@ SiFive

CIRCT: Lifting hardware development
out of the 20th century

Andrew Lenharth and Chris Lattner This talk shares the work of
LLVM Developer Meeting many amazing folks in the
November 17, 2021 CIRCT community!

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

S
Agenda

* Intro to Hardware Design

* Emerging Approaches

* |ntro to CIRCT

 Hardware vs Software IRs

* Pushing the Boundaries of MLIR
e CIRCT in Production

* Future Directions

SiFive

Introduction to Classical Hardware Design

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

& Making a chip is easy, right?

/ Simulation
.

— SysternVerilog r»/
HW Designer — SystemVerilog 7) + SDF 7 6‘
4 P ynthesis

\ GDSII

FPGA Prototyping

SiFive

& Hardware design is a team sport; not one thing

Verification Analysis Tools
E . % (e.g. clock, power domains, etc)
ngineers i
Power Formal
Engineer Methods

/ Simulation

’\ Swimve/rﬂog fuy
HW Designer SystemVerilog . > + SDF P&RB
7 ynthesis
— DEF GDSII
L N
_ “ IP-XACT =)
Phy5ica| FPGA Prototyping
Designer A

Design is more than just RTL and testbenches these days

SiFive

Verification is a whole set of sub-disciplines

* Approximately to scale

Emulation

S

Hardware is inherently Hierarchical and Multi-Level

- £_%
@ Freedom U540SoC ChipLink lb
Gigabit Ethernet uart2bus_top.v s

B uss-mccore Complex uart_top.v 6 B

Eg— - - — Mask ROM / OTP |nt i data SUM
fiEs o «—serout uart_tx.v 8 CIN

Local int_write
" el - >
Quad SPI 2
| 16KB L1 15 wreCC | m m m int_read
“ Rt et B uart_parser.v — AND

TileLink
Switch

ser_in uart_x.v int_rd_data (8
int_req

TileLink Switch

33 int_gnt
k
baud_gen.v clock AND cout
— -
l——————

Clock
Reset/Control
AND

None of the tools or
engineers can reason
about the full stack.

SiFive

SiFive

~

[System]Verilog at the center of things has “issues”

Huge language, with surprising gaps

e e.g. weak metaprogramming

Extremely Verbose

Supported subsets vary by tool

© SUTHERLAND HDL, INC. 45

20.0 Synthesis Supported Constructs

Following is a list of Verilog HDL constructs supported by most synthesis tools.
The list is based on a preliminary draft of the IEEE 1364.1 “Verilog Register
Transfer Level Synthesis ™ standard (this standard was not complete at the time
this reference guide was written). The list is not specific to any one tool—each
synthesis tool supports a unique subset of the Venlog language.

System Verilog acts as an IR between tools

® .. and it doesn't capture power, PD, SoC assembily,

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.

Source Fraction

k¥ \
R &

m Blank = comment = logic = other

Keywords Pages of
Standard
(Lang-only)

System Verilog 250 (+ some) 1315

C++ 20 97 (+ some) 591

Python 3.7 35 170

S

All aspects of a chip need specification

Pervasive redundancy, no single source of truth, little consistency

Each aspect of the design has different (sub-)languages

® Many languages are vendor or tool-dependent
® Specs are not orthogonal: reuse abstractions (despite poor abstraction capability)
e Redundancy: multiple sources of truth

These IRs are loosely coupled to the original design intent

® Long turn around and lots of effort to make changes
e Fragile layering

Designs become a mess of scripts, TCL, vendor-specific files, and duct-tape

SiFive

Lots of interacting tools and development flows!

Free/OSS tools are becoming available in this space!

Proprietary tools are very expensive and not hackable:

® Barrier to personal experimentation and learning

Open alternatives are rising up to fill the gap: open source

raware
® Part of the larger "Open Hardware" movement! ard

OpenROAD

VERILATOR

nextpnr

SiFive

Problem: none are tackling the representational issues!

Emerging Approaches in Hardware Design

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

S

Many approaches to raising design abstraction

Research is producing new HW design models and abstraction approaches

CHISEL LLHD) Ve
gb, CO“ X 3 SpinalHDL B
bahia o Q_ bluespec

Mtherllng miaen

Incorporating language + type system + compiler tech:

SiFive

.. often directly inspired by software
See also: ASPLOS LATTE’21 Workshop

S

One typical approach: Verilog "Generators"

Challenges with Verilog:

"We need more metaprogramming (parameterization) to enable reuse of modules”
"Verilog has a weak type system, | want to catch bugs at compile time"
"I want to express complex parameterization in json or another file format"

"I want to be able to build tooling for my designs without having to parse Verilog"

Solution: Don't write Verilog, write a program to generate Verilog!

