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Graph Algorithms

• The use of graph processing is everywhere around us!
§ Social Networks: recommendation systems
§ Travel: Shortest paths, food/hotel recommendations, etc.
§ …
§ Scientific Computing: Biology (genome assembly, human brain), Power 

Grid, Load Balancing.

• There are a variety of graph algorithms 
§ Graph libraries exist for various targets.
§ We propose a compiler approach.
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The Compiler Approach
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COMET: COMpiler for Extreme Targets

• Porting graph applications to heterogeneous systems often requires porting 
code to different programming environments.

§ Explosion of complexity and versioning.
§ Difficult to achieve performance portability.

• For performance portability, need to identify computational patterns.
§ High-level languages allow users to express high-level computational patterns/motifs.
§ Semantics information is used for efficient code generation.

• Clear separation of responsibilities.
§ Users implement algorithms using high-productive programming environments.
§ Compiler generates efficient code for heterogeneous architectures.
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The Challenge with Graph Algorithms

• Traditional architectures are mostly designed for structured data accesses 
(lists, stacks, etc.).
§ Graph algorithms operate on irregular sparse data. 
§ The time spent in communication is high as compared to computation.
§ Conventional latency hiding techniques do not provide much benefit.

• Challenge to program efficient graph algorithms
§ Random access patterns provides poor locality in cache, and hence lot of misses.
§ Parallelization is difficult. 

• Optimizations if performed severely limit portability of graph algorithms to 
new architectures.
§ Compilers can help, but we also need a new way of doing graph algorithms.  
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Graph Algorithms in Linear Algebra

• Linear algebra (LA) provide an elegant, concise, intuitive, and portable 
programming abstraction for implementing graph algorithms.
§ The algorithmic complexity of LA-based implementations is close to the complexity 

of the node- or edge-traversal-based implementations.
• Linear algebra operators have been extensively studied and optimized for a 

variety of architectures and domain problems
§ Many algorithmic implementations of operators and methods
§ Many LA accelerators exists (e.g., Tensor cores)
§ Good support in many architectures (e.g., AVX)
§ LA operators represent basic computational blocks in emerging architecture
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LA-based Graph Processing

• A graph as a sparse adjacency matrix.
• Sparse matrix/vector operations can be used to express graph algorithms.
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LA-based Graph Processing

• A graph as a sparse adjacency matrix.
• Sparse matrix/vector operations can be used to express graph algorithms. 

§ Find vertices that are one hop away from a source vertex: fA
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LA-based Graph Processing

• A graph as a sparse adjacency matrix.
• Sparse matrix/vector operations can be used to express graph algorithms. 

§ Find vertices that are k hops away from a source vertex: fAk
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Semirings

• A semiring is an algebraic structure that allows us to perform special 
operations beyond addition and multiplication to elements in a generic 
matrix multiplication operation.

1 2

4 7 5

3 6

1 1
1 1

1
1 1

1
1
1 1 11 1

1 1

Any-pair semiring for 
traversal. Operates on 
binary values (structure).

Frontier

𝑨

𝒇

𝑤 = 𝑓@ 𝑎𝑛𝑦, 𝑝𝑎𝑖𝑟 𝐴
𝑓@(+,×) 𝐴

Any (pair(1,1), pair(1,1))

10PNNL-SA-182677
The Seventh LLVM Performance 

Workshop, CGO, Montreal, Canada, 
February 25, 2023



Semirings

• A semiring is an algebraic structure that allows us to perform special 
operations beyond addition and multiplication to elements in a generic 
matrix multiplication operation.
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Semirings

• A semiring is an algebraic structure that allows us to perform special 
operations beyond addition and multiplication to elements in a generic 
matrix multiplication operation.
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Masking

• Prevent redundant computations (traversal: already visited vertices)
• Reduce the scope of an operation to be performed

§ A mask indicates the locations where the operation should be performed

𝑓

𝑤 = 𝑓 @(+,×) 𝐴
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𝑓

𝑤 𝑚 = 𝑓 @(+,×) 𝐴 𝑤

with  a mask

𝑚

𝑨 𝑨
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A DSL for Graph Algorithms using Linear Algebra
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COMET: Domain Specific Compilation in Multi-
level IR

• COMET is a compiler infrastructure that focuses on computational chemistry and 
graph analytics application domain

