
Automatic Code
Generation for High-
Performance Graph

Algorithms
The Seventh LLVM Performance Workshop,
CGO, Montreal, Canada, February 25, 2023

Pacific Northwest National Laboratory

Rizwan Ashraf, Zhen Peng,
Luanzheng Guo, Gokcen Kestor

Graph Algorithms

• The use of graph processing is everywhere around us!
§ Social Networks: recommendation systems
§ Travel: Shortest paths, food/hotel recommendations, etc.
§ …
§ Scientific Computing: Biology (genome assembly, human brain), Power

Grid, Load Balancing.

• There are a variety of graph algorithms
§ Graph libraries exist for various targets.
§ We propose a compiler approach.

Picture Credit: Sanders and Schulz

The Seventh LLVM Performance
Workshop, CGO, Montreal, Canada,

February 25, 2023
2PNNL-SA-182677

The Compiler Approach

CPU
optimized

code

GPU
optimized

code

FPGA/HLS
optimized

code

CPU GPU FPGA

High-level code

COMET
(optimized
code-gen)

CPU GPU FPGA

3X effort for writing libs (in most cases)

Compiler
#1

Compiler
#2

Compiler
#3

Write once, run anywhere

3PNNL-SA-182677
The Seventh LLVM Performance

Workshop, CGO, Montreal, Canada,
February 25, 2023

COMET: COMpiler for Extreme Targets

• Porting graph applications to heterogeneous systems often requires porting
code to different programming environments.

§ Explosion of complexity and versioning.
§ Difficult to achieve performance portability.

• For performance portability, need to identify computational patterns.
§ High-level languages allow users to express high-level computational patterns/motifs.
§ Semantics information is used for efficient code generation.

• Clear separation of responsibilities.
§ Users implement algorithms using high-productive programming environments.
§ Compiler generates efficient code for heterogeneous architectures.

4PNNL-SA-182677
The Seventh LLVM Performance

Workshop, CGO, Montreal, Canada,
February 25, 2023

The Challenge with Graph Algorithms

• Traditional architectures are mostly designed for structured data accesses
(lists, stacks, etc.).
§ Graph algorithms operate on irregular sparse data.
§ The time spent in communication is high as compared to computation.
§ Conventional latency hiding techniques do not provide much benefit.

• Challenge to program efficient graph algorithms
§ Random access patterns provides poor locality in cache, and hence lot of misses.
§ Parallelization is difficult.

• Optimizations if performed severely limit portability of graph algorithms to
new architectures.
§ Compilers can help, but we also need a new way of doing graph algorithms.

5PNNL-SA-182677
The Seventh LLVM Performance

Workshop, CGO, Montreal, Canada,
February 25, 2023

Graph Algorithms in Linear Algebra

• Linear algebra (LA) provide an elegant, concise, intuitive, and portable
programming abstraction for implementing graph algorithms.
§ The algorithmic complexity of LA-based implementations is close to the complexity

of the node- or edge-traversal-based implementations.
• Linear algebra operators have been extensively studied and optimized for a

variety of architectures and domain problems
§ Many algorithmic implementations of operators and methods
§ Many LA accelerators exists (e.g., Tensor cores)
§ Good support in many architectures (e.g., AVX)
§ LA operators represent basic computational blocks in emerging architecture

6PNNL-SA-182677
The Seventh LLVM Performance

Workshop, CGO, Montreal, Canada,
February 25, 2023

LA-based Graph Processing

• A graph as a sparse adjacency matrix.
• Sparse matrix/vector operations can be used to express graph algorithms.

1 2

4 7 5

3 6

1 1
1 1

1
1 1

1
1
1 1 1

7PNNL-SA-182677
The Seventh LLVM Performance

Workshop, CGO, Montreal, Canada,
February 25, 2023

LA-based Graph Processing

• A graph as a sparse adjacency matrix.
• Sparse matrix/vector operations can be used to express graph algorithms.

