
Clang! Clang!
   Who’s there?
      WebAssembly!

Paulo Matos (pmatos@igalia.com)
Alex Bradbury (asb@igalia.com)
Andy Wingo (wingo@igalia.com)

November 9, 2022

mailto:pmatos@igalia.com
mailto:asb@igalia.com
mailto:wingo@igalia.com


Thanks to
My teammates Alex Bradbury and Andy Wingo!

Clang! Clang! Who's there? WebAssembly!
Paulo Matos, October 21, 2022

The Wasm Tools Team for suggestions, discussions and 

reviews!

For Sponsoring this work!



WebAssembly for those in a Rush

Clang! Clang! Who's there? WebAssembly!
Paulo Matos, October 21, 2022

The WebAssembly VM (spec: https://webassembly.github.io/spec/core/)
● Harvard Architecture (Linear memory separate from code)
● Well-typed functions and globals organized into modules
● Module-level globals and Function-level locals not addressable

Initially:

● 4 numeric types { i32, i64, f32, f64 }
● Spec provides instructions to manipulate values of these types
● Load-store instructions to manipulate memory

https://webassembly.github.io/spec/core/


Compile to Wasm

Clang! Clang! Who's there? WebAssembly!
Paulo Matos, October 21, 2022

 1 double vals[100];
 2 void store_double(size_t idx, double val) {
 3   vals[idx] = val;
 4 }
 5 double fetch_double(size_t idx) {
 6   return vals[idx];
 7 }

https://godbolt.org/z/r4WMncWKb 

 1 store_double:
 2        local.get       0
 3        i32.const       3
 4        i32.shl
 5        i32.const       vals
 6        i32.add
 7        local.get       1
 8        f64.store       0
 9        end_function
10 fetch_double:
11        local.get       0
12        i32.const       3
13        i32.shl
14        i32.const       vals
15        i32.add
16        f64.load        0
17        end_function
18 vals:

https://godbolt.org/z/r4WMncWKb


Evolving WebAssembly

Clang! Clang! Who's there? WebAssembly!
Paulo Matos, October 21, 2022

What if instead of doubles we have JS values?  1 JSVal vals[100];
 2 void store_jsval(size_t idx, JSVal val) {
 3   vals[idx] = val;
 4 }
 5 JSVal fetch_jsval(size_t idx) {
 6   return vals[idx];
 7 }

Enter Reference Types:
● These types are opaque and host-managed
● Can’t be stored to linear memory

○ but they can be arguments and return 
values from functions

○ can be stored to globals
● Currently two different types: funcref and 

externref.
○ funcref is a callable reference type

Doesn’t work for reftypes!

The main challenge we are trying to solve is how to represent these values internally in 
Clang and LLVM but also how to expose them to the user as C/C++ extensions.



WebAssembly Tables

Clang! Clang! Who's there? WebAssembly!
Paulo Matos, October 21, 2022

Tables are used to store reference types
● Even weirder than the reftypes themselves!

They have a bunch of constraints:
● Can’t be stored to linear memory, or stack!
● Can’t be arguments or return values of functions!
● They are global static values in a module.

 1 externref_t vals[100] __attribute__((wasm_table));
 2 void store_externref(size_t idx, JSVal val) {
 3   vals[idx] = val;
 4 }
 5 JSVal fetch_externref(size_t idx) {
 6   return vals[idx];
 7 }

 1 store_jsval:
 2        local.get       1
 3        local.get       0
 4        table.set       vals
 5        end_function
 6 
 7 fetch_jsval:
 8        local.get       0
 9        table.get       vals
10        end_function
11 
12 vals:



Reference Types in LLVM IR

Clang! Clang! Who's there? WebAssembly!
Paulo Matos, October 21, 2022

🥳 Support for Reference Types (including tables has landed).

%externref = type ptr addrspace(10)
%funcref = type ptr addrspace(20)
@table = local_unnamed_addr addrspace(1) global [0 x %funcref] undef

● Addrspace 1, 10, 20 are non-integral
● Tables are represented as global arrays 

and accessed via intrinsics.
MVT::externref

MVT::funcrefaddrspace(1) for 
object that don’t 

have an in-memory 
representation



Reference Types in LLVM IR

Clang! Clang! Who's there? WebAssembly!
Paulo Matos, October 21, 2022

 1 define void @store_jsval(%externref %g, i32 %i) {
 2  call void @llvm.wasm.table.set.externref(ptr addrspace(1) @vals, i32 %i, %externref %g)
 3  ret void
 4 }
 5 
 6 define %externref @fetch_jsval(i32 %i) {
 7  %ref = call %externref @llvm.wasm.table.get.externref(ptr addrspace(1) @vals, i32 %i)
 8  ret %externref %ref
 9 }

 1 store_jsval:
 2        local.get       1
 3        local.get       0
 4        table.set       
vals
 5        end_function
 6 
 7 fetch_jsval:
 8        local.get       0
 9        table.get       
vals
10        end_function
11 
12 vals:

https://godbolt.org/z/jnb8x93a4 

What’s the story in Clang?

https://godbolt.org/z/jnb8x93a4


Reference Types in Clang

Clang! Clang! Who's there? WebAssembly!
Paulo Matos, October 21, 2022

In Clang we need:
● a syntax to represent reference types and
● lowering to LLVM IR 

Currently being worked out in a downstream public branch (initial 
prototypes as D122215, D128440, D123510, D124162)

__externref_t is a new type
● with the expected reftype 

constraints
● lowered to LLVM IR as a ptr to 

addrspace(10)

__externref_t JSVAL;

funcref is dealt with differently!
● attribute is attached to function 

pointers: __funcref
● lowered to LLVM IR as a ptr to 

addrspace(20)

typedef void (*__funcref fn_vv_t)();
typedef int (*__funcref fn_ii_t)(int);



Reference Types in Clang

Clang! Clang! Who's there? WebAssembly!
Paulo Matos, October 21, 2022

Tables store reference types!
● Given it’s indexed by an integer, sounds like an array representation is best.

