
1LLVM Developers’ Meeting 2022 | VAST: MLIR for program analysis of C/C++

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

VAST: MLIR for program analysis of C/C++
Henrich Lauko

November 8-9th, 2022

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The
views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted as
representing the official views or policies of the Department of Defense or the U.S. Government.

2LLVM Developers’ Meeting 2022 | VAST: MLIR for program analysis of C/C++

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Henrich Lauko

Senior security engineer at Trail of Bits

○ Email: henrich.lauko@trailofbits.com

○ Twitter: @HenrichLauko

Hi everyone

VAST – MLIR library for program analysis

https://github.com/trailofbits/vast

https://www.trailofbits.com/
mailto:henrich.lau@trailofbits.com
https://twitter.com/HenrichLauko
https://github.com/trailofbits/vast

3LLVM Developers’ Meeting 2022 | VAST: MLIR for program analysis of C/C++

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Today’s IRs don’t meet analysis needs
● Program analysis:

○ Static analysis and source base queries

○ Fuzzing, abstract interpretation, symbolic execution

○ Program models and instrumentation

● An orthogonal problem to optimization:

○ We need truthful information about program semantics

○ Optimizations are destructive transformations

○ Challenge is to relate results back to source

Source

Analyzed IR

Analysis

4LLVM Developers’ Meeting 2022 | VAST: MLIR for program analysis of C/C++

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

We need a program analysis-focused IR
● Analysis of source code level (semgrep, weggli):

○ Lacks semantic awareness

● Analysis at Clang AST level (ast-matcher):

○ Too complex for more heavy-duty/interpretation based analysis

○ Not a complete source of truth

● Analysis at LLVM IR level (sanitizers, KLEE):

○ A collection of IR flavours/dialects – intrinsic-based dialects

○ Too low-level for some analyses

○ Hard to relate to source after optimization, e.g. ABI is already lowered

5LLVM Developers’ Meeting 2022 | VAST: MLIR for program analysis of C/C++

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

MLIR is the future of program analysis

Clang ASTSource VAST
High Level MLIR

VAST
Low Level MLIR

● VAST – MLIR library for program analysis: https://github.com/trailofbits/vast

● Views of the source code at the various stages of translation to LLVM

● Various stages are interesting for different analyses:

○ A high-level control flow with a lowered types

○ Analysis of lifetimes of high-level code, in concurrent environments

LLVM IR

https://github.com/trailofbits/vast

6LLVM Developers’ Meeting 2022 | VAST: MLIR for program analysis of C/C++

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Semantic dialects tailored to analysis goals

Our vision for program analysis

VAST
High Level MLIR

VAST
Low Level MLIR

Control Flow
High Level

Control Flow
Low Level

Lifetime Critical Sections

Concurrency

...

...

hl.func external @loop_simple () -> !hl.void {
 %0 = hl.var "i" : !hl.lvalue = {
 %1 = hl.const #hl.integer<0> : !hl.int
 hl.value.yield %1 : !hl.int
 }
 hl.for {
 %1 = hl.ref %0 : !hl.lvalue
 %2 = hl.implicit_cast %1 LValueToRValue :

!hl.lvalue -> !hl.int
 %3 = hl.const #hl.integer<100> : !hl.int
 %4 = hl.cmp slt %2, %3 : !hl.int, !hl.int

-> !hl.int
 hl.cond.yield %4 : !hl.int
 } incr {
 %1 = hl.ref %0 : !hl.lvalue
 %2 = hl.post.inc %1 : !hl.lvalue -> !hl.int
 } do {
 }
 hl.return
}

7LLVM Developers’ Meeting 2022 | VAST: MLIR for program analysis of C/C++

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Semantic dialects tailored to analysis goals

Our vision for program analysis

VAST
High Level MLIR

VAST
Low Level MLIR

Control Flow
High Level

Control Flow
Low Level

Lifetime Critical Sections

Concurrency

...

...

llvm.func @loop_simple() {

 %0 = llvm.mlir.constant(1 : index) : i64

 %1 = llvm.alloca %0 x i32 : (i64) -> !llvm.ptr<i32>

 %2 = llvm.mlir.constant(0 : i32) : i32

 llvm.store %2, %1 : !llvm.ptr<i32>

 hl.for {

 %3 = llvm.load %1 : !llvm.ptr<i32>

 %4 = llvm.mlir.constant(100 : i32) : i32

 %5 = llvm.icmp "slt" %3, %4 : i32

 hl.cond.yield %5 : si32

 } incr {

 } do {

 }

}

8LLVM Developers’ Meeting 2022 | VAST: MLIR for program analysis of C/C++

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Provenance dialects
struct Point {

 int x, y, z;

};

Point add(Point a, Point b) {

 ...