® Everything from a Perl script up to a generator framework
e Compare to TableGen, PerfectShuffle, Bison, ...

SiFive

S

"Chisel" Generator Framework (our running example)

¥ cHISEL T

HW Designer ccala SV IP- XACTQ‘ \

Scala API for generating SystemVerilog:
e Support high abstraction design, type checking to detect errors, application of SW techniques

SiFive uses Chisel pervasively:

e All SiFive RISC-V Cores and several SoC's built with Chisel
e \We have many extensions and custom things built into and around it

SiFive

S

Chisel is a compiler built on the "FIRRTL" IR

8

HW Designer scala

SiFive

j> LCHTSEL} :I:r>

I%:&EHTL

.SV

/

SystemVerﬂog‘ —>
3——/
IP- XACT g

"One Shot" Lowering to Verilog was too complicated, so FIRRTL was introduced:

® Progressive (multi-level) lowering of complex types and operations
® Analyses like "width inference", a form of dataflow-based type checking

e Correct generation of Verilog text is...

The "imperative code that builds a graph" model crosscuts domains:

more complicated than it should be

® e.g. Imperative Keras Python APl = TensorFlow graph

e Well designed IRs make it much easier to analyse and transform the design!

S

A compiler IR for hardware enabled many new tools!

8

HW Designer scala

SiFive

j> LCHTSEL} :|',r>

I%:&EHTL

Custom
Transforms

/

SystemVerﬂog‘ —>

h—/
=] & IPXACT®
Other Tools %@

Building tools is fast and cheap using the FIRRTL IR:

e DFT/Scan chain insertion, time-multiplexing transformations, Host / Target clock decoupling for pause-able

models, module hierarchy transforms (e.g. for power domains), run-time fault injection, circuit obfuscation, etc
e Custom checks: clock domain crossing, clock/reset synchronization safety, width inference checks, ...
e Simulators: ESSENT Simulator, 9 FireSim AWS F1 FPGA Accelerated System Simulator, ...

S

OSS tools are great, but not as great as they could be!

Wonderful ecosystem of Open Source tools, but:
e Not always using best practices in software / compiler engineering
® Monolithic designs connected by unfortunate standards like Verilog

e Each framework / tool / tech stack is its own technology island

Each has a small developer community: ™
e Little shared code slows progress, each tool is missing features open source
® Features, quality of results, and user experience trails proprietary tools

e Poor SystemVerilog compatibility harms interoperation

Problem: no one is tackling the IR / representational issues!

SiFive

< "Library based design" in LLVM
\Q/ enabled a technology explosion!

OpenCL, CUDA, HLS, JIT'd database query engines, new languages like Swift, Rust, Julia,

We need this for
hardware design!

SiFive

Clipart by Pedro Neves

I Introduction to the
LLVM CIRCT Project

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

S
CIRCT: Circuit IR for Compilers and Tools

MLIR-based tech for HW Design and Verification

» Composable toolchain for hardware design / EDA processes
* Focuses: High quality, usability, performance

Modular library based design to power next-gen ecosystem:
* Drive an innovation explosion for HW (like LLVM did for SW)

LLVM Incubator Project:

https://circt.llvm.org

SiFive

Fostering collaboration in HW tools community

Weekly Open Design Meeting:
e Topic: Broad discussions about hardware design tools, challenges, and technologies

e Flexible format: spontaneous discussions, invited talks, discussions about patches, etc

Public Zoom meeting, recorded:

e [Meeting notes include videos

e History goes back to May 2020

Both industrial and academic attendees:
e ~20-40 people/week

Everyone is welcome to attend, lurk, or present

e Use /knowledge of CIRCT is not required!

SiFive

N

O | COPYRIGHT 2021 SIFIVE . ALL RIGHTS RESERVED.

SiFive

CIRCT has useful libraries and tech!

CIRCT dialects + implementations:
e Full FIRRTL implementation
e Active work on Calyx, LLHD, ESI, Handshake

e Excellent SystemVerilog generation pipeline

Users of CIRCT Libraries:
e Firtool / Chisel at SiFive
e In progress: Magma and Moore projects

Currently focused on "frontend" issues:
e Tools that want to generate [System]Verilog
e Not (yet!) simulation, synthesis, P&R, etc

Upstream MLIR

fir
B

=PY

Affine Standard Arith SCE
T /
\ 7
CIRCT
\\\ Scheduling
4
"4
StaticLogic
T
1
y
Calyx PyCDE Handshake FIRRTLParser i
1 1
A J \ J
FSM ESI FIRRTL MSFT
| A
RTL dialects
Comb Seq HW
P ~
> \\
sV LLHD d
T — ;
oy \ W
\ 1
ExportVerilog 11hd sim) ;
/ /
/ /
X / o /s

Cap'n Protoj .vcdl] " Circilator \:,

.tel

CIRCT is pushing the limits of MLIR!