§ Find vertices that are one hop away from a source vertex: fA

1 2

4 7 5

3 6

1 1
1 1

1
1 1

1
1
1 1 11

1 1 1

Frontier, f

A

fA

Only operations are
performed where non-
zero elements exist

8PNNL-SA-182677
The Seventh LLVM Performance

Workshop, CGO, Montreal, Canada,
February 25, 2023

LA-based Graph Processing

• A graph as a sparse adjacency matrix.
• Sparse matrix/vector operations can be used to express graph algorithms.

§ Find vertices that are k hops away from a source vertex: fAk

1 1
1 1

1
1 1

1
1
1 1 1

1 1 1 1

Frontier, f

A

fA

1 1
1 1

1
1 1

1
1
1 1 1

1 1 2

fA2

1 2

4 7 5

3 6

9PNNL-SA-182677
The Seventh LLVM Performance

Workshop, CGO, Montreal, Canada,
February 25, 2023

Semirings

• A semiring is an algebraic structure that allows us to perform special
operations beyond addition and multiplication to elements in a generic
matrix multiplication operation.

1 2

4 7 5

3 6

1 1
1 1

1
1 1

1
1
1 1 11 1

1 1

Any-pair semiring for
traversal. Operates on
binary values (structure).

Frontier

𝑨

𝒇

𝑤 = 𝑓@ 𝑎𝑛𝑦, 𝑝𝑎𝑖𝑟 𝐴
𝑓@(+,×) 𝐴

Any (pair(1,1), pair(1,1))

10PNNL-SA-182677
The Seventh LLVM Performance

Workshop, CGO, Montreal, Canada,
February 25, 2023

Semirings

• A semiring is an algebraic structure that allows us to perform special
operations beyond addition and multiplication to elements in a generic
matrix multiplication operation.

1 2

4 7 5

3 6

1 1
1 1

1
1 1

1
1
1 1 11 1

1 2

Plus-times semiring for
traversal. Operates on
natural numbers.

Frontier

𝑤 = 𝑓@(+,×) 𝐴

𝑨

𝒇

11PNNL-SA-182677
The Seventh LLVM Performance

Workshop, CGO, Montreal, Canada,
February 25, 2023

Semirings

• A semiring is an algebraic structure that allows us to perform special
operations beyond addition and multiplication to elements in a generic
matrix multiplication operation.

1 2

4 7 5

3 6

1 1

1 1

1

0.2 0.4

1

0.5

1 1 10.5 0.6

0.7 0.9

Frontier

Min-Plus semiring for
finding shortest path.
Operates on +Real
numbers.

0.5

0.2

0.4

0.5
0.6

Min (0.5+0.4, 0.6+0.5)

𝑤 = 𝑓@(𝑚𝑖𝑛, +) 𝐴

𝑨

𝒇

12PNNL-SA-182677
The Seventh LLVM Performance

Workshop, CGO, Montreal, Canada,
February 25, 2023

Masking

• Prevent redundant computations (traversal: already visited vertices)
• Reduce the scope of an operation to be performed

§ A mask indicates the locations where the operation should be performed

𝑓

𝑤 = 𝑓 @(+,×) 𝐴

𝑤

without a mask

𝑓

𝑤 𝑚 = 𝑓 @(+,×) 𝐴 𝑤

with a mask

𝑚

𝑨 𝑨

13PNNL-SA-182677

A DSL for Graph Algorithms using Linear Algebra

CPU
optimized

code

GPU
optimized

code

FPGA/HLS
optimized

code

CPU GPU FPGA

COMET DSL with semirings and masking
(computational motifs)

COMET
(optimized
code-gen)

CPU GPU FPGA

3X effort for writing libs (in most cases)

Compiler
#1

Compiler
#2

Compiler
#3

Write once, run anywhere

14PNNL-SA-182677
The Seventh LLVM Performance

Workshop, CGO, Montreal, Canada,
February 25, 2023

COMET: Domain Specific Compilation in Multi-
level IR

• COMET is a compiler infrastructure that focuses on computational chemistry and
graph analytics application domain

• COMET supported frontends
§ COMET Domain specific language that follows Einstein notation
§ NumPy einsum to evaluates the Einstein summation
§ Rust eDSL

