
10 Commits Towards 
GlobalISel for PowerPC

Kai Nacke
Amy Kwan
Nemanja Ivanovic



2

Challenges 
Encountered

Initially, 
understanding 
some legalization 
details were 
difficult.

Finding out how many type indices 
an instruction has was not obvious.

Creating new 
machine basic 
blocks in the 
Legalizer does not 
seem possible.

This is normally not required, but 
would be useful in certain 
circumstances.

LLTs are unable to 
differentiate between 
different scalar types. 

Unlike MVTs, we do not know if we are 
dealing with an integer or floating point.

Some targets implement utilities that 
check for FP-related opcodes to know if 
the LLT we are dealing with is floating 
point or not. 

November 9, 2022 | © 2022 IBM Corporation



3

Challenges 
Encountered 
(continued)

When generating a 
combiner, using the 
option to add an 
additional 
parameter ended 
up with a missing 
space between the 
type and the name.

There is an easy workaround to this 
issue.

The generated 
matcher from the 
SDAG does not 
always behave as 
expected.

In our case, the isCommutable flag 
is ignored.

Furthermore, immediates used as 
left hand side operands are not 
matched.

Pattern Selection 
Complications.
This is seen when attempting to select 
certain extend patterns within the 
PowerPC backend.

November 9, 2022 | © 2022 IBM Corporation



4

Interesting 
Discoveries

G_MERGE_VALUES and 
G_UNMERGE_VALUES 
always takes 
operands in Little 
Endian ordering.

This is still the case, even if the 
target is in Big Endian.

This may come up as a surprise for 
developers who are working on Big 
Endian targets.

Not every SDNode
has an equivalent 
GMIR opcode.

For example, umulhilo.

It is not always clear if this is just the 
current state of development (where 
certain SDNodes do not map to a 
single generic opcode), or if there is 
another reason for it not being 
available. 

Lowering for the 
G_SELECT opcode is 
only implemented 
for vector operands 
at this time.

This can be a straightforward 
upstream fix.

November 9, 2022 | © 2022 IBM Corporation



5

One of the calling conventions 
in the PowerPC backend does 
not use TableGen definitions.

Only a stub definition for this 
calling convention is available. 

This has caused issues in cases 
where the ABI does not support 
passing vector parameters.

Specifically, we cannot 
scalarize vectors in order to 
pass vector function arguments 
as scalar values.

Libcalls for generic 
opcodes may be 
missing.

We discovered that the 
libcall for G_MUL was 
missing. 

The libcall has been 
added for the G_MUL 
opcode upstream. 

Interesting 
Discoveries 
(continued)

November 9, 2022 | © 2022 IBM Corporation



Tool Crashes 
Experiences

Using the tree matcher for a 
GICombiner

• llvm-tblgen crashes when using the 
tree matcher for a GICombiner.

• This occurs when creating a combiner 
when trying to match a sequence of 
instructions.

• “Declared variable twice” assertion 
message is displayed in these 
scenarios.

Discourse post:
https://discourse.llvm.org/t/gicombiner-
and-tree-matcher/65014

Phabricator Reviews:
https://reviews.llvm.org/D133257
https://reviews.llvm.org/D134192

6November 9, 2022 | © 2022 IBM Corporation

https://discourse.llvm.org/t/gicombiner-and-tree-matcher/65014
https://reviews.llvm.org/D133257
https://reviews.llvm.org/D134192


7

TableGen crashes within 
the GlobalISel Emitter

Tool Crashes Experiences 
(continued)

It appears that whenever we have:

• An input pattern with an intrinsic using a target constant as a 
source, and

• An output pattern of an instruction with an immediate as an 
operand

llvm-tblgen will hit an llvm_unreachable in 
CopyConstantAsImmRenderer::emitRendererOpcodes() 
with the message:

Failed to lookup instruction!

Discourse Post: https://discourse.llvm.org/t/tablegen-globaliselemitter-crashes-
failed-to-lookup-instruction/66196

November 9, 2022 | © 2022 IBM Corporation

https://discourse.llvm.org/t/tablegen-globaliselemitter-crashes-failed-to-lookup-instruction/66196


8

Our overall GlobalISel
Experience…

Implementing 
GlobalISel for a new 

target is 
straightforward for 

the most part 

This is especially true if the 
target has a complete SDAG 

implementation.

The previous LLVM Dev Meeting 
Talk (“In 100 Commits to 
GlobalISel”) is a helpful 

resource for development.

GlobalISel Community 
Documentation Contribution

To contribute back to the community, we plan to 
create a “GlobalISel cookbook” – which aims to 
assist other targets in adopting the GlobalISel

framework to their backends.

The cookbook includes the first “recipes” to 
follow to adding GlobalISel to a target’s 

backend, and tips on getting started. This 
documentation will also include feedback and 

contributions by other targets. 

Phabricator Review: 
https://reviews.llvm.org/D137111

Framework 
Improvements

During our journey in adopting 
GlobalISel to our backend, we 

plan to contribute to the 
framework and to the 

documentation.

November 9, 2022 | © 2022 IBM Corporation

https://reviews.llvm.org/D137111

