US LLV

—w + + + +
(9" Sjoerd.meijer@arm.com

Developer conference 2021

mailto:Sjoerd.meijer@arm.com

Introducing Function Specialization

* Inter-procedural optimization (IPO),
- New LLVM IR transformation pass (off by default).

* Improve runtime performance, at the expense of:
- Compile-time,
- Code-size.

* [timproves:
« MCF in the SPEC benchmark, but also

- Is general so that it triggers e.g. in the LLVM test-suite, stage2 builds, etc.

* GCC has this enabled by default at -O3, so we're missing out...

* |tlivesin: llvm/lib/Transforms/IPO/FunctionSpecialization.cpp
 First commit reviewed in D93838,
- Based on previous work in D36432 by Matthew Simpson.

2 © 2021 Arm Limited

arm

Motivating Example

foo(int x, int flag) { * Problem: a lot of indirect calls.
(flag) - Can we optimise this?
compute(x, plus); - Can we promote indirect calls to direct?

compute(x, minus);

e Solution:

compute(int x, int (*binop)(- Look at functions and its arguments.

- Propagate constant args down to its func body

binop(x);
- Constant args = constant globals, functions.

plus(int x) {
X+ 1;

3 © 2021 Arm Limited q rm

Motivating Example, cont'd

Input

foo(int x, int flag) {
(flag)

compute(x, plus);

compute(x, minus);

compute(int x,

binop(x);

plus(int x) {
X+ 1;

minus(int x) {

X-

© 2021 Arm Limited

(*binop)(

)

Specialize
compute()

on constant
arg binop.

Output

foo(int x, int flag) {

(flag)
compute.1(x);

compute.2(x);

compute.1(int x) {

plus(x);

compute.2(int x) {

minus(x);

plus(int x) {
minus(int x) {

Motivating Example, cont'd

* Then, the direct call(s) get inlined further:

* Observation: isn't this a roundabout way of doing inlining?
* Maybe, but by design:

- FuncSpec is run before the inliner in the optimisation pipeline.
- Otherwise, we would only benefit from constant passing (TODO).

5 © 2021 Arm Limited a rm

Inlining vs. Function Specialisation

* Inlining:
- Natural place if inlining is the goal?

* Cons:
- Inlining heuristics are difficult already.
- Specialising would require a whole new infrastructure on top of that.

* FuncSpec:
- Relatively straightforward pass (to implement).
« GCC has function specialization enabled at O3 ("if GCC can do it").
- Supports different use cases: i) inlining functions, ii) propagating integer constant (ranges).

* Cons:
- Increases compile-times and code-size more?

6 © 2021 Arm Limited a rm

Cost-model

Goal-oriented heuristic: estimate if replacing an argument with a particular constant
value would result in optimization opportunities

if SpecializationBonus(Arg) > SpecializationCost(F), then Profitable!

SpecializationCost(F) = FNumlnst * InstrCost * NbFuncSpec

SpecializationBonus(Arg) =
- For all uses of Arg: add the instruction cost, scaled by the loopnest depth.
- For all call-sites: get the inline cost, add this to the instruction cost

7 © 2021 Arm Limited a rm

Compile-time Results CTMark

Program % Increase |# FS | Forced
kKimwitu++ +0.12 0 0
sqlite3 +0.32 0 111
consumer-typeset -0.07 0) 1
Bullet +0.29 0 1
tramp3d-v4 +0.28 0 0
mafft +0.49 0 0
ClamAV +0.39 2 24
lencod +0.45 0 0
SPASS +0.36 0 55
7zip +0.12 0 4
Geomean +0.28

8 © 2021 Arm Limited

* LLVM compile-time-tracker
- Wall clock time can be noisy,

- Retired # instruction proxy for compile-times
- 03, ReleaseThinLTO, ReleaselLTO-g and O0-g

* -03 and -flto: triggers 2x in ClamAV

arm

Compile-times, cont'd

 Wall clock times can be stable.
* Clang/LLVM Stage?2 build & SQLite:

- 3 functions specialised,
- No difference in compile-times.

« MCF (SPEC2017):

- 2 functions specialised,
« 20% compile-time increase (LTO link-step),

- 10% performance uplift. No diff
1s 405 > 1 minute
:%

MCF SQLite Stage?2
’ clang/llvm
- Little time spent in pass FuncSpec

- Backend processes more functions/instructions
- Bigger impact on smaller compile jobs, less on bigger.

9 © 2021 Arm Limited a rm

Future Work

 Can we enable FuncSpec by default?
* Add ThinLTO support.

* Cost-model:
- Constant integers are support, but not enabled.
- To avoid too many specialisations, only 1 argument per function is specialised.

- Comp-times are not suggesting this, but analysis results are not cached.

* |Introduce an attribute/pragma to explicitly request specialisation.

arm

10 © 2021 Arm Limited

Feedback welcome!

* LLVM dev mailing list
 Phabricator
e Direct email

11 © 2021 Arm Limited q rm

~ Thank You
DERLGE
Merci
T
HYMES
- Gracias
| ~Kiitos
AR L O
gddic
B

nNTIN

© 2019 Arm Limited

