Charting CIRCT

The present and future landscape

John Demme | Fabian Schuiki | Mike Urbach | Andrew Young

Microsoft SiFive Alloy Computing SiFive

2021 LLVM Developer Meeting Q R
T

Talk waypoints

1. Whatis CIRCT? (Quick rehash of the keynote)
2. What'’s so different about hardware? (vs software or firmware)

3. Selected subprojects

o FIRRTL: supporting Chisel

o HLS: lower software into hardware

o ESI: linking hardware components together and tying in software
4. Selected subsystems

o Core dialects

o Simulation

5. CIRCT subproject summary

<

CIRCT IR for Compilers and Tools ... oris it spelled “circuit™?

Hardware compiler tech is ripe for innovation and disruption!

e Expensive commercial products suffer from quality issues, interoperability, and lack of innovation velocity.
e New generation of developers fed up with status quo — many new, innovative open source technologies.
e Open source products suffer from startup costs and interoperability problems.

MLIR-based compiler infrastructure for hardware design and verification.

Aims to do for hardware compilers and tools what LLVM did for software.

Modular library allows HW compiler devs to bring their sliver of innovation and let CIRCT do the rest.
Interoperability provided by standard dialects and APIs.

Engineered for quality -- solid base to build upon.

“CIRCT: Lifting hardware development out of the 20th century” (Andrew Lenharth and Chris Lattner)
Keynote at this meeting further motivates CIRCT.

IR
-

What's so different about hardware? (why isn’t the LLVM IR sufficient?)

Massively parallel: everything runs concurrently...
e Imperative programming models clearly don’t apply.
e Parallel/concurrent SW models don’t express ultra-fine-grained parallelism efficiently.
e Converting traditional software models into hardware (via HLS) is possible...
and occasionally even has good results!
e Hardware-specific languages necessary.

No global, shared memory: designers create “scratchpad’-like local memories.
e Pro: no pointers! Con: no pointers.
e Must move data explicitly, both intra- and inter- chip. No magic remote access.

Zero visibility at runtime: we lack the optical technology to observe wire activity!
e Necessitates simulation for debug and verification.
e Wise designers also include some debug/telemetry circuitry. I R

T

Fodor’s list of

placeS (Rick Steves mostly agrees)

PyCDE MLIR Dialects
T

Frontends

I
Y
HLS dialects

1

I

1

! ,
I 1
4 / 4

MSFT

FIRRTL FSM

Core dialects

(HW/Comb/Seq)
SV LLHD
ExportVerilog Simulation

WA

Build collateral for backend tools : ;
Simulation trace

(e.g. SV, tcl, capnp, ipxact)

[{ Overview photo of CIRCT taken from Mars }]

IR
-

FIRRTL: Supporting Chisel

e FIRRTL is the name of the compiler IR used by the
Chisel hardware description language (HDL)

e HDLs are DSLs used to describe circuit structure

e |n CIRCT we are writing a drop-in replacement for the
Scala FIRRTL compiler

e FIRRTL IR parser imports to the FIRRTL Dialect

e FIRRTL Dialect lowers to common CIRCT Dialects

Chise]l HDL

cpu.scala \

Chisel

VERN

cpu.fir

AN

annotations .json l]

~—

FIRRTL Parser

HW

Comb

FIRRTL - Why replace the FIRRTL compiler?

e Improve compile times with heavy memory usage

o Compile times could be 10 minutes, use >64gb ram
o Multithreaded MLIR based compiler improves performance 10-30x

e Replace bespoke compiler infrastructure

o Reusable components create a community
o Leverage shared lower level dialects, transformations, Verilog exporter

e Better Verilog output
o First class representation of SystemVerilog

e Interoperability with other HDL and HLS

<

MLIR frontends

?7?? TensorFlow PyTorch C

N

H LS Upstre\a}ﬁLIR
........................... e
e HLS compiles a “high level” program into SCF}Afﬁ;e
hardware description for FPGAs or ASICs e E— /
o Historically based on C-like languages ' ‘
e Many challenges translating software IRs to Schedunny
hardware Staﬁ:wc
o Akin to auto-parallelizing C compilers
e MLIR presents a huge opportunity for HLS Hnihaie Calyx
o Same core IRs for frontends to target
o New IRs designed for HLS r s
e CIRCT project is building HLS IRs, Jox
analyses, and transformations Nz

ExportVerilog

IR
ED) T

MLIR frontends

77 TensorFlow PyTorch €

H LS Upst:ea LIR]
Linalg
e Hardware dataflow graph without scF}Afﬁne
pre-computed schedule — /

o Doesn't require scheduling = 7

o Extra overhead for control and buffering Scheduhn/
e CIRCT IRs capture dataflow semantics ‘

o Handshake dataflow graph and operators Sk

o Lowering into hardware implementation

e CIRCT simulators based on LLVM

o Handshake simulator for dataflow graph FIRRTL
o Cosimulation of software and hardware | \