• COMET supported frontends
§ COMET Domain specific language that follows Einstein notation
§ NumPy einsum to evaluates the Einstein summation
§ Rust eDSL

• COMET compiler infrastructure
§ Enable from high-level, domain-specific and low-level, architecture-specific 

compiler optimizations
§ Tensor algebra dialect in the MLIR infrastructure
§ Multi-level code optimizations, including domain-specific and architecture specific
§ Abstraction for dense/sparse storage formats

ü A set of per-dimension attributes to specify sparsity properties of tensors
ü Attributes enables support for a wide range of sparse storage formats

§ Data layout optimizations to enhance data locality
§ Support for sparse output for sparse-sparse computation (e.g., SpGEMM)
§ Support for semiring operations to represent graph algorithms
§ Kernel Fusion to avoid temporaries and redundant computation
§ Automatic code generation for sequential and parallel execution
§ FPGA code generation via SPIRV binary
§ Interface with emerging dataflow architectures (SambaNova and Xilinx Versal)

• COMET runtime
§ Input-dependent optimization to increase data locality and load balancing
§ Read input matrices and tensors, convert it into internal storage format

Algebra

Dense/Sparse Tensor Algebra (TA) DSL, NumPy and Rust eDSL

TA AST

Tensor

Async

Structured Control Flow

LLVM IR

LLVM IR
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execution

TTGT, multi-operand 
expressions 
optimization, tiling, loop 
reordering, micro kernel, 
fusion
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Parallel 
execution

SparseDense

Sparse tensor operations, 
support for important storage 
formats, sparse output, data 
reordering, workspace 
transformations, fusion

Front/backend 
dialect

Optimization 
dialect 
External 
representation

Handshake

FIRRTL

Verilog

FPGA

GPU

CUDA SPIR-V

PTX SPIR-V

GPUs and FPGA

Dataflow

Dataflow

Spatial 
accelerators

Index Tree

Xilinx Versal, 
SambaNova
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A collection of modular and reusable software components that 
enables the progressive lowering of high-level operations, to 

efficiently target hardware in a common way 

Multi-Level Intermediate Representation 
(MLIR)

New compiler infrastructure Part of LLVM project

https://github.com/llvm/llvm-project
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Sparse Computations

• Sparse kernels are widely used in many applications, e.g., scientific 
computing, machine learning, and data analytics

• Sparse computations uses sparse storage formats:
§ To reduce storage requirements by storing only nonzero elements
§ To reduce computational requirements by skipping redundant computation

• Challenges with sparse computations:
§ Difficult to write sparse kernels considering many different storage formats
§ Lack of temporal locality due to irregular accesses 
§ Lack of spatial locality, limited data reuse

• Sparse libraries solve some of the issues above but …
§ Limited support for combination of sparse storage formats, various tensor expressions, 

and heterogeneous target architectures

Sparse Compilers simplifies development of sparse kernels by 
automatically generating code based on tensor “sparsity” property  
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Sparse Compilation Pipeline1,2

• Internal sparse tensor storage 
format

• Sparse data type
• An attribute per tensor dimension to 

support sparse tensor storage 
format

• Automatic code generation for 
sparse tensor operations

• Support for sparse output
• Input-dependent optimization

§ Data reordering to enhance data 
locality 

[1] Ruiqin Tian, Luanzheng Guo, Jiajia Li, Bin Ren, Gokcen Kestor. “A High Performance Sparse Tensor Algebra Compiler in MLIR”. LLVM-HPC, 2021. 
[2] Sparse tensor algebra optimizations in MLIR. Tian R., L. Guo, and G. Kestor. 2021 LLVM DEVELOPERS' MEETING. November 2021. 
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Support for Sparse Outputs

• Storing output tensor in a sparse format introduces expensive insertions and 
accesses to sparse input tensors, which has large time complexity

• We introduced a temporary dense data structure (called workspaces1) 
to store the value in the sparse dimension in sparse kernels to improve 
data locality of sparse kernels while producing sparse output

• This approach brings the following advantages:
§ Significantly improves performance of sparse kernels through efficient dense data 

structures accesses.
§ Reduces memory footprint
§ Avoids “densifying” issue in the compound expressions

[1] Tensor Algebra Compilation with Workspaces. Fredrik Kjolstad, and et al., IEEE/ACM International Symposium on Code Generation and Optimization, 2019 
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Index tree Intermediate Representation (IR)

• We introduced Index Tree intermediate representation in the COMET compiler
§ Index Tree is a high-level intermediate representation for a tensor expression
§ Consists of two types of nodes

ü Index nodes:
• Contain one or more indices to represent (nested) loops
• Each index represent a level of loop

ü Compute nodes:
• Contain compute statements

i, k, j

Cij += Aik * Bkj

Index tree for 
SpGEMM

1 for i in I
2 for k in K              
3 for j in J
4 Cij += Aik * Bkj

Pseudo-code for SpGEMM

𝐶𝑖𝑗 = %
!