• COMET compiler infrastructure
§ Enable from high-level, domain-specific and low-level, architecture-specific

compiler optimizations
§ Tensor algebra dialect in the MLIR infrastructure
§ Multi-level code optimizations, including domain-specific and architecture specific
§ Abstraction for dense/sparse storage formats

ü A set of per-dimension attributes to specify sparsity properties of tensors
ü Attributes enables support for a wide range of sparse storage formats

§ Data layout optimizations to enhance data locality
§ Support for sparse output for sparse-sparse computation (e.g., SpGEMM)
§ Support for semiring operations to represent graph algorithms
§ Kernel Fusion to avoid temporaries and redundant computation
§ Automatic code generation for sequential and parallel execution
§ FPGA code generation via SPIRV binary
§ Interface with emerging dataflow architectures (SambaNova and Xilinx Versal)

• COMET runtime
§ Input-dependent optimization to increase data locality and load balancing
§ Read input matrices and tensors, convert it into internal storage format

Algebra

Dense/Sparse Tensor Algebra (TA) DSL, NumPy and Rust eDSL

TA AST

Tensor

Async

Structured Control Flow

LLVM IR

LLVM IR

Standard

Linear Algebra

Sequential
execution

TTGT, multi-operand
expressions
optimization, tiling, loop
reordering, micro kernel,
fusion

Async

LLVM
Coroutines
Parallel
execution

SparseDense

Sparse tensor operations,
support for important storage
formats, sparse output, data
reordering, workspace
transformations, fusion

Front/backend
dialect

Optimization
dialect
External
representation

Handshake

FIRRTL

Verilog

FPGA

GPU

CUDA SPIR-V

PTX SPIR-V

GPUs and FPGA

Dataflow

Dataflow

Spatial
accelerators

Index Tree

Xilinx Versal,
SambaNova

15PNNL-SA-182677

A collection of modular and reusable software components that
enables the progressive lowering of high-level operations, to

efficiently target hardware in a common way

Multi-Level Intermediate Representation
(MLIR)

New compiler infrastructure Part of LLVM project

https://github.com/llvm/llvm-project
16PNNL-SA-182677

The Seventh LLVM Performance
Workshop, CGO, Montreal, Canada,

February 25, 2023

https://github.com/llvm/llvm-project

Sparse Computations

• Sparse kernels are widely used in many applications, e.g., scientific
computing, machine learning, and data analytics

• Sparse computations uses sparse storage formats:
§ To reduce storage requirements by storing only nonzero elements
§ To reduce computational requirements by skipping redundant computation

• Challenges with sparse computations:
§ Difficult to write sparse kernels considering many different storage formats
§ Lack of temporal locality due to irregular accesses
§ Lack of spatial locality, limited data reuse

• Sparse libraries solve some of the issues above but …
§ Limited support for combination of sparse storage formats, various tensor expressions,

and heterogeneous target architectures

Sparse Compilers simplifies development of sparse kernels by
automatically generating code based on tensor “sparsity” property

17PNNL-SA-182677
The Seventh LLVM Performance

Workshop, CGO, Montreal, Canada,
February 25, 2023

Sparse Compilation Pipeline1,2

• Internal sparse tensor storage
format

• Sparse data type
• An attribute per tensor dimension to

support sparse tensor storage
format

• Automatic code generation for
sparse tensor operations

• Support for sparse output
• Input-dependent optimization

§ Data reordering to enhance data
locality

[1] Ruiqin Tian, Luanzheng Guo, Jiajia Li, Bin Ren, Gokcen Kestor. “A High Performance Sparse Tensor Algebra Compiler in MLIR”. LLVM-HPC, 2021.
[2] Sparse tensor algebra optimizations in MLIR. Tian R., L. Guo, and G. Kestor. 2021 LLVM DEVELOPERS' MEETING. November 2021.