\J

ExportVerilog

Handshake Calyx

Calyx Native

IR
ER T

MLIR frontends

7?7 TensorFlow PyTorch (&

H LS Upst;a LIR]
Linalg
e Hardware finite-state machine and datapath SCF}MM
with pre-computed schedule e /
o Can be highly optimized and predictable F\ =
o Requires scheduling, allocation, and binding Scheduling

e CIRCT IRs capture scheduling semantics ‘

o Pipeline with static schedule StaticLogic
o Finite-state machine and datapath with Calyx

e CIRCT scheduling library contains e B
high-quality scheduling algorithms FIRRTL | [Calyx Native]
o Treats HLS as an optimization problem l \
e

ExportVerilog I R
SV file I

Elastic Silicon Interconnect: it's all about communication

Hardware designs often contain multiple semi-independent subsystems.
e They must communicate with each other and the host.
e In software, main memory is used. HW doesn’t have global shared memory.
e Difficult for multiple languages to live on the same device.
An interconnect and “runtime” must be built to connect the subsystems and the host.
e “Plumbing” is tedious, error-prone, but straightforward. Ripe for automation!

£l XML Encoder
Structured data | ||| (OPenCH) Data TCP/IP
producer <\ Compressor [network iface
(C#) N\ JSON (C++ via HLS) (Verilog)
B Encoder
(Chisel)
Host 2 IR
PC 8 Hardware accelerator T
complexity

Elastic Silicon Interconnect: it's all about communication

Hardware designs often contain multiple semi-independent subsystems.
e They must communicate with each other and the host.
e In software, main memory is used. HW doesn’t have global shared memory.
e Difficult for multiple languages to communicate.
An interconnect and runtime must be built to connect the subsystems and the host.
e “Plumbing” is tedious, error-prone, but straightforward. Ripe for automation!

ESI takes a typed specification of the communication graph and builds the interconnect.
e Including a bridge to host software, providing an design-specific, typed API.
e Even bridges to simulation, exposing the same API for so-called “co-simulation”.

“Elastic Silicon Interconnects: Abstracting Communication in Accelerator Design”
J. Demme, LATTE’21 [paper] [talk] I R

Status: T

https://capra.cs.cornell.edu/latte21/paper/8.pdf
https://www.youtube.com/watch?v=gjOkGX2E7EY

Core dialects: the common denominator

HW: core abstractions
e Operations like module, instance (of a module)
e Also contains standard data types (int, array, struct, etc.)
e Status: mostly complete, mostly stable

Combinational: computational ops without a sense of cycles or time
e Operations like add, shift, multiply, etc.
e Status: complete and stable

Sequential: contains clocked storage elements
e Introduces a sense of time measured in cycles.
e Status: incomplete but stable

<

S | mu IatIO N Usual Progression of Simulations

........................... RTL—leVel funCtionaI teStS

Run tests against high-level language source code.

e Designs are simulated many times for debugging |
=] . / Gate-level functional tests
and VerlfICatlon before SI pr0dUCt|0n Run tests against the logic gates produced by the

. . logic synthesizer and chip layout tool.
e Simulation means:

o Take the hardware description/model

. ; X Simulation of logic gates back-annotated with
O Apply some St|mU|US tO |tS |npUtS propagation delays extracted from Si layout.
o Check the response on its outputs

e Designs go through multiple levels of simulation

e Existing commercial simulators are:

Gate-level timing tests

o Expensive Using CIRCT immediately gives you

o Slow a community-curated simulator

Ie) Have ObSCU re performance Cli-ﬁ-s Like buying into LLVM immediately gives you solid
codegen and JIT for a large number of processors.

e Buy-in point for CIRCT

IR
-

MLIR allows us to:

S|m U Iat|0n Have a dialect to model event

queue and signal timing

Keep high-level IR ops where it

e Si verification requires timing-aware simulation el
allows for fast simulation

e “Traditional” hardware languages do this with an
event queue programming model Add dialects for simulation opt.
e MLIR is brilliant for this:

o Separate dialect to interact with event queue
o Keep higher-level dialect ops for speed
o Additional dialect for simulation optimization

FIRRTL/ESI/HLS/
Core Dialects

Lower for simulation Raise for faster simulation

Simulation / Event
Queue Dialect

IR
-

CIRCT wants YOU!

https://circt.llvm.org/

https://qithub.com/llvm/circt

Discourse discussion board

Weekly discussions Wed. @ 11am PT

FIRRTL

Core features complete /
Missing some annotations

Credits: all the CIRCT contributors!

HLS Limited prototype /
In Development
ESI Proof of concept
Core Stable, mostly complete
Simulation SystemVerilog prototype

Ongoing integration with core

dialects

Join us in disrupting the hardware world!

<

https://circt.llvm.org/
https://github.com/llvm/circt
https://llvm.discourse.group/c/projects-that-want-to-become-official-llvm-projects/circt/40
https://docs.google.com/document/d/1fOSRdyZR2w75D87yU2Ma9h2-_lEPL4NxvhJGJd-s5pk/edit#
https://github.com/llvm/circt/graphs/contributors