Hardware is implicitly parallel and turns into physical devices:

e Hardware IRs have some different needs than Software IRs

CIRCT clients are pushing huge designs:

® Great opportunity to improve MLIR compile time

Verilog is a human readable text file:

® Generating source code has different concerns than generating a .o file

Extending MLIR is fun, let's talk about it!

SiFive

N

2 COPYRIGHT 2021 SIFIVE . ALL RIGHTS RESERVED.

Hardware vs Software IR Challenges

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

S

Problem: Logic loops

Circuits can have feedback - DAGs are not enough
e Often hidden in abstractions

Convergence (one hopes) semantics v.s. interleaved sequences

and |
P 4 not or Q(t)

not

Clk ——

not or Q(t)

J

SiFive

SiFive

Solution: MLIR now supports Graph Regions

Ops can allow non-dominating uses in regions:

/;W.module @FF (%clk : i1, %D: i1)\\ //module FF(input clk, D, N
-> (Q: i1, Qn: i1) { output Q, Qn);
%1 = hw.constant 1 : i1 wire _T;
%Dn = comb.xor %D, %c1 : i1
. _ . . . wire _T_@ = ~D & clk | ~_T;
%t1 = comb.and %Dn, %clk : i1 assign T = D & clk | ~_T_0;
%t2 = comb.and %D, %clk : i1 assign Q = ~_T_0;
Bl = comb.or %t1, %02 : i1 assign Qn = ~_T;
endmodule
%U2 = comb.or %t2, %01 : i1
%01 = comb.xor %ul, %cl : i1
%02 = comb.xor %U2, %cl : i1
hw.output %01, %02 : i1, 1iT

}
P Input MLIR -~ p— Output Verilog -~

This minor extension opens many use-cases!
® General graphs are common in many domains

S

More info: see Stephen Neuendorffer's Quick Talk

XILINX

Representing Concurrency with

Graph Regions in MLIR

Stephen Neuendorffer
LLVM Developer Meeting 2021

SiFive

S

Problem: Instance graph doesn’t represent hardware

Instance Graph Actual Hardware

How to operate on this sub-instance?

Instance graph is an abstraction, used to reduce memory usage / compile time

® Physical design and many other things need to break this abstraction
7 | COPYRIGHT 2021 SIFIVE. . ALL RIGHTS RESERVED.

| SiFive

N

S

SiFive

Paths are passed to context-aware ops

Solution: first-class path specification

Context-sensitivity encapsulated in a path specification

//firrtl.nla @nla [@FooNL::baz, @BazNL::

firrtl.module @FooNL() {
firrtl.instance baz {circt.nonlocal
firrtl.instance baz2 @BazNL

Y

firrtl.module @BazNL() {
firrtl.instance bar {circt.nonlocal
firrtl.instance bar2 @BarNL()

}
firrtl.module @BarNL() {

\}

%W = firrtl.wire {circt.nonlocal = @nla} : !'firrtl.uint<1>

bar, @BarNL: :w] N

@nla} @BazNL()

@nla} @BarNL()

)

S

SiFive

Problem: Verification of production code

Verification needs to be run on the unmodified code being used for synthesis

e \erification code needs to be “on the side”

This has big implications throughout the language and compilers

o

module synchcounter (
input clk, reset,
output [3:0] count);
reg [3:0] icount;
always @(posedge clk)
begin
if (reset)
icount <= 4'b0000;
else
count <= count + 1;
end
assign count = icount;
endmodule

module Design(

input clk, reset;
output [3:08] count;
)
wire [3:0] outl, out2;
synccounter m1 (.count(outt),
synccounter m2 (.count(out2),
assign count = outl + out2;
endmodule

~

-

// This might not even be seen

// when compiling the other code.

module testbench();

assert property(Design.m1.icount
== Design.m2.icount);

Design

force Design.m2.clk = '0;
endmodule
D — Tests —

S

Problem: Verification of production code

Verification needs to be run on the unmodified code being used for synthesis

e \erification code needs to be “on the side”

This has big implications throughout the language and compilers

module synchcounter (N N
input Zlk D module Design(// This might not even be seen
outpUt [BZ@ivgéﬁnt \ . input clk,reset; // when compiling the other code.

