10 Commits Towards
GloballSel tor PowerPC

Challenges
Fncountered

November 9, 2022 | © 2022 IBM Corporation

Initially,
understanding
some legalization

C

C

€

talls were

ifficult.

Finding out how many type indices

an instruction has was not obvious.

C

T

aC

DloC
_egalizer does not

‘eating new

nine basic

KS 1IN the

seem possible.

This is normally not required, but
would be useful in certain
clrcumstances.

LLTs are unable to
differentiate between

different scalar types.

Unlike MVTs, we do not know If we are
dealing with an integer or tfloating point.

Some targets iImplement utilities that
check for FP-related opcodes to know if
the LLT we are dealing with is tloating
point or not.

/// Returns whether opcode \p Opc is a pre-isel generic floating-point opcode
/// having only floating-point operands.
static bool isPreISelGenericFloatingPointOpcode(unsigned Opc) {

switch (Opc) {

Q.

e::G_FADD:
e::G_FSUB:
e::G_FMUL:
e::G_FMA:
e::G_FDIV:
e::G_FCONSTANT:
e::G_FPEXT:
e::G_FPTRUNC:
e::G_FCEIL:
e::G_FFLOOR:
e::G_FNEARBYINT:
e::G_FNEG:
e::G_FCOS:
e::G_FSIN:
e::G_FLOG10O:
e::G_FLOG:
e::G_FLOGZ:
e::G_FSQRT:
e::G_FABS:
e::G_FEXP:
e::G_FRINT:
e::G_INTRINSIC_TRUNC:
e::G_INTRINSIC_ROUND:
e: :G_FMAXNUM:

e: :G_FMINNUM:

e: :G_FMAXIMUM:
e: :G_FMINIMUM:

se TargetOpco
se TargetOpco
se TargetOpco
se TargetOpco
se TargetOpco
se TargetOpco
se TargetOpco
se TargetOpco
se TargetOpco
se TargetOpco
se TargetOpco
se TargetOpco
se TargetOpco
se TargetOpco
se TargetOpco
se TargetOpco
se TargetOpco
se TargetOpco
se TargetOpco
se TargetOpco
se TargetOpco
se TargetOpco
se TargetOpco
se TargetOpco
se TargetOpco
se TargetOpco
se TargetOpco
return true;

A A4 A4 dAd A4 A A A A A A A A A A A A A A A Ao
jelBeRcilcicilcilcicil el c B el c il c R el e R el c B el o o e R o R o BN e R« BN o B

eturn false;

Challenges

Encountered
(continued)

November 9, 2022 | © 2022 IBM Corporation

When generating a

combir

optio

Oﬁ

Daran

e

er, using the
N to add an
additl

al

ter ended
Up with a missing

space between the
type and the name.

There is an easy workaround to this

Issue.

The generated
matcher from the

S
a

DAG does not

ways behave as

expected.

In our case, the isCommutable tlag
IS ignored.

Furthermore, immediates used as
left hand side operands are not
matched.

Pattern Selection
Complications.

This is seen when attempting to select
certain extend patterns within the
PowerPC backend.

The following sext pattern can be recognized by the GlSel instruction selector:

let Interpretation64Bit = 1, isCodeGenOnly = 1 in

defm EXTSW_32_64 : XForm_11lr<31, 986, (outs g8rc:$rA), (ins gprgc:$rS),
"extsw", "$rA, $rS", IIC_IntSimple,
[(set 164:%$rA, (sext 132:%rS))]>, isPPCo4,
SExt32Tob4;

But the following simple zext pattern can not be recognized.

def : Pat<(i64 (zext 132:%$in)),
(RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
@, 32)>;

Interesting
Discoveries

November 9, 2022 | © 2022 IBM Corporation

G_MERGE _VALUES and
G_UNMERGE_VALUES

always takes
operands In Little
Endian ordering.

This is still the case, even if the
target is in Big Endian.

This may come up as a surprise for
developers who are working on Big
Endian targets.