Algebra

Dense/Sparse Tensor Algebra (TA) DSL, NumPy and Rust eDSL

TA AST

Tensor

Async

Structured Control Flow

LLVM IR

LLVM IR

Standard

Linear Algebra

Sequential
execution

TTGT, multi-operand
expressions
optimization, tiling, loop
reordering, micro kernel,
fusion

Async

LLVM
Coroutines
Parallel
execution

SparseDense

Sparse tensor operations,
support for important storage
formats, sparse output, data
reordering, workspace
transformations, fusion

Front/backend
dialect

Optimization
dialect
External
representation

Handshake

FIRRTL

Verilog

FPGA

GPU

CUDA SPIR-V

PTX SPIR-V

GPUs and FPGA

Dataflow

Dataflow

Spatial
accelerators

Index Tree

Xilinx Versal,
SambaNova

18

Support for Sparse Outputs

• Storing output tensor in a sparse format introduces expensive insertions and
accesses to sparse input tensors, which has large time complexity

• We introduced a temporary dense data structure (called workspaces1)
to store the value in the sparse dimension in sparse kernels to improve
data locality of sparse kernels while producing sparse output

• This approach brings the following advantages:
§ Significantly improves performance of sparse kernels through efficient dense data

structures accesses.
§ Reduces memory footprint
§ Avoids “densifying” issue in the compound expressions

[1] Tensor Algebra Compilation with Workspaces. Fredrik Kjolstad, and et al., IEEE/ACM International Symposium on Code Generation and Optimization, 2019

19PNNL-SA-182677
The Seventh LLVM Performance

Workshop, CGO, Montreal, Canada,
February 25, 2023

Index tree Intermediate Representation (IR)

• We introduced Index Tree intermediate representation in the COMET compiler
§ Index Tree is a high-level intermediate representation for a tensor expression
§ Consists of two types of nodes

ü Index nodes:
• Contain one or more indices to represent (nested) loops
• Each index represent a level of loop

ü Compute nodes:
• Contain compute statements

i, k, j

Cij += Aik * Bkj

Index tree for
SpGEMM

1 for i in I
2 for k in K
3 for j in J
4 Cij += Aik * Bkj

Pseudo-code for SpGEMM

𝐶𝑖𝑗 = %
!

𝐴𝑖𝑘 ∗ 𝐵𝑘𝑗

20PNNL-SA-182677
The Seventh LLVM Performance

Workshop, CGO, Montreal, Canada,
February 25, 2023

• We perform compiler transformation in the index tree representation of a tensor
expression
§ Benefits

ü Reduces expensive insertions/ accesses to sparse tensors
• Dense data structure has better locality
• Generates “for” loops instead of “while” loops
• Utilize the existing for loop optimizations

§ How?
ü Identify the index that needs workspace

• Store the value in the dimension into workspace (i.e., dense low dimensional data structure)

ü Check output tensor (lhs) , if it contains sparse dimension
• e.g., SpGEMM in CSR, dimension j is sparse in C. Then the original “Cij=Aik*Bkj” will be transformed into “Wj = 0; Wj +=

Aik*Bkj; Cij = Wj; ” in each iteration of i

ü Check input tensors (rhs), if one dimension in both two input tensors are sparse
• e.g., pure sparse elementwise multiplication, Cij=Aij*Bij, all matrices are in CSR. In this case, dimension j is sparse in A

and B. then the original “Cij=Aij*Bij” will be converted into “Wj = 0;Wj = Aij; Cij = Wj*Bij;” in each iteration of i

Workspace Transformation

What is the
algorithm?

21PNNL-SA-182677
The Seventh LLVM Performance

Workshop, CGO, Montreal, Canada,
February 25, 2023

Transformation in Index Tree

i, k, j

Cij += Aik * Bkj

Index tree for
SpGEMM

Index tree for SpGEMM with workspace

Wj = 0

i, k

Wj += Aik *
Bkj

j

Cij = Wj

Eliminate loop invariant
redundancy

Cij = Wj

j

i

Wj += Aik * Bkj

k, j

Wj = 0

j

22PNNL-SA-182677
The Seventh LLVM Performance

Workshop, CGO, Montreal, Canada,
February 25, 2023

Code Generation from Index Tree IR Operations

1 for i in I
2 for j in J
3 Wj = 0
4 for k in K
5 for j in J
6 Wj += Aik * Bkj
7 for j in J
8 Cij = Wj