}

LLVM

define {i64, i32} @add(i64 a1, i32 a2,
 i64 b1, i32 b2)

VAST ABI Lowering

func add(Point a, Point b) -> Point {
 abi.entry { // prologue
 [a1: i64, a2: i32] = abi.lower(a)
 [b1: i64, b2: i32] = abi.lower(b)
 } body -> [i64, i32] {
 // use a1, a2, b1, b2
 // return {r1: i64, r2: i32}
 } abi.return { // epilogue
 return abi.lift(r1, r2): Point
 }
}

9LLVM Developers’ Meeting 2022 | VAST: MLIR for program analysis of C/C++

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Tower of IRs

Our vision for program analysis

LLVM Dialect

High Level MLIR

Low Level MLIR

High Level MLIR
+

STD Types

ABI Dialect

Source

V
A

S
T

M
O

D
U

LE

User Defined
Dialect

10LLVM Developers’ Meeting 2022 | VAST: MLIR for program analysis of C/C++

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Tower of IRs

Our vision for program analysis

LLVM Dialect

High Level MLIR

Low Level MLIR

High Level MLIR
+

STD Types

ABI Dialect

Source

V
A

S
T

M
O

D
U

LE

User Defined
Dialect

%1 = llvm.alloca %0 x i32 : !llvm.ptr<i32>

%2 = llvm.mlir.constant(0 : i32) : i32

llvm.store %2, %1 : !llvm.ptr<i32>

%0 = hl.var "i" : !hl.lvalue = {

 %1 = hl.const #hl.integer<0> : !hl.int

 hl.value.yield %1 : !hl.int

}

int i = 0;

11LLVM Developers’ Meeting 2022 | VAST: MLIR for program analysis of C/C++

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Sometimes compilation isn’t the goal

● Extract specific features from program

● Model concurrency, RPC communication,
protocols, component interactions

● Use tower to report analysis results

VAST
High Level MLIR

VAST
Low Level MLIR

Concurrency
Dialect

TLA+

MODEL
CHECKER

Abstract Program
Features

Extract Model

Analyze

12LLVM Developers’ Meeting 2022 | VAST: MLIR for program analysis of C/C++

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

How we want to analyze programs
● Want efficiency of LLVM IR and

expressivity of source

● Requires all representations

● Use tower of IRs to get high-level view

Source

High-Level Dialect

Low-Level Dialect

Interpreter

Intermediate Dialects

User

 q
ue

ry

 data

1. Com
pile using VA

ST

13LLVM Developers’ Meeting 2022 | VAST: MLIR for program analysis of C/C++

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

What about human-in-the-loop?
● Want efficiency of LLVM IR and

expressivity of source

● Requires all representations

● Use tower of IRs to get high-level view

● Present the user what he recognizes

Source

High-Level Dialect

Low-Level Dialect

Interpreter

Intermediate Dialects

User

Yi
el

d
an

al
ys

is
 r

es
ul

ts

 Interact w
ith analysis

1. Com
pile using VA

ST

14LLVM Developers’ Meeting 2022 | VAST: MLIR for program analysis of C/C++

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

VAST gives you a tower, not a silo
● Information rich dialects

● Lower dialects to other tool’s dialects

● For example Clang IR or LLVM IR

● Allows to leverage high-level MLIR for
smoother instrumentation and easier
program analysis

Source

High-Level Dialect

Clang IR or LLVM IR or …

Static Analysis

Intermediate Dialects

User

1. Com
pile using VA

ST

15LLVM Developers’ Meeting 2022 | VAST: MLIR for program analysis of C/C++

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Decompilation
Source

Clang AST

Binary

C
O

M
P

IL
A

T
IO

N

VAST Dialects

LLVM

Source

Clang AST

Binary

VAST Dialects

LLVM

D
E

C
O

M
P

IL
A

T
IO

N

16LLVM Developers’ Meeting 2022 | VAST: MLIR for program analysis of C/C++

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

Transpiling with VAST

Clang ASTSource VAST
High Level MLIR

VAST
Low Level MLIR

Successor
language dialect

emit new
sourceSource.v2

VAST-MODERNIZE

TOWER of IRs

17LLVM Developers’ Meeting 2022 | VAST: MLIR for program analysis of C/C++

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

CPP to CPP2
void f(const X& x) {
 g(x);
}

void f(in X x) {
 g(x);
}

hl.func @f(%x : !hl.ref<!hl.lvalue<!hl.struct<"X">>, const>) {
 %0 = hl.call @g(%x) : (!hl.ref<!hl.lvalue<!hl.struct<"X">>, const>)

-> !hl.void
}

hl.func @f(%x : !par.in<!hl.lvalue<!hl.struct<"X">>>) {
 %0 = hl.call @g(%x) : (!par.in<!hl.lvalue<!hl.struct<"X">>>)

-> !hl.void
}

18LLVM Developers’ Meeting 2022 | VAST: MLIR for program analysis of C/C++

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

VAST Tooling
● Compilation description dialects

● Configurable codegen

○ How to represent provenance

○ How to lower unsupported primitives

● MLIR interactive editing tool (REPL)

● MLIR query tool

VAST open source at: https://github.com/trailofbits/vast

Source

High-Level Dialect

Low-Level Dialect

Intermediate Dialects

Binary

LLVM IR

https://github.com/trailofbits/vast

19LLVM Developers’ Meeting 2022 | VAST: MLIR for program analysis of C/C++

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

VAST Towers

VAST open source at: https://github.com/trailofbits/vast

Source

High-Level Dialect

Low-Level Dialect

Intermediate Dialects

Binary

LLVM IR

Multi-layered
interpreter

D
E

C
O

M
P

ILA
T

IO
N

TRANSPILED IR

Source v2

MODEL IR

ANALYSIS

USER

P
R

O
V

E
N

A
N

C
E

https://github.com/trailofbits/vast