’ . o output [3:8] count; module testbench();

reg [3:0] icount;

) assert pro Design.m1.icount
luays @(posedge TRl . (o , assert property(Design.ni.
sl @posetys [3:8] outl, out2; ==_Design.m2.icount);
Sy un

beg%n nﬂ4:52;§ETEEEEEEI:::::5;:——“:”“———————____
1 -(reset)_ P synccounter m2 < count(out2), ...); force Design.m2.clk = "0;
llcount S5 ’ assign count = outl + out2; endmodule

; zgunt <= count + 1; endmodule J
§ o ' B Tests
> assign count = icount;
i
— endmodule
n /

Design

S

Solution: Naming and “invisible” instances

Inner symbol tables on each module, optional symbol on many things
® Ports complicate everything (not operation results)

Binds transform an instance to an instance-at-a-distance
e May be in other files or modules

-

G

sv.bind #hw.innerNameRef<@AB: :@b1>
hw.module.extern @EMod(%a: i1, %b: i2)
hw.module @AB(%a: i1, %b: i2) {

hw.instance "yo" sym @b1 @EMod(a: %a: i1, b
}

SiFive

MLIR Bind

: %b: i2) -> () {bind=1}

module AB(bind AB EMod yo (
input a, .a (a),
input [1:0] b); .b (b)
endmodule) ;
~ Verilog ~ Verilog

S

Problem: Need to emit many custom text files

SiFive's builds generates many text files (json, xml, yaml, etc) with design metadata
® ... and thisis generated from high level FIRRTL IR half way through the pipeline

Metadata file needs to refer to modules, instances, memories etc
® ... whose names will change as the compiler lowers the IR!

/[{ I
"module_name": "FIRRTLMem_1 1 0 59 512 1 1 1 0 1 a",
... //metadata
"hierarchy": "TOPMod.system.something.another.whatnot.SiFive_magic_ram" These are emitted
fi instance and module
{ / names
"module_name": "FIRRTLMem_1 1 0 54 256 1 1 2 0 1 a", 7

...//metadata
"hierarchy": "TOPMod.system.something.different.thingy.frontend.SiFive_nifty array" /

1 .
. In Json J

SiFive

“Usefu

S

Solution: Verbatims with explicit output files

Just allow passes to store the output in the IR
Verbatim nodes, with text substitution, including of MLIR symbols

e |ate binding of names
e "emit to this filename" attribute on any top-level thing

s

sv.verbatim "[\“{{0}\", \"{{1}}\" 1" {
output_file = #hw.output_file<"../foo.json">,symbols = [@Mod1, @Mod2]

}

SiFive

SiFive

Problem: Pervasive code generators

Need single source of truth in face of external generation and transformation

® Avoid lots of brittle duct-tape
® Remove sources of errors

Common approaches are less than ideal

® encode large portions of the design in the build system =

e run manually and check in generated output (s

Better language support for meta-programming might reduce need?

Generator

Generator

Frontend

encrypted
blob

alternate
verilog + cpp

Tool

verilog

Tool

"

verilog

Generic Serial Flash Interface Intel FPGA IP
ftel_generic_serial_flash_interface_top

Genera

S

Invoking arbitrary code for "generated modules"”

Encode resolvable external components Work-in-progress!

Looks build system-like. Compiler is forking processes!
e C(Callout to resolve or refine when needed

Generator
Exec Query Link/update
Frontend]—P[| CIRCT
(hw.generator.schema @MEMORY, "Simple-Memory", ["ports", "write_latency", "read_latency"]

hw.module.generated @genmod1, @MEMORY() -> (data: i32, addr: i8, enable: i1) attributes
{write_latency=1, read_latency=1, ports=["read", "write"]}

SiFive

Pushing the Boundaries of MLIR

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

SiFive

Problem: Source code generation is hard!
4

We need "high quality" Verilog output

_—] : : |
® SiFive sells IP: generated Verilog is a product! “ifndef RANDOM

® Generated Verilog is input to test benches "define RANDOM {S$random}
“endif

. . module TilelLinkMonitor_2(

Many challenging issues: input clk, rst, io_in_a_ready, io_in_a_vali
) ..) input [2:0] io_in_a_bits_opcode,
® Generating ifdef's (#'fdef) input [5:0] io_in_a_bits_source,
e Generating macro defines / uses
e Comment generation "ifndef SYNTHESIS
. . . . initial begin

e Source code formatting, indentation, line svtenEe Iseie 29501 _T_96:

wrappin
ppIng *INIT_RANDOM_PROLOG_

® Insulating a frontend from these problems "ifdef RANDOMIZE_REG_INIT
if (~rst) begin
automatic logic [31:0] _T_46 = "RANDOM;
Avoid obviously silly output! | SVRSEEOUTES = IAEIAIEE
_T_36 = "RANDOM;

SiFive

SystemVerilog dialect represents textual constructs

IR directly models source level concerns:
e Multiple forms of 1fdefs

e "Verbatim" expressions and statements

e Language concepts like initial/always blocks

PrettifyVerilog pass "optimizes" text:
e Merging redundant if's/ifdefs
® Sinking logic into narrowest scope

