndef SYNTHESIS
 initial begin
 automatic logic [31:0] _T_36;

 `INIT_RANDOM_PROLOG_
 `ifdef RANDOMIZE_REG_INIT
 if (~rst) begin
 automatic logic [31:0] _T_46 = `RANDOM;
 a_first_counter = _T_46[2:0];
 end
 _T_36 = `RANDOM;

We need "high quality" Verilog output
● SiFive sells IP: generated Verilog is a product!

● Generated Verilog is input to test benches

Many challenging issues:
● Generating `ifdef's (#ifdef)

● Generating macro defines / uses

● Comment generation

● Source code formatting, indentation, line

wrapping

● Insulating a frontend from these problems

Avoid obviously silly output!

Problem: Source code generation is hard!

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.383838

SystemVerilog dialect represents textual constructs

IR directly models source level concerns:
● Multiple forms of ifdefs

● "Verbatim" expressions and statements

● Language concepts like initial/always blocks

PrettifyVerilog pass "optimizes" text:
● Merging redundant if's/ifdefs

● Sinking logic into narrowest scope

Front-ends get full control, less complexity:
● Full power of [System]Verilog available

● Tedium / complexity delegated to CIRCT

sv.verbatim "// RANDOM may be set to an expression that
sv.ifndef "RANDOM" {
 sv.verbatim "`define RANDOM {$random}"
}

hw.module @TileLinkMonitor_2(%clk: i1, %rst: i1,
 %io_in_a_ready: i1, %io_in_a_valid: i1, ... {
...

 sv.ifndef "SYNTHESIS" {
 sv.initial {
 sv.verbatim "`INIT_RANDOM_PROLOG_"
 sv.ifdef.procedural "RANDOMIZE_REG_INIT" {
 %true = hw.constant true
 %6464 = comb.xor %reset, %true : i1
 sv.if %6464 {
 %RANDOM_3973 = sv.verbatim.expr.se "`RANDOM" : () -> i32
 %10244 = comb.extract %RANDOM_3973 from 0 : (i32) -> i3
 sv.bpassign %rob_state, %10244 : i3
 ...
 }
 }
 }
}

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.393939

Logic IR is easy to analyze; Exporter handles syntax
hw.module @arith(%a: i8, %b: i8) -> (b: i4) {
 %1 = comb.add %a, %b : i8
 %2 = comb.sub %a, %b : i8
 %3 = comb.mul %1, %1, %2 : i8
 %4 = comb.extract %3 from 2 : (i8) -> i4
 hw.output %4 : i4
}

comb/seq dialects handle logic expressions
● comb: combinational logic (add, mux, etc)
● seq: sequential logic (reg, mem, etc)

Easy to analyze, transform, peephole etc:
● normal SSA data flow graph
● conceptually similar to std dialect or LLVM IR

Syntax issues managed by ExportVerilog:
● Precedence, indentation, wrapping, etc
● Temporary variable insertion

○ Multiple-use expression
○ Long line breaking
○ Verilog exprs aren't always composable

module arith(
 input [7:0] a, b,
 output [3:0] b_0);

 // Temporary due to multiple uses.
 wire [7:0] _T = a + b;

 // Parentheses inserted.
 wire [7:0] _T_0 = _T * _T * (a - b);

 // Extracts may only be from a temporary.
 assign b_0 = _T_0[5:2];
endmodule

Input MLIR

Generated Verilog

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.404040

Many tools consume [System]Verilog, but no consistent definition of what that means!
• Products need to be able to decide what is right for their users

Several axes of control:
• Language subsets: e.g. "just Verilog", verboten language features
• Conceptual: Verilog "Interfaces", vs structured ports, vs flattened ports
• Formatting: indentation, line wrapping, other "clang-format" sorts of issues

Approach: encapsulate complexity into shared infra
● Serve many different clients
● Let frontend or end-user decide what they want

Challenge: Emitting Verilog for Diverse+fragmented ecosystem

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.414141

Key design points:
● Serialized into a string - like a "target triple"
● String stored as an attribute on the builtin.module
● circt::LoweringOptions class provides type-safe API
● Lowering passes eliminates unsupported things

Solution: circt::LoweringOptions framework
struct LoweringOptions {

 LoweringOptions(mlir::ModuleOp m);

 void parse(StringRef options,

 ErrorHandlerT callback);

 void setAsAttribute(mlir::ModuleOp m);