// update pos/crd

Pseudo-code for SpGEMM with workspace
Cij = Wj

j

i

Wj += Aik * Bkj

k, j

Wj = 0

j

Index tree for SpGEMM

23PNNL-SA-182677
The Seventh LLVM Performance

Workshop, CGO, Montreal, Canada,
February 25, 2023

Index Tree IR Operations
• Three types of index tree IR operations

§ it.itree: the identifier of the index tree op in IT IR
§ it.Indices: represent the information in Index Node in index tree
§ it.Compute: represent the information in Compute Node in index tree

Index tree example

Corresponding index tree IR

%96 = it.Compute (%cst_40, %95) {…} : …-> (i64)
%97 = it.Indices (%96) {indices = [2]} : (i64) -> i64
%98 = it.Compute (%34, %68, %95) {semiring=“plus-times”} …: -> (i64)
%99 = it.Indices (%98) {indices = [1, 2]} : (i64) -> i64
%100 = it.Compute (%95, %93) {…} -> (i64)
%101 = it.Indices (%100) {indices = [2]}
%102 = it.Indices (%97, %99, %101) {indices = [0]}
%103 = it.itree (%102) : (i64) -> i64

Cij = Wj

j

i

Wj += Aik * Bkj

k, j

Wj = 0

j

it.Indices

it.itree

it.Indices

it.Compute

24PNNL-SA-182677
The Seventh LLVM Performance

Workshop, CGO, Montreal, Canada,
February 25, 2023

Generated Index Tree IR Operations Example

def main() {
#IndexLabel Declarations
IndexLabel [i] = [?];
IndexLabel [j] = [?];
IndexLabel [k] = [?];

#Tensor Declarations
Tensor<double> A([i, k], {CSR});
Tensor<double> B([k, j], {CSR});
Tensor<double> C([i, j], {CSR});

#Tensor Data Initialization
A[i, k] = comet_read(0);
B[k, j] = comet_read(1);
C[i, j] = 0.0;

#Tensor Contraction
C[i, j] = A[i, k] @(+,*) B[k, j];

}

SpGEMM DSL

SpGEMM Index Tree IR Ops

1 for i in I
2 for j in J
3 Wj = 0
4 for k in K
5 for j in J
6 Wj += Aik * Bkj
7 for j in J
8 Cij = Wj

// update pos/crd
Pseudo-code for SpGEMM with workspace

The semiring attribute influences
how this code is generated.

%96 = it.Compute (%cst_40, %95) {…} : …-> (i64)
%97 = it.Indices (%96) {indices = [2]} : (i64) -> i64
%98 = it.Compute (%34, %68, %95) {semiring=“plus-times”} …: -> (i64)
%99 = it.Indices (%98) {indices = [1, 2]} : (i64) -> i64
%100 = it.Compute (%95, %93) {…} -> (i64)
%101 = it.Indices (%100) {indices = [2]}
%102 = it.Indices (%97, %99, %101) {indices = [0]}
%103 = it.itree (%102) : (i64) -> i64

25PNNL-SA-182677
The Seventh LLVM Performance

Workshop, CGO, Montreal, Canada,
February 25, 2023

Some semiring examples in DSL

def main() {
#IndexLabel Declarations
IndexLabel [a] = [?];
IndexLabel [b] = [?];
IndexLabel [c] = [?];

#Tensor Declarations
Tensor<double> A([a, b], {CSR});
Tensor<double> B([b, c], {CSR});
Tensor<double> C([a, c], {CSR});

#Tensor Data Initialization
A[a, b] = comet_read(0);
B[b, c] = comet_read(1);

#PlusTimes semiring
C[a, c] = A[a, b] @(+,*) B[b, c];

}

def main() {
#IndexLabel Declarations
IndexLabel [a] = [?];
IndexLabel [b] = [?];

#Tensor Declarations
Tensor<double> A([a, b], {CSR});
Tensor<double> B([a, b], {CSR});

#Tensor Data Initialization
A[a, b] = comet_read(0);
B[a, b] = comet_read(1);

#Min monoid
C[a, b] = A[a, b] @(min) B[a, b];

}

26PNNL-SA-182677
The Seventh LLVM Performance

Workshop, CGO, Montreal, Canada,
February 25, 2023

Semiring Operations in COMET
Semirings Operation Explanation
Lor-land s(|, &) ‘lor’ means logical OR; ‘land’ means logical AND.