𝐴𝑖𝑘 ∗ 𝐵𝑘𝑗
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• We perform compiler transformation in the index tree representation of a tensor 
expression
§ Benefits

ü Reduces expensive insertions/ accesses to sparse tensors
• Dense data structure has better locality
• Generates “for” loops instead of “while” loops
• Utilize the existing for loop optimizations

§ How?
ü Identify the index that needs workspace

• Store the value in the dimension into workspace ( i.e., dense low dimensional data structure)

ü Check output tensor (lhs) , if it contains sparse dimension
• e.g., SpGEMM in CSR, dimension j is sparse in C. Then the original “Cij=Aik*Bkj” will be transformed into “Wj = 0; Wj += 

Aik*Bkj; Cij = Wj; ” in each iteration of i

ü Check input tensors (rhs), if one dimension in both two input tensors are sparse
• e.g., pure sparse elementwise multiplication, Cij=Aij*Bij, all matrices are in CSR. In this case, dimension j is sparse in A 

and B. then the original “Cij=Aij*Bij” will be converted into “Wj = 0;Wj = Aij; Cij = Wj*Bij;” in each iteration of i

Workspace Transformation

What is the 
algorithm?
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Transformation in Index Tree

i, k, j

Cij += Aik * Bkj

Index tree for 
SpGEMM

Index tree for SpGEMM with workspace

Wj = 0

i, k

Wj += Aik * 
Bkj

j

Cij = Wj

Eliminate loop invariant 
redundancy

Cij = Wj

j

i

Wj += Aik * Bkj

k, j

Wj = 0

j
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Code Generation from Index Tree IR Operations

1 for i in I
2     for j in J
3        Wj = 0
4 for k in K              
5 for j in J
6 Wj += Aik * Bkj
7 for j in J
8 Cij = Wj

// update pos/crd

Pseudo-code for SpGEMM with workspace
Cij = Wj

j

i

Wj += Aik * Bkj

k, j

Wj = 0

j

Index tree for SpGEMM
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Index Tree IR Operations
• Three types of index tree IR operations

§ it.itree: the identifier of the index tree op in IT IR
§ it.Indices: represent the information in Index Node in index tree
§ it.Compute: represent the information in Compute Node in index tree

Index tree example

Corresponding index tree IR

%96 = it.Compute (%cst_40, %95) {…} : …-> (i64)
%97 = it.Indices (%96) {indices = [2]} : (i64) -> i64
%98 = it.Compute (%34, %68, %95) {semiring=“plus-times”} …: -> (i64)
%99 = it.Indices (%98) {indices = [1, 2]} : (i64) -> i64
%100 = it.Compute (%95, %93) {…} -> (i64)
%101 = it.Indices (%100) {indices = [2]}
%102 = it.Indices (%97, %99, %101) {indices = [0]}
%103 = it.itree (%102) : (i64) -> i64

Cij = Wj

j

i

Wj += Aik * Bkj

k, j

Wj = 0

j

it.Indices

it.itree

it.Indices

it.Compute
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Generated Index Tree IR Operations Example

def main() {
#IndexLabel Declarations
IndexLabel [i] = [?];
IndexLabel [j] = [?];
IndexLabel [k] = [?];

#Tensor Declarations
Tensor<double> A([i, k], {CSR});
Tensor<double> B([k, j], {CSR});
Tensor<double> C([i, j], {CSR});

#Tensor Data Initialization
A[i, k] = comet_read(0);
B[k, j] = comet_read(1);
C[i, j] = 0.0;

#Tensor Contraction
C[i, j] = A[i, k] @(+,*) B[k, j];

}

SpGEMM DSL

SpGEMM Index Tree IR Ops

1 for i in I
2     for j in J
3        Wj = 0
4 for k in K              
5 for j in J
6 Wj += Aik * Bkj
7 for j in J
8 Cij = Wj

// update pos/crd
Pseudo-code for SpGEMM with workspace

The semiring attribute influences 
how this code is generated.

