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Motivation



Motivation: Importance of FFT
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• Applications

• Libraries for FFT:

Signal 

processing

Partial 

Differential 

Equations(PDE)

FFTPACKFFTE



The Problems with FFT libraries like FFTW
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• Lack of support for modern hardware

– Newly introduced SIMD/tensor instructions in CPU, GPU, etc

• Lack of portability over heterogeneous hardware

– Different code generation routines for different backends, cost is 
high

• Cannot utilize the evolving compiler community

– MLIR/LLVM is more adaptive to search/learn based methods

• Emit C code, lack of control on low level compilation



FFT Algorithm in matrix-formalism
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Methodology



FFTc: A Domain Specific Compilation for Automatic Generation of FFT 

Algorithms

2022-10-31 8



FFTc language: Declarative representation of FFT tensor Algorithm
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Fourier transform

Kronecker product

Diagonal matrix (twiddles)

PermutationIdentity



FFT Dialect (IR): Operations in FFT Dialect
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Progressive Lowering To Affine Dialect
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Different Code Generation Modes
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Ahead-Of-Time Compilation

Just-In-Time Compilation

VS

Pros: Get rid of compilation time

Cons: Fixed FFT size for now

Pros: Dynamic FFT size

Cons: Long compilation time
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Evaluation



Performance Evaluation
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Benchmark:

FFT from input size 32 to 128

Double complex input data

Single thread

Ahead-of-Time compilation mode

Evaluation:
Run for 1000 times, calculate standard deviation for 30 rounds

Hardware:
Dual-socket Intel Xeon Gold 6132 CPU, 192 GB of RAM
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Frontend: 0.0%

MLIR 

Compilation: 

90.4%

LLVM

Middle-end 

optimization & 

Code 

Generation &

Run:

8.9%

FFT Size 32

Compile & 

Run:

6.8903s

Performance Evaluation



Performance Evaluation
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• O2

– Inliner, Canonicalizer, CSE

– Affine: LoopFusion,

LoopInvariantCodeMotion

– LLVM O3 passes

• O3

– MLIR O2 passes

– Affine: ScalarReplacement

– LLVM O3 passes



Performance Evaluation
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• Reasons contribute to the performance gap with FFTW

– The FFTs are computed through dense matrix-matrix multi-
plication

– Not fully optimized MLIR/LLVM compilation flow

– No automatic FFT decomposition planner yet
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Conclusion & Future Work



Conclusion
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• Tensor-based FFT DSL and FFT Dialect in MLIR

– DSL: Declarative representation of FFT tensor algorithm

– FFT Dialect: Operations in FFT dialect to represent FFT algorithm

• Code generation pipeline through MLIR and LLVM infrastructure

– Progressive lowering in MLIR for optimization & transformation at 
multiple abstraction level

– Invoke LLVM JIT compilation for lower optimization on LLVM IR & 
code-generation



Future Work
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• Fully Optimized Compilation:

– FFT formula rewriting(decomposition): Pattern matching & Re-
writing in MLIR

– Loop tiling, vectorization

• Support various hardware backends:

– CPU tensor unit, GPU, FPGA, etc

• Reduce Compilation Time

– Multi-threading compilation & remove unnecessary MLIR passes

• Dynamic FFT Size at Compilation Time

– Take advantage of MLIR bufferization process
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