Min-first s(min, first) ‘min’ means the minimal value; ‘first’ means first(x, y) = x: output the value of
the first in the pair.

Plus-times s(+,x) ‘+’ means addition; ‘x’ means multiplication.

Any-pair s(any, pair) ‘any’ means “if there is any; if yes return true”. ‘pair’ means pair(x, y) = 1: x and
y both have defined value at this intersection.

Min-plus s(min, +) ‘min’ means the minimal value; ‘+’ means addition.

Plus-pair s(+, pair) ‘+’ means addition; ‘pair’ means pair(x, y) = 1: x and y both have defined value
at this intersection.

Min-second s(min, second) ‘min’ means the minimal value; ‘second’ means second(x, y) = x: output the
value of the second in the pair.

Plus-second s(+, second) ‘+’ means addition; ‘second’ means second(x, y) = x: output the value of the
second in the pair.

Plus-first s(+, first) ‘+’ means addition; ‘first’ means first(x, y) = x: output the value of the first in the
pair.

27PNNL-SA-182677
The Seventh LLVM Performance

Workshop, CGO, Montreal, Canada,
February 25, 2023

Semiring Operations per application
Semirings Operation Description

BFS Lor-land s(|, &) Compute traversal level for each vertex
Min-first s(min, first) Compute parent for each vertex
Plus-times s(+,x) Number of paths
Any-pair s(any, pair) Reachability
Min-plus s(min, +) Shortest path

SSSP Min-plus s(min, +) Shortest path without mask (Bellman-Ford Algorithm)
TC Plus-pair s(+, pair) Number of triangles
CC Min-second s(min, second) Hooking and shortcutting
PR Plus-second s(+, second) Outbound PageRank score
BC Plus-first s(+, first) Accumulate path count

28PNNL-SA-182677
The Seventh LLVM Performance

Workshop, CGO, Montreal, Canada,
February 25, 2023

Semiring Performance (unjumbled)
• A method returns a matrix in an unjumbled state, with indices sorted

§ if the matrix will be immediately exported in unjumbled form, or
§ if the matrix is provided as input to a method that requires it to not be jumbled

Performance
comparison wrt
LAGraph1

[1] Tim Mattson and others. “LAGraph: A Community Effort to Collect Graph Algorithms Built on Top of the GraphBLAS”, IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 2019. 29PNNL-SA-182677

The Seventh LLVM Performance
Workshop, CGO, Montreal, Canada,

February 25, 2023

Semiring Performance (jumbled)
• A method returns a matrix in a jumbled state, with indices out of order

§ If some methods can tolerate jumbled matrices on input, the sorting of the indices is left
pending

Performance
comparison wrt
LAGraph

We need a

better sorting

algorithm

30PNNL-SA-182677
The Seventh LLVM Performance

Workshop, CGO, Montreal, Canada,
February 25, 2023

Push-Based Masking

• Example of SpGEMM: 𝐶 𝑀 = 𝐴 @(+,×) 𝐵
• Driven by rows of 𝐴
• Do linear combination

𝐵𝐴

×

𝑀

×

×

×

𝐶! 𝑀! = 𝐴! @(+,×) 𝐵

𝐴!

𝑀!

𝐶!

+

=

31PNNL-SA-182677
The Seventh LLVM Performance

Workshop, CGO, Montreal, Canada,
February 25, 2023

Pull-Based Masking

• Example of SpGEMM: 𝐶 𝑀 = 𝐴 @(+,×) 𝐵
• Driven by non-zero elements of 𝑀
• Do dot product, and 𝐵 is in CSC format

𝐵𝐴

×

𝑀

𝐶!" 𝑀!" = 𝐴!:@ +,× 𝐵:"

We plan to have pull-based masking in the future

𝑀!"