%96 = it.Compute (%cst_40, %95) {…} : …-> (i64)
%97 = it.Indices (%96) {indices = [2]} : (i64) -> i64
%98 = it.Compute (%34, %68, %95) {semiring=“plus-times”} …: -> (i64)
%99 = it.Indices (%98) {indices = [1, 2]} : (i64) -> i64
%100 = it.Compute (%95, %93) {…} -> (i64)
%101 = it.Indices (%100) {indices = [2]}
%102 = it.Indices (%97, %99, %101) {indices = [0]}
%103 = it.itree (%102) : (i64) -> i64
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Some semiring examples in DSL

def main() {
#IndexLabel Declarations
IndexLabel [a] = [?];
IndexLabel [b] = [?];
IndexLabel [c] = [?];

#Tensor Declarations
Tensor<double> A([a, b], {CSR});
Tensor<double> B([b, c], {CSR});
Tensor<double> C([a, c], {CSR});

#Tensor Data Initialization
A[a, b] = comet_read(0);
B[b, c] = comet_read(1);

#PlusTimes semiring
C[a, c] = A[a, b] @(+,*) B[b, c];

}

def main() {
#IndexLabel Declarations
IndexLabel [a] = [?];
IndexLabel [b] = [?];

#Tensor Declarations
Tensor<double> A([a, b], {CSR});
Tensor<double> B([a, b], {CSR});

#Tensor Data Initialization
A[a, b] = comet_read(0);
B[a, b] = comet_read(1);

#Min monoid
C[a, b] = A[a, b] @(min) B[a, b];

}
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Semiring Operations in COMET
Semirings Operation Explanation
Lor-land s(|, &) ‘lor’ means logical OR; ‘land’ means logical AND.

Min-first s(min, first) ‘min’ means the minimal value; ‘first’ means first(x, y) = x: output the value of 
the first in the pair.

Plus-times s(+,x) ‘+’ means addition; ‘x’ means multiplication.

Any-pair s(any, pair) ‘any’ means “if there is any; if yes return true”. ‘pair’ means pair(x, y) = 1: x and 
y both have defined value at this intersection. 

Min-plus s(min, +) ‘min’ means the minimal value; ‘+’ means addition.

Plus-pair s(+, pair) ‘+’ means addition; ‘pair’ means pair(x, y) = 1: x and y both have defined value 
at this intersection. 

Min-second s(min, second) ‘min’ means the minimal value; ‘second’ means second(x, y) = x: output the 
value of the second in the pair.

Plus-second s(+, second) ‘+’ means addition; ‘second’ means second(x, y) = x: output the value of the 
second in the pair.

Plus-first s(+, first) ‘+’ means addition; ‘first’ means first(x, y) = x: output the value of the first in the 
pair.
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Semiring Operations per application
Semirings Operation Description

BFS Lor-land s(|, &) Compute traversal level for each vertex
Min-first s(min, first) Compute parent for each vertex
Plus-times s(+,x) Number of paths
Any-pair s(any, pair) Reachability
Min-plus s(min, +) Shortest path

SSSP Min-plus s(min, +) Shortest path without mask (Bellman-Ford Algorithm)
TC Plus-pair s(+, pair) Number of triangles
CC Min-second s(min, second) Hooking and shortcutting
PR Plus-second s(+, second) Outbound PageRank score
BC Plus-first s(+, first) Accumulate path count
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Semiring Performance (unjumbled)
• A method returns a matrix in an unjumbled state, with indices sorted

§ if the matrix will be immediately exported in unjumbled form, or 
§ if the matrix is provided as input to a method that requires it to not be jumbled 

Performance 
comparison wrt 
LAGraph1

[1] Tim Mattson and others. “LAGraph: A Community Effort to Collect Graph Algorithms Built on Top of the GraphBLAS”, IEEE International Parallel and Distributed 
Processing Symposium Workshops (IPDPSW), 2019. 29PNNL-SA-182677
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Semiring Performance (jumbled)
• A method returns a matrix in a jumbled state, with indices out of order

§ If some methods can tolerate jumbled matrices on input, the sorting of the indices is left 
pending

Performance 
comparison wrt 
LAGraph

We need a 

better sorting 

algorithm
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Push-Based Masking

• Example of SpGEMM: 𝐶 𝑀 = 𝐴 @(+,×) 𝐵
• Driven by rows of 𝐴
• Do linear combination

𝐵𝐴

×

𝑀

×

×

×

𝐶! 𝑀! = 𝐴! @(+,×) 𝐵

𝐴!