Front-ends get full control, less complexity:

e Full power of [System]Verilog available
e Tedium / complexity delegated to CIRCT

/

sv.verbatim "// RANDOM may be set to an expression
sv.ifndef "RANDOM" ({
sv.verbatim " define RANDOM {Srandom}"

}

hw.module @TileLinkMonitor_2(%clk , %rst ,
%i0_in_a_ready , %io_in_a_valid A |

sv.ifndef "SYNTHESIS" {
sv.initial {
sv.verbatim " INIT_RANDOM_PROLOG_"
sv.ifdef.procedural "RANDOMIZE_REG_INIT" {
%true = hw.constant true
%6464 = comb.xor %reset, %true
sv.if %6464 {
%RANDOM_3973 = sv.verbatim.expr.se " RANDO
%10244 = comb.extract %RANDOM_3973 from ©
sv.bpassign %rob_state, %10244

SiFive

Logic IR is easy to analyze; Exporter handles syntax

comb/seq dialects handle logic expressions
e comb: combinational logic (add, mux, etc)
® seq: sequential logic (reg, mem, etc)

Easy to analyze, transform, peephole etc:
e normal SSA data flow graph
e conceptually similar to std dialect or LLVM IR

Syntax issues managed by ExportVerilog:
® Precedence, indentation, wrapping, etc

® Temporary variable insertion
o Multiple-use expression
o Long line breaking
o Verilog exprs aren't always composable

hw.module @arith(%a
%1 comb.add %a,
%2 comb.sub %a,
%3 comb.mul %1,
%4 comb.extract
hw.output %4

Input MLIR

, %b) -> (b
%b
%b
%1, %2
%3 from 2

) A

s

module arith(
input

wire [7:0] _T = a

wire [7:0] _T_©

assign b_0 = _T_0

endmodule

- Generated Verilog

[7:0] a, b,
output [3:0] b_0);

+ b;

[5:2];

T* _T* (a-b);

Challenge: Emitting Verilog for Diverse+fragmented ecosystem

Many tools consume [System]Verilog, but no consistent definition of what that means!

* Products need to be able to decide what is right for their users

Several axes of control:

* Language subsets: e.g. "just Verilog", verboten language features
* Conceptual: Verilog "Interfaces", vs structured ports, vs flattened ports
* Formatting: indentation, line wrapping, other "clang-format" sorts of issues

Approach: encapsulate complexity into shared infra

® Serve many different clients
e Let frontend or end-user decide what they want

SiFive

S

SiFive

Key design points:

Serialized into a string - like a "target triple"

String stored as an attribute on the builtin.module
circt::LoweringOptions class provides type-safe API
Lowering passes eliminates unsupported things

sv.initial {

%three_array = hw.array_create %arg2, %argl, %arg@ :

%2 = hw.array_get %three_array|%sel]

%cond = comb.icmp eq %2, %arg2 :

sv.if %cond {

module attributes {circt.loweringOptions

i8

"disallowPackedArrays"} {

hw.module @array_create_get_default(%arg0: i8, ...) {

'hw.array<3xi8>

i8

Solution: circt: :LoweringOptions framework

struct LoweringOptions {

LoweringOptions(mlir::ModuleOp m);

void parse(StringRef options,
ErrorHandlerT callback);

void setAsAttribute(mlir::ModuleOp m);

/// If true, eliminate packed arrays for tools
/// that don't support them (e.g. Yosys).
bool disallowPackedArrays = false;

/// If true, do not emit SystemVerilog locally
/// scoped "automatic" or logic declarations -
/// emit top level wire and reg's instead.
bool disallowlLocalVariables = false;

/// This is the target width of lines in an
/// emitted Verilog source file in columns.

unsigned emittedLinelLength;

Example: Lowering packed / 2D arrays

§ firtool circt/test/Dialect/SV/hw-legalize-modules-packed-arrays.mlir -verilog \

4 N

initial begin

casez (sel)

2'b00: casez_tmp = argo;
/. o . b 2'b01: casez_tmp = argl;
LrEES Al ega 2'b10: casez_tmp = arg?2;

automatic logic [2:0][7:0] _T =
{{arg2}, {argl}, {arg@}};

default: casez_tmp = 8'bx;
endcase

if (_T[sel] == arg2) if (casez_tmp == arg2)

N Y, __ Y,

-lowering-options= -lowering-options="disallowPackedArrays"

Tools and users have full control!

e Complexity encapsulated into circt, not in front-ends / generators
e Testing tools can override this on the command line