×

𝐶!"

𝐴!:

𝐵:"

32PNNL-SA-182677
The Seventh LLVM Performance

Workshop, CGO, Montreal, Canada,
February 25, 2023

Results: Masking

33PNNL-SA-182677
The Seventh LLVM Performance

Workshop, CGO, Montreal, Canada,
February 25, 2023

Triangle Counting in COMET

• Number of Triangles in a graph, where a triangle is a set of three mutually
adjacent vertices in a graph.

• Various linear algebra-based algorithms proposed for the triangle counting
problem.
§ Burkhard algorithm:

§ Cohen algorithm:

§ SandiaLL algorithm:

§ SandiaUU algorithm:

𝑛𝑡𝑟𝑖 = 𝑠𝑢𝑚 𝐴@ +,× 𝐴 .∗ 𝐴 /6

𝑛𝑡𝑟𝑖 = 𝑠𝑢𝑚 𝐿 @ +,× 𝑈 .∗ 𝐴 /2

𝑛𝑡𝑟𝑖 = 𝑠𝑢𝑚 𝐿 @ +,× 𝐿 .∗ 𝐿

𝑛𝑡𝑟𝑖 = 𝑠𝑢𝑚 𝑈 @ +,× 𝑈 .∗ 𝑈

34PNNL-SA-182677
The Seventh LLVM Performance

Workshop, CGO, Montreal, Canada,
February 25, 2023

Triangle Counting in COMET

𝑛𝑡𝑟𝑖 = 𝑠𝑢𝑚 𝐿 @ +,× 𝑈 .∗ 𝐴 /2

def main() {
#IndexLabel Declarations
IndexLabel [a] = [?];
IndexLabel [b] = [?];
IndexLabel [c] = [?];

#Tensor Declarations
Tensor<double> A([a, b], {CSR});
Tensor<double> L([a, c], {CSR});
Tensor<double> U([c, b], {CSR});

#Tensor Data Initialization
A[a, b] = comet_read(0, 1); # standard matrix read
L[a, c] = comet_read(0, 2); # lower triangular read
U[c, b] = comet_read(0, 4); # upper triangular read

#PlusTimes semiring
var ntri = SUM((L[a, c] @(+,*) U[c, b]) .* A[a, b])/2;

}

35PNNL-SA-182677
The Seventh LLVM Performance

Workshop, CGO, Montreal, Canada,
February 25, 2023

Results: Triangle Counting

36PNNL-SA-182677
The Seventh LLVM Performance

Workshop, CGO, Montreal, Canada,
February 25, 2023

Conclusions and future work

• A DSL for implementing graph algorithms using linear algebra operations.
§ Support for semirings and masking.

• Optimizations for efficient codegen of sparse operations.
§ Workspace transforms.

• Sparse linear algebra operations as building blocks for graph algorithms
paves the way for compiler optimizations.
§ Target heterogeneous accelerators.

37PNNL-SA-182677
The Seventh LLVM Performance

Workshop, CGO, Montreal, Canada,
February 25, 2023

Thank you
rizwan.ashraf@pnnl.gov
zhen.peng@pnnl.gov
lenny.guo@pnnl.gov
gokcen.kestor@pnnl.gov

38PNNL-SA-182677

mailto:Rizwan.ashraf@pnnl.gov
mailto:Zhen.peng@pnnl.gov
mailto:Lenny.guo@pnnl.gov
mailto:Gokcen.kestor@pnnl.gov

Acknowledgements

§ The research described in this presentation is part of the
Data Model Convergence Initiative at Pacific Northwest
National Laboratory (PNNL). It was conducted under the
Laboratory Directed Research and Development Program at
PNNL, a multi-program national laboratory operated by
Battelle for the U.S. Department of Energy (DOE).

§ The research described in this presentation is also supported
in part through U.S. Department of Energy’s Office of
Advanced Scientific Computing Research as part of the
Center for Artificial Intelligence-focused Architectures and
Algorithms (ARIAA).

§ PNNL is operated by Battelle for the DOE under Contract DE-
AC05-76RL01830.

39