Not every SDNode

nas an equivalent
GMIR opcode.

For example, umulhilo.

It Is not always clear if this is just the
current state of development (where
certain SDNodes do not map to a
single generic opcode), or if there is
another reason for it not being
available.

Lowering for the
G_SELECT opcode IS
only implemented
for vector operands
at this time.

This can be a straightforward
upstream fix.

Interesting

Discoveries
(continued)

Libcalls for generic
opcodes may be
missing.

We discovered that the
libcall for G MUL was
mIssing.

The libcall has been
added for the G_MUL
opcode upstream.

[Glsel] Add missing libcall for G_MUL to LegalizerHelper

b38375378dea

Y Authored by Kai on Aug 2 2022, 1:12 PM.
Description

[Glsel] Add missing libcall for G_MUL to LegalizerHelper

The LegalizerHelper misses the code to lower G_MUL to a library call,

which this change adds.

Reviewed By: arsenm

Differential Revision: #* https:/reviews.llvm.org/D130987
Details
Committed Kai Aug2 2022, 1:35 PM
Reviewer arsenm
Differential Revision B136987{GisetfAddmissingtibecatt-for G- MUttotegatizerHetper
Parents rGd3c4609855e1: [Glsel] Add missing space between type and name in GICombinerHelperArg
Branches main
Tags None

* # Kai committed rGb38375378dea: [Glsel] Add missing libcall for G_MUL to LegalizerHelper (authored by Kai).
S Kai added an edge: D136987-{Gisel}- Add-missingibcalt-for 6-MULtotegalizerHelper.

S Herald added projects: All, LLVM. - View Herald Transcript

November 9, 2022 | © 2022 IBM Corporation

One of the calling conventions
in the PowerPC backend does
not use TableGen definitions.

Only a stub definition for this
calling convention is available.

This has caused issues In cases
where the ABI does not support
passing vector parameters.

Specitically, we cannot
scalarize vectors in order to
pass vector function arguments
as scalar values.

$ cat and. 1l

define <8 x 116> @test_v8il1l6(<8 x i16> %a, <8 x 116> %b) {
%res = and <8 x 116> %a, %b
ret <8 x il6> %res

}

$ 1lc < and.ll -global-isel —-mattr=—altivec
. text
.abiversion 2
.file testdin>

LLVM ERROR: unable to lower arguments: ptr (in function: test_v8i16)
Stack dump:

Q. Program arguments: llc —global-isel -mattr=-altivec
1 Running pass 'Function Pass Manager' on module '<stdin>'.
2: Running pass 'IRTranslator' on function '@test_v8il6'

Tool Crashes
Experiences

Using the tree matcher for a
GICombiner

« llvm-tblgen crashes when using the
tree matcher for a GICombiner.

* This occurs when creating a combiner
when trying to match a sequence of
Instructions.

 “Declared variable twice” assertion

message Is displayed in these
scenarios.

November 9, 2022 | © 2022 IBM Corporation

Discourse post:
https://discourse.llvm.org/t/gicombiner-

£+ [GISel] Fix match tree emitter.
 Closed @ Public

Y Authored by Kai on Sep 3 2022, 12:24 PM.

Details
Reviewers O dsanders
O aemerson
© arsenm
Commits rGae35188f973e: [GISel] Fix match tree emitter.
= SUMMARY

The following changes are necessary to get the generated tree matcher to compile:

¢ In CodeExpansions::declare() ,the assert() prevents connecting two instructions. E.g. the match code (match (MUL $t, $sl, $s2), (SUB $d, $t, $s3)), resy

one for the def and one for the use. Removing the assertion allows this construct. If $t is later used, it is one of the operands, which should be perfectly fine for now.
¢ The code emitted in GIMatchTreeVRegDefPartitioner::generatePartitionSelectorCode() isnotcompilable:

e The value of NewInstrID should be emitted, not the name

¢ Both calls involving getOperand() end with one parenthesis too many

¢ Swaps generated condition for the partition code in the latter function
With these changes it is possible to use linear patterns.