SiFive

S

Problem: Monolithic lowering passes

JSON
FIRRTL Dialect HW/Comb/SV Dialects
— —_— | O
A — © - = = FIRRTLto HW 5 [» o m
1 S 5 D 5 3 § @ o - Memory extraction & 120 1= m [N N N
2 o3 = 2 2 8 & o § = S 9 = -~ 2 © F 9
A » O - F 5 35 3 £ § - SiFive Metadata = 2 4 O N = S =
fir file o EEL el extraction SRl : B
g 2 2 F & = 3 ;] :5—’ 2 - OMIR extraction @ % = S, g & g 3
SEC AR EREEEE Y s = - GrandCentral interface 2 & 5 8§ € © & 3
7 i @ S gen, 2 o N & <
1\ J_ J _ J
Y Y Y SvetemVeri
. P L . ystemVerilog,
Lowering = Monolithic Lowering for IP-XACT, JSON,
. TS| ther text files ...
within a dialect cross-dialect Lowering Emission omerieies
Problems with monolithic lowering passes
0 e Too many concerns handles in one codebase CIRCT Pass
> e .
i e Difficult to extend and scale for new problem domains MLIR Pass
n o
e Difficult to test each component I Camsiusts

Legend

Progressively lower in passes by mixing dialects

Solution

JSON

FIRRTL Dialect

HW/Comb/SV Dialects

SystemVerilog,
IP-XACT, JSON,
other text files ...

Export Hierarchy
Export Verilog
Prettify Verilog

Legalize Modules

CSE / Canonicalize
HW Cleanups
Extract Test Code

Lower Mem Simulatn

FIRRTL to HW ‘ Core Hardware IR

OMIR JSON
Verbatims

Create SiFive MD mm) Many Verbatims

Emit OMIR)

Canonicalize
Grand Central mm) SV Tap Interfaces
BlackBoxReader mm) Verbatim Metadata
IM ConstantProp
Module Inlining
Canonicalize
Expand Whens
Lower Types
Blackbox Mems
Infer Widths
Lower CHIRRTL
CSE / etc
Lower Annotations

FIR Parser

fir file

CIRCT Pass

HW/SV Dialects

MLIR Pass
IR Constructs

Generate all the metadata in the HW dialect next to the FIRRTL dialect
® Both can coexist in the same module!

9AIIS

Legend

SiFive

Challenge: Very large designs

Hardware is "big" - many billions of gates

Designs keep getting larger as we push towards higher complexity designs

- Common example: 500MB of .fir file input generating 290MB of SystemVerilog
- >5GB designs are not uncommon

How do we continuously accelerate productivity?

COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.

SiFive

~Solution: Profile, Speed up and Parallelize all the things

Improve MLIR itself:

e Data structures, memory usage, implementation details

----User Time---- ----Wall Time---- ----Name----
. . . 13.6685 (6.5%) 13.6685 (17.7%) FIR Parser
. Core algorlth mS Ilke the Verlfler 140.7611 (66.7%) 46.8820 (60.6%) 'firrtl.circuit' Pipeline
26.8784 (12.7%) 2.2896 (3.0%) "firrtl.module' Pipeline
22.9020 (10.9%) 2.0681 (2.7%) CSE
” |' : d' 'd I f h k. 9.6281 (©0.0%) ©0.0051 (©6.0%) (A) DominanceInfo
Parallelize individual components of the stack: o (1o 0935 (04 LowercutaRnt
6.1998 (2.9%) 6.1998 (8.0%) InferWidths
« . n . " 3.2652 (1.5%) 3.2652 (4.2%) InferResets
e A few passes are trivial parallel "function passes 0.3474 (0.2%) 0.3474 (0.4%) (A) circt::firrtl::InstanceGraph
0.3915 (0.2%) 0.3915 (0.5%) PrefixModules
. 12.7761 (6.1%) 12.7761 (16.5%) LowerFIRRTLTypes
® Most passes require ad-hoc parallel for loops etc 56.6441 (26.9%) 9.2036 (11.9%) 'firrtl.module’ Pipeline
21.3375 (10.1%) 3.9652 (5.1%) ExpandWhens
. . . . 35.2656 (16.7%) 5.2371 (6.8%) Canonicalizer
e Parallelizing the parser and printer was a huge win 12901 (0.6 1.2301 (1.6%) Inliner
7.2682 (3.4%) 7.2682 (9.4%) IMConstProp
0.3781 (0.2%) 0.3781 (0.5%) (A) circt::firrtl::InstanceGraph
0.0018 (0.0%) 0.0018 (0.0%) BlackBoxReader
15.4380 (7.3%) 2.2863 (3.0%) "firrtl.module' Pipeline
Weight v Self Symbol Name 15.3896 (7.3%) 2.2822 (3.0%) Canonicalizer
0.8225 (0.4%) 0.8225 (1.1%) CreateSiFiveMetadata
25.65s 25.65s Q} > livm::iplist_impl<llvm::simple_ilist<mlir::Operation>, llvm::ilist_traits<mlir::Operation> >::erase(llvm::ilist_iterator< 1.1280 (0.5%) 1.1280 (1.5%) EmitOMIR
9.53s 3.0% 9.53s > (anonymous namespace)::OperationVerifier::verifyOperation(mlir::Operation&, llvm::SmallVectorimpl<mlir::Operat 0.3575 (0.2%) 0.3575 (0.5%) (A) circt::firrtl::InstanceGraph
8.10s 2.6% 8.10s > mlir::applyPatternsAndFoldGreedily (llvm::MutableArrayRef<mlir::Region>, mlir::FrozenRewritePatternSet constg&, | 4.2221 (2.0%) 4.2221 (5.5%) LowerFIRRTLToHW
7.74s 2.5% 7.74s > mlir::OpTrait::impl::verifylsisolatedFromAbove (mlir::Operation*) firtool 0.7284 (0.3%) 0.7284 (©.9%) HWMemSimImpl
6.85s 2.2% 6.85s > (anonymous namespace)::OperationVerifier::verifyDominanceOfContainedRegions(mlir::Operation&, mlir::Domina 3.5818 (1 1.7%) 3.5818 (4.6%) SVExtractTest(_:ode_
6.41s 2.0% 6.41s > mlir::Operation::create(mlir::Location, mlir::OperationName, mlir::TypeRange, mlir::ValueRange, mlir::DictionaryAtt 43.9188 (29'8:/“) 4.4014 (5'7:/") ‘hw.module’ Pipeline
5.76s 1.8% 5.76 s > mlir::DictionaryAttr::getWithSorted(mlir::MLIRContext*, llvm::ArrayRef<std::__1::pair<mlir::ldentifier, mlir::Attribute 1:3?33 E i;;:; ?322; E ?;’;:; (H:YSV(Elleanup
537s 1.7% 5.37 s >mI!r::StrmgAttr::get(mllr::MLIRContext", llvm::Twine const&) firtool 0.0479 (0.0%) 0.0067 (0.0%) (A) DominanceInfo
452s 1.4% 4.52s > mlir::Value::getDefiningOp() const firtool 21.6264 (10.3%) 2.5236 (3.3%) Canonicalizer
444s 1.4% 4.44 s > walkSymbolTable(llvm::MutableArrayRef<mlir::Region>, llvm::function_ref<llvm::Optional<mlir::WalkResult> (mlir: 0.1931 (©.1%) 0.0188 (©0.0%) HWLegalizeModules
4.28s 1.3% 4.28 s > mlir::DictionaryAttr::get(llvm::StringRef) const firtool 4.0522 (1.9%) 0.3234 (0.4%) PrettifyVerilog
3.90s 1.2% 3.90s > mlir::Block::recomputeOpOrder() firtool 3.7725 (1.8%) 3.7725 (4.9%) ExportVerilog
3.78s 1.2% 3.78s > mlir::DictionaryAttr::get(mlir::Identifier) const firtool 0.0493 (0.0%) 0.0493 (0.1%) Rest
3.056s 0.9% 3.05s > mlir::OperationEquivalence::computeHash(mlir::Operation*, llvm::function_ref<llvm::hash_code (mlir::Value)>, llvn 210.8818 (100.0%) 77.3147 (100.0%) Total
3.01s 0.9% 3.01s > mlir::Value::getParentRegion() firtool
3.01s 0.9% 3.01s > mlir::detail::walk (mlir::Operation*, llvm::function_ref<void (mlir::Operation*)>, mlir::WalkOrder) firtool
2.67s 0.8% 2.67s > circt::firrtl::UIntType::get(mlir::MLIRContext*, int) firtool
2.63s 0.8% 2.63s > circt::firrtl::FIRRTLType::getWidthlessType() firtool

260 c 0 KoL 2 A0 < S mlir-SvmbaolTable lookiinQSumbolln(mlir--Oneration* mlir--StrinaAttrl firtonl

SiFive

This is good, but we are a long ways away from "great”

llvm/Support/Threading.hisn't great:

e High constant factor costs

e No support for hierarchical, graph-based parallelism, or future/promise-based approaches

® Few concurrent data structures

Some algorithms are difficult to parallelize:

® e.g. lattice updates in interprocedural constant propagation

Further research is required for 100x improvements:

® Incorporate caching and distribution into the compiler
® Change Chisel to be less monolithic

00:00.000.000.000 00:30.000.000.000

CPU Usage

Current utilization on 8 core Intel MacBook Pro is poor

01:1 1.967.723.131"