𝑀!

𝐶!

+

=
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Pull-Based Masking

• Example of SpGEMM: 𝐶 𝑀 = 𝐴 @(+,×) 𝐵
• Driven by non-zero elements of 𝑀
• Do dot product, and 𝐵 is in CSC format

𝐵𝐴

×

𝑀

𝐶!" 𝑀!" = 𝐴!:@ +,× 𝐵:"

We plan to have pull-based masking in the future 

𝑀!"

×

𝐶!"

𝐴!:

𝐵:"
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Results: Masking

33PNNL-SA-182677
The Seventh LLVM Performance 

Workshop, CGO, Montreal, Canada, 
February 25, 2023



Triangle Counting in COMET

• Number of Triangles in a graph, where a triangle is a set of three mutually 
adjacent vertices in a graph.

• Various linear algebra-based algorithms proposed for the triangle counting 
problem.
§ Burkhard algorithm: 

§ Cohen algorithm: 

§ SandiaLL algorithm: 

§ SandiaUU algorithm: 

𝑛𝑡𝑟𝑖 = 𝑠𝑢𝑚 𝐴@ +,× 𝐴 .∗ 𝐴 /6

𝑛𝑡𝑟𝑖 = 𝑠𝑢𝑚 𝐿 @ +,× 𝑈 .∗ 𝐴 /2

𝑛𝑡𝑟𝑖 = 𝑠𝑢𝑚 𝐿 @ +,× 𝐿 .∗ 𝐿

𝑛𝑡𝑟𝑖 = 𝑠𝑢𝑚 𝑈 @ +,× 𝑈 .∗ 𝑈
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Triangle Counting in COMET

𝑛𝑡𝑟𝑖 = 𝑠𝑢𝑚 𝐿 @ +,× 𝑈 .∗ 𝐴 /2

def main() {
#IndexLabel Declarations
IndexLabel [a] = [?];
IndexLabel [b] = [?];
IndexLabel [c] = [?];

#Tensor Declarations
Tensor<double> A([a, b], {CSR});
Tensor<double> L([a, c], {CSR});
Tensor<double> U([c, b], {CSR});

#Tensor Data Initialization
A[a, b] = comet_read(0, 1); # standard matrix read
L[a, c] = comet_read(0, 2); # lower triangular read
U[c, b] = comet_read(0, 4); # upper triangular read

#PlusTimes semiring
var ntri = SUM((L[a, c] @(+,*) U[c, b]) .* A[a, b])/2;

}
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Results: Triangle Counting
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Conclusions and future work

• A DSL for implementing graph algorithms using linear algebra operations.
§ Support for semirings and masking.

• Optimizations for efficient codegen of sparse operations.
§ Workspace transforms.

• Sparse linear algebra operations as building blocks for graph algorithms 
paves the way for compiler optimizations. 
§ Target heterogeneous accelerators.
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Thank you
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lenny.guo@pnnl.gov
gokcen.kestor@pnnl.gov

38PNNL-SA-182677

mailto:Rizwan.ashraf@pnnl.gov
mailto:Zhen.peng@pnnl.gov
mailto:Lenny.guo@pnnl.gov
mailto:Gokcen.kestor@pnnl.gov


Acknowledgements

§ The research described in this presentation is part of the 
Data Model Convergence Initiative at Pacific Northwest 
National Laboratory (PNNL). It was conducted under the 
Laboratory Directed Research and Development Program at 
PNNL, a multi-program national laboratory operated by 
Battelle for the U.S. Department of Energy (DOE). 

§ The research described in this presentation is also supported 
in part through U.S. Department of Energy’s Office of 
Advanced Scientific Computing Research as part of the 
Center for Artificial Intelligence-focused Architectures and 
Algorithms (ARIAA). 

§ PNNL is operated by Battelle for the DOE under Contract DE-
AC05-76RL01830. 

39