| also change the rules i2p to p2i, fabs fabs fold,and fneg fneg fold

to use the tree matcher for a linear match. These rules are tested by:

CodeGen/AArch64/GloballSel/combine-fabs.mir
CodeGen/AArch64/GloballSel/combine-fneg.mir
CodeGen/AArch64/GloballSel/combine-ptrtoint.mir
CodeGen/AMDGPU/GloballSel/combine-add-nullptr.mir

and-tree-matcher/65014

Phabricator Reviews:
https://reviews.llvm.org/D133257

https://reviews.llvm.org/D134192

GICombiner and tree matcher

B Code Generation

. redstar

Hi,

| tried to create a combiner using the tree matcher, like in the match—-tree. td test case.
However, this fails with the assertion message “Declared variable twice”. To reproduce, you ca
remove the —gicombiner—-stop—after-build option in the match—-tree. td test case. Tl
already the first rule crashes with this assertion.

Any ideas how to make this work? From first look it seems the problem is that every time a var
used, a possible code expansion is added. This obviously does not work with the variable conr
the rules, like $t in

(match (MUL $t, $s1, $s2),
(SUB $d, $t, $s3)),

Regards,
Kai

https://discourse.llvm.org/t/gicombiner-and-tree-matcher/65014
https://reviews.llvm.org/D133257
https://reviews.llvm.org/D134192

Tool Crashes Experiences
(continued)

TableGen crashes within
the GloballSel Emitter

From Hexagon target:

def: Pat<(int_hexagon_A2_addi IntRegs:$Rs, timm:$s16),
(A2_addi IntRegs:$Rs, imm:$s16)>;

From SystemZ target:

def : Pat<(int _s390 vcfn VR128:%$x, imm32zx4 timm:$m),
(VCFN VR128:%$x, 1, imm32zx4:%$m)>;

November 9, 2022 | © 2022 IBM Corporation

It appears that whenever we have:

« Aninput pattern with an intrinsic using a target constant as a
source, and

« An output pattern of an instruction with an immediate as an
operand

llvm-tblgen will hitan 11lvm_unreachable in
CopyConstantAsImmRenderer: :emitRendererOpcodes ()

with the message:

Failed to lookup instruction!

Discourse Post: https://discourse.llvm.org/t/tablegen-globaliselemitter-crashes-
failed-to-lookup-instruction/66196

https://discourse.llvm.org/t/tablegen-globaliselemitter-crashes-failed-to-lookup-instruction/66196

Our overall GlobalISel

Experience...

Implementing
GloballSel for a new
target Is
straightforward for
the most part

This is especially true if the
target has a complete SDAG
Implementation.

The previous LLVM Dev Meeting
Talk (“In 200 Commits to

GloballSel”) is a helpful
resource for development.

VS

November 9, 2022 | © 2022 IBM Corporation

GlobalISel Community
Documentation Contribution

To contribute back to the community, we plan to
create a “GlobalISel cookbook™ — which aims to
assist other targets in adopting the GlobalISel
framework to their backends.

The cookbook includes the first “recipes” to
follow to adding GloballSel to a target’s
backend, and tips on getting started. This
documentation will also include feedback and
contributions by other targets.

Phabricator Review:
https://reviews.llvm.org/D137111

L

i Differential > D137111

Add GloballSel cook book

</> Needs Review @ Public

* Authored by Kai on Mon, Oct 31, 4:59 PM.

This revision needs review, but there are no reviewers specified.

Details

= SUMMARY

Based on our recent experience with implementing GloballSel for the PowerPC target,

we came up with the idea that some cook book style documentation may be useful.

Diff Detail

Build Status @ Buildable 195345
& Build 296076: pre-merge checks x64 windows passed

Framework
Improvements

During our journey in adopting
GlobalISel to our backend, we
plan to contribute to the
framework and to the
documentation.

https://reviews.llvm.org/D137111