"firtool": Experience with a production CIRCT tool

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

SiFive

"firtool" is an implementation of FIRRTL compiler

cHIseL f-if:;_

4 I
Lowering, Custom Exéerna!IMemtory
Transforms, Transforms omptiers ete
Checkers - - ~
CIRCT Dialects | & System
B |
3% _ Verilog,
Dialect
Parse> F RRTI_ -4 = IP-XACT, ES I;aAn_? ar?
Comb SV (0]0))
Dialect —k [Dialect Dialect ISON,
/ & N a8
_firtool" \\\
%@Other Tools

Drop in replacement for the Scala FIRRTL compiler:
* Lives entirely in the CIRCT project, heavily builds (and often drives) its infrastructure work

* Production quality for SiFive flows (among others)
* Generates ~1500 SystemVerilog, ~300 IP-XACT, ~200 yaml, and ~100 json files

S

Validating correctness with formal methods

. - .
Formal equivalence of random circuit top_mod :

. . . module top_mod :
circuits and real-world designs input inp_db: SInt<18>

output _tmp53: UInt<18>

® |In whole and in parts wire tmp49: SInt<18>

® Reference v.s. firtool tmp49 <= dshr(inp_db, tail(asUInt(inp_db), 11))
e 0SS and commercial tools _tmp53 <= xor(tmp49, asSInt(UInt<13>(2856)))
~ firrtl
. . [module top_mod(input [17:0] inp_db,
Primary failure modes: output [17:8] _tmp53);
]] . wire [17:0] _GEN_O = inp_db;
e Alternate library implementations wire [17:0] tmp49 = $signed(inp_db) >>> _GEN_0[6:0];
o Memories: I'm looking at you assign _tmp53 = $signed(tmp49) * 18'shb28;
| t ch endmodule
® State element changes N reference

Ve

module top_mod(input [17:0] inp_db,
output [17:0] _tmp53);
assign _tmp53 = Ssigned(inp_db) >>> Ssigned(inp_db[6:0]) * 18'hB28;
endmodule

SiFive

-

firtool

S
MLIR/CIRCT rapidly accelerates designer iteration cycle

microcontroller vector 0Oo00-cur 0O00-next multicore 0O00O-stress
600-
400-
FIRRTL Level
5 \
o
c
3
3 \
7
200- ¢ ‘ #
. * & =) 6.7x
9.4x
] i - e
firtl circt firtl circt firtl circt firtl circt firtl circt firtl circt

This cuts >10 minutes out of iteration cycle for large config of our OoO core!

SiFive

e Directly drives increased designer and verif productivity, faster design space exploration

"firtool" entering production unblocks further progress

Memory and CPU usage reductions enable increased design complexity

® But design size is growing faster than build machines
e Need better representations and distributed builds to keep going

Enables workflow simplifications

e Reduce indirection through temporary jsons in build flow
® Incorporate higher-level information into IR

Good tools have avalanching productivity gains!

#1 reaction is impatience to migrate to the new tools

SiFive

CIRCT Frontiers and Future Directions

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

& Sofar, we are just scratching the surface!

-~

HW Designer SystemVer:
T —
— IP-XACT
. A -
Physical

Problem areas CIRCT is tackling so far

SiFive

Still early days: many open frontiers yet to be explored!

Standardized dialects for key HW design features:
e SoC assembly (IP-XACT) and power modeling (UPF) dialects

Libraries for key ecosystem features:
e "VLang" - Clang-like Verilog parser

e Formal verification tools, high performance simulators

Physical design "backend" technologies:

® Floor planning, synthesis, place and route algorithmes, ...
e Technology specific MLIR dialects (e.g. iCE40 FPGA, Skywater PDK, TSMCS5, ...)

New design approaches:

e New approaches for MLIR-based high level synthesis (HLS)
e New generator frameworks that expose and utilize these capabilities!
® Integrate first class verification system into the design flow

SiFive

(9]

5 COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.

S

SiFive

Software is a huge problem for Hardware design!

Without software, Silicon is just "expensive sand":

e Drivers, firmware, framework integration, compilers, etc
e Hardware teams build huge amount of SW for verification

No single source of truth for HW and SW in a design!

"If only there was a
compiler framework
which could represent

both hardware and
software..."

Sand castle on Rehoboth Beach about to be
washed away ... photo and castle by Andy West

S

Many active community projects!

Charting CIRCT

The present and future landscape

John Demme | Fabian Schuiki | Mike Urbach | Andrew Young

Microsoft SiFive Alloy Computing SiFive

2021 LLVM Developer Meeting

SiFive

S CIRCT: Lifting hardware development
out of the 20th century

The future is built by an open and collaborative community:
e Pulling together the small group of passionate HW tool engineers

The future is built from large amounts of shared code:
e Extended, improved, and leveraged across the ecosystem in many tools

The future has high quality implementations:
e Fast compile times, great Clang-like error messages, hackable code base

Join us!
https://circt.llvm.org

SiFive