 /// If true, eliminate packed arrays for tools

 /// that don't support them (e.g. Yosys).

 bool disallowPackedArrays = false;

 /// If true, do not emit SystemVerilog locally

 /// scoped "automatic" or logic declarations -

 /// emit top level wire and reg's instead.

 bool disallowLocalVariables = false;

 /// This is the target width of lines in an

 /// emitted Verilog source file in columns.

 unsigned emittedLineLength;

 ...

module attributes {circt.loweringOptions = "disallowPackedArrays"} {

hw.module @array_create_get_default(%arg0: i8, ...) {

 sv.initial {

 %three_array = hw.array_create %arg2, %arg1, %arg0 : i8

 %2 = hw.array_get %three_array[%sel] : !hw.array<3xi8>

 %cond = comb.icmp eq %2, %arg2 : i8

 sv.if %cond {

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.424242

Example: Lowering packed / 2D arrays
$ firtool circt/test/Dialect/SV/hw-legalize-modules-packed-arrays.mlir -verilog \

 initial begin
 casez (sel)
 2'b00: casez_tmp = arg0;
 2'b01: casez_tmp = arg1;
 2'b10: casez_tmp = arg2;
 default: casez_tmp = 8'bx;
 endcase

 if (casez_tmp == arg2)
 ...

 initial begin
 automatic logic [2:0][7:0] _T =
 {{arg2}, {arg1}, {arg0}};

 if (_T[sel] == arg2)
 ...

-lowering-options="disallowPackedArrays"-lowering-options=""

Tools and users have full control!
● Complexity encapsulated into circt, not in front-ends / generators
● Testing tools can override this on the command line

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.434343

HW/Comb/SV DialectsFIRRTL Dialect

Legend

Problems with monolithic lowering passes

● Too many concerns handles in one codebase
● Difficult to extend and scale for new problem domains
● Difficult to test each component

Problem: Monolithic lowering passes

.fir file

Low
er A

nnotations

C
S

E
 / etc

Low
er C

H
IR

R
TL

Infer W
idths

B
lackbox M

em
s

Low
er Types

E
xpand W

hens

C
anonicalize

M
odule Inlining

IM
 C

onstantP
rop

FIRRTL to HW
- Memory extraction
- SiFive Metadata

extraction
- OMIR extraction
- GrandCentral interface

gen, ….

 Low
er M

em
 S

im
ulatn

CIRCT Pass

MLIR Pass

IR Constructs

E
xtract Test C

ode

H
W

 C
leanups

C
S

E
 / C

anonicalize

Legalize M
odules

P
rettify Verilog

E
xport Verilog

E
xport H

ierarchy

SystemVerilog,
IP-XACT, JSON,
other text files ...

JSON

FIR
 P

arser

👍 Lowering
within a dialect

👍 Lowering for
Emission

😢 Monolithic
cross-dialect Lowering

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.444444

HW/Comb/SV DialectsFIRRTL Dialect

Legend

Generate all the metadata in the HW dialect next to the FIRRTL dialect
● Both can coexist in the same module!

Solution: Progressively lower in passes by mixing dialects

.fir file

HW/SV Dialects

Low
er A

nnotations

C
S

E
 / etc

Low
er C

H
IR

R
TL

Infer W
idths

B
lackbox M

em
s

Low
er Types

E
xpand W

hens

C
anonicalize

M
odule Inlining

IM
 C

onstantP
rop

B
lackB

oxR
eader

Verbatim
 M

etadata

G
rand C

entral
S

V
 Tap Interfaces

C
anonicalize

C
reate S

iFive M
D

M
any Verbatim

s

E
m

it O
M

IR
O

M
IR

 JS
O

N

Verbatim
s

FIR
R

TL to H
W

C
ore H

ardw
are IR

 Low
er M

em
 S

im
ulatn

CIRCT Pass

MLIR Pass

IR Constructs

E
xtract Test C

ode

H
W

 C
leanups

C
S

E
 / C

anonicalize

Legalize M
odules

P
rettify Verilog

E
xport Verilog

E
xport H

ierarchy

SystemVerilog,
IP-XACT, JSON,
other text files ...

JSON

FIR
 P

arser

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.454545

Hardware is "big" - many billions of gates

Designs keep getting larger as we push towards higher complexity designs
- Common example: 500MB of .fir file input generating 290MB of SystemVerilog

- >5GB designs are not uncommon

How do we continuously accelerate productivity?