○ However, internally representing a table indexing as ArraySubscript causes 
issues with over-optimization! 
foo[i] ~> ArraySubscript

● Alternatively, implement a new AST node TableSubscript
○ own set of problems as it requires new debug information impl, ABI info, etc.

foo[i] ~> TableSubscript (new)
● Simpler alternative is to model tables and operations as Intrinsics.

○ Syntax not as ergonomic but possibly quicker path to goal and easier to 
upstream (?).
foo[i] instead __wasm_table_get(foo, i)

Have patch for first approach - wip patch for second - trying out third approach!  😅



WebAssembly GC

Clang! Clang! Who's there? WebAssembly!
Paulo Matos, October 21, 2022

Reference types were just a taster for what’s to come!
● GC managed objects: arrays and structs

○ (this is unrelated to GC support in LLVM)
● New instructions introduced to manipulate this type

○ i.e access struct fields, array access, etc
● A lot of the work we are doing at the moment is understanding how to 

represent these in LLVM!
○ but we want to take this all the way to Clang!

Problem: Current AS approach won’t scale for all GC types!

Need to produce correctly typed locals, globals, function argos and returns
● WebAssembly GC types need to be maintained from LLVM IR through to the 

backend.
This includes parameterised types, typed function references, etc.
● Therefore defining a new MVT for each won’t work.



WebAssembly GC

Clang! Clang! Who's there? WebAssembly!
Paulo Matos, October 21, 2022

Our current approach:
● it’s key that type identity is maintained
● Approach is to have one AS ID (currently > 255) as an index into a metadata
● Module-level metadata table index by AS ID tracks value types

The goal is to pass these types through LLVM IR all the way to WebAssembly emission 
as we cannot translate these to LLVM’s limited type system.

This approach is meant as a prototype - not the one we intend to use going forwards.
Hopefully we can work together upstream to find a better solution for IR-level opaque 
type support!



WebAssembly GC Example 1

Clang! Clang! Who's there? WebAssembly!
Paulo Matos, October 21, 2022

 1 !0 = !{!"externref"}
 2 !wasm.type_info = !{!0}
 3 
 4 %wasmref = type ptr addrspace(256)
 5 %externref = type ptr addrspace(257)
 6 
 7 @externref_table = local_unnamed_addr addrspace(1) global [0 x %externref] undef
 8 
 9 declare %wasmref @llvm.wasm.table.get.wasmref(ptr addrspace(1), i32) nounwind
10 
11 define %externref @get_externref_from_table(i32 %i) {
12   %ref_u = call %wasmref @llvm.wasm.table.get.wasmref(ptr addrspace(1) @externref_table, i32 %i)
13   %ref = addrspacecast %wasmref %ref_u to %externref
14   ret %externref %ref
15 }



WebAssembly GC Example 2

Clang! Clang! Who's there? WebAssembly!
Paulo Matos, October 21, 2022

 1 !0 = !{!"externref"}
 2 !wasm.type_info = !{!0}
 3 
 4 %wasmref = type ptr addrspace(256)
 5 %externref = type ptr addrspace(257)
 6 
 7 @externref_table = local_unnamed_addr addrspace(1) global [0 x %externref] undef
 8 
 9 declare %wasmref @llvm.wasm.table.get.wasmref(ptr addrspace(1), i32) nounwind
10 
11 define %externref @get_externref_from_table(i32 %i) {
12   %ref_u = call %wasmref @llvm.wasm.table.get.wasmref(ptr addrspace(1) @externref_table, i32 %i)
13   %ref = addrspacecast %wasmref %ref_u to %externref
14   ret %externref %ref
15 }

 1 !0 = !{!"array i32"}
 2 !wasm.type_info = !{!0}
 3 %array_i32 = type ptr addrspace(257)
 4       
 5 %alloca_cell = type ptr addrspace(1)
 6 
 7 declare void @inhibit_store_to_load_forwarding()
 8 
 9 define %array_i32 @ir_local_array_i32(%array_i32 %arg) {
10  %retval = alloca %array_i32, addrspace(1)
11  store %array_i32 %arg, %alloca_cell %retval
12  call void @inhibit_store_to_load_forwarding()
13  %reloaded = load %array_i32, %alloca_cell %retval
14  ret %array_i32 %reloaded
15 }



Lets Talk Strings - stringref

Clang! Clang! Who's there? WebAssembly!
Paulo Matos, October 21, 2022

Strings as GC reference types!

● Need to support GC strings across the toolchain
○ currently focusing on LLVM atm

● Using the same mechanism as other Wasm GC types, where stringref would inherit 
an AS ID.

 1 !0 = !{!"externref", !"stringref", !"array i32"}
 2 !wasm.type_info = !{!0}
 3 
 4 %externref = type ptr addrspace(256)
 5 %stringref = type ptr addrspace(257)
 6 %array_i32 = type ptr addrspace(258)



Summary

Clang! Clang! Who's there? WebAssembly!
Paulo Matos, October 21, 2022

✅ Reference types in LLVM IR

 Reference types in Clang (D122215, D128440, D123510, D124162)

 GC types in LLVM IR (public branch downstream)

 Stringref in LLVM IR (public branch downstream)

🤔 GC types in Clang

🤔 Stringref in Clang We are hiring!

https://www.igalia.com/jobs/

https://www.igalia.com/jobs/

