
FFTc: An MLIR Dialect for Developing HPC
Fast Fourier Transform Libraries

Yifei He, Artur Podobas, 

Måns I. Andersson, Stefano Markidis

KTH Royal Institute of Technology



Outline

2022-10-31 2

• Motivation

• Methodology

• Evaluation

• Conclusion & Future work



2022-10-31 3

Motivation



Motivation: Importance of FFT

2022-10-31 4

• Applications

• Libraries for FFT:

Signal 

processing

Partial 

Differential 

Equations(PDE)

FFTPACKFFTE



The Problems with FFT libraries like FFTW

2022-10-31 5

• Lack of support for modern hardware

– Newly introduced SIMD/tensor instructions in CPU, GPU, etc

• Lack of portability over heterogeneous hardware

– Different code generation routines for different backends, cost is 
high

• Cannot utilize the evolving compiler community

– MLIR/LLVM is more adaptive to search/learn based methods

• Emit C code, lack of control on low level compilation



FFT Algorithm in matrix-formalism

2022-10-31 6



2022-10-31 7

Methodology



FFTc: A Domain Specific Compilation for Automatic Generation of FFT 

Algorithms

2022-10-31 8



FFTc language: Declarative representation of FFT tensor Algorithm

2022-10-31 9

Fourier transform

Kronecker product

Diagonal matrix (twiddles)

PermutationIdentity



FFT Dialect (IR): Operations in FFT Dialect

2022-10-31 10



Progressive Lowering To Affine Dialect

2022-10-31 11



Different Code Generation Modes

2022-10-31 12

Ahead-Of-Time Compilation

Just-In-Time Compilation

VS

Pros: Get rid of compilation time

Cons: Fixed FFT size for now

Pros: Dynamic FFT size

Cons: Long compilation time



2022-10-31 13

Evaluation



Performance Evaluation

2022-10-31 14

Benchmark:

FFT from input size 32 to 128

Double complex input data

Single thread

Ahead-of-Time compilation mode

Evaluation:
Run for 1000 times, calculate standard deviation for 30 rounds

Hardware:
Dual-socket Intel Xeon Gold 6132 CPU, 192 GB of RAM



2022-10-31 15

Frontend: 0.0%

MLIR 

Compilation: 

90.4%

LLVM

Middle-end 

optimization & 

Code 

Generation &

Run:

8.9%

FFT Size 32

Compile & 

Run:

6.8903s

Performance Evaluation



Performance Evaluation

2022-10-31 16

• O2

– Inliner, Canonicalizer, CSE

– Affine: LoopFusion,

LoopInvariantCodeMotion

– LLVM O3 passes

• O3

– MLIR O2 passes

– Affine: ScalarReplacement

– LLVM O3 passes



Performance Evaluation

2022-10-31 17

• Reasons contribute to the performance gap with FFTW

– The FFTs are computed through dense matrix-matrix multi-
plication

– Not fully optimized MLIR/LLVM compilation flow

– No automatic FFT decomposition planner yet



2022-10-31 18

Conclusion & Future Work



Conclusion

2022-10-31 19

• Tensor-based FFT DSL and FFT Dialect in MLIR

– DSL: Declarative representation of FFT tensor algorithm

– FFT Dialect: Operations in FFT dialect to represent FFT algorithm

• Code generation pipeline through MLIR and LLVM infrastructure

– Progressive lowering in MLIR for optimization & transformation at 
multiple abstraction level

– Invoke LLVM JIT compilation for lower optimization on LLVM IR & 
code-generation



Future Work

2022-10-31 20

• Fully Optimized Compilation:

– FFT formula rewriting(decomposition): Pattern matching & Re-
writing in MLIR

– Loop tiling, vectorization

• Support various hardware backends:

– CPU tensor unit, GPU, FPGA, etc

• Reduce Compilation Time

– Multi-threading compilation & remove unnecessary MLIR passes

• Dynamic FFT Size at Compilation Time

– Take advantage of MLIR bufferization process



Acknowledgement

2022-10-31 21

This work is supported by IO-SEA under the European 

High-Performance Computing Joint Undertaking (JU)



Reference

2022-10-31 22

• https://www.inf.ed.ac.uk/teaching/courses/ct/18-19/slides/llvm-1-intro.pdf

• https://llvm-hpc-2020-workshop.github.io/presentations/llvmhpc2020-amini.pdf

https://www.inf.ed.ac.uk/teaching/courses/ct/18-19/slides/llvm-1-intro.pdf