Challenge: Very large designs

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.464646

Improve MLIR itself:
● Data structures, memory usage, implementation details

● Core algorithms like the verifier

Parallelize individual components of the stack:
● A few passes are trivial parallel "function passes"

● Most passes require ad-hoc parallel for loops etc

● Parallelizing the parser and printer was a huge win

~Solution: Profile, Speed up and Parallelize all the things
===---===
 ... Execution time report ...
===---===
 Total Execution Time: 77.3147 seconds

 ----User Time---- ----Wall Time---- ----Name----
 13.6685 (6.5%) 13.6685 (17.7%) FIR Parser
 140.7611 (66.7%) 46.8820 (60.6%) 'firrtl.circuit' Pipeline
 26.8784 (12.7%) 2.2896 (3.0%) 'firrtl.module' Pipeline
 22.9020 (10.9%) 2.0681 (2.7%) CSE
 0.0281 (0.0%) 0.0051 (0.0%) (A) DominanceInfo
 3.9161 (1.9%) 0.3375 (0.4%) LowerCHIRRTL
 6.1998 (2.9%) 6.1998 (8.0%) InferWidths
 3.2652 (1.5%) 3.2652 (4.2%) InferResets
 0.3474 (0.2%) 0.3474 (0.4%) (A) circt::firrtl::InstanceGraph
 0.3915 (0.2%) 0.3915 (0.5%) PrefixModules
 12.7761 (6.1%) 12.7761 (16.5%) LowerFIRRTLTypes
 56.6441 (26.9%) 9.2036 (11.9%) 'firrtl.module' Pipeline
 21.3375 (10.1%) 3.9652 (5.1%) ExpandWhens
 35.2656 (16.7%) 5.2371 (6.8%) Canonicalizer
 1.2301 (0.6%) 1.2301 (1.6%) Inliner
 7.2682 (3.4%) 7.2682 (9.4%) IMConstProp
 0.3781 (0.2%) 0.3781 (0.5%) (A) circt::firrtl::InstanceGraph
 0.0018 (0.0%) 0.0018 (0.0%) BlackBoxReader
 15.4380 (7.3%) 2.2863 (3.0%) 'firrtl.module' Pipeline
 15.3896 (7.3%) 2.2822 (3.0%) Canonicalizer
 0.8225 (0.4%) 0.8225 (1.1%) CreateSiFiveMetadata
 1.1280 (0.5%) 1.1280 (1.5%) EmitOMIR
 0.3575 (0.2%) 0.3575 (0.5%) (A) circt::firrtl::InstanceGraph
 4.2221 (2.0%) 4.2221 (5.5%) LowerFIRRTLToHW
 0.7284 (0.3%) 0.7284 (0.9%) HWMemSimImpl
 3.5818 (1.7%) 3.5818 (4.6%) SVExtractTestCode
 43.9188 (20.8%) 4.4014 (5.7%) 'hw.module' Pipeline
 4.4896 (2.1%) 0.4452 (0.6%) HWCleanup
 13.2147 (6.3%) 1.3488 (1.7%) CSE
 0.0479 (0.0%) 0.0067 (0.0%) (A) DominanceInfo
 21.6264 (10.3%) 2.5236 (3.3%) Canonicalizer
 0.1931 (0.1%) 0.0188 (0.0%) HWLegalizeModules
 4.0522 (1.9%) 0.3234 (0.4%) PrettifyVerilog
 3.7725 (1.8%) 3.7725 (4.9%) ExportVerilog
 0.0493 (0.0%) 0.0493 (0.1%) Rest
 210.8818 (100.0%) 77.3147 (100.0%) Total

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.474747

llvm/Support/Threading.h isn't great:
● High constant factor costs

● No support for hierarchical, graph-based parallelism, or future/promise-based approaches

● Few concurrent data structures

Some algorithms are difficult to parallelize:
● e.g. lattice updates in interprocedural constant propagation

Further research is required for 100x improvements:
● Incorporate caching and distribution into the compiler

● Change Chisel to be less monolithic

This is good, but we are a long ways away from "great"

Current utilization on 8 core Intel MacBook Pro is poor

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.

"firtool": Experience with a production CIRCT tool

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.494949

Drop in replacement for the Scala FIRRTL compiler:
• Lives entirely in the CIRCT project, heavily builds (and often drives) its infrastructure work

• Production quality for SiFive flows (among others)

• Generates ~1500 SystemVerilog, ~300 IP-XACT, ~200 yaml, and ~100 json files

"firtool" is an implementation of FIRRTL compiler

Lowering,
Transforms,

Checkers

Dialect

.fir
file

Parser

HW
Dialect

System
Verilog,

IP-XACT,
JSON,

...

Other Tools

Custom
Transforms

CIRCT Dialects

Comb
Dialect

SV
Dialect

"firtool"

Standard
EDA Tools

External Memory
Compilers etc

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.505050

Formal equivalence of random
circuits and real-world designs
● In whole and in parts
● Reference v.s. firtool
● OSS and commercial tools

Primary failure modes:
● Alternate library implementations

○ Memories: I'm looking at you
● State element changes

Validating correctness with formal methods

circuit top_mod :
 module top_mod :
 input inp_db: SInt<18>
 output _tmp53: UInt<18>
 wire tmp49: SInt<18>
 tmp49 <= dshr(inp_db, tail(asUInt(inp_db), 11))
 _tmp53 <= xor(tmp49, asSInt(UInt<13>(2856)))

module top_mod(input [17:0] inp_db,
 output [17:0] _tmp53);
 wire [17:0] _GEN_0 = inp_db;
 wire [17:0] tmp49 = $signed(inp_db) >>> _GEN_0[6:0];
 assign _tmp53 = $signed(tmp49) ^ 18'shb28;
endmodule

module top_mod(input [17:0] inp_db,
 output [17:0] _tmp53);
 assign _tmp53 = $signed(inp_db) >>> $signed(inp_db[6:0]) ^ 18'hB28;
endmodule

firrtl

reference

firtool

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.515151

This cuts >10 minutes out of iteration cycle for large config of our OoO core!
● Directly drives increased designer and verif productivity, faster design space exploration

MLIR/CIRCT rapidly accelerates designer iteration cycle

6.5x 11.2x
9.9x

5x
6.7x

9.4x

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.525252

Memory and CPU usage reductions enable increased design complexity
● But design size is growing faster than build machines
● Need better representations and distributed builds to keep going

Enables workflow simplifications
● Reduce indirection through temporary jsons in build flow
● Incorporate higher-level information into IR

Good tools have avalanching productivity gains!

#1 reaction is impatience to migrate to the new tools

"firtool" entering production unblocks further progress

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.

CIRCT Frontiers and Future Directions

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.545454

So far, we are just scratching the surface!

Verification
Engineers*

Formal
Methods

��

GDSII

FPGA Prototyping

𝛌
Analysis Tools

(e.g. clock, power domains, etc)

Emulation

Synthesis
+ SDF

P&R

DEF

HW Designer

��
Physical
Designer

��
Power

Engineer

�� ������������

* Approximately to scale

��������������
��������������
��������������
��������������

Simulation

Problem areas CIRCT is tackling so far

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.555555

Still early days: many open frontiers yet to be explored!

Standardized dialects for key HW design features:
● SoC assembly (IP-XACT) and power modeling (UPF) dialects

Libraries for key ecosystem features:
● "VLang" - Clang-like Verilog parser

● Formal verification tools, high performance simulators

Physical design "backend" technologies:
● Floor planning, synthesis, place and route algorithms, …
● Technology specific MLIR dialects (e.g. iCE40 FPGA, Skywater PDK, TSMC 5, …)

New design approaches:
● New approaches for MLIR-based high level synthesis (HLS)

● New generator frameworks that expose and utilize these capabilities!

● Integrate first class verification system into the design flow

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.565656

Software is a huge problem for Hardware design!

Without software, Silicon is just "expensive sand":
● Drivers, firmware, framework integration, compilers, etc
● Hardware teams build huge amount of SW for verification

No single source of truth for HW and SW in a design!

Sand castle on Rehoboth Beach about to be
washed away … photo and castle by Andy West

"If only there was a
compiler framework

which could represent
both hardware and

software…"

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.575757

Many active community projects!

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.5858

The future is built by an open and collaborative community:
● Pulling together the small group of passionate HW tool engineers

The future is built from large amounts of shared code:
● Extended, improved, and leveraged across the ecosystem in many tools

The future has high quality implementations:
● Fast compile times, great Clang-like error messages, hackable code base

CIRCT: Lifting hardware development
out of the 20th century

Join us!
https://circt.llvm.org

